Browsing by Author "Brashaw, Brian K."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Development of Flexural Vibration Inspection Techniques to Rapidly Assess the Structural Health of Rural Bridge Systems(University of Minnesota Center for Transportation Studies, 2008-09) Brashaw, Brian K.; Vatalaro, Robert; Wang, Xiping; Sarvela, Kevin; Wacker, James P.Approximately 4,000 vehicle bridges in the State of Minnesota contain structural timber members. Recent research at the University of Minnesota Duluth Natural Resources Research Institute (UMD NRRI) has been conducted on vibration testing of timber bridges as a means of developing rapid in-place testing techniques for assessing the structural health of bridges. The technique involves measuring the frequency characteristics of the bridge superstructure under forced flexural vibration. The peak frequency of vibration was measured and compared to a set of load testing data for each of 9 bridges. Each bridge was also inspected using commercially available advanced inspection equipment to identify any major structural problems with individual bridge components such as timber pilings, pile caps, and girders. Two bridges were identified that needed immediate maintenance attention. The relationship between the load deflection data and the vibration characteristics showed a useful relationship and the results indicate that forced-vibration methods have potential for quickly assessing timber bridge superstructure stiffness. However, improvements must be made to the measurement system to correctly identify the 1st bending mode frequency of the field bridges. This global vibration technique has potential benefits for routine inspections and long-term health monitoring of timber bridge superstructures.Item Development of Flexural Vibration Inspection Techniques to Rapidly Assess the Structural Health of Rural Bridge Systems: Phase II(Minnesota Department of Transportation, 2009-12) Brashaw, Brian K.; Vatalaro, Robert J.; Wang, Xiping; Verreaux, Matthew; Sarvela, KevinCurrent timber bridge inspection procedures used in Minnesota and across the United States are mostly limited to visual inspection of the wood components. Use of advanced techniques like stress wave timing, moisture meters, resistance drills will significantly improve the reliability of the inspections but these inspection techniques are time consuming. The objective of this project was to conduct vibration testing of dowel laminated timber bridge systems to better understand the potential for using vibration testing to assess the structural health and condition of bridges in Minnesota. A second key objective was to improve and automate the vibration testing system that is currently being used. This research showed that the forced vibration system developed is an effective tool for conducting forced vibration tests of timber bridges and that there is a noted increase in frequency during each successive stage of construction. A reliable means for assessing the peak frequencies and an identification of the mode still needs to be developed for this system to use the vibration response to predict the EI product for use in load ratings. Each bridge has a unique set of vibration characteristics that were identified using the automated system. These characteristics showed peaks in amplitude as the frequency of the vibration was increased from 0 - 35 Hz during testing. It is believed that monitoring of the characteristic vibration response for each bridge would be a means of identifying changes in structural health over time due to wood decay, accidents, vandalism, or lack of maintenance.