
Algorithms and Data Structures for Geometric
Intersection Query Problems

A THESIS

SUBMITTED TO THE FACULTY OF THE DEPARTMENT OF

COMPUTER SCIENCE AND ENGINEERING

OF THE UNIVERSITY OF MINNESOTA

BY

Saladi Rahul

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILISOPHY

Advisor: Prof. Ravi Janardan

September, 2017



c© Saladi Rahul 2017

ALL RIGHTS RESERVED



Acknowledgements

My journey into theoretical computer science started at IIIT-Hyderabad. A special

thanks to Prof. Prosenjit Gupta for introducing me to the world of computational

geometry; and Prof. Rajan for being a great mentor during my stay at IIIT-H. Both of

them truly cared for me and I will never forget that.

I am thankful to Prof. Ravi Janardan for taking me as a graduate student to his

lab. More importantly, I would like to thank him for showing a lot of patience over the

past six years. I have learnt many invaluable research skills from him. I will always

remember two of his phrases “have blinders on..” and “you will not be judged by the

number of problems you have attempted, but by the number of problems you actually

solve”. I had the habit of attempting too many problems at the same time and he had

to invoke the above two phrases from time-to-time to get me focussed on finishing a

particular problem.

I had a very fruitful collaboration and friendship with Yufei Tao. Our collaboration

started with my month long trip to Hong Kong where my stay was generously taken

care of. In my initial years, I was not sure if I was capable enough to do research in

theoretical computer science, but Yufei (for some reason) believed that I could do it and

always encouraged me.

Prof. Barna Saha visited Minnesota and taught a course on “Algorithmic Techniques

for Big Data Analysis”. This course taught me tools which made it easy for me to

understand many modern concepts of computational geometry. Thanks a lot, Barna!

My SODA paper would not have been possible without this course.

At Minnesota, I had fruitful interactions with Prof. John Gunnar Carlsson and Prof.

Mohamed Mokbel. Thank you John for inviting me to Stanford for a week to work on

our paper; and thank you Prof. Mokbel for inviting me to present my work to your

i



research group and to your class.

Timothy Chan and Sariel Har-Peled are two stalwarts in the field of computational

geometry. It has been a great learning experience working with them over the past few

months. I am really looking forward to start a postdoc with both of them at UIUC.

The University of Washington theoretical computer science group has been my sec-

ond home for the past three years. They let me generously attend all their theory

courses. I would like to thank the faculty (especially, Anna and Paul) for providing me

a desk space to work. The theory lunches were a great place to meet everyone, have

good food and listen to some nice theory. I made some good friends with the graduate

students at UW (especially Siva).

In the summer of 2015, I got a chance to work as an intern at Microsoft Research,

Redmond (MSR). The exposure to the research environment at MSR gave me a new

perspective about conducting research. Thanks a lot to my mentors Ishai, Srikanth,

Nikhil and Peter. This internship lead to friendship with Janardhan Kulkarni (a.k.a.

Jana) who continues to be a mentor on the topics of research and life.

I was blessed with good friends and labmates during my stay at Minnesota and Seat-

tle, especially the “310 Gang” (Raghu, Pavani, Anand, GV, Narayanaswamy(?) with its

Wednesday nights at Legends and the fights over the special ikea plates), the “Chateau

Gang” (Anuj, Ankush, and Pragya), the “Seattle Group” and the “Computational Ge-

ometry Lab” (Jie, Yuan, Yokesh, and Akash). I want to use this opportunity to say

“Hii” to all my other friends in India, USA and other parts of the world. I cannot

thank my wife, Haritha, enough for standing by me all this time. She had to make

many sacrifices: quitting her job in India, moving to a new country, and facing financial

troubles in the early days of my Ph.D. Finally, I would like to thank my family (my

mom Surekha, my dad, and my brother Sidhu). Their love and affection ensured that

I had a wonderful childhood.

ii



Dedication

To my parents...I bow down to them.

iii



Abstract

The focus of this thesis is the topic of geometric intersection queries (GIQ) which has

been very well studied by the computational geometry community and the database

community. In a GIQ problem, the user is not interested in the entire input geometric

dataset, but only in a small subset of it and requests an informative summary of that

small subset of data. Formally, the goal is to preprocess a set A of n geometric objects

into a data structure so that given a query geometric object q, a certain aggregation

function can be applied efficiently on the objects of A ∩ q. The classical aggregation

functions studied in the literature are reporting or counting the objects of A ∩ q. In

many applications the same set A is queried several times, in which case one would

like to answer a query faster by preprocessing A into a data structure. The goal is to

organize the data into a data structure which occupies a small amount of space and yet

responds to any user query in real-time.

In this thesis the study of the GIQ problems was conducted from the point-of-view

of a computational geometry researcher. Given a model of computation and a GIQ

problem, what are the best possible upper bounds (resp., lower bounds) on the space

and the query time that can be achieved by a data structure? Also, what is the relative

hardness of various GIQ problems and aggregate functions. Here relative hardness

means that given two GIQ problems A and B (or, two aggregate functions f(A, q) and

g(A, q)), which of them can be answered faster by a computer (assuming data structures

for both of them occupy asymptotically the same amount of space)?

This thesis presents results which increase our understanding of the above questions.

For many GIQ problems, data structures with optimal (or near-optimal) space and

query time bounds have been achieved. The geometric settings studied are primarily

orthogonal range searching where the input is points and the query is an axes-aligned

rectangle, and the dual setting of rectangle stabbing where the input is a set of axes-

aligned rectangles and the query is a point. The aggregation functions studied are

primarily reporting, top-k, and approximate counting. Most of the data structures are

built for the internal memory model (word-RAM or pointer machine model), but in

some settings they are generic enough to be efficient in the I/O-model as well.

iv



Contents

Acknowledgements i

Dedication iii

Abstract iv

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Landscape of GIQ problems . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Geometric setting . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Aggregation function . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Models of Computation . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.4 Fundamental Structures and Techniques . . . . . . . . . . . . . . 7

1.1.5 Data Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 8

I Orthogonal Point Location and Rectangle Stabbing in 3-d 13

2 Orthogonal Point Location in 3-d 14

2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Our results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

v



2.4 Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Preliminaries: On Two Subroutines . . . . . . . . . . . . . . . . . . . . . 17

2.6 Orthogonal Point Location in 3-d . . . . . . . . . . . . . . . . . . . . . . 19

2.6.1 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6.2 Query Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6.3 Query Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.4 Space Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.5 Other Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.8 Open questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Rectangle Stabbing in 3-d 26

3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Previous results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Simple structure for OPEQ using linear space . . . . . . . . . . . . . . . 28

3.4.1 Handling 3-sided rectangles . . . . . . . . . . . . . . . . . . . . . 29

3.4.2 Interval tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.3 Handling 4-,5-,6-sided rectangles . . . . . . . . . . . . . . . . . . 30

3.5 OPEQ for 4-sided rectangles: almost optimal query time . . . . . . . . . 31

3.5.1 Shallow cuttings . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5.2 Handling a special case . . . . . . . . . . . . . . . . . . . . . . . 33

3.5.3 O(log n · log∗ n+ k)-query time solution . . . . . . . . . . . . . . 34

3.6 OPEQ for 4-sided rectangles: optimal query time . . . . . . . . . . . . . 36

3.7 OPEQ on 5- and 6-sided rectangles . . . . . . . . . . . . . . . . . . . . . 40

3.8 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

II Top-k Geometric Intersection Query 44

4 Top-k Geometric Intersection Query (GIQ) 45

4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Näıve solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

vi



4.3 Key features of our techniques/reductions . . . . . . . . . . . . . . . . . 46

4.4 Three Generic Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4.1 Mathematical definitions . . . . . . . . . . . . . . . . . . . . . . . 47

4.4.2 First reduction: Using counting and reporting structure . . . . . 48

4.4.3 Second reduction: Using max and prioritized reporting structure 48

4.4.4 Third reduction: Using only the prioritized reporting structure . 50

4.5 New top-k GIQ structures . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Previous Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 First Generic Reduction: Using counting and reporting structures 56

5.1 Key steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Implementation of step 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 Implementation of step 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4 Implementation of step 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.5 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.6 Proof of Theorem 4.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.7 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Second Generic Reduction: Using top-1 and prioritized reporting

structures 64

6.1 Prioritized reporting is no harder than top-k reporting . . . . . . . . . . 64

6.2 Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7 Third generic reduction: Using only the prioritized reporting struc-

ture 71

7.1 Key Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.2 Top-k Core-Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.4 Remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8 New Top-k GIQ structures 79

8.1 Top-k Interval Stabbing (Theorem 4.5.5) . . . . . . . . . . . . . . . . . . 79

vii



8.2 Top-k Orthogonal Range Reporting (Thm. 4.5.1–4.5.3) . . . . . . . . . . 80

8.3 Top-k Point Enclosure (Theorem 4.5.6) . . . . . . . . . . . . . . . . . . 81

8.4 Top-k 3D Dominance (Theorem 4.5.7) . . . . . . . . . . . . . . . . . . . 82

8.5 Top-k Halfspace Reporting: d = 2

(Theorem 4.5.4: 1st Bullet) . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.6 Top-k Halfspace Reporting: d ≥ 4

(Theorem 4.5.4: 2nd and 3rd Bullets) . . . . . . . . . . . . . . . . . . . 85

III Approximate Range Counting 87

9 Approximate Range Counting 88

9.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

9.2 Previous work and background . . . . . . . . . . . . . . . . . . . . . . . 89

9.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

9.4 Our results and techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 92

9.4.1 Specific problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

9.4.2 General reductions . . . . . . . . . . . . . . . . . . . . . . . . . . 93

9.4.3 Our techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

10 Nested Shallow Cuttings 96

10.1 Transformation to a standard problem . . . . . . . . . . . . . . . . . . . 97

10.2 Standard 3-sided rectangle stabbing in 2-d . . . . . . . . . . . . . . . . . 97

10.2.1 Nested shallow cuttings . . . . . . . . . . . . . . . . . . . . . . . 98

10.2.2 Data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

11 A General Reduction 103

11.1 Refinement Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

11.2 Overall solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

11.3 Open problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

12 Application of the General Reduction 107

12.1 Colored 3-sided range search in R2 . . . . . . . . . . . . . . . . . . . . . 107

12.1.1 Reduction to 5-sided rectangle stabbing in R3 . . . . . . . . . . . 108

viii



12.1.2 Interval tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

12.1.3 Initial structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

12.1.4 Final structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

12.2 C-approximation for 4-sided range search . . . . . . . . . . . . . . . . . 111

12.3 Open problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

13 Final Remarks 113

References 115

ix



List of Tables

2.1 Orthogonal point location in 3-d using linear space in the pointer machine

model, I/O model, and the word-RAM model. . . . . . . . . . . . . . . . 16

3.1 Summary of our results for orthogonal point enclosure in R3. log∗ n is

the iterated logarithm of n. log(1) n = log n and log(i) n = log(log(i−1) n)

when i > 1 is a constant integer. Existing solutions in the literature for

6-sided rectangles require Ω(n log n) space. . . . . . . . . . . . . . . . . . 29

9.1 A summary of the results obtained for several approximate colored count-

ing queries. To avoid clutter, the O(·) symbol and the dependency on ε

is not shown in the space and the query time bounds. For the second

column in the table, the first entry is the input and the second entry is

the query. For each results column in the table, the first entry is the

space occupied by the data structure and the second entry is the time

taken to answer the query. WR denotes the word-RAM model and PM

denotes the pointer machine model. . . . . . . . . . . . . . . . . . . . . . 94

x



List of Figures

1.1 Various geometric settings in R2 and R3. (Figures in the thesis are best

viewed in color.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Landscape of geometric intersection queries (GIQ). . . . . . . . . . . . . 4

1.3 (a) Rectangle stabbing problem shown in R2, (b) Orthogonal point loca-

tion problem shown in R2. . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Top-5 rated restaurants shown as solid black squares. . . . . . . . . . . . 10

1.5 An instance of the colored setting. . . . . . . . . . . . . . . . . . . . . . 11

2.1 (a) An illustration of an orthogonal point location query in R2. (b) A

setting consisting of Θ(n) boxes which would require Ω(n3/2) additional

boxes to fill the entire space. . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Boxes obtained after partitioning along the x-direction. . . . . . . . . . 19

3.1 Different kinds of rectangles in three dimensional space. . . . . . . . . . 27

3.2 (a) Projection of points in R onto the xy-plane. (b) Region r′i associated

with each point. (c) Trapezoidal decomposition to obtain the subdivision

A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 An internal node v in the interval tree IT . . . . . . . . . . . . . . . . . . 37

3.4 (a) Mv Structure. (b) Querying point set Smv (u) with (qy, qz). (c) Lists

Li. For the example query in (b), we walk down the list L4 to report r2,

r4 and r1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Breaking a rectangle in (a) into 2 horizontal side rectangles (shown in

(c)) and 2 vertical side rectangles (shown in (d)). . . . . . . . . . . . . . 41

xi



5.1 The general technique illustrated for top-k orthogonal range search in R2,

with k = 4. (a) Set A consisting of 8 weighted points and query rectangle

q. Points shown filled are the k largest-weight objects intersected by q.

(b) Finding the threshold point by querying T . The nodes visited by the

query algorithm are shown filled. (c) Search path, Π, in T ′ (shown in

heavy lines) and canonical nodes (shown filled). . . . . . . . . . . . . . . 61

9.1 An instance of a colored setting. . . . . . . . . . . . . . . . . . . . . . . 88

10.1 Transformation to a standard problem. . . . . . . . . . . . . . . . . . . . 97

10.2 (a) A portion of the t-level and 2t-level is shown. Notice that by our

construction, each cell in the t-level is contained inside a cell in the 2t-

level. (b) A cell in the t-level and the set Cr associated with it. (c) A

high-level summary of our data structure. . . . . . . . . . . . . . . . . . 99

12.1 Reduction from colored 3-sided range search in R2 problem to the 5-sided

rectangle stabbing problem in R3. . . . . . . . . . . . . . . . . . . . . . . 109

12.2 Answering a colored 3-sided range search in R2 query. . . . . . . . . . . 111

xii



Chapter 1

Introduction

Designing efficient algorithms and data structures for geometric problems is an active

topic of research in theoretical computer science and databases. The focus of this thesis

will be one of its popular sub-topics called geometric intersection queries (GIQ). Real-

world problems from diverse domains (such as Geographic Information System (GIS),

robotics, spatial and temporal databases, and networking) can be modelled as GIQ

problems. We present two motivating examples:

Finding nearby top-rated restaurants: Consider a tourist in the New York City

who wants to locate the nearest restaurants on his smartphone. This can be modelled

as an orthogonal range searching problem: Let A be a set of points in the plane and q

be an axes-aligned rectangle (see Figure 1.1(a)). The points could represent restaurants

and the query rectangle q can be an area in New York City, and the user wants to know

all the points in A which lie inside q.

Modeling user preferences as hyper-rectangles: In the rectangle stabbing problem

A is a set of axes-aligned rectangles and q is a point in the plane (see Figure 1.1(e)).

Rectangle stabbing is useful in applications in which the preferences of the users can

be modeled as hyper-rectangles in d-dimensional space. For example, consider a real-

estate database that contains information on several thousand homes for sale in a large

metropolitan area. A potential buyer can specify his preference as a two-dimensional

rectangle: “I am looking for houses whose price is in the range $200,000 to $500,000,

and whose age is in the range 3 to 10”. Here price is the x-axis and age is the y-axis.

1



2

q

(a) orthogonal range search (b) circular range search (c) halfspace range search

(d) dominance range search (e) rectangle stabbing (f) segment intersection

q
q q

q

q

q

Figure 1.1: Various geometric settings in R2 and R3. (Figures in the thesis are best
viewed in color.)

Each house can be modeled as a query point: (price, age). The output of the query will

be the set of buyers interested in buying that house.

Notice that in the above GIQ problems, the user is not interested in the entire

geometric dataset, but only in a small subset of it and requests an informative summary

of that small subset of data. A formal definition is the following:

Geometric intersection query (GIQ). Preprocess a set A of n geometric objects

into a data structure so that given a query geometric object q, a certain aggregation

function can be applied efficiently on the objects of A ∩ q.
If we are interested in answering a single query, it can be done in linear time, by



3

simply checking for each object p ∈ A whether p lies in the query range q and then com-

puting the aggregation function on the objects of A∩ q. However, in many applications

(such as the ones discussed above) the same set A is queried several times, in which

case we would like to answer a query faster by preprocessing A into a data structure.

The rationale here is that the cost of preprocessing will be more than compensated for

by the savings in response time when answering hundreds of thousands of queries (as

opposed to using a näıve query algorithm on un-preprocessed data).

The performance of the data structure is primarily measured by the following two

parameters: (i) query time, the time taken to answer the query, and (ii) size/space, the

size of the data structure. If the input data is dynamic, then update time, the time

taken to handle insertion/deletion of an object is also of interest. A secondary measure

is the preprocessing time, which is the time taken to build the data structure. The goal

is to obtain good upper and/or lower bounds on these parameters, which is done via

rigorous mathematical analysis.

1.1 Landscape of GIQ problems

Figure 1.2 is a succinct representation of the vast landscape of GIQ problems. It shows

the different aspects that come into play, such as computational models, geometric

setting, aggregation functions, fundamental data structures and algorithms, types of

data, etc. We briefly touch upon some of these aspects.

1.1.1 Geometric setting

A GIQ problem is primarily determined by the geometric objects in A and q. Similar

to the two scenarios presented at the beginning of the chapter (for studying orthogonal

range searching and rectangle stabbing), there are real-world applications which have

motivated the study of various other geometric settings. Please see Figure 1.1 which

illustrates a few well-studied geometric settings.

1.1.2 Aggregation function

Aggregation functions studied in the literature can be classified into the following two

categories:



4

Fundamental Structures

Fundamental Techniques

Data Characteristics

priority search tree, range trees

interval tree, segment tree

R-tree, Kd-tree, B-tree

Partition tree

Van Emde Boas tree, fusion tree

Voronoi diagram

Models of Computation

pointer machine

RAM

external memory (EM) or
I/O-model

cache-oblivious model

cell probe model

group model

streaming model

Geometric settings

orthogonal range searching

circular range search

halfspace range search

dominance range search

rectangle stabbing

segment intersection

algebraic range searching

Aggregation Function
(exact and approximate)

reporting, counting

max, top-k, sum

convex hull, skyline

minimum spanning tree

closest pair

color (or group-by)

balanced partitioning of objects:
tree, grid, (shallow) cuttings

approximation:
random sampling,
ε-nets, ε-approximation

persistence
fractional cascading
filtering search

kinetic/moving objects

static data

dynamic data

location uncertainity

existensial uncertainity

Figure 1.2: Landscape of geometric intersection queries (GIQ).



5

Classical aggregation functions: GIQ problems have been an active field of research

since the 1970s. Some of the classical aggregation functions studied are reporting, count-

ing, max, and sum. In a reporting query we report the objects in A ∩ q, in a counting

query we report |A ∩ q|, in a max query we report the object in A∩ q with the largest-

weight, and so on.

In spite of many decades of research on these aggregate functions, there are still

open problems under various geometric settings. Solutions to these classical problems

form the basis for building solutions for newer GIQ problems. References [1, 2] are our

key contributions to this class of problems.

Modern aggregation functions: In recent years, there has been an explosion in the

volume of digital data that is being generated and stored. Querying such large datasets

with new aggregate functions provides users more insights into the data. Moreover,

modern display devices such as smartphones have relatively low computing power and

small screens. Displaying all the items on a small screen would lead to clutter, and hence,

will not be informative. Our work in [3, 4, 5, 6, 7, 8] is part of a growing literature

to address these challenges by proposing practically useful aggregation functions, and

then providing efficient solutions for them. We have focussed on aggregate functions

top-k where we report the k largest-weighted objects in A∩q, and approximate counting

where we report an approximation of |A ∩ q|.

1.1.3 Models of Computation

Before designing a data structure, an algorithm designer has to fix a model of computa-

tion. It decides (a) permissible operations: operations which can be performed on the

data (and operations which are not allowed), and (b) data access: where the data is

stored and how it can be accessed. The solutions in this thesis have been built for the

following three models.

Word-RAM model. In this model [9], we have a collection of cells, each of which is

a w-bit word. Each cell can, therefore, store integer values in the range {0, . . . , 2w − 1}.
Random access to any cell can be performed in constant time. Basic operations on words

(which are performed in modern programming languages such as C, C++, or Java) take

constant time. This includes arithmetic operations (such as +,−, ∗, /,%), comparisons



6

(<,>,=), and bitwise boolean operations (bitwise-AND, OR, and exclusive-OR). We

assume that w ≥ logU and w ≥ log n, so that the coordinate of any object fits in a

single word and the memory location of any of the n objects also fits in a single word,

respectively. The space of the data structure is measured in terms of the number of

words/cells occupied.

I/O-model or external memory model. The dawn of big-data led to the intro-

duction of external memory (EM) or I/O-model [10]. Many massive datasets cannot

be completely stored in the main memory and hence reside in external devices such as

hard disks. It has been observed that the major bottleneck is the time taken to access

the disk: it takes orders of magnitude more time to access the disk than the time taken

to perform computations in the main memory. Therefore, the main objective of this

model is to minimize the number of I/Os (Input/Output) performed between the main

memory and the external device. In this model, a machine is equipped with M words

of main memory, and a disk that has been formatted into blocks of B words each (we

assume B ≥ 64). The values of M and B satisfy M ≥ 2B. An I/O either reads a disk

block into memory, or writes B words of memory into a disk block. The query time of an

algorithm is measured in the number of I/Os performed, while the space of a structure

is measured in the number of disk blocks occupied.

Pointer machine model. This model has been used extensively for proving several

interesting lower bounds and upper bounds for range searching and related problems.

Loosely speaking, in this model the data structure is modeled as a graph and one is not

allowed to do a random access. Formally, as defined by Tarjan [11], in this model a data

structure can be regarded as a directed graph, where each node stores O(1) real values

and O(1) pointers to other nodes. Random access to a node is not allowed and only

pointers can be used to access a node. We begin answering a query using a pointer to

a root node of the data structure. The query time of an algorithm is the total number

of nodes visited, whereas the size of a structure is the number of its nodes and edges.

Further details can be found in Agarwal and Erickson [12].



7

1.1.4 Fundamental Structures and Techniques

We give the reader a quick tour of some of the fundamental structures and techniques

which have been invented for answering GIQ problems in the last five to six decades. In

the 1970’s a balanced partition of the geometric objects or the underlying space was the

key approach for build range searching data structures. This lead to the invention of

fundamental structures such as range tree [13], Kd-tree [14], quadtree [15], B-tree [16],

and priority search tree [17]. Most of these structures came with good theoretical guar-

antees. On the database side, the R-tree [18] and its numerous variants were invented

in the 1980’s to efficiently handle range queries on spatial data in external memory. The

field of computational geometry started getting more sophisticated with the invention

of powerful tools such as persistence [19, 20], fractional cascading [21], and filtering

search [22].

In the late 1980’s, invention of tools such as ε-sample [23], ε-nets [24], and moments

technique [25] (all of which make use of random sampling) led to the emergence of

modern computational geometry. It revolutionized many areas within computational

geometry including GIQ problems. For example, it led to the efficient construction of

cuttings and shallow cuttings for halfspaces which are used as tools for solving GIQ

problems dealing with halfspaces.

In the meanwhile, different types of data structures were invented to efficiently

perform basic operations on integer data. These data structures generously exploited

the full power of the RAM model, which not only lets us do comparisons but also

arithmetic operations and bitwise boolean operations. The van Emde Boas tree [26, 27]

and the fusion tree [9] are two classic structures which perform predecessor/successor

search on an integer data coming from a fixed universe.

The last two decades have witnessed sustained activity on GIQ problems. A lot

of the focus has been on external memory structures and structures for integer data

(word-RAM structures). Some of the key features of the newer data structures have

been the use of trees with large fanout, the use of shallow cuttings to solve orthogonal

GIQ problems (not just halfspace/algebraic GIQ problems), and the use of a stronger

version of filtering search.

Typical space and query time bounds for GIQ problems have an exponential de-

pendence on the dimension size, say d. For example, standard range trees occupy



8

O(n logd−1 n) space and answer an orthogonal range counting query in O(logd−1 n)

time. If d = log n, then the query time of this structure is greater than n, which is

worse than a brute-force scan of the entire dataset. For d = Ω(log n), the grand ques-

tion is whether a sub-linear (i.e. o(n)) query time solution is possible using a reasonable

size data structure, say O(n2) or O(nd/2)? Recently, there has been progress on this

question by Chan [28].

1.1.5 Data Characteristics

Traditionally GIQ problems have been formulated to handle static data (whereA is fixed

and does not change) and dynamic data (where insertion/deletion of objects into A is

permitted). With the availability of high-quality trajectory data and real-time tracking

of vehicles, GIQ problems are also being studied for the setting where A represents

trajectory data [29] and moving objects [30], respectively.

Typically, the data is assumed to be precise; however, some sources of data such as

GPS or network sensors are imprecise, and over the last few years there are attempts

being made to model this imprecise data and answer GIQ problems on them [31, 32, 33].

1.2 Contributions of the Thesis

This thesis presents new results for various GIQ problems. The results presented in this

thesis will be presented in three parts. Part-I of the thesis will focus on two fundamental

problems in the field of computational geometry. These problems have been of interest

to the community for the past four decades. Part-II and Part-III of the thesis study

problems that have emerged within the past decade or so.

Part-I: Orthogonal point location in 3-d. In this problem, we preprocess a set of n

axes-aligned disjoint boxes/hyper-rectangles in Rd into a data structure, so that the box

(if any) containing a given query point can be reported efficiently (see Figure 1.3(b)).

In 2-d the problem is well-understood; an optimal solution is known in various models

of computation: for example, in the pointer machine model there is an O(n) size data

structure which can answer the query in O(log n) time.



9

This thesis presents an optimal solution for the orthogonal point location query in

3-d in the pointer machine model and the I/O model: a linear-space structure which can

answer the query in O(log n) time and O(logB n) I/Os, respectively. In the word-RAM

model, we have succeeded in surpassing the log n barrier in the query time.

Part I: Rectangle stabbing in 3-d. In this problem, A is a set of n hyper-rectangles

(possibly overlapping) that lie in Rd, so that given a query point q, we can report all

the rectangles in A containing q (see Figure 1.3(a)). Optimal solutions for rectangle

stabbing in R1 and R2 were discovered as early as the 1980s: an O(n) space data

structure which can answer the query in O(log n + k) time, where k is the number of

rectangles reported. The data structure in R1 is the classical interval-tree data structure

and in R2 is the hive-graph data structure of Chazelle [22].

However, for the past three decades an optimal solution in R3 had been elusive. In

the pointer-machine model, there was a known lower bound of Ω(log2 n+k) query time

for a linear-space data structure in R3 [34]; whereas, the state-of-the-art linear-space

data structure took O(log4 n+ k) time to answer a query [35]. This thesis presents an

almost optimal solution: an O(n log∗ n) size data structure which can answer the query

in O(log2 n · log logn+ k) time.

q

(b) Disjoint rectangles

q

(a) Overlapping rectangles

Figure 1.3: (a) Rectangle stabbing problem shown in R2, (b) Orthogonal point location
problem shown in R2.

Part-II: Top-k Geometric intersection queries (Top-k GIQ). We have done an

extensive study of top-k GIQ problems. In a top-k GIQ problem, each object in A has

a weight associated with it (which is determined by some ranking criteria) and the user



10

would want to know the k largest-weight objects of A intersected by q. For example,

let A be a set of points in the plane and q be an axes-aligned rectangle (see Figure 1.4).

The points could represent restaurants and the rating of each restaurant could be its

weight. The query rectangle q can be the downtown area in New York City and the user

might want to know the top-5 rated restaurants in that area. This setting is known as

top-k orthogonal range searching.

Our work on top-k GIQ can be classified into two categories. In the first category

the effort is to build an efficient solution for a particular geometric setting. For example,

in [5] we present the first known optimal solution for top-k orthogonal range searching

in R2 in the pointer machine model and an almost-optimal solution in the external-

memory setting. Previous work on this problem could guarantee an optimal solution

only when points lie in R1. Also, in an unpublished report [8] we present an optimal

solution for top-k halfplane range searching problem in R2. In the interest of space,

these results [5, 8] are omitted in the thesis.

4.7

3.2 4.8

2.7

4.2

4.4

4.5

4.7

3.1
4.4

3.9

4.9

Figure 1.4: Top-5 rated restaurants shown as solid black squares.

In the second category [4, 6], the effort was in coming up with general techniques

(which we will henceforth refer to as reductions) which can handle top-k GIQ problems

for any combination of input objects and query object. The best way to describe these

reductions would be “Top-k Indexes made Small and Sweet” (which was the title of the

invited talk given by one my collaborators, Prof. Yufei Tao, at EDBT/ICDT 2016).

The reductions are “small” because they are easy to implement, and they are “sweet”

because they come with non-trivial theoretical guarantees in terms of space and query

time bounds. These reductions have been discussed in full detail in this thesis.



11

Part-III: Approximate range counting. Let A be a set of n geometric objects in

Rd which are segregated into disjoint groups (i.e., colors). Given a query q ⊆ Rd, a

color c intersects (or, is present in) q if any object in A of color c intersects q, and let

k be the number of colors of A present in q. In the approximate colored range-counting

problem, the task is to preprocess A into a data structure, so that for a query q, one

can efficiently report the approximate number of colors present in q. Specifically, return

any value in the range [(1− ε)k, (1 + ε)k], where ε ∈ (0, 1) is a pre-specified parameter.

q

Figure 1.5: An instance of the colored setting.

These are known as GROUP-BY queries in the database literature. A popular

variant is the colored orthogonal range searching problem: A is a set of n colored points

in Rd, and q is an axes-aligned rectangle. As a motivating example for this problem,

consider the following query: “How many countries have employees aged between X1

and X2 while earning annually more than Y dollars?”. An employee is represented as

a colored point (age, salary), where the color encodes the country, and the query is the

axes-aligned rectangle [X1, X2]× [Y,∞).

In [7], new results for approximate range counting are presented. Most of the results

are obtained via reductions to the approximate uncolored version, and improved data-

structures for them. A key contribution of this work is the introduction of nested

shallow cuttings (which have stronger properties than the regular shallow cuttings) for

rectangles in R2. Nested shallow cuttings will lead to improved solutions for other

aggregate functions on rectangles in R2 as well. Similar to top-k GIQ, another important

contribution is general reductions which can handle approximate counting query for any

combination of input objects and query object. The most interesting reduction requires

using two companion structures: (a) reporting structure (its objective is to report the

k colors), and (b) C-approximation structure (its objective is to report any value z s.t.

k ∈ [z, Cz], where C is a constant). Significantly, unlike previous reductions [36, 37],



12

there is no asymptotic loss of efficiency in space and query time bounds w.r.t. to the

two companion problems. To keep the thesis short, only a subset of the results from [7]

have been included. These results are also cited in recent surveys [38, 39].

Flow of the thesis. As mentioned earlier, the main body of the thesis consists of three

parts. Part-I will present solutions for orthogonal point location in 3-d and rectangle

stabbing in 3-d. Part-II will present solutions for top-k GIQ problems. Part-III will

present solutions for approximate range counting problems.



Part I

Orthogonal Point Location and

Rectangle Stabbing in 3-d

13



Chapter 2

Orthogonal Point Location in 3-d

2.1 Problem Statement

Point location is a fundamental problem in the field of computational geometry. In

this chapter we study the orthogonal point location problem. Formally, we want to

preprocess a set of n axes-aligned disjoint boxes (hyperrectangles) in Rd into a data

structure, so that the box in the set containing a given query point (if any) can be

reported efficiently. See Figure 2.1(a). A special case of this problem is when the input

boxes fill the entire space forming a subdivision. In this work we consider the general

setting, where the entire space need not be filled by the boxes.

2.2 Previous Work

Orthogonal point location in 2-d. In the plane, the two versions of the prob-

lem are equivalent in the sense that any arbitrary set of n disjoint rectangles can be

converted into a subdivision of Θ(n) rectangles via the vertical decomposition. Optimal

solutions are known for this problem in all models we consider, namely, linear-space data

structures with O(log n) query time [40, 41, 42, 19, 43] in the pointer machine model,

O(logB n) query cost [44, 45] in the I/O model with block size B, and O(log logU) query

time [46] in the word-RAM model with input coordinates in [U ] = {0, 1, . . . , U − 1}.
(The first two results actually hold for nonorthogonal point location.)

14



15

q

(a) (b)

Figure 2.1: (a) An illustration of an orthogonal point location query in R2. (b) A setting
consisting of Θ(n) boxes which would require Ω(n3/2) additional boxes to fill the entire
space.

Orthogonal point location in 3-d. In 3-d, the two versions are no longer equiv-

alent, since there exist sets of n disjoint boxes that need Ω(n3/2) boxes to fill the entire

space. See Figure 2.1(b). This makes the general setting (the focus of this thesis)

potentially harder than the special case of a subdivision, as the latter allows for fast

O(log2 logU) query time in the word-RAM model with O(n log logU) space, as shown by

de Berg, van Kreveld, and Snoeyink [47] (with an improvement by Chan [46]). For non-

space-filling boxes that are fat, Iacono and Langerman [48] achieved fast O(log logU)

query time in the word-RAM model, using O(n log logU) space (their result actually

holds in any constant dimension). For general non-space-filling boxes in 3-d, however,

the best known results are linear-space data structures with O(log3/2 n) query time by

Rahul [1] in the pointer machine model, O(log2
B n) query cost by Nekrich [49] in the

I/O model, and O(log n log log n) query time in the word-RAM model. (That last result

was not stated explicitly before but can obtained by an interval tree augmented with

Chan’s 2-d orthogonal point location structure [46].)

2.3 Our results

Our main results are the first optimal data structures for orthogonal point location

queries in 3-d in the (arithmetic) pointer machine model and the I/O model. In the

word-RAM, we succeed in surpassing the log n barrier in the query time. We also

obtain the first linear-space data structure for the case of subdivisions. See Table 2.1



16

for a comparison of our results with previous work.

Table 2.1: Orthogonal point location in 3-d using linear space in the pointer machine
model, I/O model, and the word-RAM model.

Model Reference Query Time

Pointer Machine Edelsbrunner, Haring, and Hilbert’86 [50] log2 n

Afshani, Arge, and Larsen (SoCG’10) [51] log2 n
log logn

Rahul (SODA’15) [1] log3/2 n
New (Theorem 2.6.1) log n (optimal)

I/O Nekrich (LATIN’08) [49] log2
B n

New (Theorem 2.6.1) logB n (optimal)

Word-RAM Chan (SODA’11) [46] log n log log n

New (Theorem 2.6.1) logw n (≤ logn
log logn)

In the pointer machine model, improvements in 3-d automatically lead to improve-

ments in higher dimensions, by using interval trees, which impose a log n time-overhead

per dimension: we get a linear-space data structure with O(logd−2 n) query time for

d-dimensional queries, which is better than previous methods [50, 51], the best of which

had O(logd−3/2 n) query time [1].

2.4 Techniques

The main virtue of this work is the simplicity of our method (especially when compared

against previous methods such as [1]). Our solution combines two ideas: (a) a van Emde

Boas style partition over a single dimension that reduces the problem to 2-d rectangle

stabbing emptiness (also called point enclosure emptiness), i.e., store a set of possibly

overlapping axes-aligned rectangles, so as to determine whether any of them contains a

given query point, and (b) quickly shrinking the universe size by applying this partition

in a round-robin fashion over all three dimensions. Note that the original van Emde

Boas recursion was designed to obtain O(log logU)-like bounds, but we will use it to

obtain logarithmic-like bounds, interestingly.



17

2.5 Preliminaries: On Two Subroutines

Our solution to 3-d orthogonal point location will require known data structures for 2-d

orthogonal point location and 2-d rectangle stabbing emptiness.

Lemma 2.5.1. Given n disjoint axes-aligned rectangles in [U ]2 (n ≤ U ≤ 2w), there

are data structures for point location with O(n logU
w ) words of space and

• O(log n) query time in the pointer machine model;

• O(logB n) query cost in the I/O model;

• O(min{log logU, logw n}) query time in the word-RAM model.

Lemma 2.5.2. Given n (possibly overlapping) axes-aligned rectangles in [U ]2 (n ≤ U ≤
2w), there are data structures for rectangle stabbing emptiness with O(n logU

w ) words of

space and

• O(log n) query time in the pointer machine model;

• O(logB n) query cost in the I/O model;

• O(logw n) query time in the word-RAM model.

For Lemma 2.5.1, such data structures for 2-d orthogonal point location can be found

in [40, 41, 42, 19, 43] for the pointer machine model, [44, 45] for the I/O model, and

[46] for the word-RAM model. For Lemma 2.5.2, 2-d rectangle stabbing emptiness (or

more generally, rectangle stabbing counting) is known to be reducible to 2-d orthogonal

range counting [52], and such data structures for 2-d orthogonal range counting can be

found in [53] for the pointer machine model, [54] for the I/O model, and [55] for the

word-RAM model.

All these known data structures technically require O(n) words of space, or more

precisely, O(n logU) bits of space. In the I/O model or word-RAM model, we can easily

pack the data structures in O(n logU
w ) words of space without increasing the query cost

when logU � w. In the pointer machine model, we may not be able to pack the data

structures in general, since if multiple “micro-pointers” are packed in a word, the model

does not allow us to follow such a micro-pointer. Nevertheless, it is not difficult to

modify the existing data structures to achieve the compressed space bound.



18

We now provide missing details on the subroutines for 2-d orthogonal point location

and 2-d rectangle stabbing emptiness (Lemmas 2.5.1 and 2.5.2) in the pointer machine

model. Existing methods already achieve O(log n) time and O(n) space, but we want

O(n logU
w ) words of space.

Proof of Lemma 2.5.1 for pointer machines. For 2-d orthogonal point loca-

tion, one solution is via (1/r)-cuttings [56]: we can partition the plane into O(r) disjoint

rectangular cells, each intersecting O(n/r) line segments (edges of the input rectangles),

where we choose r = δn logU
w for a suitable constant δ > 1.

We build a point location structure [40, 41, 42, 19, 43] for the O(r) cells with O(log r)

query time in the pointer machine model; the space usage of this structure in words is

O(r), which is within the allowed bound O(n logU
w ), so there is no need for bit packing

here.

For each cell, we store the O(n/r) line segments in a point location structure [41]

with O(log(n/r)) query time; the space usage of this structure in bits is O((n/r) logU),

which is O(w/δ), so the entire structure can be packed in a single word. Although

pointer chasing is not directly supported in the pointer machine model when multiple

“micro-pointers” are packed in a word, we can simulate each pointer chasing step here

in constant time by arithmetic operations and shifts within the word.

Given a query point q, we can first find the cell containing q in O(log r) time and

then finish the query inside the cell in O(log(n/r)) time. The overall query time is

O(log n).

Proof of Lemma 2.5.2 for pointer machines. Rectangle stabbing emptiness

in 2-d reduces to dominance range counting in 2-d [52]. Chazelle’s compressed range

tree structure [53] solves the latter problem with O(n) words of space and O(log n) time

in the pointer machine model. We observe that his data structure actually achieves

O(n logU
w ) words of space, after minor modifications.

At each level of the range tree, Chazelle’s structure stores lists consisting of a total of

O
(
n
w

)
words (O

(
n
w

)
w-bit integers as well as O( nw ) pointers to words in lists at the next

level). The total number of words over all levels of the tree is O(n logn
w ) ≤ O(n logU

w ).

We shorten the tree by making the leaf nodes contain b points, where we choose



19

√
U slabs along x-axis

(a) (b) (c)

y

z

Side boxes of a slab Bottom boxes of a slab

z

y

Figure 2.2: Boxes obtained after partitioning along the x-direction.

b = δw
logU for a sufficiently small constant δ. This way, the space in words for the tree

itself is O(n/b) = O(n logU
w ). Inside each leaf, we store the b points in another instance

of Chazelle’s structure; the space usage of this structure in bits is O(b logU), which is

O(δw), so the entire structure can be packed in a single word. Again, we can simulate

each pointer chasing step here in constant time by arithmetic operations and shifts

within the word.

To answer a dominance range counting query, we descend along a path in the com-

pressed range tree, which requires O(log(n/b)) time by following pointers in the lists

stored at the path and doing various arithmetic operations and shifts on w-bit integers.

At the leaf of the path, we can finish the query in O(log b) time. The overall query time

is O(log n).

2.6 Orthogonal Point Location in 3-d

We are now ready to describe our data structure for 3-d orthogonal point location. We

focus on the pointer machine model first.

2.6.1 Data Structure

At the beginning, we apply a rank space reduction (replacing input coordinates by

their ranks) so that all coordinates are in [2n]3, where n is the global number of input



20

boxes. Given a query point, we can initially find the ranks of its coordinates by three

predecessor searches (costing O(log n) time in the pointer machine model).

We describe our preprocessing algorithm recursively. The input to the preprocessing

algorithm is a set of n disjoint boxes that are assumed to be aligned to the [Ux]× [Uy]×
[Uz] grid. (At the beginning, Ux = Uy = Uz = 2n.)

Without loss of generality, assume that Ux ≥ Uy, Uz. We partition the [Ux] ×
[Uy]× [Uz] grid into

√
Ux equal-sized vertical slabs perpendicular to the x-direction. See

Figure 2.2. (In the symmetric case Uy ≥ Ux, Uz or Uz ≥ Ux, Uy, we partition along the

y- or z-direction instead.) We classify the boxes into two categories:

• Bottom boxes. For each slab, define its bottom boxes to be those that lie com-

pletely inside the slab.

• Top boxes. Top boxes intersect the boundary (vertical plane) of at least one slab.

Each top box B is broken into three disjoint boxes:

– Left box. Let sL be the slab containing the left endpoint (with respect to the

x-axis) of B. The left box is defined as B ∩ sL.

– Right box. Let sR be the slab containing the right endpoint of B. The right

box is defined as B ∩ sR.

– Middle box. The remaining portion of box B after removing its left and right

box, i.e. B \ ((B ∩ sL) ∪ (B ∩ sR)).

We build our data structure as follows:

1. Planar point location structure. For each slab, we project its left boxes onto the

yz-plane. The projected boxes remain disjoint, since they intersect a common

boundary. We store them in a data structure for 2-d orthogonal point location by

Lemma 2.5.1. We do this for the slab’s right boxes as well.

2. Rectangle stabbing structure. For each slab, we project its bottom boxes onto the

yz-plane. The projected boxes are not necessarily disjoint. We store them in a

data structure for 2-d rectangle stabbing emptiness by Lemma 2.5.2.

3. Recursive top structure. We recursively build a top structure on all the middle

boxes.



21

4. Recursive bottom structures. For each slab, we recursively build a bottom structure

on all the bottom boxes inside the slab.

By translation or scaling, these recursive bottom structures or top structure can be

made aligned to the
[√
Ux
]
× [Uy]× [Uz] grid. In addition, we store the mapping from

left/right/middle boxes to their original boxes, as a list of pairs (sorted lexicographically)

packed in O
(
n log(UxUyUz)

w

)
words.

2.6.2 Query Algorithm

The following lemma is crucial for deciding whether to query recursively the top or the

bottom structure.

Lemma 2.6.1. Given a query point (qx, qy, qz), if the query with (qy, qz) on the rectangle

stabbing emptiness structure of the slab that contains qx returns

• Non-empty, then the query point cannot lie inside a box stored in the top struc-

ture, or

• Empty, then the query point cannot lie inside a box stored in the slab’s bottom

structure.

Proof. If Non-empty is returned, then the query point is stabbed by the extension

(along the x-direction) of a box in the slab’s bottom structure and cannot be stabbed

by any box stored in the top structure, because of disjointness of the input boxes. If

Empty is returned, then obviously the query point cannot lie inside a box stored in the

bottom structure.

To answer a query for a given point (qx, qy, qz), we proceed as follows:

1. Find the slab that contains qx by predecessor search over the slab boundaries.

2. Query with (qy, qz) the planar point location structures at this slab. If a left or a

right box returned by the query contains the query point, then we are done.

3. Query with (qy, qz) the rectangle stabbing emptiness structure at this slab. If

it returns Non-empty, query recursively the slab’s bottom structure, else query



22

recursively the top structure (after appropriate translation/scaling of the query

point).

In step 3, to decode the coordinates of the output box, we need to map from a

left/right/middle box to its original box; this can be done näıvely by another predecessor

search in the list of pairs we have stored.

2.6.3 Query Time Analysis

Let Q (Ux, Uy, Uz) denote the query time for our data structure in the [Ux]× [Uy]× [Uz]

grid. Observe that the number of boxes n is trivially upper-bounded by UxUyUz because

of disjointness. The predecessor search in step 1, the 2-d point location query in step 2,

and the 2-d rectangle stabbing query in step 3 all take O(log n) = O(log(UxUyUz)) time

by Lemmata 2.5.1 and 2.5.2. We thus obtain the following recurrence, assuming that

Ux ≥ Uy, Uz:

Q (Ux, Uy, Uz) = Q
(√

Ux, Uy, Uz

)
+O (log (UxUyUz)) .

If Ux = Uy = Uz = U , then three rounds of recursion will partition along the x-, y-, and

z-directions and decrease Ux, Uy, and Uz in a round-robin fashion, yielding

Q (U,U, U) = Q
(√

U,
√
U,
√
U
)

+O (logU) ,

which solves to Q (U,U, U) = O(logU). As U = 2n initially, we get O(log n) query time.

2.6.4 Space Analysis

Let s (Ux, Uy, Uz) denote the amortized number of words of space needed per input box

for our data structure in the [Ux]× [Uy]× [Uz] grid. The amortized number of words per

input box for the 2-d point location and rectangle stabbing structures is O
(

log(UxUyUz)
w

)
by Lemmata 2.5.1 and 2.5.2. We thus obtain the following recurrence, assuming that

Ux ≥ Uy, Uz:

s (Ux, Uy, Uz) = s
(√

Ux, Uy, Uz

)
+O

(
log (UxUyUz)

w

)
.

Three rounds of recursion yield

s (U,U, U) = s
(√

U,
√
U,
√
U
)

+O

(
logU

w

)
,



23

which solves to s (U,U, U) = O
(

logU
w

)
. As U = 2n initially, the total space in words is

O
(
n logn

w

)
≤ O (n).

Note that the above analysis ignores an overhead of O(1) words of space per node

of the recursion tree, but by shortcutting degree-1 nodes, we can bound the number of

nodes in the recursion tree by O(n).

2.6.5 Other Models

In the I/O model, the analysis is similar, with a modified recurrence for the query cost:

Q (U,U, U) = Q
(√

U,
√
U,
√
U
)

+O (logB U) .

For the base case U ≤ B1/3, we have Q (U,U, U) = O(1) trivially, since n ≤ U3 ≤ B.

Solving the recurrence yields O (logB n) query cost. The space usage remains O(n)

words (i.e., O(n/B) blocks).

In the word-RAM model, the analysis is again similar, with

Q (U,U, U) = Q
(√

U,
√
U,
√
U
)

+O (logw U) .

For the base case U ≤ w, we have Q (U,U, U) = O(1) by switching to another known

method: Orthogonal point location in 3-d reduces to 6-d dominance emptiness, for which

there is a known method [57] with O(n(logw n)4) words of space and O((logw n)5) query

time in the word-RAM. (The method in [57] can be modified to report a witness if the

range is non-empty.) Since n ≤ U3 ≤ w3, we have logw n = O(1), and so the space

bound is O(n) and query bound is O(1) for the base case. Solving the recurrence yields

O(logw n) query time.

To summarize, we have obtained the following results:

Theorem 2.6.1. Given n disjoint axes-aligned boxes in 3-d, there are data structures

for point location with O(n) words of space and

• O(log n) query time in the pointer machine model;

• O(logB n) query cost in the I/O model;

• O(logw n) query time in the word-RAM model.



24

2.7 Extensions

Higher dimensions. The same approach can be extended to higher dimensions,

reducing the complexity of d-dimensional orthogonal point location to that of (d −
1)-dimensional box stabbing emptiness. However, known data structures for higher-

dimensional box stabbing [34] requires superlinear space, whereas the simpler approach

mentioned in the Introduction, of using interval trees to reduce the dimension, gives

O(logd−2 n) query time while keeping linear space in the pointer machine model.

The case of 3-d subdivisions. Our approach can also be used to improve the

space bound of de Berg, van Kreveld, and Snoeyink’s point location structure [47] for 3-d

orthogonal subdivisions, from O(n log logU) space to O(n), in the word-RAM model.

Theorem 2.7.1. Given a subdivision formed by n disjoint (space-filling) axes-aligned

boxes in 3-d, there is a data structure for point location with O(n) words of space and

O(log2 log n) query time in the word-RAM model.

Proof. (Sketch) De Berg et al.’s method [47, Theorem 2.4] was already based on a

van Emde Boas recursion, partitioning along the x-direction. They also used 2-d or-

thogonal point location structures during the recursion, but managed to avoid rectangle

stabbing structures by exploiting the fact that the input is a subdivision. Roughly, for

each slab, they took the “holes” formed by all middle boxes that intersect the slab, and

filled the holes by taking the vertical decomposition of the yz-projection. The analysis

followed by charging the complexity of the decomposition to vertices within the slab.

Our new change is to do the van Emde Boas recursion not just along the x-direction

but along all three axis directions in a round-robin fashion. This leads to the same

recurrence for space as in Section 2.6. The query time satisfies the following recurrence:

Q (U,U, U) = Q
(√

U,
√
U,
√
U
)

+O (log logU) .

This leads to O(log2 log n) query time.

2.8 Open questions

An intriguing question is to determine if our O(logw n) query time bound for 3-d or-

thogonal point location for disjoint boxes is optimal, or if (log logU)O(1) bounds are at



25

all possible, in the word-RAM model. Also, we are not aware of any nontrivial lower

bound for d-dimensional point location for disjoint boxes, to indicate that the number

of logarithmic factors has to grow as d increases.



Chapter 3

Rectangle Stabbing in 3-d

3.1 Problem Statement

Rectangle stabbing is another well-studied problem in the field of computational geom-

etry. This problem is also referred to as orthogonal point enclosure query (OPEQ) in

the literature. We will present an almost optimal solution for this problem in 3-d in the

pointer machine model.

In an OPEQ, we preprocess a set S of n axes-aligned rectangles in Rd, so that

given a query point q ∈ Rd, we can efficiently report all the rectangles in S containing

(or stabbed by) q. There are a lot of practical applications of this query in various

domains such as GIS, recommender systems, networking etc. For example, on a flight

booking website such as kayak.com, users can specify their preference as a d-dimensional

rectangle: “I am looking for flights with price in the range $100 to $300 and with

departure date in the range 1st March to 5th March”. Here price is the x-axis and

departure date is the y-axis. Given a particular flight, all the users whose preference

match this flight can be found out by posing an OPEQ with q (price, departure date)

∈ R2 as the query point.

3.2 Previous results

There are several ways of obtaining an optimal solution of O(n) space and O(log n+ k)

query time in R1, where k is the number of intervals reported [58, 59, 60]. In R2 an

26



27

optimal solution of O(n) space and O(log n + k) query time was obtained by Chazelle

[22]. He introduced the hive-graph structure to answer the query. Later, another

solution with optimal bounds was presented in [61] using a combination of persistence

and interval tree.

By using segment trees [58, 60], we can generalize the optimal structure in R2 to

higher dimensions. In Rd the space occupied will be O(n logd−2 n) and the query time

will be O(logd−1 n + k). Afshani et al. [34] extend the above result for any parameter

h ≥ 2, to obtain an O(nh logd−2 n) space and O(log n · (log n/ log h)d−2 + k) query time

solution. However, these structures occupy Ω(n log n) space in R3. A natural question

that arises is: Can an O(n)-space and O(log n+k)-query time solution can be obtained

in R3? The answer unfortunately is “no”. Afshani et al. [51, 34] showed that with O(n)

space, the OPEQ takes Ω(log2 n+ k) time.

3.3 Our Results

We first introduce some notation to denote special kinds of rectangles in R3. A rectangle

is called (3 + k)-sided if the rectangle is bounded in k out of the 3 dimensions and

unbounded (on one side) in the remaining 3 − k dimensions. See Figure 3.1 for a 3-,

4-, 5- and 6-sided rectangle in R3. When rectangles are 3-sided, the OPEQ can be

answered in O(log n+ k) query time and by using O(n) space [35, 62]. However, when

the rectangles are 4-sided, the best result one can achieve using existing techniques is

O(n) space and O(log2 n+ k) query time (see Theorem 3.4.1).

3-sided 4-sided 5-sided 6-sided

Figure 3.1: Different kinds of rectangles in three dimensional space.

The key result of our work is an almost optimal solution for 4-sided rectangles. Our

first data structure uses O(n log∗ n) space and answers the query in O(log n+ k) time.

Our second data structure uses O(n) space and answers the query in O(log n·log(i) n+k)

time, for any constant integer i ≥ 1. Here log(1) n = log n and log(i) n = log(log(i−1) n)

when i > 1; log∗ n is the iterated logarithm of n. At a high-level, the following are the



28

key ideas:

(a) As will be shown later, an OPEQ for 4-sided rectangles can be answered by ask-

ing O(log n) OPEQs on 3-sided rectangles. By carefully applying the idea of shallow

cuttings, we succeed in answering each of the OPEQ on 3-sided rectangles in “effec-

tively” O(log∗ n) time (ignoring the output term). The trick is to identify the most

“fruitful” shallow cutting to answer each of the OPEQ on 3-sided rectangles; this is

achieved by reducing O(log n) point location queries to the problem of OPEQ in R2.

We believe this is a novel idea. This leads to a solution which takes O(n log∗ n) space

and O(log n · log∗ n+ k) query time (see Theorem 3.5.1).

(b) To further reduce the query time to O(log n+k), our next idea is to increase the

fanout of our base tree. This leads to breaking down each 4-sided rectangle into two side

rectangles and one middle rectangle. As will become clear later, the decrease in height

of the base tree implies that the side rectangles can now be reported in O(log n + k)

time, instead of O(log n · log∗ n + k) time. Handling the middle rectangles is the new

challenge that arises. We build a structure so that the query on middle rectangles can

be handled by asking O(log n) 2d-dominance reporting queries. Another novel and new

idea in this work is to build a structure which can efficiently identify the O(log n) data

structures on which to pose these 2d-dominance reporting queries. Also, we are able

to answer each 2d-dominance reporting query in O(1) time (ignoring the output term).

This finally leads to a data structure for answering OPEQ on 4-sided rectangles in

O(log n+ k) query time and uses O(n log∗ n) space (see Theorem 3.6.1).

The result obtained for 4-sided rectangles acts as a building block to answer the

OPEQ in R3 for 5-sided rectangles using O(n log∗ n) space and O(log n · log log n+ k)

query time. This allows us to finally answer OPEQ in R3 for 6-sided rectangles. See

Table 3.1 for a comparison of our results with the currently best known results. Note

that we are only interested in structures which occupy linear or near-linear space.

3.4 Simple structure for OPEQ using linear space

In this section, we present a simple but sub-optimal structure to answer OPEQ on 3-,

4-, 5-, 6-sided rectangles.



29

Query Space Query Time Notes

4-sided O(n) O(log2 n+ k) [35] + Interval tree
4-sided O(n log∗ n) O(log n+ k) New

4-sided O(n) O(log n · log(i) n+ k) New

5-sided O(n) O(log3 n+ k) [35] + Interval tree
5-sided O(n log∗ n) O(log n · log log n+ k) New

6-sided nh Ω(log2 n/ log h+ k) [51, 34]
6-sided O(n) O(log4 n+ k) [35] + Interval tree
6-sided O(n log∗ n) O(log2 n · log log n+ k) New

Table 3.1: Summary of our results for orthogonal point enclosure in R3. log∗ n is the
iterated logarithm of n. log(1) n = log n and log(i) n = log(log(i−1) n) when i > 1 is
a constant integer. Existing solutions in the literature for 6-sided rectangles require
Ω(n log n) space.

3.4.1 Handling 3-sided rectangles

Handling OPEQ on 3-sided rectangles is easy. Map each 3-sided rectangle (−∞, x] ×
(−∞, y] × (−∞, z] into a three-dimensional point (x, y, z) and map the query point

q(qx, qy, qz) into a 3-sided query rectangle q′ = [qx,∞)×[qy,∞)×[qz,∞). Therefore, the

problem maps to the three-dimensional dominance reporting query: Report all the points

lying inside the 3-sided query rectangle q′. Initially, Afshani [35] and recently, Makris

and Tsakalidis [62] presented an optimal solution for three-dimensional dominance query

(O(n) space and O(log n+ k) query time).

3.4.2 Interval tree

We shall give a brief description of a classic structure called an interval tree [59] (see

also [60]). It has traditionally been used to answer the orthogonal point enclosure query

in R1. We will need the interval tree to handle OPEQ for 4-,5-,6-sided rectangles.

Consider a set S of n intervals in R1 and let E be the set of endpoints of the intervals

in S. Build a binary search tree IT in which the points of E are stored at the leaves

from left to right in increasing order of their coordinate value. At each node v ∈ IT ,

we define split(v) and range(v). split(v) is a value such that points of E in the left

(resp. right) subtree of v have coordinate value less than or equal to (resp. greater

than) split(v). For the root node, root, range(root) = (−∞,+∞). For a node v, if



30

the range(v) = [xl, xr] then the range of its left (resp. right) child will be [xl, split(v)]

(resp. (split(v), xr]). Each interval is assigned to exactly one node v in IT such that the

interval is contained inside range(v) but is not contained inside range(·) of its children.

Let Sv be the set of intervals assigned at node v. We maintain additional structures

at node v: A list IT lv (resp. IT rv ) which stores the left (resp. right) endpoints of Sv

in non-decreasing (resp. non-increasing) order of their coordinate value. The space

occupied by the interval tree is O(n).

Given a query point q to answer orthogonal point enclosure in R1, we visit a path

from root to the leaf node of IT , s.t., at every node v on the path, q ∈ range(v). At

each node v on the search path, if the query point q lies to the left of split(v) then we

traverse the list IT lv from left to right till the entries in the list get exhausted or we find

an endpoint whose coordinate value is greater than q. The case of q lying to the right of

split(v) is handled symmetrically. The time taken to answer the query is O(log n+ k),

where k is the number of intervals reported.

3.4.3 Handling 4-,5-,6-sided rectangles

Now we present a solution to handle OPEQ on 4-,5-,6-sided rectangles. First, build an

interval tree IT based on the x-projection of the rectangles of S. We make the following

observation to build secondary structures at each node of the interval tree.

Observation 1. Let Sv be the set of (4 + t)-sided rectangles (where t ∈ [0, 2]) whose

corresponding x-projection gets stored at node v. Consider a rectangle r = [x1, x2] ×
[y1, y2]× [z1, z2] ∈ Sv.

1. Suppose the query point q(qx, qy, qz) lies to the left of split(v), i.e., qx <= split(v).

Then r contains q iff qx ∈ [x1,∞), qy ∈ [y1, y2] and qz ∈ [z1, z2].

2. Suppose the query point q(qx, qy, qz) lies to the right of split(v), i.e., qx > split(v).

Then r contains q iff qx ∈ (−∞, x2], qy ∈ [y1, y2] and qz ∈ [z1, z2].

Consider a node v ∈ IT . To handle the case where the query point q lies to the right

of split(v), we build a structure IT rv : Each (4+ t)-sided rectangle r = [x1, x2]× [y1, y2]×
[z1, z2] ∈ Sv is mapped into a (4 + t − 1)-sided rectangle (−∞, x2] × [y1, y2] × [z1, z2].

Using Observation 1, based on these newly mapped (d + t − 1)-rectangles we build a



31

structure to handle OPEQ. A similar structure IT lv is built to handle the case where

the query point q lies to the left of split(v). Given a query point q ∈ R3, we visit a path

from root to leaf node in IT containing qx. At each node v in the path, depending on

whether q is to the left or right of v we issue an OPEQ on IT lv or IT rv , respectively, to

report the rectangles in Sv ∩ q.

Theorem 3.4.1. OPEQ on 4-,5-,6-sided rectangles can be answered using a structure

of O(n) size and in O(log2 n+k), O(log3 n+k) and O(log4 n+k) query time, respectively.

Proof. When t = 0 (OPEQ on 4-sided rectangles), the secondary structures IT lv and

IT rv will be the OPEQ structure for 3-sided rectangles. Clearly, the space occupied

by the entire structure will be O(n). For a given query, at most O(log n) nodes in IT

are visited and hence, the query time will be O(log2 n+ k). Now, it can be easily seen

that when t = 1 and t = 2, the space remains O(n) but the query time increases to

O(log3 n+ k) and O(log4 n+ k), respectively.

3.5 OPEQ for 4-sided rectangles: almost optimal query

time

In this section we present a proof for the following result.

Theorem 3.5.1. Orthogonal point enclosure query on 4-sided rectangles can be an-

swered using a structure of O(n log∗ n) size and in O(log n · log∗ n+ k) query time.

3.5.1 Shallow cuttings

Given two points p and q in Rd, we say p dominates q if p has a larger coordinate

value than q in every dimension. Let P be a set of n three-dimensional points. A

shallow cutting for the t-level of P gives a point set R with the following properties: (i)

|R| = O(n/t), (ii) Any 3-d point p that is dominated by at most t points of P dominates

a point in R, (iii) Each point in R is dominated by O(t) points of P . The existence of

such shallow cuttings has been shown by Afshani [35]. Next we state a lemma which

will help us use shallow cuttings efficiently in our data structure. This is a modification

of a construction by Makris and Tsakalidis [63].



32

r5r1

r6
r4

r2

r3

(a) (b) (c)

Figure 3.2: (a) Projection of points in R onto the xy-plane. (b) Region r′i associated
with each point. (c) Trapezoidal decomposition to obtain the subdivision A.

Lemma 3.5.1. Let R be a set of points in R3. Choose a strip R in the plane (i.e.,

the first two dimensions of R3) such that the projection of all the points of R onto the

plane lie inside it. One can construct a subdivision A of the strip R into O(|R|) smaller

orthogonal rectangles such that for any given query point q(qx, qy, qz) in R3, if we find

the rectangle in A that contains the projection q(qx, qy), then it is possible to find a point

of R that is dominated by q or conclude that none of the points in R are dominated by

q.

Proof. Let r1, r2, . . . , r|R| be the sequence of points of R in non-decreasing order of their

z-coordinate values. Each point ri(rx, ry, rz) is projected onto the plane and a region r′i
is associated with it: r′i = ([rx,∞)× [ry,∞)) \⋃i−1

j=1 r
′
j . See Figure 3.2(a). Note that r′i

will be an empty set iff the point ri dominates any other point in R. See Figure 3.2(b);

r′5 is an empty set. We shall discard all such points from the set R. Next we perform a

trapezoidal decomposition of the strip R to obtain our subdivision A, i.e., we shoot rays

towards y = −∞ from every remaining point in R till it hits an edge or the boundary

of the strip. See Figure 3.2(c). It is easy to see that the number of rectangles in the

subdivision will be O(|R|).
Given a query point q, we perform a point location query on the subdivision A.

Two cases arise: (a) None of the r′is contain q. It means none of the points in R are

dominated by q. (b) Let ri be the point associated with the rectangle which contains

q. Note that among the points of R which are dominated by q in the plane, ri has the

smallest z-coordinate value. If the z-coordinate of ri is smaller than qz, then we have

found a point in R that is dominated by q; else we can conclude that none of the points

in R are dominated by q.



33

3.5.2 Handling a special case

We start the presentation of our solution by first handling a special case of a set S of

n 4-sided rectangles all of which cross the hyperplane x = x∗. We shall establish the

following lemma.

Lemma 3.5.2. Given a set S of n 4-sided rectangles all of which cross the plane x =

x∗, we wish to answer the orthogonal point enclosure query. The space occupied is

O(n log∗ n) and excluding the time taken to query the point location data structure, the

query time is O(log∗ n+ k).

We discuss the case where q is to the right of x = x∗. From Observation 1, a rectangle

r = [x1, x2]× (−∞, y]× (−∞, z] is reported iff x2 ≥ qx, y ≥ qy and z ≥ qz, i.e., (x2, y, z)

dominates (qx, qy, qz). Each rectangle in S is converted into a point (x2, y, z). Call this

new point set P . (The case where q is to the left of x = x∗ is handled symmetrically.)

The key idea here is to compute a shallow cutting for the log(i) n-level1 of P to

obtain a point set Ri, ∀0 ≤ i ≤ log∗ n. For each point p ∈ Ri, based on the points of

P which dominate it, build its local structure which is the optimal three-dimensional

dominance reporting structure of Afshani [35]. Next, using Lemma 3.5.1 compute an

arrangement Ai based on the point set Ri, ∀0 ≤ i ≤ log∗ n. Finally, collect all the

rectangles in the arrangements A0,A1, . . . ,Alog∗ n and construct the optimal structure

of Chazelle [22] which can answer the orthogonal point enclosure query in R2. Call it a

global structure.

For a given Ri, |Ri| = O(n/ log(i) n). Local structure of a point in Ri is built on

O(log(i) n) points of P and hence, occupies O(log(i) n) space. Overall space occupied by

the local structures of all the points in Ri will be O(n). The total space occupied by all

the local structures corresponding to R0, R1, . . . , Rlog∗ n will be O(n log∗ n). The number

of rectangles in the arrangement Ai will be O(n/ log(i) n) and hence, the total number

of rectangles in the arrangements A0,A1, . . . ,Alog∗ n will be O(n). As the structure of

Chazelle [22] uses space linear to the number of rectangles it is built on, the global

structure will occupy only O(n) space.

Given a query point q, if we succeed to find a point p from some point set Ri which

is dominated by q in R3, then it is sufficient to query the local structure of p and be

1 log(0) n = n and log(i) n = log(log(i−1) n). log∗ n is the smallest value of i s.t. log(i) n ≤ 1.



34

done. Also, it is desirable that the size of the local structure of p is as small as possible.

Therefore, our objective is to find the largest i s.t. there is a point p in Ri which is

dominated by q. For this, we query the global structure with (qx, qy), which will report

exactly one rectangle from each Ai,∀1 ≤ i ≤ log∗ n. Scan the reported rectangles to

find that rectangle whose corresponding point satisfies our objective. Once such a point

p ∈ Ri has been found, we ask a three-dimensional dominance reporting query on the

local structure of p and finish the algorithm.

The time taken to perform the query on the global structure is O(log n+ log∗ n) =

O(log n), where log∗ n is the number of rectangles reported. Scanning the reported

rectangles to find an appropriate point p ∈ Ri takes O(log∗ n) time. If i < log∗ n,

then k = Ω(log(i+1) n), since there is no point in Ri+1 which is dominated by q; then,

querying the local structure of p takes O(log log(i) n+k) = O(log(i+1) n+k) = O(k) time.

Else, if i = log∗ n, then querying the local structure of p takes O(log log(log∗ n) n+ k) =

O(1 + k) = O(1) time, since k = O(1). Therefore, excluding the time taken to query

the global structure, the query time is O(log∗ n+ k).

3.5.3 O(log n · log∗ n+ k)-query time solution

Making use of the solution for the special case above, we present a solution for orthogonal

point enclosure on 4-sided rectangles which uses O(n log∗ n) space and O(log n log∗ n+k)

query time. As done before, we first build an interval tree IT based on the projections

of the rectangles of S on the x-axis. We shall focus on the case of reporting rectangles

at those nodes v where q is to the right of split(v). The symmetrical case can be sim-

ilarly handled. At each node v, based on rectangles Sv, construct the local structure

as described in section 3.5.2. The crucial technical aspect to take care while construct-

ing the local structure is the following: The arrangements A(·) are constructed using

Lemma 3.5.1, which requires as input a strip R. For a node v with range(v) = [xl, xr],

the strip R will be [split(v), xr]× (−∞,+∞).

Finally, we collect all the rectangles in arrangements A0,A1, . . . from all the nodes in

IT and construct the optimal structure of Chazelle [22], which can answer the orthogonal

point enclosure query in R2. This is our actual global structure.

Space Analysis: From section 3.5.2, the space occupied by the local structure at

node v will be O(|Sv| log∗ |Sv|) and the total space occupied by all the local structures



35

in IT will be O(n log∗ n). The number of rectangles in the arrangements constructed at

node v will be O(|Sv|) and the total number of rectangles collected from all the nodes

in IT will be O(n). Therefore, the global structure will occupy O(n) space. The total

space occupied by our data structure will be O(n log∗ n).

Given a query point q, let Π be the path from root to the leaf node containing qx. We

query the global structure to report all the rectangles containing (qx, qy). The crucial

observation is that by our choice of strip R for each node in IT , if a node v doesn’t

lie on Π, then no rectangle corresponding to v will be reported. On the other hand,

if a node v lies on Π, then exactly log∗ |Sv| rectangles will be reported. To report the

rectangles in Sv ∩ q, we follow the query algorithm discussed in section 3.5.2. Repeating

this procedure at every node on Π will report all the rectangles in S ∩ q.
Query Analysis: Querying the global structure takes O(log n + log n · log∗ n) time,

since O(log∗ n) rectangles will be reported from each node on Π. From the analysis

in section 3.5.2, the time taken to report rectangles in Sv ∩ q, at each node v, will be

O(log∗ n+ |Sv ∩ q|). Therefore, the overall query time will be O(log n · log∗ n+ k). This

finishes the proof of Theorem 3.5.1.

Remark 1: To answer O(log n) point location queries simultaneously, one would

expect that an extra dimension on the rectangles is needed to capture their correspond-

ing node in the interval tree. By suitably modifying the construction of Makris and

Tsakalidis (with the introduction of the concept of “strip R”), we are able to simultane-

ously solve multiple point location queries while staying with OPEQ in R2. We believe

this is a novel idea.

Remark 2: To obtain Theorem 3.5.1, we computed a shallow cutting for the log(i) n-

level of P to obtain a point set Ri, ∀0 ≤ i ≤ log∗ n. Instead, suppose we compute a

shallow cutting for the log(i) n-level of P to obtain a point set Ri, ∀0 ≤ i ≤ c, for any

integer constant c ≥ 1. Then, it can verified that one can obtain a data structure with

space O(n) and query time O(log n · log(c+1) n+ k).



36

3.6 OPEQ for 4-sided rectangles: optimal query time

In the above mentioned solution, we obtain O(log n · log∗ n+ k) query time, since |Π| =
O(log n) and the time taken to report Sv∩q at each node v ∈ Π is O(log∗ n+|Sv∩q|). One

way to obtain a query time of O(log n+k) is by restricting |Π| = O(log n/ log∗ n); indeed

this can be achieved by decreasing the height of the interval tree to O(log n/ log f) =

O(log n/ log∗ n) and increasing the fanout to f = 2log∗ n. However, we now have to

handle the “middle” structure for which we use some additional technical and novel

ideas. We note that this idea of increasing the fanout of an interval tree has been

used in the past [64, 65] for some aggregate problems involving rectangles; but our

handling of the middle structure is completely different. The key observation to handle

middle structure is that since the space is already log∗ n factor away from linear, we

can afford to “move” the log∗ n factor from the query time to an additive term in the

space complexity.

Skeleton structure: Construct an interval tree IT with fanout f = 2log∗ n. The

rectangles of S are projected onto the x-axis (each rectangle gets projected into an

interval). Let E be the set of 2n endpoints of these projected intervals. Divide the

x-axis into 2n vertical slabs such that each slab covers exactly 1 point of E. Create

an f -ary tree IT on these slabs, each of which corresponds to a leaf node in IT . For

each node v ∈ IT , we define its range on the x-axis, range(v). If v is a leaf node, then

range(v) is the portion of the x-axis, occupied by the slab corresponding to the leaf;

else if v is an internal node, then range(v) is the union of the ranges of its children

v1, v2, . . . , vf , i.e., range(v) =
⋃f
i=1 range(vi) = [xl, xr]. For each internal node v ∈ IT ,

we also define f + 1 boundary slabs b1(v), b2(v), . . . , bf+1(v): b1(v) = xl, bf+1 = xr and

∀1 < i < f + 1, bi is the boundary separating range(vi−1) and range(vi). Consider a

rectangle r = [x1, x2] × (−∞, y] × (−∞, z] ∈ S. Rectangle r is assigned to an internal

node v ∈ IT , if the interval [x1, x2] crosses one of the slab boundaries of v but doesn’t

cross any of the slab boundaries of parent of v. See Figure 3 for an example of an

internal node v in the interval tree. Let Sv be the set of rectangles of S associated with

node v.

Each rectangle in S is broken into three disjoint rectangles as follows: Consider a

rectangle r = [x1, x2] × (−∞, y] × (−∞, z] ∈ Sv. Let x1 lie in range(vi) and x2 lie in



37
b1(v) b2(v) b3(v) b4(v) b5(v) b6(v)

v

v1 v2 v3 v4 v5

rl rm rr
r

range(v3)

range(v)

Figure 3.3: An internal node v in the interval tree IT .

range(vj). Then r is broken into a left rectangle rl = [x1, bi+1(v))× (−∞, y]× (−∞, z],
a middle rectangle rm = [bi+1(v), bj(v)]× (−∞, y]× (−∞, z] and a right rectangle rr =

(bj(v), x2] × (−∞, y] × (−∞, z]. Note that if j = i + 1, then we will only have a left

and a right rectangle. Define Slv, S
m
v and Srv to be the set of left, middle and right

rectangles obtained by breaking Sv. Furthermore, let Sl =
⋃
v∈IT S

l
v, S

m =
⋃
v∈IT S

m
v

and Sr =
⋃
v∈IT S

r
v be the sets of all left, middle and right rectangles, respectively. Note

that it suffices to build separate data structures to handle Sl, Sm and Sr.

u

b1(v) bi(v) bj(v) bf (v)

range(uv)

y

z

r1

r2

r3

r4

r5

(qy, qz)

Point Set Sv
m(u)

Mv

L1 L2 L3 L4 L5

r1 r2

r1

r2

r1

r3

r2

r4

r1

r3

r5

r2

r4

r1

r3

(a) (b) (c)

Πv

Figure 3.4: (a) Mv Structure. (b) Querying point set Smv (u) with (qy, qz). (c) Lists Li.
For the example query in (b), we walk down the list L4 to report r2, r4 and r1.

The solution built in section 3.5 can easily be adapted to report Sl ∩ q and Sr ∩ q
in O(log n + k) query time, since the height of the tree is now O(log n/ log∗ n). The

remaining part of this subsection will focus on building a suitable data structure(s) to

report Sm ∩ q in O(log n+ k) query time.

Local structure Mv: At each node v ∈ IT , we store a local structure Mv based on



38

the rectangles Smv . We first describe construction of Mv and how to query it to report

Smv ∩ q. Then, we shall describe the global structure and the global query algorithm

to report Sm ∩ q. We shall utilize the fact that the endpoints of the x-projections

of Smv comes from a fixed universe [1 : f ] = [1 : 2log∗ n]. The primary structure of

Mv is a segment tree [58] built on the x-projections of Smv . For each node u ∈ Mv,

define Smv (u) to be the rectangles whose x-projection was associated with node u. Also,

associate range(uv) with each node u ∈ Mv, where range(uv) ⊆ range(v) is the span

of boundary slabs covered by the leaf nodes in the subtree of u (see Figure 3.4(a)). The

height of Mv will be O(log 2log∗ n) = O(log∗ n) and, therefore, the space occupied by Mv

will be O(|Smv | log∗ n).

Given a query point q(qx, qy, qz), we trace a path Πv in Mv from the root to the

leaf node using qx. At each node u ∈ Πv, we need to report a rectangle r ∈ Smv (u)

iff yz-projection of r contains (qy, qz), i.e., qy ≤ y and qz ≤ z (a 2d-dominance query).

Unfortunately, using standard structures such as a priority search tree [58] will not help

us to achieve our desired query time.

Instead, we shall build the following structure on the yz-projections of Smv (u): Con-

vert each rectangle r ∈ Smv (u) into a new point (y, z) and the query q into a query

rectangle [qy,∞)× [qz,∞). For the sake of convenience, we shall refer to the new point

set as Smv (u) itself. Sort the point set Smv (u) in non-increasing order of their y-coordinate

values. For simplicity, we will still refer to the sorted list as Smv (u) itself. Add a dummy

point at the end of the list with y = −∞ and an arbitrary value of z. With the ith

element in Smv (u), we store a list Li which is the 1st, 2nd, . . . , ith element of Smv (u) in

non-increasing order of their z-coordinate values (see Figure 3.4 (b) & (c)). Then the

total size of all the lists Li,∀1 ≤ i ≤ |Smv (u)| will be O(|Smv (u)|2). However, notice

that given two consecutive elements i and i + 1 in Smv (u), Li+1 can be obtained from

Li by making O(1) changes. Now treating the y-coordinate as time, we store all the

lists Li, ∀1 ≤ i ≤ |Smv (u)|, in a partially persistent structure [20]. The total number

of memory modifications will be O(|Smv (u)|) and hence, the total size of all the lists

reduces from O(|Smv (u)|2) to O(|Smv (u)|). To answer the query at node u, we locate

the element i in Smv (u) which is the predecessor of qy. Then, we walk down the list Li

to report the corresponding rectangles till either the list gets exhausted or we reach a



39

point whose z-coordinate is less than qz. Ignoring the time taken to locate element i in

Smv (u), the time spent at node u will be O(1 + |Smv (u) ∩ q|). The performance of the

local structure Mv is summarized next.

Lemma 3.6.1. Given a set Smv of 4-sided rectangles, we wish to answer the orthogonal

point enclosure query. The endpoints of the x-projections of Smv come from a fixed

universe [1 : f ] = [1 : 2log∗ n]. Local structure Mv occupies O(|Smv | log∗ n) space and

excluding the time taken to locate element i in Smv (u), ∀u ∈ Πv, the query time will be

O(log∗ n+ |Smv ∩ q|).

Global structure: The only missing ingredient is an efficient technique to locate

element i in Smv (u)’s which are visited during a query. Our technique will be based on

the following simple yet powerful observation.

Observation 2. For a given query q(qx, qy, qz), let the ith element in point set Smv (u)

be the predecessor of qy. Then we walk down the list Li in Smv (u) iff (i) qx ∈ range(uv),
and (ii) qy ∈ (yi+1, yi], where yi and yi+1 are the y-coordinates of the ith and (i + 1)th

entry in point set Smv (u).

Using the above observation, at every node u ∈Mv, the ith element in Smv (u), ∀1 ≤
i ≤ |Smv (u)|, is mapped to a rectangle range(uv) × (yi+1, yi] in R2. This process is

repeated at every Mv structure in IT . Collect all the newly mapped rectangles and

construct the optimal structure of Chazelle [22] which can answer OPEQ in R2. This

is our global structure.

Space Analysis: Since each local structure Mv occupies O(|Smv | log∗ n) space, the

overall space occupied by all the local structures in IT will be O(n log∗ n). The num-

ber of rectangles mapped from all the nodes in Mv is O(|Smv | log∗ n) and hence, the

total number of rectangles collected to construct the global structure is O(n log∗ n).

Therefore, the global structure occupies O(n log∗ n) space.

Given a query point q, we query the global structure with (qx, qy). From Observa-

tion 2 and our construction it is guaranteed that a rectangle range(uv) × (yi+1, yi] is

reported iff the ith element in Smv (u) is the predecessor of qy. Then for each reported

rectangle we go to its corresponding list Li and report the rectangles in Smv (u)∩ q. This

ensures that all the rectangles in Sm ∩ q get reported.



40

Query Analysis: Querying the global structure takes O(log n) time, since rect-

angles corresponding to O(log∗ n) nodes from each of the O(log n/ log∗ n) Mv struc-

tures are reported. Adding the time spent at each of the local Mv structures, we get

O(
∑

v∈Π(log∗ n + |Smv ∩ q|)) = O(log n + k). Overall query time to report Sm ∩ q will

be O(log n+ k). The final result is summarized below.

Theorem 3.6.1. Orthogonal point enclosure query on 4-sided rectangles can be an-

swered using a structure of O(n log∗ n) size and in O(log n+ k) query time.

3.7 OPEQ on 5- and 6-sided rectangles

In this section, we use the result obtained for OPEQ on 4-sided rectangles to answer

OPEQ on 5- and 6-sided rectangles. First, we present a solution for 5-sided rectangles.

Alstrup, Brodal, and Rauhe introduced the grid-based technique [66] to index points for

answering orthogonal range reporting queries. We also use their grid-based technique,

but suitably adapt it for handling the indexing of 5-sided rectangles. At a high level,

the query algorithm is based on the following approach: Theorem 3.4.1 handles OPEQ

on 5-sided rectangles in O(log3 n + k) query time. When k ≥ log3 n, Theorem 3.4.1

will have a query time O(k), which is good. When k < log3 n, we can no longer use

Theorem 3.4.1 but the low-output size allows us to pre-compute partial answers to each

query.

Structure: Define a parameter t = log4 n. Consider the projection of the rectangles

of S on to the xy-plane and impose an orthogonal (2
√

n
t )× (2

√
n
t ) grid such that each

horizontal and vertical slab contains the projections of
√
nt sides. Let Sroot ⊆ S be the

set of rectangles stored at the root. A rectangle of S belongs to Sroot iff it intersects at

least one horizontal or vertical boundary of the grid. A couple of data structures are

built on Sroot which will be discussed below. Call this the root of the recursion tree.

Finally, we recurse on the rectangles which lie completely inside a slab. At each node

of the recursion tree, if we have m rectangles in the subproblem then the value then the

value of t changes to log4m and the grid size changes to (2
√

m
t )× (2

√
m
t ). We stop the

recursion when a subproblem has less than c rectangles, for a suitably large constant c.

A grid structure, a slow structure and side structure’s are built on Sroot. The slow

structure is Theorem 3.4.1 built on 5-sided rectangles Sroot. The slow structure is queried



41

(a) (b) (c) (d)

Figure 3.5: Breaking a rectangle in (a) into 2 horizontal side rectangles (shown in (c))
and 2 vertical side rectangles (shown in (d)).

only when |Sroot ∩ q| = Ω(log3 n). A rectangle r′ is higher than rectangle r′′ if r′ has

a larger span than r′′ along z-direction. In the grid structure, for each cell c of the

grid, among the rectangles which completely cover c, store the highest log3 n rectangles

in a linked list Lc in decreasing order of their z-coordinates. As shown in Figure 3.5,

each rectangle in Sroot is broken into at most 4 side rectangles. Observe that the side

rectangles are 4-sided rectangles. For each row and column slab, we have a side structure

which is Theorem 3.5.1 built on the side rectangles lying inside it.

Space Analysis: The space occupied by the slow structure and the side structures is

O(|Sroot|) and O(|Sroot| log∗ |Sroot|), respectively. Note that a rectangle in S is stored at

exactly one node in the recursion tree. Therefore, the overall space occupied by the slow

structures and the side structures in the recursion tree is O(n) and O(n log∗ n), respec-

tively. The space occupied by the grid structure will be O(n/t · log3 n) = O(n/ log n).

Thus the space occupied, S(n), by all the grid structures in the recursion tree is given

by the recurrence

S(n) =

4
√
n/t∑

i=1

S(ni) +O

(
n

log n

)
, ∀i, ni ≤

√
nt.

This solves to S(n) = O(n). Therefore, the overall space occupied by the data

structure will be O(n log∗ n).

Query: Given a query point q, at the root we locate the cell c on the grid containing

q. Scan the list Lc to report rectangles till we either (a) find a rectangle which doesn’t

contain q, or (b) the end of the list is reached. If case (b) happens, then we have reported

log3 n rectangles, so we query the slow structure to report Sroot∩ q. If case (a) happens,

then we also query the side structures of the horizontal and the vertical slab containing



42

q. Next, we recursively query the horizontal and the vertical slab containing q.

Query Analysis: First we analyze the query time at the root of the recursion tree. Cell

c on the grid can be located in O(log
√
n/t) = O(log n) time. If case (a) happens,

then the time spent is O(log n + |Sroot ∩ q|). Else, if case (b) happens, then the time

spent is O(log3 n+ |Sroot ∩ q|) = O(|Sroot ∩ q|), since |Sroot ∩ q| ≥ log3 n. Therefore, the

query time at the root is O(log n+ |Sroot ∩ q|). Let Q(n) denote the overall query time

(excluding the output portion). Then

Q(n) = 2Q(
√
nt) +O(log n), t = log4 n.

This solves to Q(n) = O(log n · log logn). Therefore, the overall query time will be

O(log n log logn+ k).

Theorem 3.7.1. Orthogonal point enclosure query on 5-sided rectangles can be an-

swered using a structure of O(n log∗ n) size and in O(log n · log log n+ k) query time.

Now we look at OPEQ for 6-sided rectangles. In Theorem 3.4.1, OPEQ for 6-sided

rectangles was handled by placing at each node of the interval tree a data structure

which can handle OPEQ for 5-sided rectangles. Now placing the data structure of

Theorem 3.7.1 at each node of the interval tree leads to the following result.

Theorem 3.7.2. Orthogonal point enclosure query on 6-sided rectangles can be an-

swered using a structure of O(n log∗ n) size and in O(log2 n · log logn+ k) query time.

By using segment trees, the above result extends to higher dimensions as well. (We

omit the details.)

Theorem 3.7.3. Orthogonal point enclosure query on 2d-sided rectangles in Rd(d ≥
3) can be answered using a structure of O(n logd−3 n · log∗ n) size and in O(logd−1 n ·
log logn+ k) query time.

3.8 Open problems

We conclude with some open problems in the pointer machine model. As of now, an

optimal solution in R3 is known only for 3-sided rectangles. Is it possible to answer



43

OPEQ for 4-sided rectangles in R3 in O(log n + k) query time using an O(n) space

structure? More interestingly, what is the right bound to target for OPEQ for 5-sided

rectangles: Is there a linear-space structure which answers the query in O(log n + k)

time? Or is there a lower bound of Ω(log n · log log n + k) on the query time for a

linear-space structure?



Part II

Top-k Geometric Intersection

Query

44



Chapter 4

Top-k Geometric Intersection

Query (GIQ)

4.1 Problem Statement

Top-k GIQ: We are given a set A = {a1, . . . , an} of n geometric objects in Rd (d ≥ 1),

where ai has a real-valued weight wi, 1 ≤ i ≤ n. We wish to organize A into a space-

efficient data structure so that for any query pair (q, k), where q is a geometric object

and k > 0 is an integer, we can report efficiently the k largest-weight objects of A that

are intersected by q. (Two geometric objects in Rd intersect iff they have a point in

common.)

More precisely, let A(q) be the set of objects in A that are intersected by q. Then

we wish to find and report the objects in a set Ak(q) ⊆ A(q) such that |Ak(q)| = k

and for any ai ∈ Ak(q) and any aj ∈ A(q) \ Ak(q), we have wi ≥ wj . (Note that if q

intersects k or fewer objects of A then we simply report all of them.)

We recollect some definitions. In a reporting GIQ we report A(q), in a counting GIQ

we report |A(q)| and in a max GIQ we report the object in A(q) with the largest-weight.

4.2 Näıve solutions

As a warm-up, we discuss two näıve solutions for answering any top-k GIQ:

45



46

1. First, build a reporting structure based on the objects in A (disregarding their

weights). Given the query pair (q, k), query the structure with q to report all

the objects of A which intersect q. Next, run a standard selection algorithm [67]

on A(q) to identify the object with the kth-largest weight. Finally, scan A(q)

to output the k largest-weight objects. Clearly, this approach is not efficient if

|A(q)| � k, which is often the case.

2. Second, in the preprocessing phase, sort all the objects in A in non-increasing

order of their weights and keeps them in an array. Given a query pair (q, k), the

array is scanned from the beginning till either (i) k objects of A intersecting q are

found, or (ii) the end of the array is reached. In this approach the query time can

be as bad as Θ(n).

4.3 Key features of our techniques/reductions

In this report we present three different techniques (or reductions) to efficiently solve

the top-k GIQ problems. The key features of our techniques are the following:

1. Generic reductions. Our reductions are aimed at solving any top-k GIQ prob-

lem efficiently. All the three reductions require efficient solutions for the corre-

sponding reporting, or counting or max GIQ, which is often the case. Such general

reductions did not exist in the literature before.

2. Strong theoretical guarantees. As will be shown later, our reductions also have

attractive space, query time and update time bounds. Roughly speaking, there

is either no deterioration or very little deterioration in the theoretical bounds for

the top-k GIQ problem w.r.t. their corresponding reporting, counting and max

GIQ.

3. Output sensitivity. A trivial observation is that the query time for any top-k

GIQ is greater than or equal to k time-units (since one needs k time-units to

report k objects). Therefore, an important feature for a top-k data structure is

that they have query time that is sensitive to k, typically of the form O(f(n) + k)

or O(f(n) + k · g(n)), where f(n) and g(n) are “small” (e.g., polylogarithmic).



47

This is a very desirable property, since it allows the query to be answered faster

when k is small. Our data structures in this thesis achieve this property. The

näıve solutions discussed above do not have this property; even for k = 1 they can

have a query time of Θ(n).

4. Ease of implementation. There is very little overhead involved in implementing

these techniques. Given data structures for the reporting and the counting GIQ

problem (which typically exist for many GIQ problems), our first technique in-

volves merely implementing a suitable binary search tree. We have demonstrated

this in [4] for two problems: orthogonal range search and rectangle stabbing. In

our second and third technique, one simply has to build a data structure for report-

ing and/or max GIQ problem on the entire dataset or on a collection of random

samples from the dataset.

4.4 Three Generic Reductions

In this thesis we present three generic reductions to answer a top-k GIQ. Each generic

reduction reduces the task of answering a top-k GIQ to a small number of queries on

the companion problems of that GIQ, which typically have a small space and query

time bounds.

4.4.1 Mathematical definitions

We (i) define log∗(n) as the number of times that we need to perform log2(·) on n to

get a value no more than 1 (see also Chapter 3 for a precise definition), and (ii) use

notation Õ(.) to hide a factor polylogarithmic in n when such a factor is insignificant.

Finally, we say that a function f(n) is geometrically converging if it satisfies two

conditions:

• For any n ≥ B:
∑h

i=0 f
(
n
ci

)
= O(f(n)), for any value c ≥ 2, where h is the largest

integer i satisfying n/ci ≥ B.

• For any n < B, f(n) = O(1).



48

4.4.2 First reduction: Using counting and reporting structure

Our first approach requires that efficient solutions to the reporting and the counting

versions of the underlying GIQ problem be available. Roughly speaking, our technique

incurs only a logarithmic increase in the space, the query time, and the update time over

the corresponding bounds for the underlying GIQ problem. Specifically, we establish

the following:

Theorem 4.4.1. Suppose that there is

• A reporting structure of Srep(n) space that answers a query in Qrep(n)+O(t) time;

• A counting structure of Scnt(n) space that answers a query in Qcnt(n) time.

Assume that Scnt(n)/n, Srep(n)/n, Qcnt(n) and Qrep(n) are non-decreasing functions

for non-negative values of n.

Then there is a top-k structure of space Stop(n) and query time Qtop(n) +O(k) with

Stop(n) = O((Srep(n) + Scnt(n)) log2 n) (4.1)

Qtop(n) = O((Qrep(n) +Qcnt(n)) log2 n) (4.2)

Furthermore, if the reporting and the counting structure support updates in Urep(n)

and Ucnt(n) time, respectively, then the top-k structure supports updates in Utop(n) =

O((Urep(n) + Ucnt(n)) log2 n) amortized time.

Remark. The above reduction is presented in the RAM model. The following two

reductions will be presented in the EM model. By setting M and B to appropriate

constants, all the EM results also hold in the RAM model.

4.4.3 Second reduction: Using max and prioritized reporting struc-

ture

Our second approach requires that efficient solutions to the max and the prioritized

reporting versions of the underlying GIQ problem be available. We start with the

following definition.

Prioritized Reporting: Given a query q and a real value τ , this query reports all the

objects in A(q) with weight greater than or equal to τ .



49

Before presenting the reduction, we present the following interesting fact: prioritized

reporting can be reduced to top-k reporting. The formal statement is the following:

Theorem 4.4.2. Suppose that there is a structure that consumes Stop(n) space on

n elements, and answers a top-k query in Qtop(n) + O(k/B) I/Os. Then, there is a

prioritized-reporting structure of Spri(n) space that answers a query in Qpri(n)+O(t/B)

I/Os—where t is the number of reported elements—such that

Spri(n) = O(Stop(n))

Qpri(n) = O(Qtop(n)).

The reduction does not depend on the underlying problem, i.e., prioritized reporting

is no harder than top-k reporting, regardless of the type of input objects and query

object. Therefore, if one does not even have a structure for the former, there is no hope

for the latter.

An important special case of the top-k reporting is the max reporting where all

queries have k = 1. Before solving queries of all k, one must at least be able to design an

efficient structure for max reporting. In other words, just like the prioritized reporting,

max reporting is also a necessary step towards settling the top-k reporting. Our second

reduction shows that the two necessary structures are sufficient as well:

Theorem 4.4.3. Suppose that there is

• A prioritized-reporting structure of Spri(n) space that answers a query in Qpri(n)+

O(t/B) I/Os;

• A max-reporting structure of Smax (n) space that answers a query (i.e., k = 1) in

Qmax (n) I/Os. It is required that Smax (n) is geometrically converging.

Then, there is a top-k structure of expected space Stop(n) and expected query time

Qtop(n) +O(k/B) with

Stop(n) = O

(
Spri(n) + Smax

(
6n

B ·Qpri(n)

))
(4.3)

Qtop(n) = O (Qpri(n) +Qmax (n)) . (4.4)

Furthermore, if the prioritized and the max structures support an update in Upri(n)

and Umax (n) I/Os respectively, then the top-k structure supports an update in O(Upri(n)+



50

Umax (n)) expected I/Os. If any of Upri(n) and Umax (n) is amortized, the update cost of

the top-k structure is amortized expected. In the above, every expectation is taken over

the random choices made by our algorithms.

Remark 1. The above reduction is optimal in the sense that there is no performance

degradation (in expectation): the space, the query time, and the update time of the top-

k structure is determined by the worse between the prioritized and the max structure.

Remark 2. Our reduction constructs the max structure on at most O
(

6n
B·Qpri (n)

)
objects, and, therefore, one need not try hard to minimize the space of the max structure.

In fact, Smax (n) is allowed to be larger than Stop(n). For instance, consider a scenario

where Spri(n) = O(n/B), Qpri(n) = logB n, and Smax (n) = O((n/B) logB n). Plugging

in these values into Theorem 4.4.3 leads to Stop(n) = O(n/B), since Smax

(
n

B logB n

)
=

O
(
n
B2

)
= O

(
n
B

)
.

4.4.4 Third reduction: Using only the prioritized reporting structure

Our third reduction requires an efficient solution only for the prioritized reporting version

of the underlying GIQ problem. We show that, under mild conditions, there only needs

to be an O(logB n) gap in the query cost between the top-k and the prioritized reporting:

Theorem 4.4.4. Suppose that there is a prioritized structure of Spri(n) space and query

cost Qpri(n) +O(t/B) such that Spri(n) is geometrically converging, and

Qpri(n) ≥ logB n.

Furthermore, suppose that the problem is polynomially bounded, namely, for any input

D of n elements, there are only nO(1) distinct outcomes for D(q) over all the possible

queries on D.

Then, there is a top-k structure of space Stop(n) and query time Qtop(n) +O(k/B)

with

Stop(n) = O(Spri(n)) (4.5)

Qtop(n) = O

Qpri(n) · log n

logB + log
Qpri (n)
logB n

 (4.6)



51

Remark 1. It is worth mentioning that most of the known reporting problems are

polynomially bounded. Consider, for example, D to be a set of n points in R2. In the

halfspace reporting, given a halfspace q (the region on one side of a line), we want to

report the set D(q) of points in D ∩ q. It is easy to see that O(n2) different subsets

D(q) exist, ranging over all possible q, because there are only
(
n
2

)
different lines passing

through two points in D.

Remark 2. Since the denominator in Equation (4.6) is at least logB, we haveQtop(n) =

O(Qpri(n) · logB n).

Remark 3. If Qpri(n) ≥ (n/B)ε for an arbitrarily small constant ε > 0, (4.6) becomes

Qtop(n) = O(Qpri(n)). In other words, top-k reporting is asymptotically as difficult as

prioritized reporting for “hard” queries.

4.5 New top-k GIQ structures

Using the three generic reductions discussed above we have been able to design several

new top-k GIQ structures. We present the bounds obtained for each top-k GIQ problem

as a theorem here and the proofs of these will be discussed in Chapter 6.

Orthogonal Range Reporting. In top-k orthogonal range reporting, A is a set of

weighted points in Rd and the query is an axes-aligned hyper-rectangle in Rd. This

problem is very relevant in spatial databases. For example, in R2 the points could

represent restaurants and the rating of each restaurant could be its weight. The query

rectangle q can be an area in New York City and the user might want to know the top-5

rated restaurants in that area. Some of the key results we obtain for this problem are

as follows:

Theorem 4.5.1. For top-k orthogonal range reporting:

• When d = 1, there is a RAM structure of O(n) space and O(log n+k) query time,

both in expectation.

• When d = 1, there is an EM structure of O( nB ) space and O(logB n+ k/B) query

time, both in expectation.

Theorem 4.5.2. For top-k orthogonal range reporting:



52

• When d = 2, there is a RAM structure of O(n logn
log logn) space and O(log n + k)

query time, both in expectation.

• When d = 2, there is an EM structure of O( nB
logn

log logB n(log logB)2) space and

O(logB n+ k/B) query time, both in expectation.

Note that our results above for d = 1, 2 hold in expectation. There are results in the

literature with the same bounds as above and they hold true in the worst-case as well;

naturally, those solutions are technically involved. On the other hand, the solutions

presented in this report have the advantage of being conceptually simpler.

Finally we present a dynamic solution for this problem in Rd.

Theorem 4.5.3. For top-k orthogonal range reporting:

• When d ≥ 1, there is a RAM structure of O(n logd n) space, O(logd+1 n + k)

query time and O(logd+1 n) amortized update time. All the bounds hold true in

the worst-case.

Unlike in the RAM model, in the EM model no efficient dynamic data structures

are known for standard reporting and counting orthogonal range searching in higher

dimensions. (Of course one can always take a RAM structure and use that as an EM

structure, however no structure tailor-made for the EM model is known.) Therefore, we

avoid discussing top-k orthogonal range searching in the EM model in higher dimensions.

Halfspace and Circular Range Reporting. In halfspace reporting, A is a set of

points in Rd, where d is a fixed integer. The query q = (q, c) is a halfspace, i.e., all

the x satisfying x · q ≥ c, where q and c are the query parameters (x and q are d-

dimensional vectors, and c a real value). The importance of halfspace reporting—in

general, searching with linear constraints—has long been recognized in the database

community; e.g., see [68]. A motivating example for the top-k halfspace range reporting

in R2 is the following: Consider a financial database storing earnings (e) and volatility

(v) information for a large number of stocks, as well as information on total return

(r). Thus, each stock, s, is represented as a point (se, sv) in R2, with weight sr. Each

investor, I, has a different preference for income and risk, specified as percentages Ie

and Iv. A potential investor might wish to identify, say, the ten highest-return stocks, s,



53

for which the weighted score Ie · se + Iv · sv is at least an investor-specified threshold tI .

The equation Ie · se + Iv · sv ≥ tI defines a halfspace in R2 and we are, thus, interested

in the ten highest-return stocks in this halfspace. This is an instance of top-k halfspace

range search problem in R2, where k = 10 and the query, q, is the above halfspace.

We obtain the following results for this problem:

Theorem 4.5.4. For top-k halfspace reporting:

• When d = 2, there is a RAM structure of O(n log n) space and O(log n+ k) query

time, both in expectation.

• When d ≥ 4, there is a RAM structure of O(n log n) space and Õ(n1−1/bd/2c)+O(k)

query time, both in the worst case.

• When d ≥ 4, there is an EM structure of O(n/B) space and O((n/B)1−1/bd/2c+ε+

k/B) query time, both in the worst case, where ε > 0 is an arbitrarily small

constant.

Circular range reporting is a closely related problem. Again, A is a set of points in

Rd, but each q = (q, r) specifies a ball in Rd, i.e., all the x satisfying dist(x, q) ≤ r,

where dist is the Euclidean distance between the vectors x and q, and r is a positive

real value (query parameters are q and r). Circular reporting is fundamental in spatial

databases and similarity retrieval; e.g., see [69]. By the standard “lifting trick” [58], we

obtain directly from Theorem 4.5.4:

Corollary 4.5.1. For top-k circular reporting with d ≥ 3, there is:

• A RAM structure of O(n log n) space and Õ(n1−1/b(d+1)/2c) + O(k) query time,

both in the worst case.

• An EM structure of O(n/B) space and O((n/B)1−1/b(d+1)/2c+ε+k/B) query time,

both in the worst case, where ε > 0 is an arbitrarily small constant.

Interval Stabbing. This problem is among the most classic problems in the database

area; e.g., see [70]. Here, A is a set of intervals on the real-line and the query q is a

point, such that an element e = [x, y] in A satisfies the predicate if q ∈ [x, y]. We obtain

the following result:



54

Theorem 4.5.5. For top-k interval stabbing, there is an EM structure of

• O(n/B) space and O(logB n+k/B) query time, both in expectation. The structure

can be updated in O(logB n) I/Os amortized expected per insertion and deletion.

• O(n/B) space and O(log2
B n+ k/B) query time, both in the worst case.

2D Point Enclosure. In this problem, A is a set of rectangles in R2. The query is a

point q ∈ R2, such that an element e ∈ A satisfies the predicate if q ∈ e.
To emphasize the relevance of a top-k query of this type to databases, let us consider

a dating website, where a person registers requirements on her/his ideal significant other:

age in the range [x1, x2], and height in the range [y1, y2]. Therefore, his/her requirement

can be modeled as a rectangle [x1, x2] × [y1, y2]. The weight assigned to the rectangle

could be the salary of the person. A reasonable query from, say, a lady is:

“Find the 10 gentlemen with the highest salaries such that my age and height

fall into their preferred ranges.”

This is an instance of a top-k point enclosure query with k = 10. We obtain:

Theorem 4.5.6. For top-k point enclosure, there is a RAM structure of

• O(n log∗(n)) space and O(log n log logn+ k) query time, both in expectation.

• O(n log∗(n)) space and O(log2 n log logn
log log logn + k) query time, both in the worst case.

3D Dominance. In this problem, A is a set of points in R3. The query is a point

q = (x, y, z), such that an element e = (ex, ey, ez) in A satisfies the predicate if ex ≤ x,

ey ≤ y, and ez ≤ z. A practical top-k query of this type is

“Find the 10 best-rated hotels whose (i) prices are at most x dollars per night,

(ii) distances from the town center are at most y km, and (iii) security rating

is at least z.”

We obtain:

Theorem 4.5.7. For top-k 3D dominance, there is a RAM structure of

O(n log n/ log log n) space and O(log1.5 n+ k) query time, both in expectation.



55

4.6 Previous Results

The top-k problem has been well-studied in many domains, including, for example, web

search, information retrieval, recommender systems, etc. We refer the reader to Ilyas et

al. for an excellent discussion of top-k query processing in relational databases [71].

We will focus on the geometric version of the top-k problem here. The work of [72]

appears to be the first attempt to incorporate top-k features into conventional reporting

queries. Since then, work on the topic has grown into a sizable literature. The most

extensively studied (and, hence, the best understood) problem is top-k orthogonal range

reporting, whose 1D version was studied in [73, 74, 75, 76, 77], and 2D version in [4, 5].

See also [78] for a colored version of the problem in 1D. The work [79] investigated

more sophisticated colored top-k versions of several computational geometry problems.

Top-k queries on text retrieval problems have been considered in [80, 81, 78, 82]; see

also a recent survey [83].

Closely related to the top-k problem is the problem of reporting only the point with

the kth-heaviest weight in the query range. Gagie et al. [84] and Navarro et al. [85]

answer this query in R1 and R2, respectively.



Chapter 5

First Generic Reduction: Using

counting and reporting structures

In this chapter we will present our first reduction and prove Theorem 4.4.1. We first

outline the key steps in our query algorithm and then discuss each step in detail.

5.1 Key steps

Given a query pair (q, k), we do the following:

1. Perform initial check: Let A(q) be the set of objects of A intersected by q. If

|A(q)| ≤ k, then we simply report all the objects in A(q) and stop. Otherwise, if

A(q) > k, we proceed to step 2.

2. Find a threshold object: We determine an object at in A(q) that has the

kth-largest weight and proceed to step 3. We call at a threshold object.

3. Report top-k objects: Given at, we report all objects in A(q) whose weights

are greater than or equal to wt.

As we will see, steps 1 and 3 are essentially instances of the underlying GIQ counting

and reporting problems, respectively. Step 2 will employ a binary search-based approach

to quickly identify at.

56



57

5.2 Implementation of step 1

Let DC (resp. DR) denote a data structure for the counting (resp. reporting) version

of the underlying GIQ problem on A. That is, given a query object q, DC (resp. DR)

returns the count |A(q)| (resp. the set A(q)). (For example, for the top-k orthogonal

range search problem, DC (resp. DR) is a data structure for the counting (resp. report-

ing) version of orthogonal range search.) For future use, we assume that DC and DR
support updates.

We do step 1 by querying DC with q. If |A(q)| ≤ k, then we also query DR with q

and output A(q).

5.3 Implementation of step 2

Intuition: W.l.o.g. let a1, . . . , an be an ordering of the objects of A by non-increasing

weight (ties broken arbitrarily). Our goal is to find the kth-leftmost object in this

ordering that is intersected by q; this is the threshold object at. Consider object am,

where m = bn/2c, and let A′ (resp. A′′) be the ordered subset of A consisting of

objects at or to the left of am (resp. to the right of am). We count the number of

objects in A′ that are intersected by q, i.e., we compute |A′(q)|. If |A′(q)| ≥ k, then

at is in A′ and is the kth-leftmost object in A′(q). Therefore, we search recursively in

A′ for the kth-leftmost object. However, if |A′(q)| < k, then at is in A′′ and is the

(k − |A′(q)|)th-leftmost object in A′′(q). Therefore, we search recursively in A′′ for the

(k − |A′(q)|)th-leftmost object.

We implement the above idea as follows: We sort the objects of A by non-increasing

weight (breaking ties arbitrarily) and store them in left-to-right order at the leaves of a

balanced binary search tree T . At each node v of T , we store an instance, DvC , of the

structure DC which is built on the objects stored in v’s subtree.

Let r be the root of T . At the beginning of this step, our objective is to find the

kth-leftmost leaf among the leaves of T that store objects intersected by q; this leaf

contains at. However, as the algorithm progresses and reaches some subtree of T , our

objective will change in the sense that we will now be seeking the k′th-leftmost leaf

among the leaves of this subtree that store objects intersected by q, for some k′ ≤ k.

Specifically, let vcur denote the root of the subtree of T that the search is at currently.



58

Initially, we know (from step 1) that q intersects more than k objects among the ones

stored in T ’s leaves, so we must search in the left subtree of r for the k-th leftmost

object intersected by q. Thus, initially vcur is set to the left child of r and k′ is set to

k. Let C(vcur) be the count returned when DvcurC is queried with q. If C(vcur) ≥ k′,

then the leaf containing at is in the left subtree of vcur, so the search proceeds to this

subtree with k′ unchanged. However, if C(vcur) < k′, then the leaf containing at is in

the subtree of the sibling of vcur, so the search proceeds to the sibling’s subtree with k′

set to k′ − C(vcur). This process repeats iteratively until the leaf, u, containing at is

reached.

5.4 Implementation of step 3

We store the objects of A at the leaves of a balanced binary search tree T ′, in the

same order in which they appear at the leaves of T . At each node v of T ′, we store an

instance, DvR, of the structure DR which is built on the objects stored in v’s subtree.

Also, if object ai appears at leaf u of T and at a leaf u′ of T ′, then we store a pointer,

ptr, at u that points to u′; i.e., ptr(u) = u′. (In fact, we could use T to store instances

of both DC and DR. We use a separate structure T ′ only for ease of exposition.)

To report all objects in A(q) whose weights are greater than or equal to wt, we query

T ′ with q, as follows:

Let u be the leaf of T that is found to contain the threshold object at in step 2. We

follow ptr(u) to find the leaf u′ of T ′ that contains at. We then walk from u′ up to the

root of T ′ following parent pointers, thereby tracing a path, Π, in T ′. Let Z be the set

of nodes, v, in T ′ such that v is the left child of a node on Π but is itself not on Π.

We also include in Z the leaf u′. Z consists of both leaves and internal nodes and we

call each such node a canonical node. Note that |Z| = O(log n) and, moreover, for each

v ∈ Z, the range [wt,∞) contains the weights of all the objects stored in v’s subtree.

For each v ∈ Z, we query DvR with q, which causes all objects in v’s subtree that are

intersected by q to be reported.

This concludes the description of the 3-step query algorithm. The algorithm is

presented in pseudocode as Algorithm 1.



59

Algorithm 1: Query algorithm for top-k GIQ

Input: Data structures T and T ′ storing objects of A as described in

Sections 5.2–5.4, query object q, and integer k > 0.

Output: The k largest-weight objects of A that are intersected by q.

begin

// Step 1

Query DrC with q to compute the number, C(r), of objects in r’s subtree that

are intersected by q, where r is the root of T .

if C(r) ≤ k then

Query Dr′R with q to find all the objects in r′’s subtree that are intersected

by q, where r′ is the root of T ′. Report these objects and exit.

// Step 2

vcur ←− left child of r

k′ ←− k
while vcur 6= nil do

Query DvcurC with q to compute the number of objects, C(vcur), in vcur’s

subtree that are intersected by q.

u←− vcur
if C(vcur) < k′ then

k′ ←− k′ − C(vcur)

vcur ←− sibling of vcur

else

vcur ←− left child of vcur

// Step 3

u′ ←− leaf of T ′ corresponding to u

Walk up T ′ from u′ and identify the set, Z, of canonical nodes. For each

v ∈ Z, query DvR with q and report all objects returned.



60

5.5 An example

We illustrate the query algorithm in Figure 5.1. Part (a) shows the input objects (points

in R2) and the query object q (a rectangle), part (b) shows the structure T , and part (c)

shows the structure T ′. To avoid clutter, the structures DC and DR are not shown at the

nodes. For simplicity, we refer to the points by their weights. For k = 4, the threshold

point is 40 and the top-4 points are 80, 60, 50, and 40. Let v1 be the root of T . Step 1

finds C(v1) to be 5, corresponding to the points 80, 60, 50, 40, and 20 in v1’s subtree

that lie inside q. Since C(v1) > k we proceed to Step 2.

In Step 2 our objective is to find a leaf node v such that among the points stored

at v and the leaf nodes to the left of v, exactly 4 points lie inside q. Initially, vcur = v2

and k′ = k = 4. Querying Dv2C gives C(v2) = 3, corresponding to the points 80, 60, and

50 in v2’s subtree that lie inside q. Thus, the threshold point is not in the subtree of

v2 but instead is in the subtree of its sibling node v3. Since k = 4 and C(v2) = 3, k′ is

reset to k − A(v2) = 1, and the search proceeds to v3. Querying Dv3C gives C(v3) = 2,

corresponding to the points 40 and 20 in v3’s subtree that lie inside q. Since C(v3) > k′,

we proceed to v3’s left child v4. Querying Dv4C we find that C(v4) = 1, corresponding

to point 40 lying inside q. Since C(v4) = k′, we proceed to v4’s left child v5. Querying

Dv5C yields C(v5) = 1, corresponding to point 40 lying inside q. Since C(v5) = k′, we

proceed to v5’s left child which happens to be nil. At this point we exit the while-loop

with u = v5 containing the threshold point 40.

Finally, in step 3, we follow ptr(v5) (not shown) to locate the leaf in T ′ storing

threshold point 40, identify the path Π and the set Z of canonical nodes, and query DvR
at each node v ∈ Z with q to report the top-4 points in q.

5.6 Proof of Theorem 4.4.1

The correctness of the query algorithm follows from the discussion in Sections 5.2–5.4.

We now analyze the space bound. Let v1, v2, . . . , vt be the nodes of T at a given level

(i.e., distance from the root) and let n1, n2, . . . , nt be, respectively, the number of objects

stored at the leaves of their subtrees. The space used by all the secondary structures,

DviC , at these nodes is
∑t

i=1 Sc(ni, d) =
∑t

i=1(Sc(ni, d)/ni)×ni ≤ (Sc(n, d)/n)
∑t

i=1 ni =

O(Sc(n, d)), since Sc(ni, d)/ni is non-decreasing, ni ≤ n, and
∑t

i=1 ni ≤ n. Since T has



61

v1

v3v2

v4

v5

A(v1) = 5, k′ = 4

A(v3) = 2, k′ = 1A(v2) = 3, k′ = 4

A(v4) = 1, k′ = 1

A(v5) = 1, k′ = 1

80 70 60 50 40 30 20 10

Π

wt

(b) (c)

T T ′

(a)

80

70

60
50

40

30

20

10

Figure 5.1: The general technique illustrated for top-k orthogonal range search in R2,
with k = 4. (a) Set A consisting of 8 weighted points and query rectangle q. Points
shown filled are the k largest-weight objects intersected by q. (b) Finding the threshold
point by querying T . The nodes visited by the query algorithm are shown filled. (c)
Search path, Π, in T ′ (shown in heavy lines) and canonical nodes (shown filled).

height O(log n), the space used by T is O(Sc(n, d) log n). Similarly, the space used by

T ′ is O(Sr(n, d) log n). Thus, the overall space is O(max{Sc(n, d), Sr(n, d)} log n) =

O(S(n, d) log n).

Next, we analyze the query time. The time for step 1 is O(Qc(n, d) +Qr(n, d) + k).

For step 2, consider the path in T from the root to the leaf node containing at. At each

node v on the path, the secondary structure DvC is queried with q. Also, if v is a right

child of its parent, then the secondary structure at the left child of v’s parent is also

queried. So, at each level of T , the secondary structures of at most two nodes, v1 and v2,

at that level are queried. Let ni, i = 1, 2, be the number of objects stored at the leaves

of vi’s subtree. Thus step 2 takes
∑2

i=1Qc(ni, d) time. Since Qc(ni, d) is non-decreasing

and ni ≤ n, i = 1, 2, the query time per level is
∑2

i=1Qc(ni, d) = O(Qc(n, d)). Summing

over the O(log n) levels of T gives an overall query time of O(Qc(n, d) log n) time for

step 2.

In Step 3, it takes O(log n) time to identify the set, Z, of canonical nodes. For each

vi ∈ Z, let ni be the number of objects stored at the leaves of vi’s subtree and let ki be

the number of these objects intersected by q. Querying DviR with q at each vi ∈ Z takes

O(Qr(ni, d) + ki) time. Thus the total query time in step 3 is O(
∑|Z|

i=1(Qr(ni, d) + ki)).



62

Since Qr(ni, d) is non-decreasing, and since
∑|Z|

i=1 ki = k, the query time for step 3 is

O(Qr(n, d) log n+ k).

Therefore, the time for steps 1–3 isO(max{Qc(n, d)+Qr(n, d)} log n+k) = O(Q(n, d) log n+

k).

Finally, we consider the update time. If T and T ′ are implemented as BB(α) trees,

then the technique of Willard et al. [86] can be used to keep the trees balanced as

updates are performed. As shown in [86], the amortized update time for T and T ′ will

be O(Uc(n, d) log n) and O(Ur(n, d) log n), respectively. Thus, the overall update time

will be O(max{Uc(n, d) + Ur(n, d)} log n) = O(U(n, d) log n) (amortized).

5.7 Remarks

1. In [4] we presented experimental results by applying this general reduction to two

problems: orthogonal range searching and rectangle stabbing. The experiments

showed that our data structures were quite efficient in practice, in terms of storage

and query time.

2. In our current solution, we are trying to find the object at which has the kth-

largest weight in A(q). However, if we observe closely, it suffices to find any

object a which has k′th-largest weight in A(q), where k′ ∈ [k, ck] for some constant

c. In the implementation of step 3 we will end up reporting k′ = Θ(k) objects

from which we can filter the top-k objects in O(k′) time by a standard selection

algorithm. Lets call a an approximate threshold object.

How can we make use of the idea of approximate threshold object? It turns out

that instead of a counting structure DvC at each node of the tree T , one can store an

approximate counting structure which reports a c-approximate value (if the exact

counting structure reports t then the approximate counting structure reports any

value in the range [t, ct]). Now repeating the same query algorithm as before, it

can be seen that one can obtain an approximate threshold object.

For many GIQ problems (such as halfspace range searching), approximate counting

structures have far better bounds than the exact counting structures and hence,

this observation of approximate threshold object is useful for such problems. For



63

example, consider the halfplane range searching in R2 problem. There is linear-

sized data structure which answers the exact counting query for this problem in

roughly O(
√
n) time [87], whereas there is a linear-sized data structure which

answers a c-approximate counting query in merely O(log n) time [88].



Chapter 6

Second Generic Reduction: Using

top-1 and prioritized reporting

structures

In this chapter we will prove Theorem 4.4.2 and Theorem 4.4.3. Recall that in Theo-

rem 4.4.2 we prove that prioritized reporting is no harder than top-k reporting for any

GIQ. Next, in proving Theorem 4.4.3 we present our second reduction which uses the

max reporting and the prioritized reporting structure without any performance loss in

the space, the query time and the update time (in the expected sense).

6.1 Prioritized reporting is no harder than top-k reporting

In this section we prove Theorem 4.4.2. Assume there is a data structure, D, which can

answer the top-k GIQ. Suppose we have a set, A, of n objects and we want to answer

a prioritized reporting query on A. We will show that this can be done using a data

structure that uses O(Stop(n)) space and has a query time of O(Qtop(n) + t/B) I/Os,

where t is the number of points reported.

Based on the objects of A we build an instance of the data structure D. Clearly the

space occupied by D will be O(Stop(n)).

Given a query q and a real value τ , the query algorithm is executed in multiple

64



65

rounds. In round j (starting with j = 1), we query D with (q, k = 2j−1 · B · Qtop(n)).

Two cases arise:

1. If exactly 2j−1 ·B ·Qtop(n) objects are reported, then we scan the reported objects

to find the object with the smallest weight (say wi). If wi < τ , then we do not go

to the next round. Otherwise, we go to round j + 1.

2. If less than 2j−1 ·B · Qtop(n) objects are reported, then we do not go to the next

round.

If the query does not go beyond round j, then among the objects reported in round

j, we remove each object whose weight is less than τ . The remaining objects are the

output of the prioritized reporting query on A with q and τ .

Now we analyze the time taken to answer the prioritized reporting query. There are

two cases:

1. Only one round is executed: Then the query time will be O(Qtop(n)) since the

value of k = B · Qtop(n).

2. There are i > 1 rounds of execution: Then the query time will be

O

 i∑
j=1

(
Qtop(n) +

2j−1 ·B · Qtop(n)

B

) = O(2i · Qtop(n)).

The crucial observation is that since the (i−1)-th round was executed and we then

entered i-th round, we have t ≥ 2i−2·B·Qtop(n), which implies that 2i·B·Qtop(n) ≤
4t. Therefore, the query time will be O(2i · Qtop(n)) = O(t/B).

Therefore, the overall query time will be O(Qtop(n) + t/B).

6.2 Reduction

In this section, we present a reduction to establish the correctness of Theorem 4.4.3.

Our discussion focuses on n ≥ B · Qmax (n); otherwise, a top-k query can be trivially

answered by performing k-selection on the whole D in O(n/B) = O(Qmax (n)) I/Os.



66

Key Idea and Challenges. We start with some definitions. Let S be a set of elements.

By independently sampling each element of S with probability p, we obtain a p-sample

set R. Furthermore, let us assume that the elements of S are distinct and are drawn

from an ordered domain. We say that an element e ∈ S has rank i, if e is the i-th

greatest in S. Intuitively, given an integer k that is reasonably large and p = 1/k, the

element emax with rank 1 in R has some positive probability of having rank in the range

[k, ck] in S, for some constant c. If this happens, then we can use emax to retrieve the

top-k objects in S (report all objects in S with weight greater than emax). The key

technical challenges are the following: (i) the value of k will be known only during the

query, so our random samples should be able to handle all values of k, and (ii) how to

efficiently handle the case where emax’s rank in S is not in the range [k, ck]?

Rank Sampling. The following lemma formalizes the intuition presented above.

Lemma 6.2.1. Let S be a set of n elements, and K ≥ 2 a real value satisfying n ≥ 4K.

For a (1/K)-sample set R of S, the following hold simultaneously with probability at

least 0.09:

• |R| ≥ 1

• The largest element in R has rank in S greater than K but at most 4K.

Proof. The first bullet fails only if none of the elements in D were sampled, which occurs

with a probability

(1− 1/K)n ≤ (1− 1/K)4K ≤ 1/e4

where the last inequality used the fact that (1− x)1/x < 1/e for all x ≥ 0.

Let e be the largest element in R (note: this should be distinguished from the base

of natural logarithm; the semantics of each occurrence of “e” should be clear from the

context throughout the thesis). Denote by K̂ the rank of e in D. Next, we bound the

probability of the event K̂ > 4K, which occurs only if none of the 4K largest elements

in D were sampled. Hence:

Pr[K̂ > 4K] = (1− 1/K)4K ≤ 1/e4.



67

Finally, we bound the probability of the event K̂ ≤ K, which occurs only if at least

one of the K largest elements in D was sampled. Hence:

Pr[K̂ ≤ K] = 1− (1− 1/K)K .

Applying the fact that (1− 1/x)x ≥ 1/e2 for all x ≥ 2, we know:

Pr[K̂ ≤ K] ≤ 1− 1/e2.

The union bound now shows that the probability of violating at least one bullet of

Lemma 6.2.1 is at most

2/e4 + (1− 1/e2) < 0.91.

We thus complete the proof.

Structure. We now describe how to design a top-k structure from (i) a prioritized

structure, which uses Spri(n) space on n elements and answers a prioritized query in

Qpri(n)+O(t/B) I/Os, and (ii) a max structure, which uses Smax (n) space and answers

a max query in Qmax (n) I/Os.

Fix a constant σ = 1/20. For each integer i ≥ 1, define:

Ki = B · Qmax (n) · (1 + σ)i−1.

Let h be the largest i such that Ki ≤ n/4; clearly, h = O(log(n/B)). We create a

prioritized structure on A. Also, for each i ∈ [1, h], we take a (1/Ki)-sample set Ri of

A, and create a max structure on Ri.

Query. Let us first eliminate queries with k < B · Qmax (n). Given such a query q,

we first treat it as a top-(B · Qmax (n)) query, i.e., extracting the B · Qmax (n) elements

with the greatest weights in A(q). Then, the final result of the original query can be

obtained by performing k-selection on those elements. The total cost is O(Qmax (n))

plus the time of the top-(B · Qmax (n)) query.

Let us now focus on a top-k query q with k ≥ B · Qmax (n). If k > Kh, the query

is answered näıvely by reading the whole A in O(n/B) I/Os, which is O(k/B) because

k > Kh ≥ n/(4(1 + σ)) = Ω(n).

If k ≤ Kh, identify the smallest i such that Ki ≥ k; note that Ki = Θ(k). Setting

j = i, we carry out a round with the steps below:



68

1. If |A(q)| ≤ 4Kj , solve the query with the prioritized structure on A in the cost-

monitoring manner (see Section 7.3), which costs Qpri(n) + O(Kj/B) I/Os. The

algorithm declares the round succeeded and terminates.

2. Otherwise, identify the element e in Rj(q) with the maximum weight from the

max structure on Rj in Qmax (n) I/Os. In the special case where Rj(q) is empty,

treat e as a dummy element with w(e) = −∞.

3. Perform a prioritized query on A with q and threshold τ = w(e) in a cost-

monitoring manner:

(a) Either the query terminates by itself—let S be the set of elements retrieved,

(b) Or we terminate it as soon as 4Kj + 1 elements have been reported.

In both cases, the cost is Qpri(n) +O(Kj/B).

4. Declare this round failed if either of the following is true:

• Case 3(a) occurred, but |S| ≤ Kj .

• Case 3(b) occurred.

Otherwise, declare this round succeeded.

5. If succeeded, perform k-selection on S to produce the k elements in A(q) with

the largest weights, and terminate the algorithm by returning them as the final

answer.

6. Otherwise (i.e., failed), increase j by 1.

(a) If j ≤ h, start the next round from Step 1.

(b) Else (i.e., j = h + 1), answer the top-k query näıvely by reading the whole

A in O(n/B) = O(Kh/B) I/Os; the algorithm then terminates. This is the

only scenario where termination can happen in a failed round.

To analyze the cost of the algorithm, notice that a round fails only if (i) |A(q)| > 4Kj

(otherwise, Line 1 terminates the algorithm), and (ii) one of the two bullets in Step 4

is true. Thus, Lemma 6.2.1 tells us that failure happens with probability at most



69

1 − 0.09 = 0.91, noticing that Ri(q) is a (1/Kj)-sample set of A(q). This implies that

round j—for a specific j ≥ i—is executed only with probability 0.91j−i, namely, only

when all the preceding rounds have failed. Also observe that round j, regardless of

whether it fails, performs at most

Qpri(n) +Qmax (n) +O(Kj/B)

I/Os. Thus, the expected cost of the algorithm is bounded by

h∑
j=i

O
((
Qpri(n) +Qmax (n) +

Kj

B

)
· 0.91j−i

)

= O
(
Qpri(n) +Qmax (n) +

h∑
j=i

Kj

B
0.91j−i

)
(6.1)

Notice that Kj = Ki · (1 + σ)j−i = O(k) · (1 + σ)j−i. Plugging these into (6.1) shows

that the expected cost is

O

Qpri(n) +Qmax (n) +
k

B

h∑
j=i

((1 + σ) · 0.91)j−i


which is O(Qpri(n) +Qmax (n) + k/B) because (1 + σ) · 0.91 < 1.

Handling updates. It remains to discuss how to support insertions and deletions on

the input set A. This is in fact fairly easy, if one observes that each element e ∈ A has

in expectation only O(1) copies in the entire structure—recall that the sampling rate

of Ri equals 1/Ki, which geometrically decreases as i increases. Hence, the insertion of

e triggers one insertion into the prioritized structure, and one insertion into O(1) max

structures in expectation. The total cost is thus O(Upri + Umax ) expected. Also, we

can record in O(1) expected words which max structures include e. By hashing, this

“bookkeeping” itself can be maintained in O(1) expected I/Os as e is inserted/deleted,

without increasing the overall space complexity. In this way, a deletion of e can also be

supported in O(Upri + Umax ) expected I/Os.

The above argument still works even if one or both of Upri and Umax are amortized.

This completes the proof of Theorem 4.4.3.



70

6.3 Remarks

1. At a conceptual level, our reduction may be reminiscent of a method by Aronov

and Har-Peled [36] that reduces approximate counting to emptiness queries. How-

ever, our approach differs substantially in both algorithmic and technical details,

a quick proof of which is the following fact: the counting structure of [36] suffers

from performance degradation by a logarithmic factor compared to the emptiness

structure, while our reduction incurs no performance degradation.

2. Open Problem: Is there a reduction which obtains the same bounds as our

reduction but also holds in the worst-case. This looks like a challenging problem

and will require new ideas.



Chapter 7

Third generic reduction: Using

only the prioritized reporting

structure

This section serves as a proof of Theorem 4.4.4. We will need the Chernoff bounds given

in the appendix (at the end of the chapter).

7.1 Key Ideas

We use two new ideas to build a top-k strucuture using only the prioritized reporting

structure. Firstly, when k is large we prove the existence of a core-set that allows us

to reduce the problem to a top-Θ(log n) query. Secondly, when k is small we construct

nested core-sets R1, R2, . . . , Rh and then to answer a query on any Ri, we use a recursive

mechanism that “fine-tunes” the results of queries on Ri+1, . . . , Rh.

7.2 Top-k Core-Set

Rank Sampling. Let S be a set of elements. By independently sampling each element

of S with probability p, we obtain a p-sample set R. Furthermore, let us further assume

that the elements of S are distinct, and drawn from an ordered domain. We say that

an element e ∈ S has rank i, if e is the i-th greatest in S. Intuitively, given an integer

71



72

k that is reasonably large, the element with rank kp in R ought to have rank roughly k

in S. The next lemma formalizes this intuition.

Lemma 7.2.1. Let S be a set of n elements, and R be a p-sample set of S. Suppose

that integer k ≥ 1 and real value δ ∈ (0, 1) satisfy kp ≥ 3 ln(3/δ) and n ≥ 4k. Then,

the following hold simultaneously with probability at least 1− δ:

• |R| > 2kp

• The element with rank d2kpe in R has rank between k and 4k in S.

Proof. The first bullet fails with probability

Pr[|R| ≤ 2kp] = Pr[|R| ≤ (2k/n) · np]
≤ Pr[|R| ≤ (1/2)np]

(Chernoff bound (7.9)) ≤ exp(−np/12)

≤ exp(−kp/3)

≤ δ/3.

Let e be the element with rank d2kpe in R, and k̂ be the rank of e in S. Next,

we bound the probability of the event k̂ > 4k. For i ∈ [1, 4k], define xi to be 1 if the

i-th greatest element in S is sampled, or 0 otherwise. Let X =
∑4k

i=1 xi, and thus,

E[X] = 4kp ≥ 12 ln(3/δ). Event k̂ > 4k implies X ≤ d2kpe − 1. We have:

Pr[k̂ > 4k] ≤ Pr[X ≤ d2kpe − 1]

= Pr[X < 2kp]

= Pr[X < (1/2) ·E[X]]

(Chernoff bound (7.9)) ≤ exp(−E[X]/12).

≤ δ/3.

Finally, we bound the probability of the event k̂ < k. Define Y =
∑k

i=1 xi, and thus,

E[Y ] = kp ≥ 3 ln(3/δ). Event k̂ < k implies that Y ≥ d2kpe. We have:

Pr[k̂ < k] ≤ Pr[Y ≥ 2kp]

= Pr[Y ≥ 2E[Y ]]

(Chernoff bound (7.10)) ≤ exp(−E[Y ]/3)

≤ δ/3.



73

By the union bound, the two bullets in the lemma hold simultaneously with probability

at least 1− δ.

Core-Set. As stated in Theorem 4.4.4, suppose that the underlying problem is polyno-

mially bounded. More specifically, we say that the problem is λ-polynomially bounded

if for any input A of n elements, there are at most nλ distinct outcomes for A(q) over

all possible q, where λ is a constant.

Given a subset R of A, we say that an element e ∈ R has weight rank i in R if it

has the i-th greatest weight in R. The next lemma proves the existence of a small-size

core-set that approximately captures a specific rank for all the “large” queries whose

predicates are satisfied by many elements.

Lemma 7.2.2 (Top-k Core-Set Lemma). For any integer K ≥ 4λ lnn, there is a subset

R of A such that

• |R| ≤ 12λ · (n/K) lnn.

• For any q satisfying |A(q)| ≥ 4K, the following hold:

– |R(q)| > 8λ lnn

– The element with weight rank d8λ lnne in R(q) has weight rank between K

and 4K in A(q).

Proof. Set p = 4(λ/K) lnn, and δ = 1/(2nλ). These values ensure:

Kp = 4λ lnn ≥ 3 ln(3/δ). (7.1)

Let R be a p-sample set of A(q). We will prove that R satisfies all the conditions in the

lemma with a non-zero probability.

Fix a q satisfying |A(q)| ≥ 4K. Clearly, R(q) is a p-sample set of A(q). Applying

Lemma 7.2.1 on S = A(q) (the application is enabled by (7.1)), we know that with

probability at least 1− δ, the following hold simultaneously:

• |R(q)| > 2Kp = 8λ lnn.

• The element with rank d2Kpe has rank between K and 4K in A(q).



74

By λ-polynomially boundedness and the union bound, the above holds for all queries

with probability at least 1− δnλ = 1/2.

Finally, as |R| equals np in expectation, by Markov’s inequality, |R| ≤ 3np =

12λ(n/K) lnn with probability at least 2/3. It thus follows that all the conditions

of the lemma hold with probability at least 1− (1/2 + 1/3) > 0.

7.3 Structure

We proceed to explain how to use a prioritized reporting structure to design a top-k

reporting structure on a problem that is λ-polynomially bounded for a constant λ. Recall

that the former structure consumes space Spri(n) space on n elements, and answers a

prioritized query in Qpri(n) +O(t/B) I/Os.

Define:

g =
Qpri(n)

logB n
(7.2)

f = 12λB · Qpri(n). (7.3)

Note that g ≥ 1 (as required by Theorem 4.4.4), and for B ≥ 64, both the following are

fulfilled:

12λ

f
· lnn ≤ 1

g
√
B

(7.4)

f ≥ d8λ lnne. (7.5)

To prove Theorem 4.4.4, next we first describe our solution to top-k queries with

k ≤ f , and then, queries with larger k.

Queries with k ≤ f . It suffices, in fact, to consider k = f . Given a query q with

k < f , we first treat it as a top-f query, i.e., retrieving the set of f elements with the

greatest weights in A(q). Then, the final result of q can be easily obtained by performing

k-selection [10] on these elements in O(f/B) = O(Qpri(n)) I/Os. Apart from this, the

cost depends only on the top-f query.

Given a top-f query q, we answer it directly using a prioritized structure on A, if

|A(q)| ≤ 4f . We do not need any counting structure for estimating A(q). Instead, we



75

can achieve the purpose by issuing a prioritized query with predicate q and threshold

τ = −∞ in a cost monitoring manner:

• Either the query terminates by itself

• Or we terminate it manually as soon as 4f + 1 elements have been reported.

In both cases, the number of I/Os performed by the query is at mostQpri(n)+O(f/B) =

O(Qpri(n)). In the former case, we obtain the final result of the top-f query by per-

forming k-selection on the elements fetched by the prioritized query. In the latter case,

it must hold that |A(q)| > 4f ; we answer such queries with a structure constructed as

follows.

Take a core-set R1 of A using Lemma 7.2.2 with K = f , and build a prioritized

structure on R1. This process is then carried out recursively: for every i ≥ 2, we take

a core-set Ri+1 of Ri with the same K = f , and build a prioritized structure on Ri+1.

The recursion ends at some i = h where |Rh| ≤ 4f .

For convenience, let us treat A as R0. For each Ri (0 ≤ i ≤ h − 1), it holds that

f ≥ 4λ lnn ≥ 4λ ln |Ri|; hence, by Lemma 7.2.2:

|Ri+1| ≤
12λ · |Ri|

f
ln |Ri| ≤

12λ · |Ri|
f

lnn

(by (7.4)) ≤ |Ri|
g
√
B
. (7.6)

The total space of all the prioritized structures is therefore O(Spri(n)) by the fact that

Spri(n) is geometrically converging. Furthermore, (7.6) indicates that

h = O(logg
√
B n).

We now explain inductively how to answer a top-f query on any Ri for i ∈ [0, h] in

no more than

c · (h− i+ 1) · Qpri(n) (7.7)

I/Os, for some constant c ≥ 1. At the bottom level i = h, the purpose can be easily

achieved by scanning the entire Rh in O(f/B) I/Os, which is at most c1 · Qpri(n) for

some constant c1 ≥ 1. Assuming that this can be done for all i ≥ j + 1, consider i = j,

at which level we distinguish two scenarios:



76

• |Rj(q)| ≤ 4f : Answer the query in the cost monitoring manner as explained earlier

using the prioritized structure on Rj . The cost isQpri(|Rj |)+O(f/B) ≤ c2·Qpri(n)

for some constant c2 ≥ 1.

• |Rj(q)| > 4f : According to Lemma 7.2.2, Rj+1(q) must have size at least d8λ ln |Rj(q)|e.
By (7.5), it must hold:

f ≥ d8λ ln |Rj(q)|e.

Therefore, we can retrieve the element e with weight rank d8λ ln |Rj(q)|e inRj+1(q)

by issuing a top-f query on Rj+1 in at most

c · (h− i) · Qpri(n)

I/Os. Lemma 7.2.2 indicates that the weight rank of e in Rj(q) is between f and

4f . We deploy the prioritized structure on Rj to fetch all the elements of Rj(q)

with weights at least w(e) in Qpri(|Rj |) +O(f/B) ≤ c2 · Qpri(n) I/Os. The result

of the top-f query can be obtained from these objects with “k-selection” in no

more than c3 · Qpri(n) I/Os for some constant c3 ≥ 1.

We choose c to be max{c1, c2 + c3}, which ensures:

c · (h− i) · Qpri(n) + (c2 + c3) · Qpri(n)

≤ c · (h− i+ 1) · Qpri(n)

and hence, completing our claim in (7.7). It thus becomes clear that the cost of answer-

ing a query on A is

O(h · Qpri(n)) = O(Qpri(n) · logg
√
B n).

Plugging in the definition equation (7.2) of g gives the claimed complexity in Theo-

rem 4.4.4.

Queries with k > f . We apply Lemma 7.2.2 to take a core-set R[i] of A with

K = 2i−1f , for i = 1, 2, ..., h, where h is the largest integer i satisfying 2i−1f ≤ n. It is

easy to verify from (7.3) that

h = O(log(n/B)). (7.8)

Our structure has two components:



77

• A prioritized structure on A.

• On each R[i] where 1 ≤ i ≤ h, build a top-f structure, namely, the structure we

just explained for answering queries with k ≤ f . Since |R[i]| ≤ 12λ(n/(2i−1f)) lnn,

all these top-f structures use in total

O

(
h∑
i=1

Spri
(

12λ · n lnn

2i−1f

))
= O(Spri(n) + h) = O(Spri(n))

space, where the derivation used the facts that (i) Spri(n) is geometrically con-

verging, (ii) Spri(n) obviously needs to be Ω(n/B), and hence, by Equation (7.8),

h = O(Spri(n)).

The total space occupied by our structure is therefore O(Spri(n)).

Now consider a top-k query q with f < k ≤ n. First, if k ≥ n/2, we answer it by

simply scanning the entire A in O(n/B) = O(k/B) I/Os. Next, we consider k < n/2.

Identify the smallest i ∈ [1, h] such that 2i−1f ≥ k. Fix the value of K to 2i−1f in

the rest of the section. Note that k ≤ K < 2k. We then proceed as follows:

• If |D(q)| ≤ 4K, we answer the query with cost monitoring through the prioritized

structure on A in Qpri(n) + O(K/B) I/Os.

• If |D(q)| > 4K, Lemma 7.2.2 indicates that R[i](q) has size at least d8λ lnne, and

that the element e with weight rank d8λ lnne in R[i](q) has weight rank between

K and 4K in A(q).

Retrieve e by issuing a top-f query on R[i]. By searching the top-f structure on

R[i], the query finishes in O(Qpri(n) logg
√
B n) I/Os, as proved earlier. Extract

from the prioritized structure on A the elements in A(q) whose weights are at

least w(e); this entails Qpri(n) + O(K/B) I/Os. Finally, the query result can be

produced with k-selection in O(K/B) I/Os.

Overall, the query performs O(Qpri(n) logg
√
B n+K/B) I/Os. This completes the proof

of Theorem 4.4.4.



78

7.4 Remark

Open Problem: Is it possible to obtain a top-k structure with Stop(n) = O(Spri(n))

and Qtop(n) = O(Qpri(n))? This would have a strong implication, namely that the

top-k reporting and the prioritized reporting are equivalent problems for any GIQ.

Appendix: Chernoff Bounds

Let X1, ..., Xn be independent Bernoulli variables such that Pr[Xi = 1] = pi. Let

X =
∑n

i=1Xi and µ = E[X] =
∑n

i=1 pi. Then for any α ∈ (0, 1),

Pr[X ≤ (1− α)µ] ≤ e−α
2µ/3. (7.9)

For any α ≥ 2,

Pr[X ≥ αµ] ≤ e−αµ/6. (7.10)

The above inequalities can be found in many papers and textbooks, e.g., [89, 90]



Chapter 8

New Top-k GIQ structures

In this chapter we present new top-k structures for various GIQ problems. In the process,

we prove Theorems 4.5.1–4.5.7. While those theorems were presented essentially in

descending order of their importance to database query-retrieval, here we will prove

them in a different order: from the least sophisticated to the most.

8.1 Top-k Interval Stabbing (Theorem 4.5.5)

We make the following observations, which, as we will see, lead to Theorem 4.5.5. The

prioritized-reporting version of the problem has been studied by Tao [91] (where the

version is called ray stabbing), who gave an O(n/B)-size structure that answers a query

in O(logB n + t/B) I/Os, and supports an update in O(logB n) amortized I/Os. The

max-reporting version has been studied by Agarwal et al. [64], who gave an O(n/B)-size

structure that answers a query in O(logB n) I/Os, and supports an update in O(logB n)

amortized I/Os.

First bullet of Theorem 4.5.5. To prove this, we will use our second reduction

(Theorem 4.4.3), which requires a priortized-reporting structure and a max-reporting

structure. Plugging in the bounds of these structures into Theorem 4.4.3, we obtain an

EM structure of O(n/B) space and O(logB n + k/B) query time, both in expectation.

The update time will be O(logB n) amortized I/Os.

79



80

Second bullet of Theorem 4.5.5. To prove this, we will use our third reduction

(Theorem 4.4.4), which requires only a priortized-reporting structure. Plugging in the

bounds of the prioritized structure into Theorem 4.4.4, we obtain an EM structure of

O(n/B) space and O(log2
B n+ k/B) query time, both in the worst-case.

8.2 Top-k Orthogonal Range Reporting (Thm. 4.5.1–4.5.3)

Proof of Theorem 4.5.1. We will use the second reduction (Theorem 4.4.3), which

requires a priortized-reporting structure and a max-reporting structure. The prioritized-

reporting structure is the external-memory priority search tree [92] which uses O( nB )

space and answers a query in O(logB n+ t/B) I/Os. The max-reporting structure can

be obtained by augmenting the standard B-tree which uses O( nB ) space and answers a

query in O(logB n) I/Os. Plugging in these bounds into Theorem 4.4.3 leads to an EM

structure which uses O( nB ) space and answers a top-k query in O(logB n + k/B) I/Os

(both in expectation). By setting B to be a constant, we obtain the bounds for the

RAM structure.

Proof of Theorem 4.5.2. We will use the second reduction (Theorem 4.4.3), which

requires a priortized-reporting structure and a max-reporting structure. The prioritized-

reporting version of the problem has been studied by Afshani, Arge and Larsen [51] in

the RAM model and by Rahul and Tao [5] in the EM model. The RAM structure

uses O(n logn
log logn) space and answers a query in O(log n + t) time. The EM structure

uses O( nB
logn

log logB n(log logB)2) space and answers a query in O(logB n+ t/B) I/Os. The

max-reporting version has been studied by Rahul and Tao [5]. The RAM structure

uses O(n logn
log logn) space and answers a query in O(log n) time. The EM structure uses

O( nB
logn

log logB n) space and answers a query in O(logB n) I/Os.

Now we plug these bounds into Theorem 4.4.3 to obtain a RAM structure ofO(n logn
log logn)

space and O(log n + k) query time (both in expectation), and an EM structure of

O( nB
logn

log logB n(log logB)2) space and O(logB n+ k/B) query time (both in expectation).

Proof of Theorem 4.5.3. We will use the first reduction (Theorem 4.4.1). For that

we use the following structure: the classical d-dimensional range tree [58]. In Rd it



81

occupies O(n logd−1 n) space, handles an update in O(logd n) amortized time, answers a

counting query in O(logd n) time and a reporting query in O(logd n+t) time. This leads

to a top-k structure of O(n logd n) space, O(logd+1 n + k) query time and O(logd+1 n)

amortized update time.

8.3 Top-k Point Enclosure (Theorem 4.5.6)

The prioritized-reporting version of the problem has been studied by Rahul [1], who

gave a structure of O(n log∗ n) size and O(log n log log n+ t) query time.

Next, we explain how to solve the max-reporting version with a structure that uses

O(n log n) space and answers a query in O(log n) time. Based on the above, the first

and second bullets of Theorem 4.5.6 follow from Theorems 4.4.3 and Theorem 4.4.4,

respectively.

1D Stabbing Max. Section 8.1 already mentioned a dynamic structure for solving

the max-reporting version of interval stabbing. In fact, if the goal is to design a static

structure, that problem can be settled with a very simple structure using O(n) space

and O(log n) time. Although this should be folklore, we give the details nonetheless

because it will be helpful later.

Let D be a set of n weighted intervals in R. The 2n endpoints of the intervals

divide R into at most 2n+1 disjoint subintervals. With each subinterval I, we associate

the maximum weight of all the intervals in D that span I. Given a value q ∈ R, a

query returns the maximum weight of the intervals of D containing q. This is precisely

the weight associated with the subinterval containing q. Finding the subinterval is

essentially predecessor search, which can be carried out in O(log n) time by performing

binary search on the endpoints.

2D Stabbing Max (Point Enclosure Max). Now we return to the max-reporting

version of point enclosure. The input is a set D of n weighted axes-aligned rectangles.

Create a segment tree T on the x-projections of those rectangles. For each node u of T ,

define Du to be the set of segments assigned to u. Build a 1D stabbing max structure

on Du. The overall space is clearly O(n log n).

Given a point q = (x, y), a query returns the maximum weight of the rectangles



82

of D containing q. To process the query, we descend along a root-to-leaf path Π of T

according to x, and then, on each node u ∈ Π, issue a 1D stabbing max query on Du with

y. The final answer is the maximum of the results of these 1D queries. The algorithm

takes O(log2 n) time, which can be improved to O(log n) with fractional cascading [21]

because, as mentioned earlier, each 1D query performs nothing but predecessor search

on a sorted list.

8.4 Top-k 3D Dominance (Theorem 4.5.7)

The prioritized-reporting version of the problem has been studied by Afshani et al. [34]

(where the version is called 4D dominance reporting), who gave a structure with size

O(n log n/ log log n) and query time O(log1.5 n+ t).

Next, we explain how to solve the max-reporting version with a structure that uses

O(n) space and answers a query in O(log1.5 n) time. Plugging in these bounds into

Theorem 4.4.3 proves Theorem 4.5.7.

In this setting, D is a set of n weighted points in R3. Let e1, e2, ..., en be the sequence

of points in descending order of weight. With each point ei, we associate a region ρi in

R3 satisfying the following constraint: any point q = (x, y, z) belongs to ρi if and only

if ei is the point with the maximum weight in (−∞, x]× (−∞, y]× (−∞, z]. The region

assignment below ensures the constraint for all points ei = (eix, eiy, eiz):

• ρ1 = [e1x,∞)× [e1y,∞)× [e1z,∞).

• For i ∈ [2, n]:

ρi = [eix,∞)× [eiy,∞)× [eiz,∞) \
i−1⋃
j=1

ρj .

Each non-empty region ρi is decomposed into axes-aligned disjoint cuboids by perform-

ing a vertical decomposition. If ρi has ni vertices, then the number of cuboids in the

decomposition of ρi will be O(ni). It can be verified [35] that
∑n

i=1 ni = O(n).

Therefore, the max reporting problem can be transformed to a point location prob-

lem: Given a query point q, find the cuboid (if any) containing q from a set of O(n)

disjoint axes-aligned cuboids. Rahul [1] presented a structure of size O(n) to answer

such a query in O(log1.5 n) time.



83

8.5 Top-k Halfspace Reporting: d = 2

(Theorem 4.5.4: 1st Bullet)

We will show:

• The prioritized-reporting version of the problem can be settled by an O(n log n)-

size structure that answers a query in O(log n+ t) time.

• The max-reporting version can be settled by an O(n)-size structure that answers

a query in O(log n) time.

Plugging in these results into Theorem 4.4.3 proves the first bullet of Theorem 4.5.4.

Prioritized Reporting. Chazelle et al. [93] settled the original 2D halfspace reporting

problem. Specifically, they showed that n points in R2 can be stored in an O(n)-size

structure such that, given a halfspace q, all the t input points falling in q can be reported

in O(log n+ t) time. Their query algorithm, in fact, starts with finding the predecessor

of some query value (that depends on q) in a pre-computed list of real values. This

accounts for the O(log n) term. Once the predecessor is found, the rest of the algorithm

finishes in O(1 + t) time.

Next, we leverage the above structure to tackle the prioritized-reporting version. In

this setting, the input is a set D of n weighted points in R2. Create a balanced binary

search tree T on their weights, with each weight stored in a leaf, which is associated

with the corresponding point in D. For each node u of T , denote by Du the set of points

stored in the subtree of u. Create a halfspace reporting structure of [93] on Du. The

total space is O(n log n).

Given a halfspace q and a threshold τ , a query returns all the points e ∈ D such

that e ∈ q and weight w(e) ≥ τ . We answer it as follows. First, collect the canonical

set U(τ) of nodes u1, u2, ..., um with the smallest m such that Du1 , Du2 , ..., Dum are

disjoint, and their union equals {e ∈ D | w(e) ≥ τ}. It is rudimentary to find these

m = O(log n) nodes in O(log n) time. Then, perform a halfspace reporting query using

q on Dui , for each i ∈ [1,m]. The final answer is the union of the outputs of all these

m queries.



84

As explained earlier, each halfspace reporting query spends O(log n) time on a pre-

decessor search, which makes the total query time O(log2 n+ t). A standard application

of fractional cascading reduces the time to O(log n+ t).

Max Reporting. The input is again a set D of n weighted points. Given a halfspace

q, a query returns the maximum weight of the points of D covered by q. By standard

duality, we consider instead the following equivalent stabbing max problem. The input

is a set D′ of n weighted halfspaces in R2. The goal is to store D′ in a data structure

such that, given a point q′ in R2, we can report efficiently the maximum weight of the

halfspaces of D′ containing q′. Below we describe an O(n)-size structure with O(log n)

query time.

Using the idea in Section 8.4, we can transform the problem into a point location

problem on a planar subdivision of complexity O(n). Let e′1, e
′
2, ..., e

′
n be the halfspaces

of D′, in descending order of weight. For each e′i, define a region ρi in R2 satisfying the

following constraint: any point q belongs to ρi if and only if e′i is the halfspace with the

maximum weight among all the halfspaces containing q. The region assignment below

ensures the constraint:

• ρ1 = e′1.

• For i ∈ [2, n], ρi = e′i \
⋃i−1
j=1 ρj .

Here ρ1, ρ2, ..., ρn are disjoint polygons such that the planar subdivision they induce

has at most n vertices. To see this, imagine generating ρi in ascending order of i as

follows. If e′i falls entirely in
⋃i−1
j=1 ρj , then e′i introduces no vertex on the subdivision.

Otherwise, at least one point p on the boundary line of e′i must be outside
⋃i−1
j=1 ρj .

Walk from p along the boundary line towards one direction, and stop as soon as hitting

the boundary line of any of the halfspaces already considered. The stopping point is a

new vertex on the subdivision. Similarly, walking from p towards the other direction

will determine another new vertex.

Given a query point q′, it suffices to find the polygon of the subdivision containing

q′. This can be done in O(log n) time with an O(n)-size structure [19].



85

8.6 Top-k Halfspace Reporting: d ≥ 4

(Theorem 4.5.4: 2nd and 3rd Bullets)

The subsequent discussion demonstrates the power of Theorem 4.4.4 in showing the

asymptotic equivalence between top-k reporting and prioritized reporting, when the

query time is large.

RAM. We will show that the prioritized-reporting version of the problem can be set-

tled by an O(n log n)-size structure that answers a query in Õ(n1−1/bd/2c) +O(t) time.

Plugging this into Theorem 4.4.4 yields the second bullet of Theorem 4.5.4.

In the original halfspace reporting problem, we want to store n points in Rd in a

structure such that, given any halfspace q in Rd, all the input points falling in q can be

reported efficiently. Afshani and Chan [94] gave a structure of O(n) space and query

time Õ(n1−1/bd/2c) +O(t).

Recall that Section 8.5 presented a prioritized reporting structure in 2D space, where

there is a 2D halfspace reporting structure on each Du. To obtain a prioritized reporting

structure for Rd, we simply replace that 2D structure with the d-dimensional halfspace

reporting structure of [94]. A prioritized query is answered in the way as described

in Section 8.5, excluding the part about fractional cascading. The claimed space and

query bounds follow from the same analysis as in Section 8.5.

EM. We will show that the prioritized-reporting version of the problem can be settled

by an O(n/B)-size structure that answers a query in O((n/B)1−1/bd/2c+ε + t/B) time.

Plugging this into Theorem 4.4.4 yields the third bullet of Theorem 4.5.4.

For the original halfspace reporting problem, Agarwal et al. [68] gave a structure

of O(n/B) space and query time O((n/B)1−1/bd/2c+ε′ + t/B) for any arbitrarily small

constant ε′ > 0, which we utilize below to design the required structure for prioritized

reporting.

The input is a set D of n weighted points in Rd, which we denote as e1, e2, ..., en in

descending order of weight. Set f = (n/B)ε/2. Build a B-tree T on the weights of the

n points with leaf capacity B and internal fanout f . Store each point together with its

weight in the corresponding leaf. For each node u of T , denote by Du the set of points



86

stored in the subtree of u; we create a structure of [68] on Du by setting ε′ = ε/2. The

overall space consumption is O(n/B)—noticing that T has O(1) levels.

To answer a query with halfspace q and threshold τ , we collect the canonical set

U(τ) of nodes u1, u2, ..., um with the smallest m such that Du1 , ..., Dum are disjoint, and

their union equals {e ∈ D | w(e) ≥ τ}. It is rudimentary to find these m = O(f) nodes

in O(1 + f/B) I/Os. We then perform a halfspace reporting query using q on Dui , for

all i ∈ [1,m]. The final answer is the union of the outputs of all these m queries. The

query cost is

O
(
m · (n/B)1−1/bd/2c+ε′ + t/B

)
= O

(
(n/B)1−1/bd/2c+ε + t/B

)
I/Os.



Part III

Approximate Range Counting

87



Chapter 9

Approximate Range Counting

9.1 Problem statement

Let S be a set of n geometric objects in Rd which are segregated into disjoint groups

(i.e., colors). Given a query q ⊆ Rd, a color c intersects (or, is present in) q if any

object in S of color c intersects q, and let k be the number of colors of S present in q.

In the approximate colored range-counting problem, the task is to preprocess S into a

data structure, so that for a query q, one can efficiently report the approximate number

of colors present in q. Specifically, return any value in the range [(1 − ε)k, (1 + ε)k],

where ε ∈ (0, 1) is a pre-specified parameter.

q

Figure 9.1: An instance of a colored setting.

Colored range searching and its related problems have been studied before [95, 96,

97, 81, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110]. They are known

as GROUP-BY queries in the database literature. A popular variant is the colored

orthogonal range searching problem: S is a set of n colored points in Rd, and q is

88



89

an axes-aligned rectangle. As a motivating example for this problem, consider the

following query: “How many countries have employees aged between X1 and X2 while

earning annually more than Y dollars?”. An employee is represented as a colored point

(age, salary), where the color encodes the country, and the query is the axes-aligned

rectangle [X1, X2]× [Y,∞).

9.2 Previous work and background

In the standard approximate range counting problem there are no colors. One is inter-

ested in the approximate number of objects intersecting the query. Specifically, if k is the

number of objects of S intersecting q, then return a value in the range [(1−ε)k, (1+ε)k].

ε-approximations. In the additive-error ε-approximation, a set Z ⊆ S is picked such

that, given a query q, we only inspect Z and return a value which lies in the range

[k − εn, k + εn]. Vapnik and Chervonenkis [23] proved that a random sample Z of

size O( δ
ε2

log δ
ε) provides an ε-approximation with good probability, where δ is the VC-

dimension (δ is usually a constant).

Relative (p, ε)-approximation. Har-Peled and Sharir [111] introduced the notion of

relative (p, ε)-approximation for geometric settings. The goal is to pick a small set Z ⊂ S
which can be used to compute a relative approximation for queries with large value of

k. Formally, given a parameter p ∈ (0, 1), a set Z ⊂ S is a relative (p, ε)-approximation

if:

|Z ∩ q| · n|Z| ∈

[(1− ε)k, (1 + ε)k] if k ≥ pn
[k − εpn, k + εpn] otherwise.

Har-Peled and Sharir prove that a sample Z from S of size O
(

1
ε2p

(
δ log 1

p + log 1
q

))
will succeed with probability at least 1− q.

Har-Peled and Sharir construct relative (p, ε)-approximations for point sets and half-

spaces in Rd, for d ≥ 2, and use them to answer approximate counting for any query

which contains more than pn points. A nice feature of these results is that they are

sensitive to the value of k. Specifically, the larger the value of k is, the faster the query



90

is answered. The intuition is that the larger the value of k is, the larger is the error

the query is allowed to make and hence, a smaller sample suffices. Even though relative

(p, ε)-approximations give a relative approximation only for queries with large values

of k, Aronov and Sharir [112], and Sharir and Shaul [113] incorporated them into data

structures which give an approximate count for all values of k.

General reduction to companion problems. Aronov and Har-Peled [36], and

Kaplan, Ramos and Sharir [37] presented general techniques to answer approximate

range counting queries. In both instances, the authors reduce the task of answering

an approximate counting query, into answering a few queries in data structures solving

an easier (companion) problem. Aronov and Har-Peled’s companion problem is the

emptiness query, where the goal is to report whether |S ∩ q| = 0. Specifically, assume

that there is a data structure of size S(n) which answers the emptiness query in O(Q(n))

time. Aronov and Har-Peled show that there is a data structure of size O(S(n) log n)

which answers the approximate counting query in O(Q(n) log n) time (for simplicity we

ignore the dependency on ε). Kaplan et al.’s companion problem is the range-minimum

query, where each object of S has a weight associated with it and the goal is to report

the object in S ∩ q with the minimum weight.

Even though the reductions of [36] and [37] seem different, there is an interesting

discussion in Section 6 of [36] about the underlying “sameness” of both techniques.

Levels. Informally, for a set S of n objects, a t-level of S is a surface such that if

a point q lies above (resp., on/below) the surface, then the number of objects of S

containing q is > t (resp., ≤ t). Range counting can be reduced in some cases to

deciding the level of a query point. Unfortunately, the complexity of a single level is not

well understood. For example, for hyperplanes in the plane, the t-level has super-linear

complexity Ω(n2
√

log t) [114] in the worst-case (the known upper bound is O(nt1/3) [115]

and closing the gap is a major open problem). In particular, the prohibitive complexity

of such levels makes them inapplicable for the approximate range counting problem,

where one strives for linear (or near-linear) space data structures.

Shallow cuttings. A t-level shallow cutting is a set of simple cells, that lies strictly

below the 2t-level, and their union covers all the points below (and on) the t-level.



91

For many geometric objects in two and three dimensions, such t-shallow cuttings have

O(n/t) cells [116]. Using such cuttings leads to efficient data structures for approximate

range counting. Specifically, one uses binary search on a “ladder” of approximate levels

(realized via shallow cuttings) to find the approximation.

For halfspaces in R3, Afshani and Chan [88] avoid doing the binary search and

find the two consecutive levels in optimal O(log n
k ) expected time. Later, Afshani,

Hamilton and Zeh [117] obtained a worst-case optimal solution for many geometric

settings. Interestingly, their results hold in the pointer machine model, the I/O-model

and the cache-oblivious model. However, in the word-RAM model their solution is not

optimal and the query time is Ω(log logU + (log log n)2).

Specific problems. Approximate counting for orthogonal range searching in R2 was

studied by Nekrich [109], and Chan and Wilkinson [118] in the word-RAM model. In

this setting, the input set is points in R2 and the query is a rectangle in R2. A hyper-

rectangle in Rd is (d+k)-sided if it is bounded on both sides in k out of the d dimensions

and unbounded on one side in the remaining d− k dimensions. Nekrich [109] presented

a data structure for approximate colored 3-sided range searching in R2, where the input

is points and the query is a 3-sided rectangle in R2. However, it has an approximation

factor of (4 + ε), whereas we are interested in obtaining a tighter approximation factor

of (1 + ε). To the best of our knowledge, this is the only work directly addressing an

approximate colored counting query.

9.3 Motivation

Avoiding expensive counting structures. A search problem is O(1)-decomposable

if given two disjoint sets of objects S1 and S2, the answer to F (S1∪S2) can be computed

in constant time, given the answers to F (S1) and F (S2) separately. This property is

widely used in the literature [12] for counting in standard problems (going back to

the work of Bentley and Saxe [119] in the late 1970s). For colored counting problems,

however, F (·) is not O(1)-decomposable. If F (S1) (resp. F (S2)) has n1 (resp. n2)

colors, then this information is insufficient to compute F (S1 ∪ S2), as they might have

common colors.

As a result, for many exact colored counting queries the known space and query time



92

bounds are expensive. For example, for colored orthogonal range searching problem in

Rd, existing structures use O(nd) space to achieve polylogarithmic query time [106].

Any substantial improvement in the preprocessing time and the query time would lead

to a substantial improvement in the best exponent of matrix multiplication [106] (which

is a major open problem). Similarly, counting structures for colored halfspace counting

in R2 and R3 [100] are expensive.

Instead of an exact count, if one is willing to settle for an approximate count, then

this work presents a data structure with O(n polylog n) space and O(polylog n) query

time.

Approximate counting at the speed of an emptiness query. In an emptiness

query, the goal is to decide if S ∩ q is empty. The approximate counting query is at

least as hard as the emptiness query: When k = 0 and k = 1, no error is tolerated.

Therefore, a natural goal while answering approximate range counting queries is to

match the bounds of its corresponding emptiness query.

9.4 Our results and techniques

9.4.1 Specific problems

The focus of this work is in building data structures for approximate colored count-

ing queries, which exactly match or almost match the bounds of their corresponding

emptiness problem.

3-sided rectangle stabbing in 2-d and related problems. In the colored interval

stabbing problem, the input is n colored intervals with endpoints in [U ] = {1, . . . , U},
and the query is a point in [U ]. We present a linear-space data structure which answers

the approximate counting query in O(log logU) time. The new data structure can be

used to handle some geometric settings in 2-d: the colored dominance search (the input

is a set of n points, and the query is a 2-sided rectangle) and the colored 3-sided rectangle

stabbing (the input is a set of n 3-sided rectangles, and the query is a point). The results

are summarized in Table 9.1.



93

Range searching in R2. The input is a set of n colored points in the plane. For

3-sided query rectangles, an optimal solution (in terms of n) for approximate counting

is obtained. For 4-sided query rectangles, an almost-optimal solution for approximate

counting is obtained. The size of our data structure is off by a factor of log log n w.r.t.

its corresponding emptiness structure which occupies O(n logn
log logn) space and answers

the emptiness query in O(log n) time [22]. The results are summarized in Table 9.1.

Dominance search in R3. The input is a set of n colored points in R3 and the query

is a 3-sided rectangle in R3 (i.e., an octant). An almost-optimal solution is obtained

requiring O(n log logn) space and O(log n) time to answer the approximate counting

query.

9.4.2 General reductions

We obtain two general reductions for solving approximate colored counting queries by

reducing them to “easy” companion queries. However, in the interest of space, we

included only Reduction-I in the thesis.

Reduction-I (Reporting + C-approximation). In the first reduction a colored

approximate counting query is answered using two companion structures: (a) reporting

structure (its objective is to report the k colors), and (b) C-approximation structure (its

objective is to report any value z s.t. k ∈ [z, Cz], where C is a constant). Significantly,

unlike previous reductions [36, 37], there is no asymptotic loss of efficiency in space and

query time bounds w.r.t. to the two companion problems.

Reduction-II (Only Reporting). The second reduction is a modification of the

Aronov and Har-Peled [36] reduction. We present the reduction for the following reasons:

• Unlike reduction-I, this reduction is “easier” to use since it uses only the reporting

structure and avoids the C-approximation structure.

• The analysis of Aronov and Har-Peled is slightly complicated because of their

insistence on querying emptiness structures. We show that by using reporting

structures the analysis becomes simpler. This reduction is useful when the report-

ing query is not significantly costlier than the emptiness query.



94

Dime- Input, New Results Previous Approx. Exact Counting Model
-nsion Query Counting Results Results

1 intervals, S: n, S: n, S: n,
point Q: log logU Q: log logU+ Q: log logU+ WR

2 points, (log log n)2 logw n
2-sided

rectangle
2 3-sided, Theorem 10.0.1 Remark 1 Remark 2

rect., point

2 points, S: n, S: n log2 n,
3-sided Q: log n Q: log2 n not studied PM

rectangle Theorem 12.0.1(A) Remark 3

2 points, S: n log n, S: n log3 n, S: n2 log6 n,
4-sided Q: log n Q: log2 n Q: log7 n PM

rectangle Theorem 12.0.1(B) Remark 3 Kaplan et al. [106]

3 points, S: n log∗ n, S: n log2 n,
3-sided Q: log n · log logn Q: log2 n not studied PM

rectangle

Table 9.1: A summary of the results obtained for several approximate colored counting
queries. To avoid clutter, the O(·) symbol and the dependency on ε is not shown in the
space and the query time bounds. For the second column in the table, the first entry
is the input and the second entry is the query. For each results column in the table,
the first entry is the space occupied by the data structure and the second entry is the
time taken to answer the query. WR denotes the word-RAM model and PM denotes
the pointer machine model.

9.4.3 Our techniques

The results are obtained via a non-trivial combination of several techniques. For exam-

ple, (a) new reductions from colored problems to standard problems, (b) obtaining a

linear-space data structure by performing random sampling on a super-linear-size data

structure, (c) refinement of path-range trees of Nekrich [109] to obtain an optimal data

structure for C-approximation of colored 3-sided range search in R2, and (d) random

sampling on colors to obtain the two general reductions.

In addition, we introduce nested shallow cuttings for 3-sided rectangles in 2-d. The



95

idea of using a hierarchy of cuttings (or samples) is, of course, not new. However, for

this specific setting, we get a hierarchy where there is no penalty for the different levels

being compatible with each other. Usually, cells in the lower levels have to be clipped

to cells in the higher levels of the hierarchy, leading to a degradation in performance.

In our case, however, cells at lower levels are fully contained in the cells at level above

it.

Organization. To keep the thesis concise we have only included a few solutions.

In Chapter 10, we present a solution to the colored 3-sided rectangle stabbing in 2-d

problem. In Chapter 11, reduction-I is described. Finally, in Chapter 12, the application

of reduction-I to colored orthogonal range search in 2-d is shown.



Chapter 10

Nested Shallow Cuttings

The goal of this chapter is to prove the following theorem.

Theorem 10.0.1. Consider the following three colored geometric settings:

1. Colored interval stabbing in 1-d, where the input is a set S of n colored inter-

vals in one-dimension and the query q is a point. The endpoints of the intervals

and the query point lie on a grid [U ].

2. Colored dominance search in 2-d, where the input is a set S of n colored

points in 2-d and the query q is a quadrant of the form [qx,∞) × [qy,∞). The

input points and the point (qx, qy) lie on a grid [U ]× [U ].

3. Colored 3-sided rectangle stabbing in 2-d, where the input is a set S of n

colored 3-sided rectangles in 2-d and the query q is a point. The endpoints of the

rectangles and the query point lie on a grid [U ]× [U ].

Then there exists an Oε(n) size word-RAM data structure which can answer an approx-

imate counting query for these three settings in Oε(log logU) time. The notation Oε(·)
hides the dependency on ε.

Our strategy for proving this theorem is the following: In Section 10.1, we present a

transformation of these three colored problems to the standard 3-sided rectangle stab-

bing in 2-d problem. Then in Section 10.2, we construct nested shallow cuttings and

use them to solve the standard 3-sided rectangle stabbing in 2-d problem.

96



97

10.1 Transformation to a standard problem

From now on the focus will be on colored 3-sided rectangle stabbing in 2-d problem,

since the geometric setting of (1) and (2) in Theorem 10.0.1 are its special cases. We

present a transformation of the colored 3-sided rectangle stabbing in 2-d problem to the

standard 3-sided rectangle stabbing in 2-d problem.

Let Sc ⊆ S be the set of 3-sided rectangles of a color c. In the preprocessing phase,

we perform the following steps: (1) Construct a union of the rectangles of Sc. Call it

U(Sc). (2) The vertices of U(Sc) include original vertices of Sc and some new vertices.

Perform a vertical decomposition of U(Sc) by shooting a vertical ray upwards from every

new vertex of U(Sc) till it hits +∞. This leads to a decomposition of U(Sc) into Θ(|Sc|)
pairwise-disjoint 3-sided rectangles. Call these new set of rectangles N (Sc).

q2

q1 q1

q2

Sc U(Sc) N (Sc)

Figure 10.1: Transformation to a standard problem.

Given a query point q, we can make the following two observations:

• If Sc ∩ q = ∅, then N (Sc) ∩ q = ∅. See query point q1 in the above figure.

• If Sc∩q 6= ∅, then exactly one rectangle in N (Sc) is stabbed by q. See query point

q2 in the above figure.

Let N (S) =
⋃
∀cN (Sc), and clearly, |N (S)| = O(n). Therefore, the colored 3-

sided rectangle stabbing in 2-d problem on S has been reduced to the standard 3-sided

rectangle stabbing in 2-d problem on N (S).

10.2 Standard 3-sided rectangle stabbing in 2-d

In this section we will prove the following lemma.



98

Lemma 10.2.1. (Standard 3-sided rectangle stabbing in 2-d.) Given a set S

of n uncolored 3-sided rectangles of the form [x1, x2] × [y,∞) whose endpoints lie on

a grid [U ] × [U ], and a query q which is a point, there exists a data structure of size

Oε(n) which can answer an approximate counting query for this geometric setting in

Oε(log logU) time.

By a standard rank-space reduction, the rectangles of S can be projected to a [2n]×
[n] grid: Let Sx (resp., Sy) be the list of the 2n vertical (resp., n horizontal) sides

of S in increasing order of their x- (resp., y-) coordinate value. Then each rectangle

r = [x1, x2]× [y,∞) ∈ S is projected to a rectangle [rank(x1), rank(x2)]× [rank(y),∞),

where rank(xi) (resp., rank(y)) is the index of xi (resp., y) in the list Sx (resp., Sy).

Given a query point q ∈ [U ] × [U ], we can use the van Emde Boas structure [120] to

perform a predecessor search on Sx and Sy in O(log logU) time to find the position of

q on the [2n]× [n] grid. Now we will focus on the new setting and prove the following

result.

Lemma 10.2.2. For the standard 3-sided rectangle stabbing in 2-d problem, consider a

setting where the rectangles have endpoints lying on a grid [2n]× [n]. Then there exists a

data structure of size Oε(n) which can answer the approximate counting query in Oε(1)

time.

10.2.1 Nested shallow cuttings

To prove Lemma 10.2.2, we will first construct shallow cuttings for 3-sided rectangles in

2-d. Unlike the general class of shallow cuttings, the shallow cuttings that we construct

for 3-sided rectangles will have a stronger property of cells in the lower level lying

completely inside the cells of a higher level.

Lemma 10.2.3. Let S be a set of 3-sided rectangles (of the form [x1, x2]×[y,∞)) whose

endpoints lie on a [2n] × [n] grid. A t-level shallow cutting of S produces a set C of

interior-disjoint 3-sided rectangles/cells of the form [x1, x2] × (−∞, y]. There exists a

set C with the following three properties:

1. |C| = 2n/t.

2. If q does not lie inside any of the cell in C, then |S ∩ q| ≥ t.



99
upper segments

2t

t
t

2t

22t

23t

qqy

(a) (b) (c)

(logn, n)-structure

k ≤ √logn: bit tricks

(
√
logn, logn)-structure

t 2t

Figure 10.2: (a) A portion of the t-level and 2t-level is shown. Notice that by our
construction, each cell in the t-level is contained inside a cell in the 2t-level. (b) A cell
in the t-level and the set Cr associated with it. (c) A high-level summary of our data
structure.

3. Each cell in C intersects at most 2t rectangles of S.

Proof. Partition the plane into 2n
t vertical slabs, such that t vertical lines of S lie

in each slab, i.e., each slab has a width of t. See Figure 10.2(a). Consider a slab

s = [x1, x2]× (−∞,+∞). Among all the rectangles of S which completely span the slab

s, let yt be the y-coordinate of the rectangle with the t-th smallest y-coordinate. If less

than t segments of S span slab s, then set yt := +∞. Let the upper segment of the slab

s be the horizontal segment [x1, x2]× [yt]. Each slab contributes a cell [x1, x2]×(−∞, yt]
to set C. See Figure 10.2(a).

Property 1 is easy to verify, since 2n
t slabs are constructed. To prove Property 2,

consider a point q which lies in slab s but does not lie in the cell [x1, x2]×(−∞, yt]. This

implies that there are at least t rectangles of S which contain q, and hence, |S ∩ q| ≥ t.
To prove Property 3, consider a cell r and its corresponding slab s. The rectangles of S

which intersect r either span the slab s or partially span the slab s. By our construction,

there can be at most t rectangles of S of each type.

Observation 3. (Nested Property) Let t and i be integers. Consider a t-level and a

2it-level shallow cutting. By our construction, each cell in 2it-level contains exactly 2i

cells of the t-level. More importantly, each cell in the t-level is contained inside a single

cell of 2it-level (see Figure 10.2(a)).



100

10.2.2 Data structure

Now we will use nested shallow cuttings to find a constant-factor approximation for the

3-sided rectangle stabbing in 2-d problem. In [117], the authors show how to convert a

constant-factor approximation into a (1 + ε)-approximation for this geometric setting.

The solution is based on (t, t′)-level-structure and (≤ √log n)-level shared table.

(t, t′)-level structure. Let i, t and t′ be integers s.t. t′ = 2it. If q(qx, qy) lies between

the t-level and the t′-level cutting of S, then a (t, t′)-level-structure will answer the

approximate counting query in O(1) time and occupy O
(
n+ n

t log t′
)

space.

Structure. Construct a shallow cutting of S for levels 2jt,∀j ∈ [0, i]. For each cell, say

r, in the t-level we do the following: Let Cr be the set of cells from the 21t, 22t, 23t, . . . , 2it-

level, which contain r (Observation 3 guarantees this property). Now project the upper

segment of each cell of Cr onto the y-axis (each segment projects to a point). Based on

the y-coordinates of these |Cr| projected points build a fusion-tree [9]. Since there are

O(n/t) cells in the t-level and |Cr| = O(log t′), the total space occupied is O(nt log t′).

See Figure 10.2(b).

Query algorithm. Since qx ∈ [2n], it takes O(1) time to find the cell r of the t-level

whose x-range contains qx. If the predecessor of qy in Cr belongs to the 2jt-level, then

2jt is a constant-factor approximation of k. The predecessor query also takes O(1) time.

(≤ √log n)-level shared table. Suppose q lies in a cell in the
√

log n-level shallow

cutting of S. Then constructing the (≤ √log n)-level shared table will answer the exact

counting query in O(1) time. We will need the following lemma.

Lemma 10.2.4. For a cell c in the
√

log n-level shallow cutting of S, its conflict list Sc

is the set of rectangles of S intersecting c. Although the number of cells in the
√

log n-

level is O
(

n√
logn

)
, the number of combinatorially “different” conflict lists is merely

O(
√
n).

Proof. Consider any set Sc from the shallow cutting. By a standard rank-space reduc-

tion the endpoints of Sc will lie on a [2|Sc|]× [|Sc|] grid. Any set Sc on the [2|Sc|]× [|Sc|]
grid can be uniquely represented using O(|Sc| log |Sc|) = O(

√
log n log logn) bits as fol-

lows: (a) assign a label to each rectangle, and (b) write down the label of each rectangle



101

in increasing order of their y-coordinates. The label for a rectangle [x1, x2] × [y,∞)

will be “x1x2” which requires O(log log n) bits. The number of combinatorially differ-

ent conflict lists which can be represented using O(
√

log n log logn) bits is bounded by

2O(
√

logn log logn) = O(nδ), for an arbitrarily small δ < 1. We set δ = 1/2.

Shared table. Construct a
√

log n-level shallow cutting of S. For each cell c, perform

a rank-space reduction of its conflict list Sc. Collect the combinatorially different conflict

lists. On each conflict list, the number of combinatorially different queries will be only

O(|Sc|2) = O(log n). In a lookup table, for each pair of (Sc, q) we store the exact value

of |Sc ∩ q|. The total number of entries in the lookup table is O(n1/2 log n).

Query algorithm. Given a query q(qx, qy), the following three O(1) time operations

are performed: (a) Find the cell c in the
√

log n-level which contains q. If no such cell

is found, then stop the query and conclude that k ≥ √log n. (b) Otherwise, perform a

rank-space reduction on qx and qy to map it to the [2|Sc|] × [|Sc|] grid. Since, |Sc| =

O(
√

log n), we can build fusion trees [9] on Sc to perform the rank-space reduction in

O(1) time. (c) Finally, search for (Sc, q) in the lookup table and report the exact count.

Final structure. At first thought, one might be tempted to construct a (0, n)-level-

structure. However, that would occupyO(n log n) space. The issue is that the (t, t′)-level

structure requires super-linear space for small values of t. Luckily, the (≤ √log n)-level

shared table will efficiently handle the small values of t.

Therefore, the strategy is to construct the following: (a) a (≤ √log n)-level shared

table, (b) a (
√

log n, log n)-level-structure, and (c) a (log n, n)-level-structure. Now, the

space occupied by all the three structures will be O(n). See Figure 10.2(c) for a summary

of our data structure.

Remark 1. For the standard 3-sided rectangle stabbing in 2-d problem, a simple bi-

nary search on the levels leads to a linear-space data structure with a query time of

Oε(log logU + (log log n)2). The technique of Afshani et al. [117] can be used to answer

this approximate counting query. However, their analysis works well for structures with

query time of the form log n or logB n, but breaks down for structures with query time

of the form log log n.



102

Remark 2. If we want an exact count for the standard 3-sided rectangle stabbing in 2-d

problem, then the problem can be reduced to exact counting for standard dominance

search in 2-d [52]. Jaja et al. [55] present a linear-space structure which can answer the

exact counting for dominance search in 2-d in Oε(log logU + logw n) time.



Chapter 11

A General Reduction

Given a colored reporting structure and a colored C-approximation structure, we present

a general reduction to obtain a colored (1 + ε)-approximation structure with no ad-

ditional loss of efficiency. We need a few definitions before stating the theorem. A

geometric setting is polynomially bounded if there are only nO(1) possible outcomes of

S ∩ q, over all possible values of q. For example, in 1d orthogonal range search on n

points, there are only Θ(n2) possible outcomes of S ∩ q. A function f(n) is converging

if
∑t

i=0 ni = n, then
∑t

i=0 f(ni) = O(f(n)). For example, it is easy to verify that

f(n) = n log n is converging.

Theorem 11.0.1. For a colored geometric setting, assume that we are given the fol-

lowing two structures:

• a colored reporting structure of Srep(n) size which can solve a query in O(Qrep(n)+

κ) time, where κ is the output-size, and

• a colored C-approximation structure of Scapp(n) size which can solve a query in

O(Qcapp(n)) time.

We also assume that: (a) Srep(n) and Scapp(n) are converging, and (b) the geometric

setting is polynomially bounded. Then we can obtain a (1 + ε)-approximation using a

structure that requires Sεapp(n) space and Qεapp(n) query time, such that

Sεapp(n) = O(Srep(n) + Scapp(n)) (11.1)

Qεapp(n) = O
(
Qrep(n) +Qcapp(n) + ε−2 · log n

)
. (11.2)

103



104

11.1 Refinement Structure

The goal of a refinement structure is to convert a constant-factor approximation of k

into a (1 + ε)-approximation of k.

Lemma 11.1.1. (Refinement structure) Let C be the set of colors in set S, and

C ∩ q be the set of colors in C present in q. For a query q, assume we know that:

• k = |C ∩ q| = Ω(ε−2 log n), and

• k ∈ [z, Cz], where z is an integer.

Then there is a refinement structure of size O
(
Srep

(
ε−2n logn

z

))
which can report a

value τ ∈ [(1− ε)k, (1 + ε)k] in O(Qrep(n) + ε−2 log n) time.

The following lemma states that sampling colors (instead of input objects) is a useful

approach to build the refinement structure.

Lemma 11.1.2. Consider a query q which satisfies the two conditions stated in Lemma 11.1.1.

Let c1 be a sufficiently large constant and c be another constant s.t. c = Θ(c1 log e).

Choose a random sample R where each color in C is picked independently with probabil-

ity M = c1ε−2 logn
z . Then with probability 1− n−c we have

∣∣∣k − |R∩q|M

∣∣∣ ≤ εk.

Proof. For each of the k colors which are present in q, define an indicator variable Xi.

Set Xi = 1, if the corresponding color is in the random sample R. Otherwise, set Xi = 0.

Then |R ∩ q| = ∑k
i=1Xi and E[|R ∩ q|] = k ·M . By Chernoff bound (see Appendix of

Chapter 7),

Pr

[∣∣∣|R ∩ q| − E[|R ∩ q|]
∣∣∣ > ε · E[|R ∩ q|]

]
< exp

(
− ε2E[|R ∩ q|]

)
< exp

(
−ε2 · kM

)
< exp

(
−ε2zM

)
< exp (−c1 log n) ≤ 1

nc

Therefore, with high probability
∣∣∣|R ∩ q| − kM ∣∣∣ ≤ ε · kM .

Lemma 11.1.3. (Finding a suitable R) Pick a random sample R as defined in

Lemma 11.1.2. Let nR be the number of objects of S whose color belongs to R. We say

R is suitable if it satisfies the following two conditions:



105

•
∣∣∣k − |R∩q|M

∣∣∣ ≤ εk for all queries which have k = Ω(ε−2 log n).

• nR ≤ 10nM . This condition is needed to bound the size of the data structure.

A suitable R always exists.

Proof. Let nα be the number of combinatorially different queries q on the set S. From

Lemma 11.1.2, by setting c = α + 1, we can conclude that τ ←− |R∩q|
M will lie in the

range [(1 − ε)k, (1 + ε)k] with probability at least 1 − 1/nα+1. By the standard union

bound, it implies that the probability of the random sample R failing for any query is

at most 1/nα+1 × nα = 1/n.

Next, it is easy to observe that the expected value of nR is nM : Let nc be the

number of objects of S having color c. Then E[nR] =
∑
∀c nc ·M = nM . By Markov’s

inequality, the probability of nR being larger than 10nM is less than or equal to 1/10.

By union bound, R will be not be suitable with probability ≤ 1/n + 1/10. Therefore,

with probability ≥ 9/10− 1/n, R will be suitable and hence, we are done.

Refinement structure and query algorithm. In the preprocessing stage pick a

random sample R ⊆ C as stated in Lemma 11.1.2. If the sample R is not suitable, then

discard R and re-sample, till we get a suitable sample. Based on all the objects of S

whose color belongs to R, build a colored reporting structure. Given a query q, the

colored reporting structure is queried to compute |R∩ q|. We report τ ←− (|R ∩ q|/M)

as the final answer. The query time is bounded by O(Qrep(n) + ε−2 log n), since by

Lemma 11.1.2, |R ∩ q| ≤ (1 + ε) · kM = O(ε−2 log n). This finishes the description of

the refinement structure.

11.2 Overall solution

Data structure. The data structure consists of the following three components:

1. Reporting structure. Based on the set S we build a colored reporting structure.

This occupies O(Srep(n)) space.

2.
√
C-approximation structure. Based on the set S we build a

√
C-approximation

structure. The choice of
√
C will become clear in the analysis. This occupies

O(Scapp(n)) space.



106

3. Refinement structures. Build the refinement structure of Lemma 11.1.1 for the

values z = (
√
C)i · ε−2 log n, ∀i ∈

[
0, log√C

(⌈
ε2n
⌉)]

. The total size of all the

refinement structures will be
∑
O (Srep(nM)) = O(Srep(n)), since Srep(·) is con-

verging and
∑
nM = O(n). Note that our choice of z ensures that the size of the

data structure is independent of ε.

Query algorithm. The query algorithm performs the following steps:

1. Given a query object q, the colored reporting structure reports the colors present in

S∩q till all the colors have been reported or ε−2 log n+1 colors have been reported.

If the first event happens, then the exact value of k is reported. Otherwise, we

conclude that k = Ω(ε−2 log n). This takes O(Qrep(n) + ε−2 log n) time.

2. If k > ε−2 log n, then

(a) First, query the
√
C-approximation structure. Let ka be the

√
C-approximate

value returned s.t. k ∈ [ka,
√
Cka]. This takes O(Qcapp(n)) time.

(b) Then query the refinement structure with the largest value of z s.t. z ≤ ka ≤√
Cz. It is trivial to verify that k ∈ [z, Cz]. This takes O(Qrep(n)+ε−2 log n)

time.

11.3 Open problem

We do not discuss the preprocessing time in this chapter. It is not known how to verify

efficiently if a sample R is “suitable”. It would be interesting to find a solution which

performs better than the näıve approach of manually verifying if R is suitable for every

possible query.



Chapter 12

Application of the General

Reduction

We illustrate an application of Reduction-I by studying the approximate colored count-

ing query for orthogonal range search in R2.

Theorem 12.0.1. Consider the following two problems:

A) Colored 3-sided range search in R2. In this setting, the input set S is n

colored points in R2 and the query q is a 3-sided rectangle in R2. There is a data

structure of O(n) size which can answer the approximate colored counting query

in O(ε−2 log n) time. This pointer machine structure is optimal in terms of n.

B) Colored 4-sided range search in R2. In this setting, the input set S is n

colored points in R2 and the query q is a 4-sided rectangle in R2. There is a data

structure of O(n log n) size which can answer the approximate colored counting

query in O(ε−2 log n) time.

12.1 Colored 3-sided range search in R2

We use the framework of Theorem 11.0.1 to prove the result of Theorem 12.0.1(A). For

this geometric setting, a colored reporting structure with Srep = n and Qrep = log n is

already known [110]. The path-range tree of Nekrich [109] gives a (4+ε)-approximation,

107



108

but it requires super-linear space. The C-approximation structure presented in this

section is a refinement of the path-range tree for the pointer machine model.

Lemma 12.1.1. For the colored 3-sided range search in R2 problem, there is a C-

approximation structure which requires O(n) space and answers a query in O(log n)

time.

We prove Lemma 12.1.1 in the rest of this section.

12.1.1 Reduction to 5-sided rectangle stabbing in R3

In this subsection we present a reduction of colored 3-sided range search in R2 problem

to the 5-sided rectangle stabbing problem in R3. Let S be a set of n colored points lying

in R2. Let Sc ⊆ S be the set of points of color c. For each color c which has at least

one point inside q = [x1, x2]× [y1,∞), the objective is to identify the topmost point (in

terms of y-coordinate) among Sc∩ q. Consider a point p(px, py) ∈ Sc. Starting from the

x-coordinate value px, we walk to the left (resp. right) along the x-axis till we find the

first point pl(plx, p
l
y) ∈ Sc (resp. pr(prx, p

r
y) ∈ Sc) which has a higher y-coordinate value

than p. (Conceptually imagine two dummy points at (+∞,+∞) and (−∞,+∞) to

ensure that pl and pr always exist). Now we make the following important observation.

Observation 4. A point p ∈ Sc will be the topmost point in Sc ∩ q iff (1) p lies inside

q, and (2) pr and pl do not lie inside q. In other words, p ∈ Sc will be the topmost point

in Sc ∩ q iff (x1, x2, y1) ∈ [plx, px]× [px, p
r
x]× (−∞, py].

Figure 12.1 is an illustration of the above observation. Based on the above observa-

tion, we perform the following transformation: Each point p ∈ S is transformed into a

5-sided rectangle [plx, px]× [px, p
r
x]× (−∞, py]. The query rectangle q = [x1, x2]× [y1,∞)

is transformed into a point q′(x1, x2, y1) ∈ R3. Now we can observe that (i) If a color c

has at least one point inside q, then exactly one of its transformed rectangle will contain

q′, and (ii) If a color c has no point inside q, then none of its transformed rectangles

will contain q′.

12.1.2 Interval tree

Our solution is based on an interval tree and we will need the following fact about it.



109

x1 x2

y1

p(px, py)
pr(prx, p

r
y)pl(plx, p

l
y)

q′(x1, x2, y1)

[plx, px]× [px, p
r
x]× (−∞, py)

Figure 12.1: Reduction from colored 3-sided range search in R2 problem to the 5-sided
rectangle stabbing problem in R3.

Lemma 12.1.2. Using interval trees, a query on (3 + t)-sided rectangles in R3 can be

broken down into O(log n) queries on (2 + t)-sided rectangles in R3. Here t ∈ [1, 3].

Proof. Let R be a set of n (3 + t)-sided rectangles. We build an interval tree IT as

follows: W.l.o.g., assume that the rectangles are bounded along the x-axis. Let h be a

plane perpendicular to the x-axis such that there are equal number of endpoints of R

on each side of the plane. The splitting halfplane h is stored at the root of IT and the

two subtrees are built recursively. In general, h(v) is the splitting halfplane stored at a

node v ∈ IT . A rectangle r ∈ R is stored at the highest node v s.t. r intersects h(v).

Let Rv be the set of rectangles stored at a node v. Each rectangle in r ∈ Rv is split by

h(v) into two rectangles r− and r+. Define R−v :=
⋃
r∈Rv

r− and R+
v :=

⋃
r∈Rv

r+.

Given a query point q, trace a path Π of length O(log n) from the root to a leaf node

corresponding to q. For a node v ∈ Π, if q lies to the left (resp., right) of h(v), then

answering a query on Rv ∩ q is equivalent to answering it on R−v ∩ q (resp., R+
v ∩ q), and

we can treat R−v (resp., R+
v ) as (2 + t)-sided rectangles in R3, since h(v) is effectively

+∞ (resp., −∞).

12.1.3 Initial structure

Lemma 12.1.3. For the colored 3-sided range search in R2 problem, there is a 2-

approximation structure which requires O(n) space and answers a query in O(log3 n)

time.

Proof. We will use the reduction shown in subsection 12.1.1. For brevity, we will refer

to 5-sided rectangle stabbing problem as 5-sided RSP. There is a simple linear-size data



110

structure which reports in O(log3 n) time a 2-approximation for the 5-sided RSP: By

inductively applying Lemma 12.1.2 twice, we can decompose 5-sided RSP to O(log2 n)

3-sided RSPs. For 3-sided RSP, there is a linear-size structure of which reports a 2-

approximation in O(log n) time [117]. By using this structure the 5-sided RSP can be

solved in O(log3 n) time.

12.1.4 Final structure

Now we will present the optimal C-approximation structure of Lemma 12.1.1.

Structure. Sort the points of S based on their x-coordinate value and divide them

into buckets containing log2 n consecutive points. Based on the points in each bucket,

build a D-structure which is an instance of Lemma 12.1.3. Next, build a height-balanced

binary search tree T , where the buckets are placed at the leaves from left to right based

on their ordering along the x-axis. Let v be a proper ancestor of a leaf node u and let

Π(u, v) be the path from u to v (excluding u and v). Let Sl(u, v) be the set of points in

the subtrees rooted at nodes that are left children of nodes on the path Π(u, v) but not

themselves on the path. Similarly, let Sr(u, v) be the set of points in the subtrees rooted

at nodes that are right children of nodes on the path Π(u, v) but not themselves on the

path. See Figure 12.2, which illustrates these sets for two leaves u = ul and u = ur.

For each pair (u, v), let S′l(u, v) (resp., S′r(u, v)) be the set of points that each have

the highest y-coordinate value among the points of the same color in Sl(u, v) (resp.,

Sr(u, v)).

Finally, for each pair (u, v), construct a sketch, S′′l (u, v), by selecting the 20, 21, 22, . . .-

th highest y-coordinate point in S′l(u, v). A symmetric construction is performed to

obtain S′′r (u, v). The number of (u, v) pairs is bounded by O((n/ log2 n) × (log n)) =

O(n/ log n) and hence, the space occupied by all the S′′l (u, v) and S′′r (u, v) sets is O(n).

Query algorithm. To answer a query q = [x1, x2] × [y,∞), we first determine the

leaf nodes ul and ur of T containing x1 and x2, respectively. If ul = ur, then we

query the D-structure corresponding to the leaf node and we are done. If ul 6= ur,

then we find the node v which is the least common ancestor of ul and ur. The query

is now broken into four sub-queries: First, report the approximate count in the leaves

ul and ur by querying the D-structure of ul with [x1,∞)× [y,∞) and the D-structure

of ur with (−∞, x2] × [y,∞). Next, scan the list S′′r (ul, v) (resp., S′′l (ur, v)) to find a



111
v

Π(ul, v) Π(ur, v)

ul ur

Sr(ul, v) Sl(ur, v)

Figure 12.2: Answering a colored 3-sided range search in R2 query.

2-approximation of the number of colors of Sr(ul, v) (resp., Sl(ur, v)) present in q.

The final answer is the sum of the counts returned by the four sub-queries. The time

taken to find ul, ur and v isO(log n). Querying the leaf structures takesO((log(log2 n))3) =

O(log n) time. The time taken for scanning the lists S′′r (ul, v) and S′′l (ur, v) is O(log n).

Therefore, the overall query time is bounded by O(log n). Since each of the four sub-

queries give a 2-approximation, overall we get an 8-approximation.

12.2 C-approximation for 4-sided range search

Now we will prove Theorem 12.0.1(B). Again we will use the framework of Theo-

rem 11.0.1. It is straightforward to obtain a data structure with Scapp = O(n log n),

Qcapp = O(log n) and C = 16. Simply build a binary range tree on the y-coordinates

of S and at each node build an instance of Lemma 12.1.1 based on the points in its

subtree. Given a 4-sided query rectangle q, it can be broken down into two 3-sided query

rectangles. Shi and Jaja [110] presented a reporting structure with Srep = O(n log n)

and Qrep = O(log n). Plugging in these values into Theorem 11.0.1 proves Theo-

rem 12.0.1(B).

Remark 3. The technique of [36] can be adapted to answer a colored approximate

counting query. For colored 3-sided range search in R2, plugging in S(n) = O(n)

and Q(n) = O(log n) [17] leads to a data structure of size O(n log2 n) and query time

O(log2 n). For colored 4-sided range search in R2, plugging in S(n) = O(n log n) and

Q(n) = O(log n) [58] leads to a data structure of size O(n log3 n) and query time



112

O(log2 n) (the structure of Chazelle [22] can be used to obtain slightly better space).

12.3 Open problem

The focus of our solutions for approximate counting has been on optimizing the space

and the query time bounds in terms of n, and not on ε. (Currently, our space and

query time bounds have a factor of ε−2.) New ideas might be needed to improve the

dependency on ε.



Chapter 13

Final Remarks

This thesis has presented new structures for several GIQ problems. There are several

interesting open problems. To preserve context, these open problems have been men-

tioned at the conclusion of the relevant chapters. We wrap-up by reviewing the main

techniques which were used to obtain the solutions presented in the thesis.

Random sampling. For approximate counting, random sampling on colors was used

to reduce the problem to simpler companion problems of C-approximation and reporting

query (with small output size). For top-k queries, random sampling on objects was used

to reduce the problem to the companion problems of max-reporting and/or prioritized-

reporting query. Interestingly, for top-k queries, although the query requests an exact

answer, the intermediate steps of the query algorithm involve approximation via random

sampling.

Shallow cuttings. For any geometric set, A, whose lower-envelope has linear-complexity,

we can efficiently construct a “ladder” of approximate levels via shallow cuttings. In

Chapter 3 the set A was octants in R3, q was a point, and the aggregation function

was reporting. To obtain an optimal query time, we used shallow cuttings to quickly

retrieve a superset of A ∩ q whose size was at most O(|A ∩ q|). In the context of ap-

proximate counting, we used shallow cuttings to approximate the quantity |A ∩ q|. In

fact, we constructed nested shallow cuttings which led to an optimal solution for 3-sided

rectangle stabbing in 2-d.

113



114

Filtering-search type arguments. Suppose we want to solve a GIQ problem in

O(f(n)+k) time, where k is the number of objects to be reported. In this thesis, we made

use of the following observations: (a) When k ≤ f(n), then we are allowed to answer

the query in O(f(n)) time, and, hence, we can afford to report a superset of O(f(n))

objects before performing a pruning step. (b) When k ≥ f(n), then O(f(n)+k) = O(k)

and the amount of time the query algorithm can spend “searching” for the answer is

O(k), which can be significantly more than f(n). These two observations provide a

little freedom to the query algorithm, and helped us in designing data structures and

general reductions which occupied less space (for e.g., Section 3.5, 3.6, 6.1, and 6.2).

Miscellaneous. We also used space partitioning techniques (for e.g., range tree, inter-

val tree, segment tree, van Emde Boas tree, fusion tree,
√
n×√n-grid tree), persistence,

word-RAM tricks, and a reduction of a colored problem to an uncolored problem.



References

[1] Saladi Rahul. Improved bounds for orthogonal point enclosure query and point

location in orthogonal subdivisions in R3. In Proceedings of the Annual ACM-

SIAM Symposium on Discrete Algorithms (SODA), pages 200–211, 2015.

[2] Timothy Chan, Yakov Nekrich, Saladi Rahul, and Konstantinos Tsakalidis. New

results for rectangle stabbing and orthogonal point location in 3-d. Manuscript.

[3] Saladi Rahul and Ravi Janardan. Algorithms for range-skyline queries. In Proceed-

ings of ACM Symposium on Advances in Geographic Information Systems (GIS),

pages 526–529, 2012.

[4] Saladi Rahul and Ravi Janardan. A general technique for top-k geometric inter-

section query problems. IEEE Transactions on Knowledge and Data Engineering

(TKDE), 26(12):2859–2871, 2014.

[5] Saladi Rahul and Yufei Tao. On top-k range reporting in 2d space. In Proceedings

of ACM Symposium on Principles of Database Systems (PODS), pages 265–275,

2015.

[6] Saladi Rahul and Yufei Tao. Efficient top-k indexing via general reductions. In

Proceedings of ACM Symposium on Principles of Database Systems (PODS), 2016.

[7] Saladi Rahul. Approximate range counting revisited. In Proceedings of Symposium

on Computational Geometry (SoCG), 2017.

[8] Saladi Rahul and Yufei Tao. Optimal top-k halfplane searching in 2-d. Manuscript.

115



116

[9] Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic

bound with fusion trees. Journal of Computer and System Sciences (JCSS),

47(3):424–436, 1993.

[10] Alok Aggarwal and Jeffrey Scott Vitter. The input/output complexity of sorting

and related problems. Communications of the ACM (CACM), 31(9):1116–1127,

1988.

[11] Robert Endre Tarjan. A class of algorithms which require nonlinear time to main-

tain disjoint sets. Journal of Computer and System Sciences (JCSS), 18(2):110–

127, 1979.

[12] Pankaj K. Agarwal and Jeff Erickson. Geometric range searching and its relatives.

Advances in Discrete and Computational Geometry, pages 1–56.

[13] Jon Louis Bentley. Decomposable searching problems. Information Processing

Letters (IPL), 8(5):244–251, 1979.

[14] Jon Louis Bentley. Multidimensional binary search trees used for associative

searching. Communications of the ACM (CACM), 18(9):509–517, 1975.

[15] Raphael A. Finkel and Jon Louis Bentley. Quad trees: A data structure for

retrieval on composite keys. Acta Informatica, 4:1–9, 1974.

[16] Rudolf Bayer and Edward M. McCreight. Organization and maintenance of large

ordered indices. Acta Informatica, 1:173–189, 1972.

[17] Edward M. McCreight. Priority search trees. SIAM Journal of Computing,

14(2):257–276, 1985.

[18] A. Guttman. R-trees: a dynamic index structure for spatial searching. In Pro-

ceedings of ACM Management of Data (SIGMOD), pages 47–57, 1984.

[19] Neil Sarnak and Robert Endre Tarjan. Planar point location using persistent

search trees. Communications of the ACM (CACM), 29(7):669–679, 1986.

[20] James R. Driscoll, Neil Sarnak, Daniel Dominic Sleator, and Robert Endre Tarjan.

Making data structures persistent. Journal of Computer and System Sciences

(JCSS), 38(1):86–124, 1989.



117

[21] Bernard Chazelle and Leonidas J. Guibas. Fractional cascading: I. A data struc-

turing technique. Algorithmica, 1(2):133–162, 1986.

[22] Bernard Chazelle. Filtering search: A new approach to query-answering. SIAM

Journal of Computing, 15(3):703–724, 1986.

[23] V.N. Vapnik and A.Ya. Chervonenkis. On the uniform convergence of relative fre-

quencies of events to their probabilities. Theory of Probability & Its Applications,

16(2):264–280, 1971.

[24] David Haussler and Emo Welzl. Epsilon-nets and simplex range queries. Discrete

& Computational Geometry, 2:127–151, 1987.

[25] Kenneth L. Clarkson and Peter W. Shor. Application of random sampling in

computational geometry, ii. Discrete & Computational Geometry, 4:387–421, 1989.

[26] Peter van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an

efficient priority queue. Mathematical Systems Theory, 10:99–127, 1977.

[27] Dan E. Willard. Log-logarithmic worst-case range queries are possible in space

Θ(N). Information Processing Letters (IPL), 17(2):81–84, 1983.

[28] Timothy Chan. Orthogonal range searching in moderate dimensions: k-d trees and

range trees strike back. In Proceedings of Symposium on Computational Geometry

(SoCG), 2017.

[29] Dieter Pfoser, Christian S. Jensen, and Yannis Theodoridis. Novel approaches

to the indexing of moving object trajectories. In Proceedings of Very Large Data

Bases (VLDB), pages 395–406, 2000.

[30] Pankaj K. Agarwal, Lars Arge, and Jeff Erickson. Indexing moving points. Journal

of Computer and System Sciences (JCSS), 66(1):207–243, 2003.

[31] Pankaj K. Agarwal, Siu-Wing Cheng, Yufei Tao, and Ke Yi. Indexing uncer-

tain data. In Proceedings of ACM Symposium on Principles of Database Systems

(PODS), pages 137–146, 2009.



118

[32] Pankaj K. Agarwal, Nirman Kumar, Stavros Sintos, and Subhash Suri. Range-

max queries on uncertain data. In Proceedings of ACM Symposium on Principles

of Database Systems (PODS), pages 465–476, 2016.

[33] Jian Li and Haitao Wang. Range queries on uncertain data. Theoretical Computer

Science, 609:32–48, 2016.

[34] Peyman Afshani, Lars Arge, and Kasper Green Larsen. Higher-dimensional or-

thogonal range reporting and rectangle stabbing in the pointer machine model. In

Proceedings of Symposium on Computational Geometry (SoCG), pages 323–332,

2012.

[35] Peyman Afshani. On dominance reporting in 3D. In Proceedings of European

Symposium on Algorithms (ESA), pages 41–51, 2008.

[36] Boris Aronov and Sariel Har-Peled. On approximating the depth and related

problems. SIAM Journal of Computing, 38(3):899–921, 2008.

[37] Haim Kaplan, Edgar Ramos, and Micha Sharir. Range minima queries with

respect to a random permutation, and approximate range counting. Discrete &

Computational Geometry, 45(1):3–33, 2011.

[38] Pankaj Agarwal. Range searching. In CRC Handbook of Discrete and Computa-

tional Geometry (J. Goodman, J. ORourke, and C. Toth eds.), CRC Press, New

York, 2016.

[39] Pankaj Agarwal. Simplex range searching and its variants: A review. In Jour-

ney Through Discrete Mathematics. (M. Loebl, J. Neetril, and R. Thomas eds.),

Springer, Heidelberg, to appear.

[40] Richard J. Lipton and Robert Endre Tarjan. Applications of a planar separator

theorem. SIAM Journal of Computing, 9(3):615–627, 1980.

[41] David G. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal of

Computing, 12(1):28–35, 1983.



119

[42] Herbert Edelsbrunner, Leonidas J. Guibas, and Jorge Stolfi. Optimal point lo-

cation in a monotone subdivision. SIAM Journal of Computing, 15(2):317–340,

1986.

[43] Jack Snoeyink. Point location. In J. E. Goodman and J. O’Rourke, editors,

Handbook of Discrete and Computational Geometry, pages 767–787. CRC Press,

2nd edition, 2004.

[44] Michael T. Goodrich, Jyh-Jong Tsay, Darren Erik Vengroff, and Jeffrey Scott

Vitter. External-memory computational geometry. In Proceedings of Annual IEEE

Symposium on Foundations of Computer Science (FOCS), pages 714–723, 1993.

[45] Lars Arge, Andrew Danner, and Sha-Mayn Teh. I/O-efficient point location using

persistent B-trees. ACM Journal of Experimental Algorithmics, 8, 2003.

[46] Timothy M. Chan. Persistent predecessor search and orthogonal point location

on the word RAM. ACM Transactions on Algorithms, 9(3):22, 2013.

[47] Mark de Berg, Marc J. van Kreveld, and Jack Snoeyink. Two- and three-

dimensional point location in rectangular subdivisions. Journal of Algorithms,

18(2):256–277, 1995.

[48] John Iacono and Stefan Langerman. Dynamic point location in fat hyperrect-

angles with integer coordinates. In Proceedings of the Canadian Conference on

Computational Geometry (CCCG), 2000.

[49] Yakov Nekrich. I/O-efficient point location in a set of rectangles. In Latin Amer-

ican Symposium on Theoretical Informatics (LATIN), pages 687–698, 2008.

[50] Herbert Edelsbrunner, G. Haring, and D. Hilbert. Rectangular point location in

d dimensions with applications. Comput. J., 29(1):76–82, 1986.

[51] Peyman Afshani, Lars Arge, and Kasper Dalgaard Larsen. Orthogonal range

reporting: query lower bounds, optimal structures in 3-d, and higher-dimensional

improvements. In Proceedings of Symposium on Computational Geometry (SoCG),

pages 240–246, 2010.



120

[52] Herbert Edelsbrunner and Mark H. Overmars. On the equivalence of some rect-

angle problems. Information Processing Letters (IPL), 14(3):124–127, 1982.

[53] Bernard Chazelle. A functional approach to data structures and its use in multi-

dimensional searching. SIAM Journal of Computing, 17(3):427–462, 1988.

[54] Sathish Govindarajan, Pankaj K. Agarwal, and Lars Arge. CRB-tree: An effi-

cient indexing scheme for range-aggregate queries. In Proceedings of International

Conference on Database Theory (ICDT), pages 143–157, 2003.

[55] Joseph JáJá, Christian Worm Mortensen, and Qingmin Shi. Space-efficient and

fast algorithms for multidimensional dominance reporting and counting. In Al-

gorithms and Computation, 15th International Symposium, ISAAC 2004, Hong

Kong, China, December 20-22, 2004, Proceedings, pages 558–568, 2004.

[56] Michael T. Goodrich, Mark W. Orletsky, and Kumar Ramaiyer. Methods for

achieving fast query times in point location data structures. In Proceedings of the

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 1997.

[57] Timothy M. Chan and Gelin Zhou. Multidimensional range selection. In In-

ternational Symposium on Algorithms and Computation (ISAAC), pages 83–92,

2015.

[58] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Com-

putational Geometry: Algorithms and Applications. Springer-Verlag, 3rd edition,

2008.

[59] Herbert Edelsbrunner. A new approach to rectangle intersections, part I. Inter-

national Journal of Computer Mathematics, 13:209–219, 1983.

[60] Kurt Mehlhorn. Data Structures and Algorithms 3, volume 3 of Monographs in

Theoretical Computer Science. An EATCS Series. Springer, 1984.

[61] A. Boroujerdi and Bernard M. E. Moret. Persistency in computational geometry.

In Proceedings of the Canadian Conference on Computational Geometry (CCCG),

pages 241–246, 1995.



121

[62] Christos Makris and Konstantinos Tsakalidis. An improved algorithm for static

3d dominance reporting in the pointer machine. In International Symposium on

Algorithms and Computation (ISAAC), pages 568–577, 2012.

[63] Christos Makris and Athanasios K. Tsakalidis. Algorithms for three-dimensional

dominance searching in linear space. Information Processing Letters (IPL),

66(6):277–283, 1998.

[64] Pankaj K. Agarwal, Lars Arge, Haim Kaplan, Eyal Molad, Robert Endre Tarjan,

and Ke Yi. An optimal dynamic data structure for stabbing-semigroup queries.

SIAM Journal of Computing, 41(1):104–127, 2012.

[65] Lars Arge and Jeffrey Scott Vitter. Optimal external memory interval manage-

ment. SIAM Journal of Computing, 32(6):1488–1508, 2003.

[66] Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. New data structures

for orthogonal range searching. In Proceedings of Annual IEEE Symposium on

Foundations of Computer Science (FOCS), pages 198–207, 2000.

[67] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms, Second Edition. The MIT Press, 2001.

[68] Pankaj K. Agarwal, Lars Arge, Jeff Erickson, Paolo Giulio Franciosa, and Jef-

frey Scott Vitter. Efficient searching with linear constraints. Journal of Computer

and System Sciences (JCSS), 61(2):194–216, 2000.

[69] David A. White and Ramesh Jain. Similarity indexing with the SS-tree. In

Proceedings of International Conference on Data Engineering (ICDE), pages 516–

523, 1996.

[70] Hans-Peter Kriegel, Marco Potke, and Thomas Seidl. Managing intervals effi-

ciently in object-relational databases. In Proceedings of Very Large Data Bases

(VLDB), pages 407–418, 2000.

[71] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. A survey of top-k query

processing techniques in relational database systems. ACM Computing Surveys,

40(4), 2008.



122

[72] Iwona Bialynicka-Birula and Roberto Grossi. Rank-sensitive data structures. In

String Processing and Information Retrieval (SPIRE), pages 79–90, 2005.

[73] Peyman Afshani, Gerth Stolting Brodal, and Norbert Zeh. Ordered and unordered

top-K range reporting in large data sets. In Proceedings of the Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA), pages 390–400, 2011.

[74] Gerth Stolting Brodal. External memory three-sided range reporting and top-k

queries with sublogarithmic updates. In Proceedings of Symposium on Theoretical

Aspects of Computer Science (STACS), volume 47, pages 23:1–23:14. 2016.

[75] Gerth Stolting Brodal, Rolf Fagerberg, Mark Greve, and Alejandro Lopez-Ortiz.

Online sorted range reporting. In International Symposium on Algorithms and

Computation (ISAAC), pages 173–182, 2009.

[76] Cheng Sheng and Yufei Tao. Dynamic top-K range reporting in external memory.

In Proceedings of ACM Symposium on Principles of Database Systems (PODS),

2012.

[77] Yufei Tao. A dynamic I/O-efficient structure for one-dimensional top-k range

reporting. In Proceedings of ACM Symposium on Principles of Database Systems

(PODS), pages 256–265, 2014.

[78] Gonzalo Navarro and Yakov Nekrich. Top-k document retrieval in optimal time

and linear space. In Proceedings of the Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), pages 1066–1077, 2012.

[79] Biswajit Sanyal, Prosenjit Gupta, and Subhashis Majumder. Colored top-K range-

aggregate queries. Information Processing Letters (IPL), 113(19-21):777–784,

2013.

[80] Wing-Kai Hon, Rahul Shah, Sharma V. Thankachan, and Jeffrey Scott Vitter.

Space-efficient frameworks for top-k string retrieval. Journal of the ACM (JACM),

61(2):9:1–9:36, 2014.



123

[81] S. Muthukrishnan. Efficient algorithms for document retrieval problems. In Pro-

ceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),

pages 657–666, 2002.

[82] Rahul Shah, Cheng Sheng, Sharma V. Thankachan, and Jeffrey Scott Vitter. Top-

k document retrieval in external memory. In Proceedings of European Symposium

on Algorithms (ESA), pages 803–814, 2013.

[83] Moshe Lewenstein. Orthogonal range searching for text indexing. In Space-

Efficient Data Structures, Streams, and Algorithms, pages 267–302, 2013.

[84] Travis Gagie, Simon J. Puglisi, and Andrew Turpin. Range quantile queries:

Another virtue of wavelet trees. In String Processing and Information Retrieval

(SPIRE), pages 1–6, 2009.

[85] Gonzalo Navarro and Lúıs M. S. Russo. Space-efficient data-analysis queries on

grids. In International Symposium on Algorithms and Computation (ISAAC),

pages 323–332, 2011.

[86] Dan E. Willard and George S. Lueker. Adding range restriction capability to

dynamic data structures. Journal of the ACM (JACM), 32(3):597–617, 1982.

[87] Emo Welzl. Partition trees for triangle counting and other range searching prob-

lems. In Proceedings of Symposium on Computational Geometry (SoCG), pages

23–33, 1988.

[88] Peyman Afshani and Timothy M. Chan. On approximate range counting and

depth. Discrete & Computational Geometry, 42(1):3–21, 2009.

[89] Torben Hagerup and Christine Rub. A guided tour of Chernoff bounds. Informa-

tion Processing Letters (IPL), 33(6):305–308, 1990.

[90] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge

University Press, 1995.

[91] Yufei Tao. Stabbing horizontal segments with rays. In Proceedings of Symposium

on Computational Geometry (SoCG), 2012.



124

[92] Lars Arge, Vasilis Samoladas, and Jeffrey Scott Vitter. On two-dimensional in-

dexability and optimal range search indexing. In Proceedings of ACM Symposium

on Principles of Database Systems (PODS), pages 346–357, 1999.

[93] Bernard Chazelle, Leonidas J. Guibas, and D. T. Lee. The power of geometric

duality. BIT Numerical Mathematics, 25(1):76–90, 1985.

[94] Peyman Afshani and Timothy M. Chan. Optimal halfspace range reporting in

three dimensions. In Proceedings of the Annual ACM-SIAM Symposium on Dis-

crete Algorithms (SODA), pages 180–186, 2009.

[95] Marek Karpinski and Yakov Nekrich. Top-k color queries for document retrieval.

In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA), pages 401–411, 2011.

[96] Yakov Nekrich and Jeffrey Scott Vitter. Optimal color range reporting in one

dimension. In Proceedings of European Symposium on Algorithms (ESA), pages

743–754, 2013.

[97] Manish Patil, Sharma V. Thankachan, Rahul Shah, Yakov Nekrich, and Jef-

frey Scott Vitter. Categorical range maxima queries. In Proceedings of ACM

Symposium on Principles of Database Systems (PODS), pages 266–277, 2014.

[98] Ying Kit Lai, Chung Keung Poon, and Benyun Shi. Approximate colored range

and point enclosure queries. Journal of Discrete Algorithms, 6(3):420–432, 2008.

[99] Haim Kaplan, Micha Sharir, and Elad Verbin. Colored intersection searching

via sparse rectangular matrix multiplication. In Proceedings of Symposium on

Computational Geometry (SoCG), pages 52–60, 2006.

[100] Prosenjit Gupta, Ravi Janardan, and Michiel H. M. Smid. Computational ge-

ometry: Generalized intersection searching. In Handbook of Data Structures and

Applications. 2004.

[101] Prosenjit Gupta, Ravi Janardan, Saladi Rahul, and Michiel H. M. Smid. Compu-

tational geometry: Generalized (or colored) intersection searching. In Handbook

of Data Structures and Applications, to appear.



125

[102] Panayiotis Bozanis, Nectarios Kitsios, Christos Makris, and Athanasios K. Tsaka-

lidis. New upper bounds for generalized intersection searching problems. In Pro-

ceedings of International Colloquium on Automata, Languages and Programming

(ICALP), pages 464–474, 1995.

[103] Pankaj K. Agarwal, Sathish Govindarajan, and S. Muthukrishnan. Range search-

ing in categorical data: Colored range searching on grid. In Proceedings of Euro-

pean Symposium on Algorithms (ESA), pages 17–28, 2002.

[104] Prosenjit Gupta, Ravi Janardan, and Michiel H. M. Smid. Further results on gen-

eralized intersection searching problems: Counting, reporting, and dynamization.

Journal of Algorithms, 19(2):282–317, 1995.

[105] Ravi Janardan and Mario A. Lopez. Generalized intersection searching problems.

International Journal of Computational Geometry and Applications, 3(1):39–69,

1993.

[106] Haim Kaplan, Natan Rubin, Micha Sharir, and Elad Verbin. Counting colors in

boxes. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algo-

rithms (SODA), pages 785–794, 2007.

[107] Kasper Green Larsen and Rasmus Pagh. I/O-efficient data structures for colored

range and prefix reporting. In Proceedings of the Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA), pages 583–592, 2012.

[108] Kasper Green Larsen and Freek van Walderveen. Near-optimal range reporting

structures for categorical data. In Proceedings of the Annual ACM-SIAM Sympo-

sium on Discrete Algorithms (SODA), pages 265–276, 2013.

[109] Yakov Nekrich. Efficient range searching for categorical and plain data. ACM

Transactions on Database Systems (TODS), 39(1):9, 2014.

[110] Qingmin Shi and Joseph JáJá. Optimal and near-optimal algorithms for gener-

alized intersection reporting on pointer machines. Information Processing Letters

(IPL), 95(3):382–388, 2005.



126

[111] Marios Hadjieleftheriou and Divesh Srivastava. Approximate string processing.

Foundations and Trends in Databases, 2(4):267–402, 2011.

[112] Boris Aronov and Micha Sharir. Approximate halfspace range counting. SIAM

Journal of Computing, 39(7):2704–2725, 2010.

[113] Micha Sharir and Hayim Shaul. Semialgebraic range reporting and emptiness

searching with applications. SIAM Journal of Computing, 40(4):1045–1074, 2011.

[114] Géza Tóth. Point sets with many k -sets. In Proceedings of Symposium on Com-

putational Geometry (SoCG), pages 37–42, 2000.

[115] Tamal K. Dey. Improved bounds for planar k-sets and related problems. Discrete

& Computational Geometry, 19(3):373–382, 1998.

[116] Pankaj K. Agarwal, Alon Efrat, and Micha Sharir. Vertical decomposition of shal-

low levels in 3-dimensional arrangements and its applications. SIAM J. Comput.,

29(3):912–953, 1999.

[117] Peyman Afshani, Chris H. Hamilton, and Norbert Zeh. A general approach for

cache-oblivious range reporting and approximate range counting. Computational

Geometry, 43(8):700–712, 2010.

[118] Timothy M. Chan and Bryan T. Wilkinson. Adaptive and approximate orthogonal

range counting. In Proceedings of the Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), pages 241–251, 2013.

[119] Jon Louis Bentley and James B. Saxe. Decomposable searching problems I: static-

to-dynamic transformation. Journal of Algorithms, 1(4):301–358, 1980.

[120] Peter van Emde Boas. Preserving order in a forest in less than logarithmic time

and linear space. Information Processing Letters (IPL), 6(3):80–82, 1977.


