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Abstract

A new era of robotics has begun. In this era, robots are coming out of simple,

structured environments (such as factory floors) into the real world. They are no longer

performing simple, repetitive tasks. Instead, they will soon be operating autonomously

in complex environments filled with uncertainties and dynamic interactions. Many ap-

plications have already emerged as a result of these potential advances. A few examples

are precision agriculture, space exploration, and search-and-rescue operations.

Most of the robotics applications involve a “search” component. In a search mission,

the searcher is looking for a mobile target while the target is avoiding capture intention-

ally or obliviously. Some examples are environmental monitoring for population control

and behavioral study of animal species, and searching for victims of a catastrophic event

such as an earthquake.

In order to design search strategies with provable performance guarantees, researchers

have been focusing on two common motion models. The first one is the adversarial target

model in which the target uses best possible strategy to avoid capture. The problem is

then mathematically formulated as a pursuit-evasion game where the searcher is called

the “pursuer” and the target is referred to as the “evader”. In pursuit-evasion games,

when a pursuit strategy exists, it guarantees capture against any possible target strategy

and, for this reason, can be seen as the worst-case scenario. Considering the worst-case

behavior can be too conservative in many practical situations where the target may not

be an adversary. The second approach deals with non-adversarial targets by modeling

the target’s motion as a stochastic process. In this case, the problem is referred to

as one-sided probabilistic search for a mobile target, where the target cannot observe

the searcher and does not actively evade detection. In this dissertation, we study both

adversarial and probabilistic search problems. In this regard, the dissertation is divided

into two main parts.

In the first part, we focus on pursuit-evasion games, i.e., when the target is ad-

versarial. We provide capture strategies that guarantee capture in finite time against

any possible escape strategy. Our contributions are mainly in two areas whether the

players have full knowledge of each other’s location or not. First, we show that when
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the pursuer has line-of-sight vision, i.e., when the pursuer sees the evader only when

there are no obstacles in the between them, it can guarantee capture in monotone poly-

gons. Here, the pursuer must first ensure that it “finds” the evader when it is invisible

by establishing line-of-sight visibility, and then it must guarantee capture by getting

close to the evader within its capture distance. In our second set of results, we focus

on pursuit-evasion games on the surface of polyhedrons assuming that the pursuers are

aware of the location of the evader at all times and their goal is to get within the capture

distance of the evader.

In the second part, we study search strategies for finding a random walking target.

We investigate the search problem on linear graphs and also 2-D grids. Our goal here

is to design strategies that maximize the detection probability subject to constraints on

the time and energy, which is available to the searcher. We then provide field experi-

ments to demonstrate the applicability of our proposed strategies in an environmental

monitoring project where the goal is to find invasive common carp in Minnesota lakes

using autonomous surface/ground vehicles.
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5.1 Illustration of the key concepts. (a) A polyhedral surface which is not

a terrain. When the red face is excluded the surface has a boundary,
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Chapter 1

Introduction

Technological developments has brought us advanced robotic platforms with much lower

prices than ever in the past. As a result, we are witnessing emergence of enormous

robotic applications not only in isolated manufacturing environments but also in our

daily life, almost in every aspect: Housekeeping robots such as the vacuum cleaner robot

Roomba [2]; medical robots such as da Vinci [3] in surgical operations and magnetic

microbots [4] used to fight cancer cells or deliver medicine in blood vessels; driver-

less cars [5] used to prepare rich maps; precision agriculture aimed at enhancing crop

management; and space missions such as Curiosity rover to explore unknown planets.

For most of the above robotic systems to work autonomously, technology is not

enough: We also need sophisticated motion planning algorithms to optimally decide

where should the robot move next such that it achieves its goal. A common goal in

many robotic applications is searching for a mobile target. In a search mission, the

searcher is looking for a mobile target while the target is avoiding capture intentionally

or obliviously. Some examples of search missions are environmental monitoring, security

and surveillance, and search-and-rescue to find victims of a catastrophic event such as

an earthquake. The motion planning task here is to design a search strategy subject

to the present limitations such that the target can be found with a given performance

guarantee such as capture time or capture probability.

Many real-life applications of the search problem take place in complex environ-

ments and in the presence of sensing limitations. In addition, in most of the search

applications, the target’s trajectory is unknown. Therefore, in order to precisely define

1
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a search problem, one must specify the appropriate model for each of the following

components: “target’s motion model”, “environment’s complexity” and “sensing limi-

tations”. Fig. 1.1 shows an illustration of the different modalities of the search problem

which we will explain shortly. In this dissertation, we solve different versions of the

problem each of which is focused on one aspect of the search problem.

Target’s Motion Model: In order to design search strategies with provable perfor-

mance guarantees, researchers have been focusing on two common motion models. The

first one is the adversarial target model in which the target uses best possible strategy to

avoid capture against any search startegy. Here, the problem is in fact a non-cooperative

game between the searcher and the target since they are pursuing conflicting goals: The

searcher aims at “finding” the target while the target is “escaping” capture actively. The

problem is then mathematically formulated as a pursuit-evasion game where the searcher

is called the “pursuer” and the target is referred to as the “evader”. In pursuit-evasion

games, when a pursuit strategy exists, it guarantees capture against any possible target

strategy and, for this reason, can be seen as the worst-case scenario. The worst-case

capture guarantee is essential in many practical applications. For example, in sensitive

applications such as missile tracking, the desire is to hit the missile (capture the target)

with certainty.

Considering the worst-case behavior can be too conservative in many practical sit-

uations where the target may not be an adversary. The second approach deals with

non-adversarial targets by modeling the target’s motion as a stochastic process. In

this case, the problem is referred to as one-sided probabilistic search for a mobile target,

where the target cannot observe the searcher and does not actively evade detection. For-

mulating the problem as a probabilistic search problem, requires the knowledge of the

target’s movement model as a stochastic process. In addition, the capture guarantees

are mostly probabilistic, e.g., capture probability.

Finally, we note that pursuit-evasion games are usually more complicated than prob-

abilistic search problems since an adversarial target chooses the best escape strategy

among infinitely many possible strategies as opposed to a stochastic target which is

moving according to a single probability distribution.

Environment’s Complexity: Another key factor in designing search strategies is

the characteristic of the environment that the search mission is taking place in, which
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itself is contingent on the requirements of the corresponding application. For example,

when the search is happening inside a building with capture condition as collocation in

the same room, it might be enough to model the environment as a graph where capture

occurs on its nodes. Other models to abstract the environment include: a plane with

no boundary, a bounded region of a plane such as a polygonal area, a geodesic terrain

modeled as the surface of a polyhedron, a bounded subset of the three-dimensional

space or even more complex sub-spaces of n-dimensional manifolds. In addition, in all

of these instances obstacles can be considered as well.

Although some of the aforementioned environments such as graphs and polygons

have been studied well, very basic questions are open for non-planar environments.

Even in the simple case of graph or polygonal setups, some variants of the problem

in the presence of sensing limitation have remained unanswered for decades despite

significant research focus on them.

Sensing Limitations: In addition to the environment’s complexity, sensing limi-

tations of the searcher for observing the location of the evader introduce another level

of complication to the problem. In particular, the searcher’s information about the lo-

cation of the evader can be complete or partial. For example, a large network of cheap

sensors, that are connected together, can provide the searcher with the complete infor-

mation about the target’s position. On the other hand, the searcher might be equipped

with a single camera. Thus, it can see the target only when its line-of-sight is obstacle-

free. As a result, in terms of sensing limitations, we can classify the search problem into

two categories: complete sensing (full-visibility) and partial sensing (limited-visibility).

In both categories, practically relevant versions remain unsolved.
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Figure 1.1: Different modalities of the search problem are shown: 1) target’s motion

model, 2) sensing limitations, and 3) environment’s complexity. In the third box (en-

vironment’s complexity) we have highlighted the specific variants that we study in this

dissertation: the adversarial search problem with full-visibility on polyhedral surfaces

and convex height-maps, the adversarial search problem with line-of-sight visibility in

monotone polygons, and the probabilistic search problem for finding a random walker

in a linear graph and also two-dimensional grid.

In this dissertation, we study both the adversarial and the stochastic target motion

models. We study the adversarial search problem with full-visibility on polyhedral
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surfaces (with or without boundary) and also on convex height-maps (with boundary),

the adversarial search problem with limited-visibility in monotone polygons, and the

probabilistic search problem for finding a random walker in linear graphs and also two-

dimensional grids subject to constraints on the available time.

The dissertation is organized as follows. In the following subsections of this chapter,

we present a summary of our contributions. In Chapter 2, we provide an overview of re-

lated research. Chapter 3 presents the technical background that we will use throughout

the dissertation. Chapters 4 and 5 are dedicated to pursuit-evasion games for captur-

ing an adversarial target. In particular, in Chapter 4 we study a pursuit-evasion game

with line-of-sight visibility (limited-visibility), and in Chapter 5 we study the game on

three-dimensional polyhedral surfaces when the players have full knowledge of one an-

other’s location. In Chapter 6, we study the problem of finding a simple random walker

(probabilistic search). Concluding remarks are presented in Chapter 7 where we also

discuss some open problems and future research directions.

We now present an overview of our contributions in this dissertation. We first go

over our result regarding adversarial target motion model. We then turn attention to

our result on finding a discrete random walking target.

1.1 Contributions: Adversarial Target

In this section, we present a summary of our contributions in the domain of pursuit-

evasion games (adversarial target). Here, the pursuer captures the evader if the distance

between the evader and at least one pursuer is less than or equal to the capture distance.

Later in Chapter 4 and Chapter 5, we will explore these contributions in full detail.

1.1.1 Partial Knowledge of Target’s Location (Limited-Visibility)

A general question regarding pursuit-evasion games is the class of environments in which

a single pursuer can capture the evader when the pursuer has line-of-sight vision. That

is, the pursuer can see the evader only if the line segment connecting them is free of ob-

stacles. We show that in monotone polygons, a single pursuer with line-of-sight visibility

is enough to capture the evader. Our result provides a step toward characterizing the

class of single-pursuer-win environments by showing that it includes monotone polygons.
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With the limited vision power, the pursuer has to first find the evader when it disappears

and then move toward the evader to capture it. We present a pursuit strategy which

successfully combines search and capture. We are not aware of any other results which

combine these two objectives for a single pursuer while providing guarantees about the

outcome of the game. Our proposed capture strategy along with its analysis is provided

in Chapter 4.

1.1.2 Complete Knowledge of Target’s Location (Full-Visibility)

Many practical applications of pursuit-evasion games take place in non-planar environ-

ments; for example, when the searcher and the target are moving on the surface of a

geodesic terrain; or when planning must be performed in the configuration space of a

robotic manipulator. Despite the importance of the game in non-planar environment,

little is known about its properties in such environments. In this dissertation, we study

the game when it is played on the surface of a polyhedron. We show that on general

polyhedral surfaces three pursuers suffice to capture the evader in finite time. Moreover,

we show that our capture strategy works if the surface has “obstacles” i.e. subsets of

the surface that neither player can enter. In other words, the surface is homeomorphic

to a planar disk with a set of obstacles. A practical implication of our result is that

three pursuers guarantee capture on terrains which is a special case characterized by

unique height values for points in the two-dimensional plane (Fig. 1.2).

We then study the game in a more restricted sub-class of polyhedral surfaces: on

the surface of a height-map (terrain). A terrain is obtained by assigning a single height

value to each point in a bounded region of a plane in R2 (Fig. 1.2). We show that when

the terrain is convex, a single pursuer with full-visibility captures the evader in finite

time.

We will present our proposed capture strategies as well as their analysis in Chapter 5.
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(a) (b)

Figure 1.2: Two examples of a geodesic terrain (height-map), which is modeled as a

polyhedral surface, is shown. (a) When the players are restricted to move outside water,

the lakes are modeled as obstacles. (b) Here, the surface is composed of a half-sphere

mounted on top of a cropped cone.

1.2 Contributions: Stochastic Target

We now discuss our results for the problem of finding a stochastic target (i.e., proba-

bilistic search). Here, the problem is to find a target which is moving according to a

simple random walk subject to time and energy restrictions such that the probability

of detecting the target is maximized. We focus our attention on the problem when the

searcher and the target are moving in a linear graph or a two-dimensional grid. The

details of our results are presented in Chapter 6.

1.2.1 Simple Random Walker on Linear Graphs:

We first investigate the search problem when the target is a discrete one-dimensional

random walker which moves in a linear graph. The target moves to neighboring nodes,

i.e. to the left or right, with a given probability (Fig. 6.1(a)). The searcher on the

other hand can choose to stay on its current node, or move to the right or to the left.

Surprisingly, despite the simplicity of the problem at the first look, the problem is open.
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Figure 1.3: Target’s motion model is a simple random walk: with probability p it

moves one step to the left, and with probability q = 1−p it moves one step to the right.

We study the problem under two detection criteria that we refer to as the no-crossing

and crossing conditions. In the no-crossing model, the searcher detects the target if they

are on the same node or if they take the same edge at the same time. In the crossing

model, detection happens only if they land on the same node at the same time. For the

no-crossing model an analytical solution for finding the optimal search strategy subject

to energy and time constraints (where different costs are associated to move and stay

actions) was presented in [6]. In this dissertation, we focus on the crossing model

where we formulate the problem of computing the optimal search strategy as finding

the optimal solution of a Partially Observable Markov Decision Process (POMDP) and

also a Mixed Observability Markov Decision Process (MOMDP). We show that the

solutions exhibit an interesting structure. Using this structure we focus on a set of

strategies which we call the uniform strategies characterized by groups of right actions

interleaved with stay actions, i.e. (RkS)m. We derive the best strategy in this class and

show that (R2S)m is performing close to the strategies found by the MDP methods.

Finally, we provide preliminary experimental results to show that our model is useful in

an environmental monitoring application where the goal is to search for invasive carp.

1.2.2 Simple Random Walker on Two-Dimensional Grids:

In addition to linear graphs, we also study the problem of finding a random walking

target which is moving on an N × N grid. The target moves to neighboring nodes,

i.e., to the left, right, up or down or chooses to stay on its current node with

equal probability. We study a natural and easy-to-implement class of strategies we call

sweeping strategies. In a sweeping strategy, the searcher picks a column and sweeps it

entirely before choosing another column. We formulate the problem of computing the
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optimal sweeping strategy as the problem of computing the optimal solution of a Mixed

Observability Markov Decision Process (MOMDP). We compare the MOMDP strategies

against other heuristic strategies such as picking a column at random or picking every

kth column. We show that these strategies are performing fairly close to each other in

terms of capture probability.

The rest of the dissertation is organized as follows. We cover the related literature

in Chapter 2. The necessary technical background and the main tools are provided in

Chapter 3. In Chapter 4 we study a pursuit-evasion game with partial knowledge of

evader’s location (line-of-sight visibility). In Chapter 5 we present our results for pursuit-

evasion games with complete knowledge of evader’s location on three-dimensional sur-

faces. We then study probabilistic search problems for finding a discrete random walking

target in Chapter 6. Finally, we present concluding remarks and some open problems

in Chapter 7.

The results presented in this thesis appear in [1, 6–16] and were funded by the

National Science Foundation (grant numbers #0916209, #0917676 and #1111638).



Chapter 2

Related Work

In this chapter, we overview the existing literature on search and pursuit-evasion prob-

lems. We classify the literature into two categories based on the target’s motion model

(adversarial versus stochastic). First, in Section 2.1 we survey the results for capturing

an adversarial target in graphs, planar environments and non-planar environments. We

also give an overview of the related work for pursuit-evasion games with limited sensing.

Then, in Section 2.2 we focus on random walks and present existing results on finding

a stochastic target which is moving according to a Markovian model.

2.1 Adversarial Target (Pursuit-Evasion Games)

In this section, we first present an overview of the related research on pursuit-evasion

games played in graphs. We then turn our attention to planar environments followed

by the results in non-planar environments. We conclude the section with the related

work regarding limited-visibility pursuit-evasion.

2.1.1 Cops and Robber Game in Graphs

In the game of cops and robber, a team of searchers (cops) are concerned with finding

a mobile target (robber) hiding in a graph. The players move between adjacent nodes

along the edges in the graph. The cops capture the robber if some of them can be

co-located with the robber on the same node.

10
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Various aspects of the problem such as players’ relative speed [17], sensing capa-

bilities [12, 18–20], and notion of capture [21, 22] have inspired a significant body of

research. An overview of these results can be found in the survey paper by Chung et

al. [23] and by Robin and Lacroix [24]. Nowakowski and Winkler [25], and indepen-

dently Quillot [26], provided a characterization of cop-win graphs when the players can

observe each other’s location at all times. Megiddo et. al [27] provided a structural

characterization of those graphs with cop-number less than k for k ≤ 1, 2, 3. Aigner and

Fromme [28] showed that three cops are sufficient for capture on planar graphs. When

the initial locations of the players are given, Goldstein and Reingold [29] showed that

the problem of determining whether k cops can capture the robber on a given undirected

graph is EXPTIME-complete. Recently Kinnersley [30] showed that determining the

cop-number (the minimum number of cops needed to capture a robber on a graph G)

is EXPTIME-complete in general, even if the initial locations of the players are not

specified.

In all the results above, the cops have “global visibility” i.e. they are aware of the

location of the robber at all times. On the other hand, when the players cannot observe

each other unless they are on the same node, the game is known as the hunter and rabbit

game. Adler et al. showed that the hunter can capture the rabbit in O(n log n) time in a

graph with n vertices [18]. Isler and Karnad [19] show that when each player can see the

opponent if their distance is less than k (symmetric visibility powers), the cop can locate

itself at distance at most k from the robber in any graph. In [31] the expected times

required for capturing an adversarial robber and a drunk one (performing a random

walk) is compared. Upper and lower bounds are derived for the ratio between these two

values when the search is done on special graph structures.

2.1.2 Lion and Man Game in Planar Environments

In the previous sub-section, the cops and robber game takes place in graphs. Many

robotics applications are naturally formulated as geometric versions of the cops and

robber game where the players move in a continuous space instead of a graph. A

classical geometric pursuit-evasion game is the lion and man game. In this game, the

lion pursues the man, and the man tries to escape capture.

The lineage of the lion and man game traces back to Rado’s classic version from the
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1930s [32] where the game takes place in a circular arena, and both the lion and the man

have equal speed. The lion wins if it becomes collocated with the man in finite time.

Intuitively, the lion (pursuer) should win the game: if it moves directly toward the man,

the man has to step back in the same direction to maintain the separation between the

players. Following this strategy, the man will eventually hit the boundary and thus he

cannot escape forever. It turns out that the analysis of this simple “greedy” strategy

is not straightforward since the turn angle can be arbitrarily small. In fact, when time

is continuous, players move simultaneously and capture requires colocation, man can

avoid capture indefinitely by following a gently spiraling path [32]. On the other hand,

in the turn-based version where the players take turns, it has been shown that the

lion captures the man by following the lion’s strategy which was generally accepted in

folklore [32]. In this strategy, the lion moves such that it is always on the radius between

the man and the center. The capture time of this turn-based strategy is O(R2) where

R is the radius of the environment. Sgall [33] uses a similar strategy to show finite time

capture when the game takes place in the non-negative quadrant of the plane. Alonso et

al. [34] proposed a more sophisticated strategy which guarantees capture in O(R log R
r )

steps where r is the capture radius.

Isler et al. [35] adapted lion’s strategy for pursuit in a simply connected polygon

P . First, the pursuer starts at point c in the polygon, which is typically a boundary

vertex. Thereafter, the pursuer always moves onto the shortest path between c and

the evader, getting as close to e as possible. For a polygon P with n vertices and

diameter diam(P ) = maxu,v∈P d(u, v), Isler et al. [35] proved that the capture time is

O(n · diam(P )2). Beveridge and Cai [36] proved that the capture time is O(diam(P )2).

Zhou et al. [37] show that adding a second pursuer reduces capture time to O(diam(P ))

in simply connected domains.

The game has been also studied in the presence of obstacles. Bhadauria et al. [38]

show that three pursuers can capture the evader in any polygonal environment with

obstacles. Zhou et al. [37] show that three lions are still enough for capture in the

presence of obstacles even when the domain is not polygonal. Their strategy guarantees

capture in time O(h · diam(P )) where h is the number of obstacles. Bhattacharya and

Hutchinson [39] study the game in planar environments containing obstacles when the

pursuer’s goal is to maintain visibility of the evader for the maximum possible time
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and the evader’s goal is to escape the pursuer’s sight as soon as possible. They present

necessary and sufficient conditions for tracking as well as Nash equilibrium strategies

for the players.

2.1.3 Lion and Man Game in Non-Planar Environments

The lion and man game has been studied in non-planar environments as well. Kopparty

and Ravishankar [40] showed that in Rd, d+ 1 lions can capture the man if and only if

the man starts inside their convex hull. Bopardikar and Suri [41] study k-capture in m-

dimensional Euclidean spaces where at least k pursuers must simultaneously reach the

evader’s location to capture it; in addition, if fewer than k pursuers reach the evader

they will be destroyed by the evader. They show that the necessary and sufficient

condition for capture is the existence of a time instance that the evader lies inside in the

pursuers’ k-Hull. Alexander et al. [42] study pursuit in CAT(0) environments where the

curvature is non-positive, and show that a single pursuer with positive capture radius

can eventually capture the evader by greedily moving toward it. Beveridge and Cai [36]

show that in any CAT(0) environment one pursuer has a winning strategy under the

collocation capture condition as well (i.e., zero capture distance).

The problem is also studied on the surface of a polyhedron which models the search

applications on geodesic terrains. Klein and Suri [43] showed that four pursuers with

zero capture distance are sufficient to capture the evader on a polyhedral surface with

genus zero. In this dissertation, we show that three pursuers are enough for capture when

the capture distance is non-zero even in the presence of obstacles on the surface [11,14]

(Section 5.2). In [16] we show that the class of convex terrains, which includes positive

curvature examples, are still single pursuer-win (Section 5.3).

2.1.4 Lion and Man Game with Limited-Visibility

The lion and man game has been also studied when the pursuer has only line-of-sight

vision. That is, the pursuer can see the evader only if the line segment connecting them

is free of obstacles. This variant models robotics applications where the pursuer is a

robot equipped with a camera or a laser scanner. When the goal of the pursuer is to just

find the evader the problem is called the visibility-based pursuit evasion problem [44].
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The necessary and sufficient conditions for a simple polygon to be searchable by a

pursuer with various degrees of visibility power is presented in [21]. Guibas et al. show

that for an arbitrarily fast evader, the minimum number of pursuers required in the

worst case is Θ(log n) for simply-connected polygons and Θ(
√
m+ log n) for a polygon

with m holes [44]. Klein and Suri [45] showed that in a polygon with n total vertices

and h holes, O(
√
h + log n) lions with visibility can capture the man if the minimum

distance between any two vertices is lower bounded by the step size. If the environment

can have arbitrarily small “features” compared to the speed of the players, then the

number of pursuers can be as high as Ω(n2/3) [46]. In Chapter 4 we study the game

when the goal of the pursuer is to capture the evader in the sense that it gets within

the capture distance of the evader. We show that a single pursuer can successfully

capture the evader in monotone polygons [8,12]. Berry et al. [47] present a line-of-sight

pursuit strategy for capture in strictly sweepable polygons, which are a generalization

of monotone polygons.

Bopardikar et al. [48] study the lion and man game in the plane where every player

has identical sensing and motion ranges restricted to disks of given radii. In their model,

the evader is reactive in the sense that it only moves when it sees the lion. The authors

provide a lower bound condition on the ratio between the sensing radius and the step size

such that the pursuer can trap the evader inside its sensing circle when the environment

is convex [48]. Karnad and Isler [49] show that in the positive quadrant of the plane a

pursuer with a bearing measurement sensor can reduce its distance to the evader to the

step size in finite time.

We next discuss related results in the domain of probabilistic search problems.

2.2 Stochastic Target (Probabilistic Search)

We now focus on the related research for finding a random walker. We first overview

the search problem for finding a stochastic target on graphs in Section 2.2.1. We then

provide some known results related to random walks in Section 2.2.2.
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2.2.1 Two-Cell and N-Cell Problems

In one-sided probabilistic search problems, the target cannot observe the searcher and

does not actively evade detection. Instead, the target’s motion is modeled as a stochastic

process. The simplest setting is when the target moves in discrete time steps in a

discrete world consisting of only two cells according to a Markovian motion model [50].

It turns out that even this simple variant, which is referred to as the two-cell problem,

is challenging. Pollock [50] uses dynamic programming to derive search strategies that

minimize the expected number of looks to detect the target, or maximize the detection

probability within a given number of looks for special cases of the two-cell problem.

Wilson [51] provide a necessary and sufficient condition on the initial distribution of

the target’s position such that a search plan with finite expected capture time exists.

Dobbie [52] studies the continuous time motion model and solves for optimal strategies

that minimize the expected time to detection, or maximize the probability of detection

in a given time in the hope to derive formulations that are easier to generalize to

more than two cells. Kan [53] also attempted to generalize the problem to N cells by

characterizing optimal strategies for special cases, for example when the cells form a

clique and the target moves between all cells with equal probability. In fact, it has been

shown that the problem of detecting a target, stationary or mobile, in a grid world within

a fixed time horizon is NP-complete [54]. As a result, approximation methods have also

been studied to tackle the problem. In this regard, branch-and-bound methods [55, 56]

and POMDP formulations [57, 58] are popular. For example, Lau et al. [59] use

a branch-and-bound framework to find an upper bound on detection probability for

relatively small environments with around 20 nodes. Hollinger et al. [57] formulate the

problem of maximizing the expected probability of finding the target at the earliest

possible time by multiple searchers as a POMDP and use the sub-modularity of the

joint discounted reward function to provide a constant factor approximation sequential

allocation algorithm.

In Chapter 6, we study the problem of finding a target which is moving according

to a simple random walk on a linear graph. We next review some properties of random

walks as well as some known results regarding the search problem.
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2.2.2 Random Walks

In this section, we focus on the literature related to random walks. Random motions,

both as discrete random walks and continuous diffusive motions, have been extensively

studied as models of unknown animals motions or complex physical processes [60].

In particular they are widely used in the literature to simplify pursuit-evasion games

and absorption (or search) processes. A large number of interesting properties closely

related to searching missions are collected in [61] including: first passage probability

(the probability for the random walker of visiting for the first time a given point at a

given time), survival probability (the probability that the random walk has not been

found at a given time) and mean capture time (the expected time to be found). Various

characteristics of random walks in general graphs have been studied in [62]. Examples

are hitting time, which is the expected number of steps before a node is visited, and

cover time, which is the expected number of steps to visit every node at least once.

Although one-dimensional random walks might seem too simple, they present sev-

eral interesting behaviors and properties and are still source of open problems. The

survival probability of a particle that performs a random walk on a chain where traps

are uniformly distributed with known concentration is studied in [63] and an asymp-

totically exact solution is provided. In [64], the authors study the survival probability

of a prey on a line which is chased by more than one diffusive predator. The same

problem but in a semi-infinite line where the boundary represents a haven for the prey

is presented in [65]. None of these works have addressed the capture problem restricted

to constraints on the energy of the system, or on the maximum time for the chase. This

is the subject of our work in Chapter 6.

In the next chapter, we present the technical tools that we use to solve the pursuit-

evasion games in Chapters 4 and 5 and also the probabilistic search problem for finding

a random walker in Chapter 6.



Chapter 3

Technical Background

In this chapter, we present the basic techniques that are used in the following chapters.

First, in Section 3.1 we discuss main ideas and sub-strategies for capturing adversarial

targets in pursuit-evasion games, which are later exploited in Chapters 4 and 5. Then,

in Section 3.2 we describe Partially Observable Markov Decision Processes (POMDP)

and Mixed Observability Markov Decision Processes (MOMDP), which we exploit to

design search strategies for finding a random walking target later in Chapter 6.

3.1 Pursuit-Evasion Games

Let us start by giving a formal description of pursuit-evasion games1 . In a pursuit-

evasion game, the pursuers’ goal is to capture the evader while the evader is trying to

avoid capture as much as possible. Throughout the dissertation we will interchangeably

refer to the pursuer as the lion, and the evader as the man. The notion of capture

that we consider is whether the distance between the evader and at least one pursuer

is within a fixed capture radius denoted by r. We assume that the players have the

same maximum step-size; we employ a unit step-size which means that the players can

move along a path contained in the environment, of length at most one. The unit step

size assumption is both standard and convenient. Finally, we will consider discrete time

turn-based version of the game where the players take turns and each turn takes a

unit time-step. We focus on the turn-based version of the game in order to avoid the

1 The material in this section appears in [7].
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following pathology: When time is continuous and the players move simultaneously, the

evader can avoid capture indefinitely by following a gently spiraling path [32].

We continue this section by presenting the main ideas and the basic techniques in

designing pursuit strategies. In particular, we first explain lion’s strategy, and rook’s

strategy. Meanwhile, we describe main concepts such as guarding, and making progress.

We then proceed with more advanced topics such as projection mappings for guarding

shortest paths.

In order to capture the evader, a general pursuit strategy consists of two main

phases. First, the evader is expelled from a subset of the environment, and this subset

is protected thereafter. Second, the protected subset is gradually grown until the whole

environment is cleared and the evader is captured. These two phases are referred to as

guarding and making progress respectively.

As a demonstrative example, suppose that the turn-based game is played in a square

region; the pursuer can observe the exact location of the evader, and the capture radius

is r = 0. A first intuitive idea for guarding is to locate the pursuer on the line segment

L between two arbitrary boundary endpoints, and prevent the evader from crossing it.

If we can also push L towards the evader, then the progress goal would be achieved as

well.

Here is our first example of a guarding strategy. The pursuer can guard L by

positioning itself on the vertical projection of the evader onto L (Fig. 3.1(a)). The

vertical projection has the property that it is closer to all the points along L than the

evader itself. As a result, if the evader tries to cross L, the pursuer (which is on the

evader’s projection) will capture it during its next move. We make this argument more

rigorous in Section 3.1.7.

Although the vertical projection idea succeeds in restricting the evader to one side

of L for the rest of the game, the pursuer fails to achieve its second goal: shrinking the

evader’s region. Indeed, suppose that the evader takes a full unit step parallel to L,

moving from e1 to e2 with |e1e2| = 1 (Fig. 3.1(b)). The evader’s vertical projections

onto L, denoted by p1 and p2 respectively, satisfy |p1p2| = 1. Therefore, the pursuer

exhausts its movement budget just to keep up with the evader. Now, if the evader

reverses its direction after each step, the pursuer is forced to move between the two

fixed points p1 and p2. Consequently, the pursuer cannot move L towards the evader,
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and the evader can escape forever.

e

p La b

p2

(a)

La b

e1

p1

e2

p2

(b)

Figure 3.1: (a) The pursuer can prevent the evader from crossing L by positioning itself

on the vertical projection of the evader. (b) Since e1e2 is parallel to L and |e1e2| = 1,

we have |p1p2| = 1. Thus, the pursuer is stuck on L between the two points p1 and p2.

There are three approaches to tackle the issue above and achieve progress: (1) Lion’s

strategy, (2) Multiple guarding pursuers, and (3) Rook’s strategy. In the following

subsections, we will present an intuitive description of each approach using our square

example. But before that, let us first present the notation that is used in this chapter.

3.1.1 Notation

The game environment is denoted by S with boundary ∂S. We refer to the subset of

S that the evader cannot enter without being captured as the cleared region. The

remaining part of S is referred to as the contaminated region. We refer to a shortest

path in S between points x and y by Π(x, y). The shortest distance between x and y,

i.e., the length of Π(x, y), is denoted by d(x, y). We denote maxu,v∈S d(u, v) by diam(S).

When we require that a distance is measured within a subset, such as to Q ⊆ S, we

write dQ(x, y). We use B(x, r) = {y ∈ S | d(x, y) ≤ r} to denote the ball of radius r

centered at x.

We are now ready to discuss the first approach called the lion’s strategy which is

known in folklore [32] since 1950s.
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3.1.2 Approach 1. The Lion’s Strategy

In the lion’s strategy, the pursuer can simultaneously guard and make progress. In

this strategy, the pursuer (lion) starts at an arbitrary center p0 = c. In round t ≥ 1,

the pursuer makes a lion’s move, meaning that it moves from pt−1 to the point pt ∈
B(pt−1, 1) on the line segment connecting c to et such that pt is closest to the evader

(Fig. 3.2).

c

et−1

pt−1

et

pt

Figure 3.2: Lion’s strategy in a square region.

Simple trigonometric arguments can be used to show that the lion’s strategy captures

the man. The proof exhibits the two essential ingredients for verifying that a pursuit

strategy succeeds in finite time. First, we establish an invariant that the pursuer(s)

maintain throughout the game. For lion’s strategy, this invariant is that p was located on

the radius between the center and the evader. Second, we need a measure of progress

to show that the game ends in finite time. Let d and d′ denote the distance between

the center c and the lion before and after a move, respectively (Fig. 3.3(b)). Let α be

the angle between ce1 and p1p2. We have d′2 = (d+ cosα)2 + sin2 α = d2 + 2d cosα+ 1

(Note that p1p2 = 1). We first show that there exists a point p2 on ce2 such that α ≤ π
2 .

This is because e1e2 ≤ 1, and hence p1q ≤ 1 where q is a point on ce2 such that qp1 is

prependicular to ce1 (Fig. 3.3(a)). As a result of α ≤ π
2 we have d′2 ≥ d2 + 1. When

coupled with the invariant, this guarantees capture after at most R2 rounds.
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Figure 3.3: In lion’s strategy, the pursuer can increase its distance from the center by

at least d′−d ≥ 1
2R . This is because: (a) The length of p1q is less than one. As a result,

there exists a point p2 on ce2 which is closer to e2 than q, and moreover is at distance

one from p1. (b) In fact, α < π
2 . (c) Lion’s strategy in a polygon.

Isler et al. [35] adapted lion’s strategy for pursuit in a simply connected polygon P .

First, the pursuer starts at point c in the polygon, which is typically a boundary vertex.

Thereafter, the pursuer always moves onto the shortest path between c and the evader,

getting as close to e as possible. Note that this shortest path could interact with the

boundary of the polygon, in which case it will be a piecewise linear path (Fig. 3.3(c)).

The extended lion’s strategy uses the same invariant (being on the shortest path between

c and e) and the same measure of progress (increasing dπ(c, p) at a constant rate) as

lion’s strategy. In Chapter 4, we extensively use lion’s strategy in our proposed capture

strategy.

3.1.3 Approach 2. Multiple Guards

In the second approach, an additional pursuer is added to guard another line segment.

Suppose that we have two pursuers, each of which guards a line by positioning itself on

the evader projection. The first pursuer p1 guards a horizontal line segment L1, while

the second pursuer p2 guards the vertical line segment L2 (Fig. 3.4(a)). This traps the

evader in one quadrant of the square. If the evader moves horizontally, then p1 mimics

this move while p2 makes one unit of progress by advancing its guarded line. Likewise,

if the evader moves vertically, then p2 keeps pace while p1 advances its guarded line.

More generally, the Pythagorean theorem shows that at least one of the pursuers can
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advance its guarded line by
√

2/2 units in each turn. This means that the evader will be

cornered by the pursuers after a finite number of moves, after which one of the pursuers

has a capture move.

In Chapter 5, we will combine the idea of multiple guarding pursuers with path

projection mapping, which we will discuss shortly in Sub-section 3.1.7, to show capture

on polyhedral surfaces.

e

p1

p2

L1

L2

a b

(a)

e1 e2

τ La bp1

p2

(b)

Figure 3.4: (a) Two pursuers are guarding L1, L2 by staying on the projection of the

evader. One of them can make progress after each move. (b) A single pursuer can push

L towards the evader if it stays behind the projection of the evader.

3.1.4 Approach 3. The Rook’s Strategy

In both of the approaches above, capture is guaranteed for zero capture radius. Pursuit

games with capture radius r > 0 are also common in the literature. The third approach

takes advantage of the non-zero capture radius to overcome the stalemate in Fig. 3.1(b).

In Chapter 5, we will leverage the rook’s strategy in our proposed strategy to capture

the man on the surface of a convex terrain (convex height-map). To build intuition,

consider a chess endgame for a white rook and white king versus a solitary black king.

The rook’s strategy works as follows: One row at a time, the white rook reduces

the area available to the black king. This is achieved with support of the white king who

trails the projection of the black king onto the row guarded by the rook. Specifically,

suppose the white rook is at row i, column 1, which guards row i. The black king is at

row i′ > i and column j, and the white king is at row i − 1, column j − 1. From this

position, the white king trails the black king until the column separation of the white
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rook and white king is at least two (Fig. 3.5(a)). After achieving this separation, the

white player can make progress as follows. If the black king moves back on to column

j − 1, then white can move the rook to row i + 1 and push the black king further up

(Fig. 3.5(b))2. If the black king moves away from the white king, then the white king

keeps trailing him. Eventually, the black king is trapped in a single row, where white

can checkmate.

Π′

(a)

Π′

(b)

Figure 3.5: The rook-and-king chess endgame is shown in (a) and (b). (a) The white

rook is one row below the black king. The white king is one row below and (at least)

two columns to the right of the white rook, and is just to the left of the black king. (b)

After the black king moves leftward, the white rook makes progress.

In rook’s strategy, the pursuer combines the roles of the white rook and white king

(because the evader cannot threaten the pursuer). Like the white rook, the pursuer

guards a horizontal frontier line. Like the white king, the pursuer remains offset from

the projection of the evader. Whenever the evader moves horizontally “back” toward

the projection, the pursuer can make progress by vertically advancing the frontier line.

Eventually, the evader will be squeezed between the guarded path and the boundary,

where it will be caught. The rook’s strategy is an alternative to lion’s strategy for

actively chasing the evader. Simply put, rook’s strategy is designed to simultaneously

guard and make progress.

Let us formally present the rook’s strategy by adapting the chess strategy introduced

2 This is because the black king cannot move to row i since the reachable cells are being guarded
by the white king. Furthermore, in the extreme case where i′ = i+ 1, the black king cannot stay in row
i′ because of the two column separation between the white king and the white rook.
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above to the lion and man game in a square environment. Suppose that the pursuer

is guarding a straight line segment Π between two boundary points. As we observed

earlier in this chapter (Fig. 3.1(b)), when r = 0, guarding Π requires p = π(e). As a

counter-strategy, the evader can oscillate horizontally between two points, unit distance

apart (Fig. 3.1(b)). In response, the pursuer must exhaust its movement budget just

to keep pace, so the guarded path never advances. However, when we have a positive

capture radius r > 0, the pursuer guards Π as long as 0 ≤ d(p, π(e)) < r. We claim

that this slack allows the pursuer to reliably advance the guarded path.

From here forward, we consider the game with positive capture radius r > 0 and fix

a constant 0 < τ ≤ min{r, 1/2}. Given a projection π onto path Π, we say that p is in

rook position when 0 ≤ d(p, π(e)) ≤ τ . Suppose that the pursuer is offset τ units to

the right of the evader projection (Fig. 3.6(a)). If the evader moves leftwards one unit,

then the pursuer matches pace and maintains this offset. However, if the evader moves

rightward, then the pursuer switches to using a leftward offset instead (Fig. 3.6(b) and

Fig. 3.6(c)). As a result, the pursuer only needs to move rightward 1− 2τ units, which

means that it can move diagonally to achieve at least (1 − (1 − 2τ)2)1/2 > τ units of

upward progress. The key observation is that the evader must move rightward at some

point, since diam(S) is finite, so the pursuer makes at least τ units of vertical progress

every diam(S) steps.
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Figure 3.6: Illustration of the rook strategy when τ < 1/2 is shown. (a) If the evader

moves to the left, the pursuer moves in the same direction for one unit. (b) If the evader

moves to the right, the pursuer pushes Π to Π′. When 1− τ ≤ r, the distance between

Π and Π′ is one unit. (c) When 1− τ > r, the distance between Π and Π′ is 2τ . Here

notice that since −τ ≥ −r and 1− τ > r we have 1− 2τ > 0.

We next compare the rook’s strategy with the lion’s strategy.

3.1.5 Lion’s Strategy Versus Rook’s Strategy

It is worth comparing how lion’s strategy and rook’s strategy guard and attack simul-

taneously. During lion’s strategy, the pursuer consistently radiates outwards from its

initial point c. Let pt be the location of the pursuer at time t and let Bt = B(c, dt) where

dt = d(c, pt). Each pursuer move decreases the evader territory: after time t, the evader

cannot step into the region Bt. Indeed, the pursuer is actually located on the closest

point projection onto ∂Bt, and it is useful to view p as guarding the expanding se-

quence of wavefronts ∂B1, ∂B2, . . . , ∂Bt. The rook’s strategy also controls a sequence

of advancing wavefronts. One advantage of rook’s strategy is that its wavefronts are

straight lines (or piecewise linear paths). This makes rook’s strategy a natural fit for

polygonal and polyhedral environments, where it can lead to simpler pursuit algorithms

than those employing lion’s strategy.
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3.1.6 Centered Rook’s Strategy

It may seem that rook’s strategy is only suited for rectilinear pursuit, since it is cru-

cial that the evader must “turn around” when it encounters the left or right boundary.

We can make rook’s strategy more powerful by expanding the wavefronts from a cen-

tral point similar to the lion’s strategy. This centered rook’s strategy will guard

wavefronts that bound a family of convex polygons (rather than regions with curved

boundaries).

Consider a pursuit-evasion game in a convex polygon S with capture radius r > 0.

Fix an offset 0 < τ ≤ min{r, 1/2}. Pick a center c ∈ S and let A be a convex polygon

such that maxx∈A d(c, x) = 1. We explain how p can guard a monotonically increasing

family of regions Ai = {bix | x ∈ A ∩ S} where b1 = 1 and bi+1 ≥ bi. We call bi

the radius of the guarded region. We use the closest point projection (which returns

consistent values, even when the evader circumnavigates Ai). Note that this projection

onto Ai partitions S into distinct areas, according to the pre-images of the vertices and

sides of Ai, see Fig. 3.7(a).

ℓ
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Wi1

Wi2

v

e1

e2

e3

p1

p2

p3ℓ
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Figure 3.7: The centered rook strategy. (a) The expanding wavefronts, and the pre-

images of the edges and vertices of polygon At centered at c. (b) Two progress events

are depicted. Suppose that the evader is currently at e1 and the pursuer is guarding W1

on the edge `. If the evader’s projection stays on ` the pursuer moves to p2 by rook’s

strategy. If the evader crosses the pre-image of v, the pursuer makes progress by moving

to p3.

The pursuer starts at c. On its first move, p moves to within τ of the closest point
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projection on A, so that it is now guarding A1 = A. Now, suppose that p currently

guards At. We claim that in finite time, the pursuer can increase the radius bt of the

guarded region by a constant amount. Suppose that the evader projection π(e) is on

side ` of At, so the evader is in the pre-image of `. See Fig. 3.7(b). If the evader never

leaves this pre-image, then the pursuer makes progress as in regular rook’s strategy.

Otherwise, the evader must step into (or through) the pre-image of a vertex of At. As

the evader crosses the pre-image of vertex v, its projection remains fixed on v. This

frees up part of the pursuer’s movement budget for progressing to the next wavefront

(Fig. 3.7(b)). For full details, see Chapter 5, Section 5.3.

We next present a more advanced technique called projection mapping, which is

used to guard shortest paths. Later in Chapter 5, we will see an application of shortest

path guarding in capturing the evader on the surface of a polyhedron.

3.1.7 Path Guarding and Projection Mappings

In this section, we describe how a shortest path can be guarded by a pursuer. This

capability turns out to be a powerful subroutine for solving the lion and man game. We

will use this idea in Chapter 5 to show capture on the surface of a polyhedron even in

the presence of obstacles. We start with a formal definition of guarding. Then, we show

how to use projection mappings to guard subregions.

Definition 1 (Guarding). A pursuer p guards a subregion Q when p can immediately

respond with a capture move whenever the evader e steps into or through Q.

Fig. 3.1(a) shows a guarding example, and also includes our first example of a

projection. Let Q = Π be a horizontal line segment connecting two boundary points.

For any point e ∈ S, let π(e) be the vertical projection of e onto Π. Basic geometry

shows that if e moves to a point e′ then d(π(e), π(e′)) ≤ d(e, e′). This means that if

p = π(e) then it can move to π(e′), so the pursuer can maintain this property indefinitely.

Furthermore, if e steps onto or across Π then p can respond with capture. In summary,

a pursuer positioned at π(e) can guard Π, restricting the evader to a subset of the

environment. Moreover, it is clear that a pursuer can achieve p = π(e) in finite time:

start at the left endpoint of Π and then walk rightward at full speed until reaching π(e).
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Figure 3.8: The closest point projection is illustrated in a simply connected polygon.

With this intuitive vertical projection in mind, we are now ready to consider some

more flexible projection mappings. We start with a general definition of a projection.

Simply put, the mapping π : S → Q is a projection provided that it is the identity map

on Q, and that the mapped points are as close or closer together as the original points.

Definition 2 (Projection). A projection π : S → Q is a function such that (1) if x ∈ Q
then π(x) = x, and (2) for all x, y ∈ S, we have dQ(π(x), π(y)) ≤ dS(x, y).

Suppose that the pursuer is located at p = π(e) ∈ Q where π : S → Q is a

projection. The previous argument for a vertical projection generalizes: the pursuer

can guard Q [38]. We describe two useful projections that are well-suited for more

complicated environments.

3.1.7.1 Closest Point Projections

Let S be a simply connected polygon. Given boundary points u, v ∈ ∂S, let Π be the

unique shortest path between them. Define the closest point projection ρ : S → Π to

be the mapping that takes x ∈ S to the point y ∈ Π that is closest to x, see Fig. 3.8.

The vertical projection above is just a special case of the closest point projection. As

in the square region, a pursuer can establish a guarding position on Π and maintain it

thereafter, trapping the evader in a sub-polygon.
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Figure 3.9: Two examples where the closest point mapping is not a projection mapping.

In these examples, the closest point is not unique. (a) In the first example, since Q1

is not convex, there are two points that are closest to e in Q1 (p1 and p2). (b) In the

second example, due to the obstacle in S \Q2, the point e has two closest points in Q2

(p3 and p4). Therefore, the evader can move such that its closest point moves faster.

Thus, the pursuer cannot stay on the closest point of the evader.

3.1.7.2 Path Projections

The situation changes once we introduce obstacles to the environment: the closest point

mapping becomes ill-defined when there are obstacles between e and Π, see Fig. 3.9.

Bhadauria et al. [38] introduced an alternate type of projection that is less intuitive, yet

robust in the presence of obstacles. Let a, b ∈ ∂S and let Π be a shortest (a, b)-path,

which we consider to be anchored at a. The path projection of the point x ∈ S is the

point y ∈ Π such that d(a, y) = d(a, x). If d(a, x) > d(a, b), then we simply define

π(x) = b. See Fig. 3.10 for an example. The path projection remains unique, even

when there are obstacles in the environment. A pursuer on the path projection π(e)

can guard Π, meaning that d(π(e), π(e′)) ≤ d(e, e′), and that the pursuer can capture

the evader whenever it crosses Π [38].
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Figure 3.10: The path projection anchored at a.

Verifying that a path projection satisfies d(π(x), π(y)) ≤ d(x, y) is straight-forward,

though there are multiple cases to consider depending on the distance of x, y ∈ S from

the anchor a. The validity of this projection means that a single pursuer can guard

a path and thereby restrict the sub-environment available to the evader, even in the

presence of obstacles.

So far we have discussed important concepts for capturing an adversarial evader

used in pursuit-evasion games. We will leverage these techniques in Chapters 4 and 5

where we study different versions of the lion and man game. Let us next discuss the

tools for solving probabilistic search problems: POMDPs and MOMDPs.
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3.2 Probabilistic Search

In this section, we present a description of Partially Observable Markov Processes

(POMDPs). We also discuss Mixed Observability Markov Decision Processes (MOMDPs),

which are special classes of POMDPs developed with the purpose of dealing with the

curse of dimensionality in POMDPs. Later in Chapter 6, we use these techniques to

design search strategies for finding a random walker.

3.2.1 Partially Observable Markov Decision Process (POMDP)

We start by a brief overview of Markov Decision Processes (MDPs) [66]. An MDP is

described by a tuple (S,A,T,R) where S is the set of possible states, A is the set of

actions, T is the probability of transitioning between the states as a result of performing

each action, and R is the reward collected for each transition. Here, T and R are

represented as matrices: The entries of the transition probability matrix T(si, sj , a)

represent the probability that the searcher transitions to state sj by performing action a

in state si. Similarly, the entries of the reward matrix R(si, sj , a) represent the transition

reward from state si to state sj after performing action a.

When some components of the state are not fully observable, we have a Partially

Observable Markov Decision Process (POMDP). Similar to MDPs, a POMDP is rep-

resented as a tuple (S,A,T,R,Z,O) where O is the set of observations, and Z is a

matrix with entries Z(o, s, a) that gives the conditional probability of observing o after

performing action a and moving to the state s.

The MDP and POMDP are used to formulate optimization problems where the goal

is to find an optimal policy, i.e., a sequence of actions, such that the cumulative reward of

the agent is maximized. In the case of probabilistic search problems, the goal is to find a

search strategy (policy) such that the capture probability is maximized. In Chapter 6,

we present the formulation of our random walker search problem as a POMDP: We

specify the state space as well as the reward function. We refer the interested reader

to [66, 67] for some well-known methods to solve for the optimal policy (such as value

iteration, policy iteration and reinforcement learning).

It is known that POMDPs suffer from curse of dimensionality, i.e., very large state

space [68]: When the underlying MDP has N states, the belief is in a N -dimensional
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space. One approach to overcome the issue is to use a sampling-based algorithm to find

the optimal policy instead of computing the best policy in the whole belief space [69,70].

A well-known point-based algorithm is SARSOP which stands for Successive Approxi-

mations of the Reachable Space under Optimal Policies [71, 72]. In this approach a set

of points are sampled from the belief space and these samples are used as an approxi-

mate representation of belief. Exploiting these samples, a belief tree is maintained with

the initial belief as the root node. Moreover, the subtrees that will never be visited

by the optimal policy are pruned out. In order to estimate the optimal value function

V ∗ a piece-wise linear lower bound V and also an upper bound V are maintained. To

improve these bounds, the algorithm applies Bellman backup operation until conver-

gence is achieved. For our purpose in Chapter 6, we use an implementation of the

SARSOP algorithm called Approximate POMDP Planning (APPL) toolkit which is

available in [73].

3.2.2 Mixed Observability Markov Decision Process (MOMDP)

An alternative approach to tackle the large state space of our problem is to formulate

the problem as a Mixed Observability MDP [58]. In this formulation, the state compo-

nents that are fully observable are separated from the ones that are partially observable.

As a result, the belief is maintained on a smaller set of variables, and the size of the

state space can be reduced significantly. More specifically, a MOMDP is specified as

a tuple (X,Y,A,O,Tx,Ty,R,Z) where X represents the set of fully observable compo-

nents, Y represents the set of partially observable components, and A,O are the set of

actions and observations respectively. The function Tx(x, y, a, x′) represents the prob-

ability that after taking action a in state (x, y) the fully observable state component x

makes a transition to the new value x′. Similarly, the function Ty(x, y, a, y′) gives the

probability that the partially observable component has the new value y′. The belief is

then represented as (x, by) where by is the belief defined only for the y component.

As an example, consider a probabilistic search problem on a graph. Suppose that

the searcher detects the target when both of them are on the same node of the graph.

In addition the players cannot observe each other’s location unless they are on the

same node. In this problem, the location of the searcher is fully observable while the

target’s location is the unobservable component. This search problem is formulated as a
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MOMDP in Chapter 6 taking advantage of the separation between the fully observable

and partially observable components of the state.

In this chapter, we covered the basic technical tools and the necessary background

to solve the lion and man game (pursuit-evasion games) and the random walker search

problem (probabilistic search problem). In the next chapter, we will discuss the lion

and man game with line-of-visibility. Then, we focus on the full-visibility variant of the

lion and man game in Chapter 5. The random walker search problem is presented in

Chapter 6.



Chapter 4

Pursuit-Evasion Games with

Limited-Visibility

Let us now start our detailed study of the search problem1. In the following two chapters,

we focus our attention on the adversarial search problem, i.e., pursuit-evasion games.

In this chapter, we study a version of the pursuit-evasion game with partial knowledge

of the evader’s location; in particular, when the pursuer has only line-of-sight vision.

That is, the pursuer can see the evader only if the line segment connecting them is free

of obstacles. This variant models robotics applications where the pursuer is a robot

equipped with a camera or a laser scanner. In the next chapter, we investigate different

pursuit-evasion games when the pursuer has complete knowledge of the evader’s location.

Our goal in this chapter is to design a pursuit strategy such that the pursuer can

capture the evader. Consequently, with the limited vision power, the pursuer has to first

find the evader when it disappears and then move toward the evader to capture it. We

show that despite this limitation, the pursuer can capture the evader in any monotone

polygon in finite time.

A simple polygon is called monotone with respect to a line l if for any line l′ per-

pendicular to l the intersection of the polygon with l′ is connected [74]. In this work,

without loss of generality we consider x-monotone polygons. For the pursuit-evasion

1 The material in this chapter appears in [12].

34
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game with visibility in monotone polygons, we present a pursuit strategy which suc-

cessfully combines search and capture and guarantees that the evader will be captured

after a finite number of steps.

In monotone polygons, merely searching for the evader is straightforward: the evader

can be found for example by moving along the shortest path that connects the leftmost

vertex to the rightmost vertex. This is because every point inside the polygon is visible

from a location on this path and the evader cannot move into a “cleared” region without

revealing itself.

Similarly, the capture strategy is simple when the pursuer knows the location of the

evader at all times: it can capture the evader by starting from the leftmost vertex OL

and performing the lion’s strategy (Chapter 3): that is to move toward the evader along

the shortest path that connects OL to the evader’s current location. The distance of the

pursuer from OL, defined as the length of the shortest path from OL to the pursuer’s

location, provides a natural notion of “progress” which is monotonically increasing in

this full visibility setting2.

What is not obvious is whether such progress can be maintained when the pursuer

has to search for the evader when it disappears. If the pursuer ends up retreating af-

ter a search, the evader might have a strategy in which the pursuer oscillates between

search and progress and the game can last forever. We show that this cannot happen.

In particular, we show that the pursuer can successfully combine search and making

progress toward capture in monotone polygons. Further, we show that search without

risking progress can be achieved with a deterministic strategy. We are not aware of any

other results which combine these two objectives for a single pursuer while providing

guarantees about the outcome of the game. The randomized strategy proposed for the

general simply connected polygons [75], where the pursuer guesses the hiding vertex

of the evader, provides exponential capture time3. In this work, however, we present

a deterministic pursuit strategy which reduces the capture time to a quantity that is

polynomial in the number of vertices and the diameter of the polygon. An interesting

feature of our strategy is that the pursuer’s distance from OL is not increasing mono-

tonically. Nevertheless, we show that the pursuer can push the evader further to the

2 This argument works in any simply connected polygon [75].
3 It is an open problem whether this bound is tight or not.
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right after a finite number of steps. To do this, we introduce a new measure of progress

for the pursuer which is more sophisticated than its distance from OL.

Our results provide a step toward understanding the pursuit-evasion game with

visibility constraints in general polygons. An important question is to find the class

of polygons in which a single pursuer suffices to capture the evader4 . We show that

monotone polygons are included in this class.

This chapter is organized as follows. In Section 4.1, we present a precise description

of the game model we use in this chapter as well as the notation throughout this chap-

ter. Section 4.2 provides an overview of the pursuit strategy. In Section 4.3, we present

the tools used to show that the strategy guarantees capture. An illustrative example

is presented in Section 4.4 where we give an example scenario to show the strategy in

action. The details of the pursuit strategy is presented in Section 4.5 and Section 4.6.

In particular, Section 4.5 covers the search component of the strategy to find the evader

when it is invisible, and Section 4.6 presents the strategy for actually making progress.

For each part of the strategy, we also present the complete algorithm in the form of

pseudocode. In particular, we provide the input configuration which describes the con-

ditions that must be satisfied before the pursuer starts the corresponding sub-strategy

as well as the exit configuration that the pursuer guarantees as it switches to the next

sub-strategy. We present the analysis of the capture time in Section 4.7. We present the

detailed proof of the technical lemmas as well as the properties of monotone polygons

in Section 4.8. The concluding remarks are discussed in Section 4.9.

4.1 Game Model and Notation

We now formally define the game. We refer to the pursuer’s and the evader’s location

at time-step t as p(t) and e(t) respectively. When the time is obvious from the context,

we use p and e. Our Game Model is as follows: (1) The players move alternately in

turns. (2) Each turn takes a unit time step. (3) In each turn the players can move

along a line segment of length at most one to a point visible to themselves. (4) The

evader has global visibility i.e. it knows the location of p at all time steps. However,

the pursuer sees the evader only if the line segment joining the two is not blocked by

4 It should also be noted that capture using only deterministic strategies remains an open question.
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the boundary of the polygon. Note that since p has a deterministic strategy, the evader

can simulate the pursuer’s moves and hence it knows the location of p at all time steps.

(5) The pursuer captures e if at any time, the distance between them is less than or

equal to one (the step-size) while p can see e, see Fig. 4.1(c).

Without loss of generality, we assume that the game takes place in an x-monotone

polygon Q. Recall that for an x-monotone polygon, the intersection of all vertical lines

with the polygon is a connected segment. The leftmost vertex and the rightmost vertex

are denoted by OL and OR respectively. The boundary of the polygon connects these

vertices by two x-monotone chains denoted by ChainL and ChainU , see Fig. 4.1(a).

OL OR

Π

ChainL

ChainU

p ~Xp

~Yp

(a)

e

e′

v

~r

I

p

p

(b)

epp

(c)

Figure 4.1: (a) An x-monotone polygon. (b) The pocket pocket(v, ~r) is the

shaded sub-polygon. (c) Since e is not visible, capture condition is not satisfied.

We refer to the segment between points u and v as uv. Whenever direction is also

important we refer to the ray pointing from u to v as ~uv. We define a local reference

frame whose origin coincides with p. Its axes ~Xp and ~Yp are parallel to the axes of the

reference frame, see Fig. 4.1(a). We refer to the boundary of Q as ∂Q, and the number

of vertices in Q as n. The shortest path between the two points u and v is denoted by

π(u, v), and the length of π(u, v) is denoted by d(u, v). The diameter of the polygon is

D = max u,v∈Q d(u, v). The shortest path tree rooted at the point o in Q is defined

as ∪v∈V π(o, v) where V denotes vertices of Q. For a point p inside the polygon, the

parent of p, denoted by parent(p), is the first vertex on the shortest path π(o, p) from

p to o. In the rest of the paper, we consider the shortest path tree rooted at o = OL.

We denote π(OL, OR) by Π (Fig. 4.1(a)). For simplicity we denote d(OL, p) by R(p) for

a point p ∈ Q.

Throughout the chapter, we refer to the x coordinate of a point p as x(p). Similarly,
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the y coordinate is denoted by y(p).

Suppose that it is the evader’s turn to move. See Fig. 4.1(b). Imagine that the

pursuer and the evader can see each other before the evader’s move but the evader

disappears behind a vertex v after moving to e′. Let ~r be a ray originating from p

and passing through v. Let I be the intersection of this ray with the polygon. The

sub-polygon which contains e and is bounded by the ray ~r plus the boundary of the

polygon from v to I is called a pocket [75]. The ray ~r is called the entrance of the pocket

and the pocket is referred to as pocket(v, ~r).

Remark 1. In the rest of the chapter, we refer to the pocket that the evader is hidden

inside of as pocket(v, ~r) (also the contaminated region) where ~r = ~pv and p is the

location of the pursuer at the time that the evader has disappeared behind the vertex v.

See Fig. 4.1(b).

We are now ready to present our capture strategy. We start with an overview of the

strategy discussing the main ideas.

4.2 Monotone Polygon Capture Strategy: Overview

In this section, we start with a high level description of the pursuer’s strategy. The

details of the strategy is provided in the following sections.

We start with an example which demonstrates the difficulty of designing capture

strategy for a pursuer that has limited vision power. Fig. 4.2 provides some intuition.

In this example, we also show the importance of pursuer’s notion of progress which is

required to prove that the proposed pursuer strategy will guarantee capture in finite

time. Suppose that the pursuer’s notion of progress is its x coordinate and moreover

let x(p) ≤ x(e) be the invariant that the pursuer tries to maintain. Therefore, if the

pursuer’s strategy guarantees that the x coordinate of p is increased after finite time,

the evader will be captured in finite time. Now, suppose that p is following e by lion’s

move with respect to OL and e disappears behind v in the shaded pocket. Hence p has

to search for e. A careless search strategy may result in losing the progress that p has

made so far as follows. If the pursuer first visits v2, then the evader hidden at v1 will

escape to v and re-enter the previously “cleared” region i.e. the set of points p such
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that x(p) ≤ x(p) defined by pursuer’s notion of progress. Likewise, if the pursuer first

visits v1, the evader hidden at v2 can re-contaminate the cleared region. Consequently,

the evader can hide in the same portion of the polygon infinitely many times and hence

avoid capture (against this naive pursuit strategy).

p

OL

OR

e e1

e2

v

v1

v2

~r

Figure 4.2: A difficult situation for p: e can re-contaminate the cleared region depend-

ing on how p enters the pocket.

We will present a pursuit strategy called Monotone Polygon Capture (MPC) strategy

which guarantees capture. In this strategy, we partition the monotone polygon into sub-

polygons called the critical sub-polygons. The pursuer clears these sub-polygons from

the left to the right. That is, p ensures that the evader cannot re-contaminate the

cleared portion and hence it will be captured.

The state diagram of the MPC strategy is given in Fig. 4.3, and a high level descrip-

tion is presented in Algorithm 1. The strategy consists of three states: Search, Guard

and Extended Lion’s Move denoted by S, G, and L respectively. Initially, p is at OL. It

starts by the S state if e is invisible, and the L state otherwise. Whenever e disappears,

p switches to the search state to find it.
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Figure 4.3: The state diagram for the MPC strategy. The sub-states in S and G are

shown at the bottom.

Algorithm 1: Monotone Polygon Capture Strategy

1 repeat

2 if e is invisible then

3 do Search strategy until e is found;

4 else if e is visible and p is not on π(OL, e) then

5 do Guard strategy until p is on π(OL, e), or e disappears;

6 else if e is visible and p is on π(OL, e) then

7 do Extended Lion’s Move strategy until e is captured, or e disappears;

end

until e is captured ;

When e is found as a result of the S strategy, the pursuer performs the guard strategy

in order to establish the extended lion’s move with respect to OL. Recall that p has to

be on π(OL, e) in order to be able to perform the extended lion’s move. Therefore in the

guard state p tries to catch up with π(OL, e) since p might not be on π(OL, e) at the time

that e is found. After p catches up with π(OL, e), the pursuer follows it by extended

lion’s move. During the lion’s move state or the guard state, e might disappear. At this

time p switches to the search strategy. The sequence of state transitions is ((SG)∗L)∗

and the loops (SG)∗ and L(SG)∗L are possible. In the following, we refer to the S state

and its following G state as the combined Search/Guard state i.e. (SG).

To prove that our proposed strategy guarantees capture, it is necessary to show that

these loops terminate after finite time. To do so, we define a reference vertex, denoted
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by pref , which is a vertex of the polygon. We show that p maintains the invariant that

e is to the “right” of pref at the beginning of a combined search/guard state (SG) or an

L state. The pursuer makes progress by updating pref to the “right” after finite number

of time steps. Consequently, the evader is confined in a smaller region and hence it will

be captured.

We define “right” of a vertex v as the half-plane to the right, below or above v

based on the structure of the monotone polygon. We denote the half-plane associated

with the vertex v by h(v). Figure 4.5 illustrates examples of these half-planes. Then,

the invariant is that the evader is forced to remain inside h(pref) at the beginning of a

combined search/guard state (SG) or an L state (otherwise it will be captured), and

the progress is to update pref to a new point p′ref such that p′ref ∈ h(pref).

It is worth emphasizing that the aforementioned invariant is guaranteed only at the

beginning of a (SG) state or an L state. During the guard state, the evader can exit

h(pref) and re-contaminate the region before pref . At this time, the pursuer switches to

the Vertical Guard or the Horizontal Guard sub-state in order to push e back to h(pref)

and recover its progress. See the state diagram in Fig. 4.3.

For ease of reference, we now list the terminology that is crucial in this chapter. We

will present the formal definition of these variables in the following sections.

• The reference vertex pref which is used to track the progress. The evader is guar-

anteed to be to the right of pref .

• Half-planes associated to a vertex v denoted by h(v) which denotes right of a

vertex v used to track progress.

• The auxiliary vertex denoted by paux, which we introduce in Section 4.6.2, is a

local variable used to track the progress.

Let us next present the details of the invariants and the pursuer’s notion of progress.

4.3 Definitions, Invariants and the Notion of Progress

The critical sub-polygons that partition the monotone polygon are defined as follows.
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Definition 4.3.1 (Critical Sub-polygons). Let Π be the shortest path from OL to OR

and denote the vertices on Π by {v0, ..., vi, ...}. Let si−1 be the slope of the edge vi−1vi

and δsi = si−si−1. Then, the critical vertices are those vertices on Π on which either s

or δs changes sign. For example, in Fig. 4.4, the vertices vi, vk and vj are the critical

vertices. For a critical vertex p = vi, we assign ~Yp if in p = vi, the values si and δsi

have different signs and ~Xp if they have the same signs. Then, each two consecutive

critical vertices, say vi and vk, define a critical sub-polygon given by the sub-polygon

formed by ∂Q and the rays assigned to vi and vk. See Fig. 4.4. Depending on the sign

of s and δs in the critical sub-polygons, we get four types of critical sub-polygons: Type

(1) when s < 0 and 0 < δs, Type (2) when 0 < s and 0 < δs, Type (3) when 0 < s and

δs < 0, Type (4) when s < 0 and δs < 0.

vk

vi−1

vj−1

vi

vj

vm

vl

ChainL

ChainU

Π

Figure 4.4: The path Π is shown in dots. The critical sub-polygon defined by vm and

vi is type 4, vi and vk is type 1, vk and vj is type 2, and vj and vl is type 3.

The critical sub-polygons allow us to enumerate all possible configurations between

p, e and the structure of P since our proposed strategy is symmetric in different types

of these critical sub-polygons.

Remark 2. Throughout the chapter, we present the strategy for the case that v, the

vertex that defines the hiding pocket pocket(v, ~r), is inside the 1st type critical sub-

polygons. The strategies for the other types are symmetric which we specify them in the

form of Remarks.
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Without loss of generality we assume that at the beginning of the search state

the pursuer is at v. This is possible because, after e disappears, the pursuer moves

toward v along the straight line pv until it reaches v. If in the meantime e appears, the

pursuer resumes the last state’s strategy, i.e. the G state or the L state. Note that all

preconditions of this state are still satisfied.

We now present an important property of Q, and then explain how the pursuer

makes progress. Let us first define the half-plane of a vertex.

Π

v

v

v

v

vv

v

v

Figure 4.5: Bottom) The dot path is Π. The half-planes associated to a vertex v. Top)

From left to right are types 1 to 4. The path Π and h(v) are shown.

Definition 4.3.2 (The half-plane of a vertex). For a vertex v ∈ Q, the open half-plane,

denoted by h(v), is defined as the set of points to the right of v if v is inside the 1st or

the 3rd type critical sub-polygons. For the 2nd type, h(v) is the half-plane above v i.e.

the points p with y(v) < y(p). Finally for the 4th type, h(v) is the half-plane below v

i.e. the points p with y(v) > y(p). The corresponding closed half-planes are denoted by

h[v]. See Fig. 4.5.

The following property of monotone polygons is crucial in this paper which we prove

in Section 4.8.1.

Property 4.3.3. Consider the critical sub-polygons defined in Definition 4.3.1. Let v

be any vertex in Q and refer to Fig. 4.5.
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• Suppose that v is inside a critical sub-polygon of the 1st type, v ∈ ChainU , and

the slope of the edge between parent(v) and v is negative. Then for all points

p ∈ h(v), we have R(v) < R(p).

• Suppose that v is inside a critical sub-polygon of the 3rd type, v ∈ ChainL, and the

slope of the edge between parent(v) and v is positive. Then for all points p ∈ h(v),

we have R(v) < R(p).

• Suppose that v is inside a critical sub-polygon of the 2nd type, v ∈ ChainU , and the

slope of the edge between parent(v) and v is positive. Then for all points p ∈ h(v),

we have R(v) < R(p).

• Suppose that v is inside a critical sub-polygon of the 4th type, v ∈ ChainL, and

the slope of the edge between parent(v) and v is negative. Then for all points

p ∈ h(v), we have R(v) < R(p).

The reference vertex pref : The invariant that the pursuer maintains and its notion

of progress are defined based on the vertex pref . Let v be the vertex that defines the

hiding pocket pocket(v, ~r). Initially pref = OL. The vertex pref is defined such that

v ∈ h[pref ] and pref ∈ ChainU . The pursuer updates pref at the beginning of an S state

which is after a G state (Section 4.6). Specifically, when v belongs to ChainU we have

pref = v. In case that v ∈ ChainL the vertex pref is set to another vertex from the upper

chain as explained in Section 4.6.1 and Section 4.6.2.

Remark 3. When p is sweeping the 3rd or the 4th type critical sub-polygons pref ∈
ChainL. Also in the 2nd type critical sub-polygon pref ∈ ChainU .

Next we present the invariants that p maintains during the game. At the beginning

of a combined search/guard state (SG) or an L state we have:

• Invariant (I1) e ∈ h(pref) and p ∈ h[pref ]. Consequently R(pref) ≤ R(p) and

R(pref) < R(e) (Property 4.3.3).

• Invariant (I2) whenever e is invisible, it is inside pocket(v, ~r) where v is the

leftmost vertex of pocket(v, ~r) and v ∈ h[pref ].
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The pursuer achieves one of the following notions of progress after a finite number

of time-steps. Consider two consecutive combined (SG) states, and let t and t′ be the

time-steps that p starts them correspondingly. Suppose that pref and p′ref are the old

and the new reference vertices at t and t′ respectively. Also let v and v′ be the old and

new vertices which define the pockets pocket(v, ~r) and pocket(v′, ~r′) respectively. Then:

• Progress (P1) either the pursuer updates pref to a new vertex p′ref so that p′ref ∈
h(pref) and consequently R(pref) < R(p′ref) (Property 4.3.3),

• Progress (P2) or pref remains the same and the pursuer updates the contami-

nated region pocket(v, ~r) to pocket(v′, ~r′) such that v′ ∈ h(v).

Our main result is the following theorem which we prove in Section 4.7:

Theorem 4.3.4. (Progress) Suppose that Q is a monotone polygon. Then the pursuer

by following the MPC strategy can capture the evader in O(D13n7) steps where n is the

number of vertices of Q and D is the diameter of Q.

4.4 An Illustrative Example

Let us present an example which illustrates the MPC strategy (Fig. 4.6). Initially p is

at OL, e is visible and pref = OL (Fig. 4.6(a)). Therefore, p can follow e by extended

lion’s move (Fig. 4.6(b)). This continues until e disappears behind the vertex v. The

pursuer moves toward v but in the meantime the evader also moves to an unknown

location inside pocket(v, ~r) say e5 (Fig. 4.6(c)). The pursuer updates pref to v since v,

the pocket vertex, is on the upper chain. It also switches to the search state and moves

along the dotted line in order to find e (Fig. 4.6(c)). By moving along this path the

pursuer finally finds e at p6 (Fig. 4.6(d)). Next, the pursuer switches to the guard state

in order to catch up with π(OL, e) and re-establish the extended lion’s move state. To

do so, it defines a vertex called paux which is inside h[pref ]
5 (Fig. 4.6(d)). Then, p moves

toward paux until e crosses the ray shot from p in direction of paux to p e.g. in p7 and

e7 (Fig. 4.6(e)). At this time, the pursuer follows e by lion’s move with respect to paux

(Fig. 4.6(e)). During this lion’s move the players cross the vertical line passing through

5 Note that paux can be the same as pref , but in this example they are different.
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paux to the left and enter the region (Q − h[paux]) (Fig. 4.6(e)). In other words, e re-

contaminates the region to the left of paux
6 . At this time, the pursuer switches to the

vertical guard sub-state in order to push the evader back to h(paux). The strategy in this

state ensures that the evader cannot enter the shaded region in Fig. 4.6(e). The pursuer

does this by performing the lion’s move with respect to c which is the center of the

circle that passes through p9 and I. The result is that p catches up with π(OL, e) inside

h(paux) ⊆ h(pref) after finite time (Fig. 4.6(f) at p10). Hence p can again follow e by the

extended lion’s move while it has pushed pref and e to the right. Similarly, the pursuer

keeps making progress by updating pref to the right and ensuring that e ∈ h(pref).

p1 = pref

e1 Π

vOL

I

(a)

e1 e4

p4 v

I

(b)

e5
p5

pref = v

I

(c)

e6

p6

pref = v

paux

I

(d)

e7

e9

p7
p9

c paux

I

(e)

e10p10

paux
pref

I

(f)

Figure 4.6: An instance of the game. The path Π is shown in dots. (a) Beginning of

the game. (b) p follows e by extended lion’s move. In the fourth time step the evader

hides behind v. (c) By the time that p arrives at v the evader has moved to e5. The

pursuer updates pref to v, and searches for e by moving along the dotted path. (d) The

pursuer finds e at p6. It defines paux and moves toward it. (e) As e crosses the line from

paux to p, the pursuer follows it by lion’s move with respect to the center paux (p7 and

e7). When e moves to the left of paux at e9, p follows it by lion’s move with respect to

c. (f) Finally, p reaches π(OL, e) and switches to extended lion’s move inside h(pref).

We now present the details of each state starting with the search component.

6 When paux = pref , this is equivalent to violating the invariant (I1).
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4.5 Search State

When e disappears, the pursuer performs the search strategy in order to find e. Suppose

that e is hidden inside pocket(v, ~r). At the time that e disappears behind v, the pursuer

walks toward the blocking vertex v. Hence without loss of generality we can assume

that at the beginning of the S state p is at v, the pocket vertex.

In order to find e, the pursuer moves along a path. The following observation ensures

that as long as this path is monotone in the x-axis direction, p finds e after finite time.

Observation 4.5.1. Let p1 and p2 be two points inside the polygon where x(p1) < x(p2)

and suppose that x(p1) < x(e). Suppose that the pursuer moves from p1 to p2 along any

(continuous) arbitrary path. Then, if the pursuer reaches p2 and the evader is still

invisible, it must be that x(p2) < x(e). Otherwise if e becomes visible before the pursuer

reaches p2, then at the time that e is found it must be that x(p) < x(e).

Let us refer to the path that the pursuer moves along in order to find the evader

as the search path. The search path consists of two types of paths, the α-path and the

step-path. Intuitively, the α-path periodically touches the upper chain while the step-

path touches the lower chain7 . The pursuer uses these touching points as landmarks

that it has to prevent the evader from re-contaminating the region to the left of those

landmarks. In fact, the reference vertex pref is set to these landmarks in some cases. As

we will see shortly, the search path is composed of horizontal lines, vertical lines and

lines with negative slope. An example is depicted in Fig. 4.6(c). The pursuer exploits

this slope in order to guarantee progress in the situations that the evader forces the

pursuer to retreat to the left of the landmarks. For example, in Fig. 4.6(e), if this slope

was zero, i.e. p7 was at the same y-coordinate as the landmark paux, and the evader

has disappeared below the pursuer e.g. at e7, then the pursuer had to retreat along the

horizontal line all the way back to I without making any progress. However, the slope

provides a lower bound on the distance between the pursuer and the landmark paux at

p9 which translates into guaranteed progress.

In the following, we will first present the definition of the α-path and the step-path,

and afterwards we explain how the search path is built from them.

7 This is when p is inside the first type critical sub-polygons. We explain the modifications required
for other types in Remark 4.
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We define the α-segments as follows. The segments that make angle −α with the

x-axis are called the α-segments. As we will see in Section 4.6.3, the angle α is used to

bound the time spent in the G state.

Definition 4.5.2. The angle α is chosen as the minimum of the two angles ψ1 =

arcsin 1
D and ψ2 = (π2 − 2 arctan 1

2) where D is the diameter of the polygon.

α-segment

ChainU

v e1

e2

I1

I2

(a)

ChainL
e′1

I2

e′2 u2

I2

(b)

Π

u2

v

e2

I2

(c)

ChainU

ChainL

v
e3
I1

I2

(d)

Figure 4.7: The search path is shown in dots. The path Π is shown in dashed

line. (a) A single α-step. The portion of the search path from v to e2 is one

α-step. (b) A single step. The portion of the search path from I2 to u2 is one

step. Note that I2 is the floor point. (c) Two α-steps and two steps are shown.

(d) When v, the pocket vertex, is from the lower chain, the search path starts

by the step-path.

The α-steps and the α-path: The α-path is composed of a number of α-steps.

A single α-step is composed of an α-segment followed by a vertical segment and then

another α-segment. For example, in Fig. 4.7(a) the portion of the search path from

v to e2 is an α-step. More specifically, let e = e1e2 be the edge on ∂P that the first

α-segment intersects and let I1 be the point of intersection. The edge e can be either

on ChainU or ChainL.

If e ∈ ChainU , then the α-step continues along the vertical segment passing through

I1 until this segment intersects the α-segment passing through e2. The α-step then

continues along this α-segment until it reaches e2. We refer to this part of the search

path from v to e2 as a single α-step (Fig. 4.7(a)).

If e ∈ ChainL then the α-step will be followed by the step-path described below. See

Fig. 4.7(b). In summary, the search path continues along a number of α-steps, which

together are called the α-path, until it hits the lower chain in which case it continues

along the step-path. See Fig. 4.7(c).
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The steps and the step-path: The step-path can be divided into a number of

steps. A single step is composed of a vertical segment followed by a horizontal segment.

For example, in Fig. 4.7(b), the portion of the search path from I2 to u2 is one step.

Detailed definition of an step is the following. Let e2I2 be the α-segment from the α-path

that intersects the lower chain (Fig. 4.7(c)). Also, let e′ = e′1e
′
2 be the corresponding

edge on ChainL (Fig. 4.7(b)). Then e2 is called the ceiling point and I2 is called the

floor point. The step-path starts at the floor point I2, continues along the vertical line

passing through I2 until this vertical line intersects the horizontal line passing through

e′2 and then continues along this horizontal line until it hits ∂P at u2. This portion of

the search path from I2 to u2 is referred to as a single step (Fig. 4.7(c)).

The search path: Finally, the search path is composed of the α-path and the

step-path as follows. If v ∈ ChainU , the search path starts by the α-path, otherwise

if v ∈ ChainL, it starts by the step-path. See Fig. 4.7 parts (c) and (d) respectively.

Suppose that v ∈ ChainU . Then, the search path continues along the α-path until it

hits the lower chain. As it hits the lower chain it continues along the step-path until

it hits the upper chain in which case it continues again along the α-path, and so on.

This switch between the step-path and the α-path is depicted in the state diagram of

Fig. 4.3. As an example, note that in Fig. 4.7(d) from v to I1 we have the step-path

and after e3 we have the α-path.

Remark 4. The general rule for the search path for other types of critical sub-polygons

is as follows. The 1st and the 3rd types include both the step-path and the α-path with

angles −α and +α respectively. The 2nd and the 4th types only have the step-path. The

direction traveled parallel to the y-axis during the step-path and the α-path, is the same

as the sign of δs and the sign of s respectively (i.e. positive sign means upward, negative

sign means downward).

Lemma 4.5.3. The pursuer finds e after at most O(nD) steps where n is the number of

vertices of the polygon and D is the diameter of the polygon. Moreover, at the time that

the evader is found we have x(v) ≤ x(p) < x(e) where v is the pocket vertex. Therefore,

at the end of the search state we have p ∈ h[pref ] and e ∈ h(pref).

Proof. We first bound the length of the search path that will be used to search the whole

polygon. Consider the smallest bounding box that encompasses the polygon. Let H and
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W denote the height and the width of this bounding box respectively. According to the

triangle inequality theorem, the length of the search path is less than the displacement

of p along the x-axis and the y-axis as the pursuer moves along the search path. First,

the total displacement along the x-axis is less than W since the x coordinate of the

points on the search path never decreases. Second, associated with each vertex, the

search path traverses in the direction of the y-axis at most once upward and at most

once downward (Fig. 4.7(d)). Therefore, the total displacement along the y-axis is 2nH.

Thus, the length of the search path is less than W + 2nH = O(nD).

According to Observation 4.5.1, at the time that e is found x(v) ≤ x(p) < x(e)

since the x coordinate of p is increasing as it moves along the search path and at the

beginning of the search state p is at v. Consequently, we have p ∈ h[pref ] and e ∈ h(pref)

since v ∈ h[pref ] (invariant (I2)).

4.6 Guard State

After p finds e, it starts the Guard state. The purpose of the guard strategy is to

establish the extended lion’s move. The extended lion’s move is possible only when p

is on π(OL, e). Therefore, in the guard state the pursuer has to reach π(OL, e). In the

meantime, th evader is also moving and thus the pursuer has to preserve the progress

it made so far.

At the beginning of the guard state we have x(p) < x(e) (Lemma 4.5.3, ). At

this time, based on the quadrant that e has appeared in, the pursuer starts different

sub-states, either the zig-zag guard strategy or the simple guard strategy as shown in

Algorithm 2 and the state diagram of Fig. 4.3.

1. If at the beginning of the G state, e is inside the fourth quadrant of p (lines 1-5

in Algorithm 2): the pursuer performs the zig-zag guard strategy.

2. Otherwise, if e is inside the first quadrant of p (lines 6-11 in Algorithm 2): the

pursuer starts by simple guard sub-state.

Let pref be the current reference vertex used for tracking progress. The pursuer’s

ultimate goal is to maintain the invariant and the notion of progress. That is to ensure

that e is to the right of pref i.e. inside h(pref). However, during zig-zag guard sub-state
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and simple guard sub-state, the evader can re-contaminate the region to the left of pref

i.e. the region (Q − h[pref ]). The evader does this by crossing the vertical line passing

through pref to the left, and entering (Q−h[pref ]). See line 5 and line 11 in Algorithm 2.

This violates the invariant (I1). At this time, the pursuer switches to the vertical guard

sub-state in order to push the evader back to the right of pref (line 24 in Algorithm 2).

Hence at the end of the vertical guard state the invariant (I1) will be re-established.

At the end of the guard state, as the pursuer switches to the next state, it guarantees

progress (P1) or (P2). Specifically, if progress (P1) is achieved the pursuer updates the

reference vertex pref . See lines 15- 21. We show that the new reference vertex p′ref

is inside h(pref) and so the evader is pushed further to the right since the invariant

e ∈ h(p′ref) is also valid (Lemma 4.6.1 and Lemma 4.6.2). We proceed by presenting the

details of each sub-state, the zig-zag guard, the simple guard and the vertical guard.

Remark 5. If at the beginning of the G state, the players are inside a critical sub-

polygon of the 2nd type, the 3rd type or the 4th type, then:

1. if they are inside the 2nd type (or the 4th type) critical sub-polygon: p always starts

by zig-zag guard sub-state. During zig-zag guard, the pursuer might retreat beyond

pref in which case the pursuer switches to the horizontal guard sub-state, similar

to the vertical guard, in order to recover its progress.

2. If they are inside the 3rd type critical sub-polygon: the pursuer starts by zig-zag

guard if e has appeared inside the first quadrant of p. Otherwise, if e has appeared

inside the fourth quadrant, the pursuer starts by simple guard. Similar to the

previous case, during zig-zag guard or simple guard, the pursuer might retreat

beyond pref in which case it switches to the vertical guard sub-state.
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Algorithm 2: Guard Strategy
Input Configuration: The evader is visible while x(v) ≤ x(p) < x(e) (v is the pocket vertex).

Exit Configuration : One of the following two configurations: (1) pursuer is on π(OL, e)

while p ∈ h[pref ] and e ∈ h(pref), or (2) evader disappears inside h(pref).

The sub-states : The Zig-zag Guard sub-state, the Simple Guard sub-state, and the

Vertical Guard sub-state. Also the horizontal guard sub-state when the

pursuer is inside the 2nd or the 4th type critical sub-polygon.

1 if y(p) > y(e) then

2 state← ZigZagGuard;

3 lv = ~Ypref ;

4 do Zig-zag Guard strategy ;

5 /* The zigzag guard ends up in one of the following configurations: (1) The

pursuer is on π(OL, e) while p ∈ h[pref ] and e ∈ h(pref), (2) The evader

disappears inside h(pref), or (3) x(p) = x(e) = x(pref), y(e) < y(p) ≤ y(pref),

and e is crossing lv to the left. */

6 else

7 state← SimpleGuard;

8 define paux ∈ h[pref ] as explained in Section 4.6.2;

9 lv = ~Ypaux ;

10 do Simple Guard strategy ;

11 /* The simple guard ends up in one of the following configurations: (1) p is

on π(OL, e) while p ∈ h[paux] and e ∈ h(paux), or (2) e disappears inside

h(paux), or (3) x(p) = x(e) = x(paux), y(e) < y(p) ≤ y(paux), and e is crossing lv

to the left. */

/* next state after p exits the zig-zag guard state or the simple guard state. */

12 if p is on π(OL, e) then

13 do Extended Lion’s Move strategy

14 else if e has disappeared then

/* update pref */

15 Let v′ be the vertex that e has disappeared behind;

16 if state = ZigZagGuard and v′ ∈ ChainU then

17 pref ← v′;

18 else if state = SimpleGuard and v′ ∈ ChainU then

19 pref ← v′;

20 else if state = SimpleGuard and v′ ∈ ChainL then

21 pref ← paux;

22 do Search strategy

23 else if x(p) = x(e) and e is crossing lv to the left then

24 do Vertical Guard strategy;

25 /* The vertical guard ends up in one of the following two configurations:

(1) The pursuer is on π(OL, e) while p ∈ h[pref ] and e ∈ h(pref), (2) The evader

disappears inside h(pref). */
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4.6.1 Zig-Zag Guard

After finding the evader, p switches to the zig-zag guard sub-state if e is inside the fourth

quadrant of p. The goal of this state is to establish the extended lion’s move state while

the invariants and the notions of progress are maintained. The Zig-Zag Guard strategy

is shown in Algorithm 3.

Algorithm 3: Zig-zag Guard Strategy
Input Configuration: The evader is visible while x(v) ≤ x(p) < x(e) and y(p) > y(e). Here, v

is the pocket vertex.

Exit Configuration : One of the following three configurations: (1) The pursuer is on

π(OL, e) while p ∈ h[pref ] and e ∈ h(pref), (2) The evader disappears

inside h(pref), or (3) x(p) = x(e) = x(pref), y(e) < y(p) ≤ y(pref), and e

is crossing lv = ~Ypref to the left.

1 repeat

2 if x(p) < x(e) then

if p is below π(OL, e) then

3 move in the positive ~y direction

else if p is above π(OL, e) then

4 move in the negative ~y direction

else

5 move in the negative ~x direction;

end

until (1) The pursuer catches up with π(OL, e), (2) The evader disappears, or (3)

x(p) = x(e) = x(pref), y(e) < y(p) ≤ y(pref), and e is crossing lv = ~Ypref to the left ;

In order to establish the extended lion’s move state, the pursuer moves toward

π(OL, e) along the x-axis or the y-axis: if x(p) < x(e), the pursuer moves parallel to

the ~y-axis. Otherwise, if e moves to a point which is to the left of p, then p moves in

the negative ~x direction. We show that by following these zig-zag moves the evader will

remain inside the fourth quadrant of p (Lemma 4.6.1). See Fig. 4.8 and Fig. 4.9(a).

Let pref be the current reference vertex used for tracking progress. According to

the invariants, the pursuer must ensure that e is to the right of pref . However, in the

strategy described above, e can force p to move along the negative x-axis direction.

Therefore, the evader can re-contaminate the region to the left of pref . That is it crosses

the vertical line passing through pref to the left, and enters the region (Q − h[pref ]).
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This violates the invariant (I1). See Fig. 4.9(a). Also note that this is the third exit

configuration in Algorithm 3. At this time, the pursuer switches to the vertical guard

strategy. The vertical guard strategy (presented in section 4.6.3) ensures that the evader

will be pushed back to the right of pref and hence the invariant and the progress are

recovered. In the following lemma we show that the invariants are maintained as p exits

the zig-zag guard state. This lemma also presents the progress that p gains at the end

of zig-zag guard state.

Lemma 4.6.1 (Zig-zag guard progress). When the pursuer exits the zig-zag guard sub-

state, the players are in one of the following three configurations:

• The pursuer is on π(OL, e) while p ∈ h[pref ] and e ∈ h(pref).

• The evader disappears inside h(pref).

• x(p) = x(e) = x(pref), y(e) < y(p) ≤ y(pref), and e is crossing lv = ~Ypref to the

left.

For each of these configurations, the pursuer achieves the following notions of progress

correspondingly:

• the pursuer switches to the L state while R(pref) ≤ R(p) < R(e)

• the pursuer switches to the S state while progress (P1) or (P2) is guaranteed.

• the pursuer switches to the vertical guard sub-state.
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Figure 4.8: The zig-zag guard strategy. (a) When x(p) < x(e) and p is above π(OL, e).

(b) When x(p) = x(e) and p is above π(OL, e). (c) When x(p) < x(e) and p is below

π(OL, e).

Proof. Let p0 and e0 be the positions of p and e at the beginning of the zig-zag guard.

Observe that parent(p0) is in the second quadrant of p0 (Lemma 4.8.3). Now consider

the funnel [76] formed by π(OL, e) and π(OL, p). Let d be the deepest common vertex

between these two paths. The shortest path to all points inside this funnel starts by

π(OL, d) and then continues inside the funnel. Observe that as emoves, π(OL, e) changes

continuously. See Fig. 4.8.

Suppose that p is below π(OL, e) (Fig. 4.8(c)). Then p is getting closer to π(OL, e)

just by moving in the positive ~y direction. Note that the slope of the edge between p and

parent(p) is negative (Lemma 4.8.3). Hence, if the evader tries to cross ~Yp to the left,

p will be on π(OL, e) and thus it can switch to the L state. Therefore, e has to remain

inside the fourth quadrant of p until one of the following happens: (1) p is on π(OL, e),

(2) the evader disappears. Now, let v be the pocket vertex that the pursuer searched

right before this zig-zag guard state. According to Lemma 4.5.3, x(v) ≤ x(p). Also,

according to the invariant (I2) we have v ∈ h[pref ]. Thus, p ∈ h[pref ] and e ∈ h(pref).

Hence, invariant (I1) is valid at the end of zig-zag guard state.

Similarly, if the pursuer is above π(OL, e) it moves in the negative ~y direction when

x(p) < x(e), and then to the left, i.e. in the negative ~x direction, at the moment

that x(p) = x(e). See Fig. 4.8 parts (a) and (b), also Fig. 4.9(a). These zig-zag moves

continue until (1) the pursuer is on π(OL, e), (2) the evader disappears, or (3) the players

cross ~Ypref to the left (Fig. 4.9(b)). At the time that each of these happen, the players
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are inside h(pref) and thus invariant (I1) is valid.

Next let us consider invariant (I2) that the pocket vertex is inside h[pref ]. Initially,

pref = OL. Thus, the invariant holds. According to the above argument, as the game

proceeds to zig-zag guard state the invariant is still valid since when e disappears it is

inside h(pref). Therefore, using induction on time we can prove that the pocket vertex

is inside h[pref ].

So far we have shown that the invariants (I1) and (I2) are maintained. Next, let

us consider the pursuer’s progress. As discussed above, the pursuer finishes the zig-zag

guard state when it reaches π(OL, e), or when the evader disappears, or when the players

move to the left of pref . In the first case, since p is on π(OL, e) we have R(p) < R(e).

Also, since p ∈ h[pref ] we have R(pref) ≤ R(p) < R(e).

Now consider the case that the evader disappears. Let v′ be the new pocket vertex

that e disappears behind, and v be the pocket vertex that was used right before this

zig-zag guard state. Also, let pref be the reference vertex at the beginning of this zig-zag

guard state, and p′ref be the new reference vertex at the end of this state.

1. v ∈ ChainL: suppose that at the beginning of the zig-zag guard the pursuer was

below π(OL, e). Then, v′ ∈ h(v) since p is only moving upward. If v′ ∈ ChainL
we do not update pref but we have v′ ∈ h(v) (Progress (P2)). Otherwise, if

v′ ∈ ChainU we set p′ref to v′. Since p′ref = v′ ∈ h(v) and v ∈ h[pref ] (Invariant

(I2)), we have R(pref) < R(p′ref) (Property 4.3.3) and hence we have Progress (P1).

Next, suppose that at the beginning of zig-zag guard the pursuer was above

π(OL, e). Since e remains inside the fourth quadrant of p, v ∈ ChainL, and p

is moving downward and to the left, e cannot cross v to the left. Hence, v′ is also

in the fourth quadrant of v. If v′ ∈ ChainL we do not update pref but we have

v′ ∈ h(v) (Progress (P2)). Otherwise, if v′ ∈ ChainU we set p′ref to v′. Since

p′ref ∈ h(v) ⊆ h(pref) we have Progress (P1).

2. v ∈ ChainU : then pref = v. As we showed above, whether p is initially below or

above π(OL, e), the evader disappears inside h(pref). Similar to the previous case,

if v′ ∈ ChainL we have v′ ∈ h(pref = v) (Progress (P2)), and if v′ ∈ ChainU we

set p′ref to v′ and we have Progress (P1).
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In summary, if e disappears during zig-zag guard state, the pursuer updates pref to

v′ when v′ ∈ ChainU and achieves progress (P1) (line 17 in Algorithm 2). Otherwise,

if v′ ∈ ChainL the pursuer achieves progress (P2).
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e1
e3

(a)
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lv
c

I
p1
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e3
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p′2 p3

e′2
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Figure 4.9: The zig-zag guard followed by the vertical guard . The path Π is

shown in dots. (a) The zig-zag moves. (b) If e moves to the left of pref , the

pursuer follows it by lion’s move with respect to c. (c) Afterwards, if e moves

to the right of pref , the pursuer performs the lion’s move with respect to pref .

(d) Finally, p will be on π(OL, e) inside h(pref).

4.6.2 Simple Guard

After finding the evader, p switches to the simple guard sub-state if e is inside the

first quadrant of p. The main goal of the pursuer is to reach π(OL, e) so it can start

the extended lion’s move state. Since the evader can disappear in the meantime, this

translates to establishing the next state which could be the search state or the extended

lion’s move state while the invariants and the notions of progress are maintained. The

Simple Guard strategy is presented in Algorithm 4.

The general idea for the pursuer’s strategy is the following. See Fig. 4.10, and let

pref be the current reference vertex used for tracking progress. Let v be the vertex

that defines the contaminated pocket right before this guard state. When the pursuer

starts the simple guard state we have x(v) ≤ x(p) < x(e) (the exit configuration of the
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search state). Therefore at this time, p is to the right of pref i.e. inside h[pref ] since

v ∈ h[pref ] (Invariant (I2)). Now let p0 be the location of the pursuer at the beginning

of the simple guard state. The pursuer moves back toward the vertex pref along the line

segment that connects p0 to pref (p1 in Fig. 4.10(a)). It continues moving toward pref

until it reaches pref , or e crosses the ray shot from p in the direction of pref to p (p2 and

e2 in Fig. 4.10(b)). In both of these cases, p follows e by lion’s move with respect to

the center pref . The pursuer continues with this lion’s move until one of the following

configurations hold: 1) either p reaches π(OL, e) while it is inside h(pref), 2) or e moves

to the region which is to the left of pref i.e. it crosses the vertical line which passes

through pref to the left and re-contaminates h(pref). See p3 and e3 in Fig. 4.10(b).

In the former case, when the pursuer catches up with π(OL, p), it switches to the

extended lion’s move state, and since it is inside h(pref) the invariant (I1) is maintained.

In the latter case, when e moves to the left of pref , invariant (I1) is violated. At this

time, the pursuer switches to the next state which is called the vertical guard state in

order to push the evader back to the right of pref , and re-establish invariant (I1). The

vertical guard strategy, presented in section 4.6.3, guarantees that the pursuer reaches

π(OL, e) inside h(pref) and therefore is ready for the extended lion’s move state while

invariant (I1) holds.

The simple guard strategy described above has two subtle points. First, pref must

be visible to p0 so that p can move along the segment that connects pref to p0. However,

it might be the case that pref is not visible to p0 since p0 is the location of the pursuer

at the time that p has found e. Therefore, we define an auxiliary vertex, referred to as

paux, so that it is visible to p0 and moreover paux ∈ h[pref ]. The pursuer performs the

aforementioned strategy with respect to paux i.e. it moves toward paux and the rest of

the strategy. Since the simple guard strategy ensures that in the next state the players

are inside h(paux), and because paux ∈ h[pref ] the invariant (I1) is maintained.
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Figure 4.10: The Simple Guard. (a) p moves toward pref . (b) As e crosses the ray

from p to p0, p performs lion’s move w.r.t. pref (p2 and e2). If during this lion’s move e

enters the region to the left of pref , the pursuer switches to the vertical guard sub-state

e.g. p3 and e3. (c) If e hides inside pocket(v′, ~r′), p moves toward v′ if v′ ∈ ChainL, (d)

otherwise if v′ ∈ ChainU it continues moving toward pref and then from there it moves

toward v′. Note that here, as the pursuer keeps moving back to pref , the new pocket

formed by the ray connecting p to v′, includes the initial hiding pocket pocket(v′, ~r′).

Also in this example paux = pref .

The second important part of the strategy is that p0 must be closer to all points on

the segment between p0 and paux than the evader so that p can prevent e from crossing

this segment and thus escaping to the cleared region (Q − h[pref ]). Notice that if the

pursuer does not prevent this type of re-contamination the evader will be above the

pursuer i.e. y(p) < y(e). Therefore p cannot force e back to h(pref) by performing the

vertical guard strategy as it does when y(p) > y(e) (we will see in section 4.6.3 that one

of the conditions that p is allowed to perform the vertical guard sub-state is y(p) > y(e)).

Instead the pursuer prevents this situation by guaranteeing that it is closer to all points

on the segment between p0 and paux. This, in addition to the capture condition that e

will be captured if its distance to p is less than one unit, ensures that e will be captured

if it tries to cross the segment between paux and p. Finally, the pursuer ensures that it

is closer to p0 by guaranteeing that the angle between the aforementioned segment and

the x-axis is less than or equal to α (Lemma 4.8.6).

An illustrative example of the auxiliary vertex paux is shown in Fig. 4.11(a). The

interested reader is referred to the Appendix, Section 4.8.3, for the definition of the

auxiliary vertex paux based on the structure of the polygon and the location of the

pursuer.
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Lemma 4.6.2 (Simple guard progress). When the pursuer exits the simple guard sub-

state, the players are in one of the following three configurations:

• The pursuer is on π(OL, e) while p ∈ h[paux] and e ∈ h(paux).

• The evader disappears inside h(paux).

• x(p) = x(e) = x(paux), y(e) < y(p) ≤ y(paux), and e is crossing lv = ~Ypaux to the

left.

For each of these configurations, the pursuer achieves the following notions of progress

correspondingly:

• the pursuer switches to the L state while R(pref) ≤ R(paux) ≤ R(p) < R(e)

• the pursuer switches to the S state while progress (P1) or (P2) is guaranteed.

• the pursuer switches to the vertical guard sub-state.

Proof. From the description above, the exit configuration of simple guard is one of the

following: (1) the L state inside h(paux), (2) the S state inside h(paux), or (3) vertical

guard while the player are crossing lv to the left. In case of the L state, since paux ∈
h[pref ] we would have R(pref) ≤ R(paux) ≤ R(p) < R(e).

In case of the S state, let v′ be the new pocket vertex. Then v′ ∈ h(paux) ⊆ h(pref).

Therefore, the invariant (I2) is valid.

Next, let us consider the progress. Let p′ref denote the new reference vertex that is

updated in this guard state. If v′ ∈ ChainU we set p′ref to v′. Since p′ref = v′ ∈ h(pref)

we have R(pref) < R(p′ref) (Property 4.3.3) and hence we have Progress (P1).

If v′ ∈ ChainL we update pref to paux. Note that paux can be the same as pref .

However, we show that v′ ∈ h(v). Suppose that v ∈ ChainL and paux is to the left

of v. The remaining situations are similar. Now if v′ /∈ h(v), the pocket pocket(v′, ~r′)

defined by v′ will be a simple pocket and thus by performing the simple pocket strategy

(section 4.8.5) the pursuer can force the evader to exit pocket(v′, ~r′) and continue the

simple pocket strategy. See Fig. 4.13(a) for an illustration.
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The complete description of simple guard strategy is given in Algorithm 4. Notice

that when the evader disappears while p is moving back toward pref , the pursuer’s

reaction depends on whether the hiding vertex v′ is from ChainL or ChainU (lines 12-

16 in Algorithm 4). An example is shown in Fig. 4.10(c) parts (c) and (d). When

v′ ∈ ChainL, the pursuer moves toward v′ until it reaches v′ at which time it switches

to the S state (p4 and e4 in Fig. 4.10(c)). When v′ ∈ ChainU , the pursuer continues

moving back toward pref and if in the meantime e crosses −→ray (line 3) the pursuer

performs the same strategy from line 5.3.6. In the following, we briefly explain the

reason that p must make distinction between v′ ∈ ChainL and v′ ∈ ChainU :

• v′ ∈ ChainL: in this case, if the pursuer keeps moving back toward pref , it cannot

keep track of the hiding vertex v′. For example, in Fig. 4.11(c), at the time that

e disappears, p defines the hiding pocket with respect to v′ = v1. If p continues

moving back toward pref , at p2 the hiding pocket with respect to v1 doesn’t include

e (Fig. 4.11(d)). In other words, p cannot keep track of the hiding vertex v′.

• v′ ∈ ChainU : in this case x(v′) can be less than x(p). Therefore, if the pursuer

moves toward v′ the evader can cross the segment between pref and p (Fig. 4.11(b))

and thus it escapes to the previously cleared region.
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Algorithm 4: Simple Guard Strategy

Input Configuration: The evader is visible while x(v) ≤ x(p) < x(e) and y(p) < y(e).

Here, v is the pocket vertex.

Exit Configuration : One of the following three configurations: (1) The pursuer is on

π(OL, e) while p ∈ h[paux] and e ∈ h(paux), (2) The evader

disappears inside h(paux), or (3) x(p) = x(e) = x(paux),

y(e) < y(p) ≤ y(paux), and e is crossing lv = ~Ypaux
to the left.

1 define paux as explained in section 4.6.2;

2 let p0 be the location of e at the beginning of the simple guard;

3 let −→ray be the ray shot from p in the direction of paux to p0;

4 repeat

5 move toward paux along the segment p0paux;

until e crosses −→ray, or e disappears, or p reaches paux;

6 if e has crossed −→ray, or p has reached paux then

7 if e has crossed −→ray, or p has reached paux and e is visible then

8 repeat

9 do lion’s move with respect to the center paux;

until p is on π(OL, e), or e disappears, or x(p) = x(e) = x(paux) and e is

crossing lv = ~Ypaux to the left ;

10 else if p has reached paux and e is hidden behind v′ inside pocket(v′, ~r′) then

11 move toward v′;

end

12 else if e has disappeared behind v′ inside pocket(v′, ~r′) then

/* p is not at paux yet. */

13 if v′ ∈ ChainL then

14 move toward v′ until p is at v′;

15 else if v′ ∈ ChainU then

16 continue moving toward paux and the rest of the strategy at line 5.3.6;

17 in the meantime keep track of the hiding vertex v′;

end

end
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Figure 4.11: (a) An example of paux. (b), (c) and (d) Examples when e

disappears behind a vertex, namely v′, during simple guard. The pursuer has

to make distinction between v′ ∈ ChainU and v′ ∈ ChainL, otherwise e can

escape. Refer to the text.

4.6.3 Vertical Guard

The vertical guard strategy is presented in Algorithm 5. The pursuer switches to the

vertical guard sub-state from either the zig-zag guard sub-state or the simple guard

sub-state. See Fig. 4.3. Let pref be the current reference vertex used for tracking the

progress. The condition for state transition to the vertical guard sub-state is when the

evader re-contaminates the region to the left of pref i.e. it enters the region P − h[pref ]

and violates the invariant (I1). Since h(pref) is defined as the set of points to the right of

pref
8, this condition is in fact when x(p) = x(e) = x(pref), y(e) < y(p) ≤ y(pref) and e is

moving to the left of pref . Let lv denote the line ~Ypref . Then, the pursuer switches to the

vertical guard state when e crosses lv to the left. The goal of the vertical guard strategy

is to push the evader back to the right of pref and hence re-establish the invariant (I1).

The vertical guard strategy is composed of two parts: lion’s move with respect to

a center c (which we define soon) and lion’s move with respect to the center pref . The

pursuer uses c as the center for the lion’s move if e crosses lv to the left. It also uses pref

as the center for lion’s move if e crosses lv to the right. The role of the circle centered

at c is to push e back to the right of pref (inside h(pref)) and re-establish the invariant

(I1). The role of the other circle centered at pref is to force e to cross the ray connecting

parent(pref) to pref and hence to establish the extended lion’s move state. See Fig. 4.9.

The vertical guard strategy is as follows, see Fig. 4.9:

8 Inside the first type critical sub-polygon.
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1. As the evader crosses the vertical line lv to the left, p follows him by lion’s move

with respect to c, see Fig. 4.9-(b) p1 and e1 to p2 and e2 respectively.

If the evader disappears behind the lower chain vertices which are to the left of

lv, the pocket would be of a special form that we call it simple pocket9. In simple

pockets the pursuer has a relatively simple strategy so that the evader has to exit

the pocket to prevent capture. See section 4.8.5 for definition of simple pocket

and the corresponding pursuit strategy. Therefore, when e disappears somewhere

to the left of lv, the pursuer can repel him outside the hiding pocket by simple

pocket strategy.

Consequently, as long as e is on the left side of lv, the distance cp increases while

p lies on ce. As a result, e will be pushed to the right of lv after finite time (Fig.

4.9-(c) where e is at e′2).

2. As the evader crosses the vertical line lv to the right, p switches to lion’s move

with respect to the center pref (Fig. 4.9-(c) where p moves to p′2).

3. This back and forth switch between lion’s move with respect to centers c and

pref continues until one of the following two configurations hold: 1) the evader

disappears behind a vertex to the right of pref , 2) or the extended lion’s move is

established (p3 and e3 in Fig. 4.9-(d)).

9 See Lemma 4.8.11.
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Algorithm 5: Vertical Guard Strategy
Input Configuration: The evader and the pursuer are both on the line lv and e is crossing lv

to the left. In other words, x(p) = x(e) = x(caux) and

y(e) < y(p) ≤ y(caux), and e is moving to the left of the vertex caux.

Refer to the lines 1- 4 for definition of the vertex caux and the line lv.

Exit Configuration : Either (1) the pursuer is on π(OL, e) while p ∈ h[pref ] and e ∈ h(pref),

or (2) the evader disappears inside h(pref).

1 if the previous state is zig-zag guard then

2 lv = ~Ypref ; caux ← pref ;

3 else if the previous state is simple guard then

4 lv = ~Ypaux ; caux ← paux;

end

5 I ← ~Xcaux ∩ ∂Q ;

6 c = bisector of pI ∩ lv;

7 repeat

8 if e is to the left of caux then

9 repeat

10 do lion’s move with respect to the center c;

until e disappears somewhere to the left of caux, or e moves to the right of caux;

11 if e has disappeared somewhere to the left of caux then

12 perform the simple pocket strategy presented in section 4.8.5;

/* as a result of the simple pocket strategy the evader is forced to

exit the hiding pocket while p is on the entrance of the pocket and

their distance has been increased. */

13 continue from line 9 ;

14 else if e has moved to the right of caux then

15 continue from line 16

end

16 else if e is to the right of caux then

17 repeat

18 do lion’s move with respect to the center caux;

until p is on π(OL, e) to the right of caux, or e disappears somewhere to the right of

caux, or e moves to the left of caux;

19 if e has moved to the left of caux then

20 continue from line 8;

21 else

22 exit the vertical guard sub-state;

end

until pursuer catches up with π(OL, e) inside h(caux), or (2) evader disappears inside h(caux);
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Next, let us proceed with the definition of the center c. Let I be the intersection

between the horizontal line passing through pref and ∂P , see Fig. 4.12(a). Then c is

the intersection between bisector of pI and the line lv.

I
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β
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~r
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e
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v

~r
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Figure 4.12: (a) the vertical guard (Π is shown in dots). (b) These pockets are impos-

sible. (c) The possible pockets before lv are simple pockets. (d) The simple pockets.

Remark 6. When the state before the vertical guard state is the simple guard state, the

pursuer defines the center c based on paux instead of pref . In Algorithm 5, we use the

notation caux to refer to pref or paux. See lines 1-4 in Algorithm 5.

The lion’s move circle centered at c has the following important properties. First,

all upper chain vertices before pref are above prefI and thus the lion’s move with respect

to c is feasible (Lemma 4.8.13).

Second, the lion’s move circle centered at c prevents e from hiding behind the upper

chain vertices which are to the left of pref without being captured (Lemma 4.8.10). Also

see Fig. 4.6-(e). These vertices are the ones on ChainU with their x-coordinate less

than pref . In addition, the circle is defined such that if e disappears behind lower chain

vertices which are to the left of pref , the resulting pocket would be a simple pocket

(Lemma 4.8.11), pockets that p has a relatively simple strategy to push e out of the

pocket (section 4.8.5).

Third, the initial radius of this circle is upper bounded which is necessary for the

lion’s move with respect to center c to result in progress in finite number of steps [77].

In the following, we show that the angle α plays an important role in bounding the

radius. Let r be the radius of the lion’s circle centered at c i.e. r = cp.
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Lemma 4.6.3. The initial radius (r) of the circle defined above is upper bounded by

r ≤ 2l2

hmin
where hmin is a lower bound for h = y(pref)− y(p) at the beginning of vertical

guard (hmin ≤ h).

Proof. Let β be the angle between pI and the horizontal line passing from caux, see

Fig. 4.12(a). Also let 2l = pI. We have sinβ = l
r = h

2l . Hence r = 2l2

h . Therefore

r ≤ 2l2

hmin
.

In Lemma 4.8.4 and Lemma 4.8.8, we provide hmin = sinα as the lower bound for

h at the beginning of the vertical guard strategy.

Corollary 4.6.4. The initial radius of the vertical guard circle centered at c is upper

bounded by r ≤ D2

2 sinα . According to Definition 4.5.2, we have r is O(D3).

Lemma 4.6.5 (Vertical guard progress). At the end of vertical guard the pursuer

achieves Progress (P1) or (P2).

Proof. Let pocket(v, ~r) be the pocket searched in the previous search state. Recall that

if the vertical guard is invoked from zig-zag guard then caux = pref and if it is invoked

from simple guard then caux = paux (Remark 6).

1. from zig-zag guard (caux = pref):

(a) v ∈ ChainU : hence pref = v. The next state after the vertical guard is either

L or S. As the evader exits the vertical guard state the players are inside

h(pref) = h(v). If the next state is S, let pocket(v′, ~r′) be the corresponding

pocket. Then, v′ ∈ h(v). If v′ ∈ ChainU we set pref = v′ and we have

Progress (P1). If v′ ∈ ChainL we have Progress (P2).

(b) v ∈ ChainL: this case is not possible. This is because: the evader is inside the

fourth quadrant of p (zig-zag guard state), v ∈ h[pref ] according to invariant

(I2), and the search path used for searching pocket(v, ~r) ensures that the

evader cannot cross pref to the left. See Fig. 4.13-(b).

2. from simple guard (caux = paux):
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(a) v ∈ ChainU : then pref = v and paux ∈ h[pref ]. At the time that p exits the

vertical guard state the players are inside h(paux) which is a subset of h(pref).

The pursuer achieves Progress (P1) or (P2) similar to the above case.

(b) v ∈ ChainL: refer to the definition of paux in section 4.6.2 and note that paux

can be to the left or to the right of v. The case that paux is to the right of v

is similar to the above cases.

Suppose that paux is to the left of v. Referring to the definition of paux in

section 4.6.2 this is the case only when p0 is in between v and vaux (the first

definition in section 4.6.2). Suppose that during vertical guard (lion’s move

w.r.t. paux) the evader disappears behind v′. When v′ ∈ ChainU we have

v′ ∈ h(paux) ⊆ h(pref). We set pref to v′ and achieve progress (P1).

When v′ ∈ ChainL there are two cases. The first is when x(v) < x(v′)

which we have progress (P2). The second is when x(v′) ≤ x(v) in which case

the resulting pocket pocket(v′, ~r′) would be a simple pocket and the pursuer

performs the simple pocket strategy in section 4.8.5 in order to resume the

lion’s move with respect to paux. See Fig. 4.13-(a).

Lemma 4.6.6 (The time spent in the guard state). The pursuer exits the guard state

and switches to the next state in O(n4D11) steps where n is the number of vertices of

Q and D is the diameter of Q.

Proof. Let T1 be the time spent in simple guard, T2 be the time spent in vertical guard,

and T3 be the time spent in the zig-zag guard state. Then the guard time is at most

T1T2 + T3T2.

The vertical guard strategy is composed of simple pocket strategy (to the left of

lv) and lion’s move with respect to caux or c. In the worst case, every single step of

the lion’s move can be followed by a round of simple pocket strategy. Therefore, the

total time in vertical guard would be the product of the time spent in lion’s move

and the simple pocket strategy. The time spent in simple pocket strategy is O(n2D3)

(Lemma 4.8.14). The initial radius of the circle centered at c used during vertical guard

is O(D3) (Corollary 4.6.4). Hence the lion’s move with respect to c during vertical
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guard takes O(nD6) steps [75]. Therefore, the vertical guard state takes T2 = O((nD6) ·
(n2D3)) = O(n3D9).

The simple guard is lion’s move with respect to paux which can take at most T1 =

O(nD2). The zig-zag guard is composed of zig-zag moves which are of time T3 = O(D).

Thus, the guard time is O((nD2) · (n3D9) +D · (n3D9)) = O(n4D11).

e

p

v

v′

paux

pref

~r

(a)

e

v

pref

ChainL

ChainU

~r

(b)

Figure 4.13: (a) When v ∈ ChainL and e disappears behind v′ ∈ ChainL

so that x(v′) < x(v), the resulting pocket is a simple pocket. (b) When v ∈
ChainL and e appears in the fourth quadrant, e cannot cross pref to the left

since it is confined with ∂Q.

4.6.4 Horizontal Guard

We now present the horizontal guard strategy which is the counterpart of vertical guard

in the second type critical sub-polygon. Suppose that the horizontal guard has been

invoked in the 2nd type. Recall that at this time x(v) ≤ x(p) < x(e) and y(p) = y(e) =

y(v) (Lemma 4.6.1). The center c for the horizontal guard is found as follows: Let I be

the intersection between ∂Q and ~Yv. Then c is the intersection point between bisector of

pI and ~Xv. See Fig. 4.22(b). Symmetric to what we saw in vertical guard, the pursuer

performs lion’s move with respect to c or v as the evader moves below lh = ~Xv or above

lh = ~Xv. This continues until the next state is established in h(v).
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4.7 Analysis of Capture Time

We are now ready to present the proof of Theorem 4.3.4 which gives the worst capture

time of the proposed pursuit strategy.

Proof of Theorem 4.3.4. Suppose p is currently in a combined (SG) state. In Lemma 4.6.1,

Lemma 4.6.2, and Lemma 4.6.5, we showed that after finite time this combined state

will terminate to another combined (SG) state or an L state.

In the latter case, the aforementioned lemmas ensure that R(pref) ≤ R(p) < R(e).

Moreover p is on π(OL, e) and d(OL, p) is increasing after each step of the L state [75].

Hence either p captures e in the L state or it switches to another (SG) state.

Now consider two consecutive (SG) states and suppose that e is not captured yet.

According to the aforementioned lemmas, p achieves progress (P1) or (P2). Since in

(P2), v and v′ are vertices of Q, after at most n progress updates of type (P2), there

would be one progress update of type (P1). Also since pref is a vertex, at some point

D ≤ R(pref). Since D is the diameter of the polygon, at some point D = R(pref).

According to invariant (I1), we must have D = R(pref) < R(e). This is a contradiction

since R(e) cannot be greater than the diameter.

Next let us provide an upper bound for the number of time-steps required for capture.

Let T1 be the time spent in the guard state plus the time spent in the search state

(the time spent in the combined (SG) state). Also let T2 be the number of steps

for a pursuer, which is performing the extended lion’s move, to travel the diameter

of the polygon. Thus, the number of time-steps between two consecutive combined

states (SG) would be T1T2. Since pref ∈ Q and v ∈ Q, and we achieve (P1) or (P2)

after each (SG) combined state, the total capture time T would be T = n · nT1T2.

According to [75] we have T2 = nD2. Next, the search time is O(nD) (Lemma 4.5.3),

and the guard time is bounded by O(n4D11) (Lemma 4.6.6). Hence T1 = n4D11 and

T = O(n2 · (n4D11) · (nD2)) = O(n7D13).

4.8 Correctness Proofs

In this section we present the proofs of the lemmas that we saw throughout the chapter.

We first go over the properties of monotone polygons. We then prove the correctness of
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different sub-states of guard strategy.

4.8.1 Properties of Monotone Polygons

Proof of Property 4.3.3. We present the proof for the 4th type critical sub-polygons.

The proof for other types is similar. Let v = vi−1, see Fig. 4.5 and Fig. 4.14. For other

possible v the proof is similar.

According to Lemma 4.8.1 the shortest path to all points to the right of −−−−−→vi−2vi−1

passes from vi−1. Hence the length of their shortest path is greater than d(OL, vi−1).

Next consider the region in between ~Xvi−1 and−−−−−→vi−2vi−1 and let p be a point in this region.

As a corollary of Lemma 4.8.1 we observe that there is a vertex vc ∈ Π(vm−1, (vi−1)

that p is the region defined by two rays −−−−→vcvc+1 and −−−−→vc−1vc. Moreover p is a descendant

of vc. Next consider the line vcp and its intersection point with ~Xvi−1 namely Ip. In

the following we will show that d(vc, vi−1) < vcIp. Since vcIp < vcp ≤ d(vc, p) we would

have d(vc, vi−1) < d(vc, p) and thus d(OL, vi−1) < d(OL, p).

Let us now present our proof for d(vc, vi−1) < vcIp, see Fig. 4.14 top-right. Consider

the rays shot in direction of vc′vc′+1 where c ≤ c′ ≤ (i− 3) and denote their intersection

point with ~Xvi−1 by Ic′ . By induction we show that vc′Ic′ +d(vc, vc′) = d(vc, Ic′) < vcIp.

For the base case consider c′ = c. Since the angle vcIcIp is greater than 90 degrees

we would have vcIc < vcIp.

For the inductive hypothesis let us suppose that the statement is true for c′ and prove

it for (c′+ 1). According to our hypothesis we have vc′Ic′ + d(vc, vc′) = d(vc, Ic′) < vcIp.

Since the angle vc′+1Ic′+1Ic′ is greater than 90 degrees we would have vc′+1Ic′+1 <

vc′+1Ic′ . We also have vc′Ic′ = vc′vc′+1 + vc′+1Ic′ .

Hence d(vc, Ic′) = vc′Ic′ + d(vc, vc′) = vc′vc′+1 + vc′+1Ic′ + d(vc, vc′) = d(vc, vc′+1) +

vc′+1Ic′ . Since vc′+1Ic′+1 < vc′+1Ic′ we would have d(vc, vc′+1) + vc′+1Ic′+1 < d(vc, Ic′).

Recall that d(vc, Ic′) < vcIp. Thus d(vc, Ic′+1) < vcIp.

Lemma 4.8.1. Let (ve−1, ve) be an edge on Π. Consider the ray shot in direction of

~r = −−−−→ve−1ve. Then the shortest path to all vertices to the right of ~r passes through the

vertex ve. See Fig. 4.14 left and middle.

Proof. For the sake of contradiction suppose that there are some edges on Π that this

property does not hold for them. Among these edges let (ve−1, ve) be the first one i.e.
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with smallest ve. Thus there is a point to the right of ~r = −−−−→ve−1ve that the shortest

path to that point does not pass from ve. Then the direct parent of one of its ancestors

should be a vertex to the left of ~r. Let v be this ancestor and let v′ = parent(v).

Let (ve′−1, ve′) be the edge on Π that the shortest path to v′ passes from ve′ . Since v′

is to the left of −−−−→ve−1ve and since the property holds for all edges before (ve−1, ve) we

would have e′ ≤ (e − 1). Next observe that −−−−→ve−1ve intersects with π(e′, v′). This can

be seen by enumeration over all possible situations arisen depending on the type of the

critical sub-polygon that (ve−1, ve) belongs to. For example the case where this edge

is in the second type critical sub-polygon and before the summit vertex is depicted in

Fig. 4.14 left and middle. In this case since slope of ve−1, ve is negative and slope of Π

we observe that −−−−→ve−1ve intersects with π(e′, v′). Next let I1 and I2 be the intersection

of −−−−→ve−1ve with v′v and π(e′, v′) respectively. Then according to triangle inequality we

have: I1I2 < v′I1 + d(v′, I2). Hence vI1, I1I2, π(e′I2), π(OL, e
′) is a shorter path than

π(OL, v) = vI1, v
′I1, v

′I2, I2e
′, π(OL, e

′) which is a contradiction.

v

v′

ve
ve−1

ve′

ve′−1

I1

I2

Π

vk

vi−1

vi

ve

~r

vc−1 vc
vc+1

vc′−1

vc′

vi−1

pIpIc

Figure 4.14: proof of Lemma 4.8.1 and Property 4.3.3.
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Lemma 4.8.2. Suppose vi−1vi and vj−1vj are two consecutive critical edges and con-

sider π(vi−1, vj−1) which is also part of Π. Then (see Fig. 4.5-left):

(i) If vi ∈ ChainU , then the slope of edges on π(vi−1, vj) is monotonically increasing.

(ii) If vi ∈ ChainL, then the slope of edges on π(vi−1, vj) is monotonically decreasing.

Proof. First, consider a segment wz and a point k with x(z) < x(k), see Fig. 4.5:

1. k is below the ray −→wz: then slope(zk) < slope(wz).

2. k is above the ray −→wz: then slope(zk) > slope(wz).

Let w, z and k be three consecutive vertices on π(vi−1, vj). Now, consider the case

that vi ∈ ChainU . In this case, k must be above the ray wz because otherwise Π cannot

be a shortest path [76]. Similarly, when vi ∈ ChainL, k must be below the ray wz.

Therefore:

(i) when vi ∈ ChainU the slope of edges is monotonically increasing. (ii) and, when

vi ∈ ChainL the slope of edges is monotonically decreasing.

Lemma 4.8.3. Consider the search path inside the first type critical sub-polygon. Let

p be a point on this part of the search path. Then the slope of the edge that connects p

to parent(p) is negative.

Next consider the 2nd type critical sub-polygons and suppose that p is in this portion

of the search path. Then the slope of the edge that connects p to parent(p) is positive.

Proof. First observe for all points p, x(parent(p)) < x(p).

• p is in the first type critical sub-polygon: Note that all points in this part are

descendants of vi−1, see Lemma 4.8.1. For the sake of contradiction let us assume

that parent(p) is in the third quadrant of p, see Fig. 4.15. In the following we

will show that there exist a shorter path than π(OL, p) = π(OL, parent(p)) +

parent(p)p which is a contradiction. Note that p is on the search path.

1. p is on the α-path (Fig. 4.15(a)): Let A be the intersection of ~Xp with

π(OL, parent(p)). Observe that A is visible to p since all upper chain ver-

tices are above the search path. Because of the triangulation inequality, pA
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followed by π(OL, A) is a shorter path than π(OL, p) = π(OL, parent(p)) +

parent(p)p which is a contradiction.

2. p is on the step-path (Fig. 4.15(b)): Similar to the previous case.

• p is in the second type critical sub-polygon: The same as the previous case. See

Fig. 4.15(c). Note that all points in this part are descendants of the summit

vertex s, see Lemma 4.8.1. Also, A is visible to p since all lower chain vertices are

below the search path. The rest of the proof is the same as above.

p

parent(p)

vi−1

A

(a)

p
Is

A

(b)

the Π path p
s

parent(p)

Is Ih

A

(c)

Figure 4.15: Proof of Lemma 4.8.3. The path Π is shown in dots.

4.8.2 Zig-Zag Guard

Lemma 4.8.4. At the beginning of Vertical Guard invoked from Zig-Zag Guard, we

have sinα ≤ h = y(caux)− y(p).

Proof. Recall that the pursuer performs vertical guard while it is in the 1st or the 3rd

type critical sub-polygons (see Section 4.6). In the following, we present the proof for

the 1st type.

Consider the preceding Search. Recall that during the search state p moves along

the search path from v. The pursuer performs the zig-zag guard when e appears in its

fourth quadrant (see Section 4.6). Recall that caux = v (Section 4.6.3).

Suppose that v ∈ ChainU . First, suppose that p is on the step-path. Then observe

that e cannot force p to retreat beyond v because the step that p lies on is after the

floor point and moreover the evader is confined in the corresponding step. Hence only

by following the zig-zag moves the pursuer will catch up to π(OL, e).
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Next suppose that p is on the α-path. Let l1 be the distance p has traveled from

v. Thus l1 sinα is the minimum height p obtains during search. Moreover 1 − l1 is

the residual move which p travels downward during the Zig Zag Guard. Thus the total

height p obtains during search phase is at least hmin = l1 sinα+1− l1 = l1(sinα−1)+1

which is at least sinα. Recall that vertical guard is invoked in the case that initially p

is above π(OL, e) and the zig-zag strategy is to move downward or to the left. In other

words y(caux)−y(p) increases afterward and hence the lower bound sinα remains valid.

The above argument is valid when v ∈ ChainL.

Lemma 4.8.5. Suppose that the pursuer starts Search state (on pocket(v, ~r)) in the 1st

or the 3rd type critical sub-polygons but it finds e while it is inside the 2nd or the 4th

type critical sub-polygons. Recall that here independent of the quadrant that e is inside,

the pursuer invokes the zig-zag guard (Section 4.6). Then the evader cannot force p to

retreat beyond v. In other words, only by following the zig-zag moves, p will start the

next state S or L.

Proof. First, note that the portion of the polygon formed by two consecutive α lines or

horizontal lines, ∂Q and the vertical lines is a triangle, see Section 4.5.

Note that we omitted presenting the zig-zag moves for the 2nd or the 4th types. Let

us start by presenting the detailed description of the zig-zag moves that p takes toward

π(OL, e). According to Lemma 4.8.3, the slope of parent(p)p is positive (0 ≤ slope).

Also, at the moment that e becomes visible x(p) < x(e) (Observation 4.5.1). Recall

that the search path in these types is composed of only the step-path (section 4.5). We

present the strategy by dividing each step into two parts. Also we only present the

argument for the 2nd type. See Fig. 4.16 and consider the step from A to D:

1. The segment uD: As a corollary of Lemma 4.8.3, all points on this segment are

direct children of u. Therefore, we would have parent(p) = u.

(a) If e is inside the fourth quadrant of p: See Fig. 4.16(a). Observe that the

pocket formed by the segment uD and ∂Q from u to D is a simple pocket. By

performing the simple pocket strategy presented in section 4.8.5, the evader

is forced to cross uD while p is also on this segment. Note that uD is an

edge of the shortest path tree. Note that all points on this segment are direct

children of u. In other words, the next state will be L while p is in h(v).
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(b) If e is inside the first quadrant of p: See Fig. 4.16(b). Note that π(OL, e) has

to be above p. Then p moves along − ~Xp toward π(OL, e). The L state or

the S state will be established while p is in hf(v).

2. From A to u: Note that e has to be in the first quadrant of p because otherwise p

must have seen him sooner. The configuration that π(OL, e) is above p, shown in

Fig. 4.16(b), is similar to the case (b) above. The configuration that π(OL, e) is

below p, shown in Fig. 4.16(c), is as follows. The pursuer moves toward π(OL, e)

along ~Xp. This ensures that e is in the first quadrant of p until e crosses ~Xp. At

this time, p moves toward π(OL, e) along −~Yp, see Fig. 4.16(d). Note that p is

becoming closer and closer to π(OL, e) while π(OL, e) is confined in the triangular

region 4ABu. Hence the next state (L or S) will be established while p is in h(v).
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Figure 4.16: The zig-zag moves when p invokes zig-zag guard inside the 2nd type critical

sub-polygons while v in the preceding S state was in the 1st type. See Lemma 4.8.5.

4.8.3 Simple Guard

In simple guard strategy, we define a local variable called the auxiliary vertex paux which

is used as a landmark to guarantee progress. In simple guard state, the pursuer’s goal is

to prevent the evader from contaminating the region to the left of paux. In other words,

the pursuer guarantees that the evader is inside h(paux). We define paux such that it is

inside h[pref ]. Therefore, at the end of this state the evader is inside h(pref).

Next let us present the selection of the vertex paux. Let pocket(v, ~r) be the pocket

which has been searched in the previous S state. Suppose that vaux is the vertex that
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the α-path starts from (if v ∈ ChainU , then vaux = v). Moreover, let pceil be the ceiling

point (refer to Section 4.5). Then:

• if p0 is in the portion of the search path, from v to vaux: See Fig. 4.17(a). Here

paux is the bottommost vertex from the upper chain which is in the region in h[pref ]

and to the left of the segment p0pref . Note that only when v ∈ ChainL, we have

vaux 6= v e.g. in Fig. 4.7(d) we have vaux = e3.

• If p0 is in the portion of the search path from vaux to the floor point: then paux is

the first endpoint of the α-step that p0 lies on it. For example, in Fig. 4.7(c), if

p0 is on the α-step defined from e2 to I2 then paux = e2.

• If p0 is in the portion of the search path after the floor point: See Fig. 4.17

parts (b) and (c). Let a be the intersection point between the α line passing

through p0 and Π. Suppose that w1w2 and w′1w
′
2 are the edges on Π such that

x(w1) ≤ x(pceil) < x(w2) and x(w′1) ≤ x(a) < x(w′2) respectively. Then, if a

is inside the next critical sub-polygon, paux is the second critical endpoint that

defines the current critical sub-polygon. If w1 6= w′1, i.e. a and pceil are not in

between the endpoints of the same edge on Π, then paux = w′1, see Fig. 4.17(b).

Otherwise, paux is the bottommost vertex from the upper chain which is inside

h[pceil] and to the left of the line that connects pceil to p0, see Fig. 4.17(c).
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Figure 4.17: The path Π is shown in dots. Note that all upper chain vertices are above

Π. (a) here paux is the bottommost vertex from ChainU in the shaded region. (b) here

paux = w′1 (pceil = v). (c) paux is the bottommost vertex from ChainU in the shaded

region (pceil = v).
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Figure 4.18: The point paux when w1 6= w′1. Here paux = w′1.
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Figure 4.19: The point paux when w1 = w′1.

Lemma 4.8.6. Suppose that the pursuer is in simple guard state and p0 be the location

of the pursuer at the beginning of the state. Then paux defined in section 4.6.2 is visible

to p0 and moreover, the angle built by p0paux and the x-axis is less than α.

Proof. Let pocket(v, ~r) be the pocket being searched in the previous search state.

1. v ∈ ChainU : here paux are defined based on the second and the third definition

in section 4.6.2.

• If p0 is in the portion of the search path from vaux to the floor point: since

both p0 and paux are on the α line of the corresponding α-step, the slope of

p0paux is equal to −α.

• If p0 is in the portion of the search path after the floor point: first suppose

that a and pceil are not in between the endpoints of the same edge on Π.

Then paux = w′1. See Fig. 4.18-right. Note that all upper chain vertices are

above Π and all lower chain vertices are below the search path. Hence paux is

visible to p0. Next, let b be the intersection between p0a and the horizontal

line passing through w′1. Note that the angle between this horizontal line and

p0b is equal to α. Also, observe that w′1 is the left of p0b. Hence, considering
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the triangle 4p0bw
′
1, it can be concluded that the angle between p0paux and

the x-axis must be less than α.

Next, suppose that a and pceil are in between the endpoints of the same edge

on Π. Observe that paux is visible to p0 as follows. This is because paux is the

bottommost upper chain vertex in the shaded region, and moreover the slope

of the edge w′1w
′
2 is negative (Lemma 4.8.2), and all upper chain vertices are

above Π and all lower chain vertices are below the search path. See Fig. 4.19.

Next consider the angle between p0pceil and the x-axis. Considering the trian-

gle 4p0pceilb and the fact that the angle between p0a and the x-axis is equal

to α and pceil is to the left of p0a, we can conclude that the angle between

p0pceil and the x-axis is smaller than α, see Fig. 4.19-middle. Now observe

that paux is in the triangular region formed by p0pceil, the edge w′1w
′
2, and

~Ypceil . Let c be the intersection between p0pceil and the horizontal line passing

through paux, see Fig. 4.19-right. Since the angle between this horizontal line

and p0c is smaller than α and considering the triangle 4p0pauxc, we conclude

that the angle between p0paux and x-axis is smaller than α.

2. v ∈ ChainL:

(a) The slope of ~r is negative: recall that when e appears inside the first quadrant

of p, the pursuer performs the simple guard (section 4.6.2). Also, recall that

when v ∈ ChainL the search path starts by the step-path (section 4.5). Since

the slope of ~r is negative, the evader can appear in the first quadrant of p

only when p0 is after vaux. Similar to the above case, it can be shown that

the angle between p0paux and the x-axis is smaller than α.

(b) The slope of ~r is positive: let us refer to the current simple guard state as

G2 and its corresponding search state which is on pocket(v, ~r) as S2. Let us

refer to the state before S2 as stateprev. Then stateprev must be a simple

guard. This is because during zig-zag guard, the evader remains inside the

fourth quadrant of p and hence the resulting pocket (pocket(v, ~r)) would have

negative slope. Also, if the previous state was L the resulting pocket would

have negative slope (a corollary of Lemma 4.8.1). Let stateprev = G1 which

is a simple guard. Also let p′aux be the auxiliary point defined in G1, and p′
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be the location of p at the beginning of G1. Therefore, the sequence of states

is G1S2G2, the pursuer is moving toward p′aux along p′p′aux during G1, and v

is to the right of the line p′p′aux. Recall that at the beginning of S2, we set

pref = p′aux (Lemma 4.6.2).

Now consider paux defined in G2 (section 4.6.2). If the second or the third

definition applies, the proof is similar to the above cases. Hence suppose that

paux is defined according to the first definition (i.e. p0 is in between v and

vaux). We continue by an inductive argument as follows. Suppose that the

angle between p′p′aux and the x-axis (the absolute value) is equal to or less

than α. Since pref = p′aux, and v is to the right of p′p′aux the slope of vpref is less

than α. Recall that the search state in between v and vaux is increasing in the

x-coordinate and decreasing in the y coordinate, see section 4.5. Therefore,

the slope of p0pref is also less than α. See Fig. 4.20(a). Since paux is defined

as the bottommost vertex in h[pref ] which is also to the left of p0pref , it can

be shown that the slope of p0paux is less than α (Fig.4.19-right).

It remains to show that paux is visible to p0. According to our inductive

argument, pref = p′aux is visible to p′. For the sake of contradiction, let us

assume that paux is not visible to p0 and hence is blocked by a vertex namely

vb. We must have vb ∈ ChainL. Also it must that x(p′) < x(vb) < x(v).

See Fig. 4.20(b). Let pg be the position of p during G1 at which the evader

the evader disappears behind v. Note that pg is on the segment p′p′aux and

moreover v is visible to pg. Since all lower chain vertices are below the path

formed by p′auxpg, pgv and the search path between v and p0, the vertex vb

cannot block p0paux. Contradiction.
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Figure 4.20: Proof of Lemma 4.8.6. (a) the angle p0paux is less than α. (b) the vertex

vb has to be below the line pgv.

Lemma 4.8.7. Suppose that p is in the simple guard sub-state, see section 4.6.2. While

the pursuer is moving back to paux the evader cannot cross the segment p0paux.

Proof. Refer to Fig. 4.21-(a) let p0 and e0 be the position of the players at the beginning

of the Simple Guard. Hence x(p0) < x(e0) Observation 4.5.1. We will show that for all

points A on the line segment between paux to p0, the length of p0A is smaller than the

length of the shortest path from e0 to A minus one. Hence if e tries to cross the p0paux

at A is will be captured by p. Specifically we show that Ap0 − Ae0 ≤ 1. First observe

that the angle pauxp0 is equal to or smaller than α, see Lemma 4.8.6. Let H be the

point on Yp0 where AH is perpendicular to Yp0 .

1. α = ψ1: In this case we have cosα = (1 − 1/D2)0.5, Ap0 ≤ D, 1 ≤ D. As a

result, it must be that Ap0(1−cosα) ≤ D(1−(1−1/D2)0.5) = D−(D2−1)0.5 ≤ 1.

2. α = ψ2 < ψ1: Here we have cosψ1 < cosψ2, − cosψ2 = − cosα < − cosψ1.

Therefore, Ap0(1− cosα) < Ap0(1− cosψ1) ≤ 1.

Lemma 4.8.8. At the beginning of Vertical Guard invoked from Simple Guard we

would have sinα ≤ h = y(c aux)− y(p).

Proof. Recall that here cpaux = paux. In the following, the key observation is that the

angle between pauxp and the x-axis is smaller than α, see Lemma 4.8.6.

Note that e has to cross the line pauxp before crossing lv. From pauxp to lv the

pursuer follows e by lion’s move with respect to paux. Now consider the time-step that
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p and e are on pauxp. Let p′ and e′ be the position of the pursuer and the evader after

one step of the lion’s move with respect to paux. According to Lemma 4.8.9 the distance

from all points on pauxp to all points on lv is equal or greater than one. Therefore e′ is

a point in between pauxp and lv see 4.21-(b).

1. 1 ≤ pauxp: Because of the lion’s progress pauxp < pauxp
′. Hence 1 ≤ pauxp

′.

Moreover p′ is in between the pauxp and lv. Thus sinα ≤ h = y(paux) − y(p′) see

Fig. 4.21-(c).

2. pauxp ≤ 1: Let A = ~Xp ∩ ~Yp′ . There are three cases:

(a) p′ is outside the unit circle: Here, similar to the first case we have sinα ≤ h.

(b) x(p′) < x(p), see Fig. 4.21-(e) and (f) for p′2: We have h = Ap′2. Thus,
Ap
pauxp

< cosα. Hence, pauxp < 1, Ap ≤ pauxp · cosα < cosα. Therefore,

Ap < cosα, h2 = 1−Ap2. Thus, we have sinα < h.

(c) x(p) < x(p′), see Fig. 4.21-(d) and (g) for p′1: In this case, we have β ≤
π
2 − α, sinα ≤ cosβ, pp′1 = 1, h = cosβ. Thus, sinα < h.

Lemma 4.8.9. Let paux be a point inside Q. Consider the α-line passing through paux,

the unit circle centered at paux, and the vertical line lv = ~Ypaux. For all points e above

the α-line and all points e′ on lv in which e and e′ are outside the unit circle we would

have 1 ≤ ee′.

Proof. Refer to Fig. 4.21-(b) note that ee′ = tan θ1 + tan θ2 where θ1 + θ2 = π −
α. The function tan θ1 + tan θ2 − 1 is positive for α angles equal or smaller than

ψ2 = (π2 − 2 arctan 1
2). Hence 1 ≤ ee′ for α which is equal or smaller than ψ2. See

Definition 4.5.2.
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Figure 4.21: e cannot cross pauxp during simple guard

4.8.4 Vertical Guard and Horizontal Guard

Lemma 4.8.10. The vertical guard circle centered at c prevents e from escaping to

upper chain vertices which are to the left of pref .

Proof. See Lemma 4.8.13.

Lemma 4.8.11. If during vertical guard strategy e disappears behind a vertex to the left

of lv, then the resulting pocket would be a simple pocket. Also refer to Fig. 4.12 parts

(b) and (c).

Proof. The vertex that defines the pocket must be from the lower chain (Lemma 4.8.10).

In this figure, because of monotonicity the pocket in the left is impossible and hence

the pocket must be an simple pocket (middle part of the figure).

Lemma 4.8.12. Feasibility of the Horizontal Guard. Suppose that p invokes the

horizontal guard sub-state. Then, the radius of the circle centered at c is finite (i.e.

upper bounded) and the pursuer can perform lion’s move with respect to c.

Proof. Recall that the pursuer performs the horizontal guard strategy when: (1) the

previous search state was on pocket(v, ~r) where v is inside the 2nd or the 4th type critical

sub-polygon, and (2) x(v) ≤ x(p) < x(e) and y(p) = y(e) = y(v) (Lemma 4.6.1).
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Note that x(v) ≤ x(p) < x(e) and y(p) = y(e) = y(v) can occur only when the

evader appears while p is on the horizontal line passing through v (i.e. the first step)

(see Fig. 4.22). If p is on other steps, similar to Lemma 4.8.5 we can show that the

zig-zag moves are sufficient.

Also note that since the slope of the entrance ~r is positive, at the beginning of G

state (end of the S state) the evader would be in the first quadrant of p.

Similar to Lemma 4.6.3, it can shown that the radius of the circle centered at c is

upper bound if we could provide a lower bound for x(p)−x(v). Note that 1 ≤ x(p)−x(v).

This is because during search p is moving in the direction of the x-axis (the horizontal

line passing through v which is on the first step). Even if the evader appears as p moves

for ε < 1 (during the one time unit of the S state), the pursuer immediately switches

to the G state and moves for the residual move toward π(OL, e) (the residual move is

(1− ε)). Therefore at the time that e crosses ~Xv, we would have 1 ≤ x(p)− x(v).

epv

s

Π

I

(a)

ep

v c

s

~Xv

~Yv Π

I

(b)

Figure 4.22: (a) The configuration that p performs the horizontal guard strategy. (b)

The horizontal guard circle centered at c.

Lemma 4.8.13. Feasibility of the Vertical Guard. Consider the vertical guard

state, section 4.6.3. Then all upper chain vertices before caux are above cauxI. Therefore,

p can perform the lion’s move with respect to caux and c. In other words, the next location

that p must move to according to the lion’s move is in the free space.

Proof. Note that the vertical guard state can be invoked from zig-zag guard, simple

guard. Therefore, caux = v (in case of zig-zag guard) or caux = paux (in case of simple
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guard).

In the following, we present the proof by arguing the 1st and the 2nd type critical

sub-polygons. The other two types are symmetric.

1. caux = v (i.e. the vertical guard is invoked from zig-zag guard): Here, v must

be a vertex inside the 1st type and moreover at the beginning of the G state p

must be inside the same critical sub-polygon (see section 4.6 and Lemma 4.8.5).

Also note that v ∈ ChainU . To see this suppose that v ∈ ChainL. Recall that

the search path on pocket(v, ~r) starts by the step-path, then continues along the

α-path and then the step-path (section 4.5). Let I1 be the intersection of the

first step-path with ∂Q. Recall that p performs the zig-zag guard when e appears

inside its fourth quadrant (section 4.6.1). Suppose that p is in between v and I1.

According to zig-zag guard, the pursuer moves downward and to the left. Hence

the evader cannot force the pursuer to retreat beyond v (the players will hit ∂Q).

When p is after I1 the similar result is valid.

Therefore only when v ∈ ChainU , the pursuer invokes the vertical guard during

zig-zag guard. In the following we prove that all upper chain vertices before v

are above vI. Let us refer to the current G state as G2 and the S state before it

(which is on pocket(v, ~r)) as S2. Also, let stateprev be the state before S2. Hence

the sequence of states is stateprevS2G2.

(a) stateprev = L: Let w1w2 be the edge on Π so that x(w1) ≤ x(v) < x(w2).

Then v must be in the fourth quadrant of w1. Because otherwise pocket(v, ~r)

would be a simple pocket and p can recover the L state by following the

simple pocket strategy presented in section 4.8.5. Since the slope of edges

on Π before w1 is negative (Lemma 4.8.2) it must be that all upper chain

vertices before v are above vI.

(b) stateprev = G: Let us denote this G state as G1 and its previous S state as

S1. Hence the sequence of states is S1G1S2G2. Also suppose that S1 is on

pocket(v1, ~r1).

i. G1 is zig-zag guard and v1 ∈ ChainU : We continue by an inductive

argument as follows. Suppose that for all invokes to the S state before
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S2 all upper chain vertices are above the corresponding horizontal line.

In other words, all upper chain vertices before v1 (in S1) which are before

v1 are above the horizontal line passing through v1. Note that during

S1, the pursuer moves downward and to the right. During G1, which

is a zig-zag guard, the pursuer moves downward and to the left and

moreover the evader remains inside the fourth quadrant of the pursuer.

See Fig. 4.23(a). Hence all upper chain vertices are above the horizontal

line passing through v.

Now we prove the property for the first invoke to G. Therefore, the se-

quence of states is S2G2... where S2 is the first search state which is done

on pocket(v, ~r). Observe that the first time that the pursuer invokes S in

a critical sub-polygon, the vertex v ∈ Π. Even if the sequence of states is

LS2G2..., either pocket(v, ~r) is a simple pocket which p can recover the L

state by following the simple pocket strategy, or the property must hold

for v.

ii. G1 is zig-zag guard and v1 ∈ ChainL: Likewise, since all upper chain

vertices are above the search path and the blocking vertex v is inside the

fourth quadrant of p’s location during G1. See Fig. 4.23(b).

iii. G1 is simple guard: Recall that v ∈ ChainU . According to the simple

guard the entrance of pocket(v, ~r) is ~r = pauxv where paux is the auxiliary

reference point defined in G1. Note that v must be inside the fourth

quadrant of paux because otherwise pocket(v, ~r) would be a simple pocket

and by following the simple pocket strategy (section 4.8.5) the pursuer

will recover the simple guard strategy.

In the following we show that in simple guard all upper chain vertices

before paux are above the horizontal line passing through paux. Therefore

all upper chain vertices before v are above the horizontal line passing

through v. See Fig. 4.23(c).

(c) caux = paux (i.e. the vertical guard is invoked from simple guard): By an

inductive argument we show that all upper chain vertices before pref are

above the horizontal line passing through pref . Using this we show that all

upper chain vertices before paux are above its corresponding horizontal line.
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In our inductive argument we also use the result obtained above: all upper

chain vertices are above v if v ∈ ChainU and v is defining pocket(v, ~r) being

searched in an S state.

Suppose that the property holds for the current pref . Then referring to sec-

tion 4.6.2, the point paux is defined based on the location of p at the beginning

of the simple guard. Let us denote the current guard state as G2 and the

previous search state as S2 which is performed on pocket(v, ~r). Also recall

that p0 is the location of p at the beginning of G2 (section 4.6.2).

• If p0 is in the portion of the search path, from v to vaux: Recall that here

v ∈ ChainL and paux is the bottommost vertex from the upper chain

which is in the region in h[pref ] and to the left of the ray p0pref . See

Fig. 4.24(a). Since paux is the bottommost vertex in this region and all

upper chain vertices are above the horizontal line passing through pref ,

the property also holds for paux. Also recall that we update pref to paux

at the end of the simple guard (Lemma 4.6.2). Therefore, the property

is valid for the next pref point.

• If p0 is in the portion of the search path from vaux to the floor point: First,

suppose that v ∈ ChainL. Since all upper chain vertices are above the

search path, the property holds for paux. Next suppose that v ∈ ChainU .

Since the y coordinate of the points on the search path is decreasing and

all upper chain vertices are above the search path and the property holds

for v, we conclude that the property also holds for paux.

• If p0 is in the portion of the search path after the floor point: Recall that

if w1 6= w′1, i.e. a and pceil are not in between the endpoints of the same

edge on Π, then paux = w′1, see Fig. 4.24(b). Note that since w′1 ∈ Π, the

property holds for paux = w′1.

If w1 = w′1, i.e. a and pceil are in between the endpoints of the same edge

on Π, then paux is the bottommost vertex from the upper chain which

is inside h[pceil] and to the left of the line connecting pceil to p0, see

Fig. 4.24(c). Here, v could be from the lower chain or the upper chain.

In the case that v ∈ ChainL, since all upper chain vertices are above the

search path the property will be concluded. When v ∈ ChainU , since the
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property is valid for v and paux is the bottommost vertex, the property

is concluded.

v

p

v1

U

(a)

v
p

v1

ChainL

ChainU

(b)

v

paux

U

(c)

Figure 4.23: All upper chain vertices are above vI. The search path on v1 is shown in

green and the path traversed during G1 is shown dash green lines. (a) v1 ∈ ChainU .

Here G1 is a zig-zag guard. (b) v1 ∈ ChainL. Here G1 is a zig-zag guard. (c) Here G1

is a simple guard.
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Figure 4.24: Fig. 4.17 shown for convenience. The path Π is shown in dots. Note

that all upper chain vertices are above Π. (a) Here paux is the bottommost vertex from

ChainU in the shaded region. (b) Here paux = w′1 (pceil = v). (c) paux is the bottommost

vertex from ChainU in the shaded region (pceil = v).

4.8.5 Simple Pockets

The pocket pocket(v, ~r) is called a simple pocket if its boundary except the entrance ~r,

is a single x-monotone chain and the angle between ~r and the y axis is smaller than π
2 .
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The pursuer by following the MPC strategy described in this paper, can force the

evader to exit the pocket in order to prevent capture. The only difference is that during

search it is sufficient to move along ~r in order to find e. As the evader is found the

pursuer starts the simple guard strategy presented in Sect. 4.6.2 i.e. it moves toward v

along ~r. Note that e cannot cross the segment between v and p because of the slope.

Lemma 4.8.14 (Simple Pockets). By following the MPC pursuit strategy on a simple

pocket pocket(v, ~r), after at most O(n2D3) time-steps, e is forced to cross the entrance

and exit the pocket in order to prevent being captured. At the crossing time, p and e

both lie on ~r and p is in between v and e, see Fig. 4.12-(d). The only difference is that

during search the pursuer moves along ~r.

Proof. First observe that p will eventually stop performing the current state, which can

be one of: Search, Guard or Lion, and switch to the next state. Suppose that the

current state is Guard. Then the next state can be either Lion or Search.

In the former case, the pursuer gains lion’s progress with respect to v until e is

captured or e disappears behind a vertex v′ in the new pocket pocket(v′,
−→
pv′) or e exits

the initial pocket.

In the latter case, the vertex v′ which defines the new pocket pocket(v′,
−→
vv′) has the

property that x(v) < x(v′). Hence the new pocket is a smaller one contained in the

original pocket.

To complete the proof, note that once the evader hides behind a vertex, say v, it

cannot disappear behind the vertex for the second time.

Since there are n vertices and the entrance is traversed twice, once during search

and once during guard, the total time spent in the guard and search states would be

O(2nD). Together with O(nD2) required for extended lion’s move progress, the total

capture time would be O((nD2) · (2nD)) = O(n2D3).

It remains to show that the entrance of all possible new pockets is positive and hence

we can recursively use the simple pocket strategy. Clearly, all possible new pockets after

the Guard state has positive slope since v′ is inside pocket(v, ~r).

Next, we show that all possible pockets after the lions move state must have positive

slope. Since during lion’s move, p lies on the edge parent(e)e, the entrance
−→
pv′ is in

direction of the tree edge parent(v′)v′. See Fig. 4.25(a). Therefore, it is enough to show
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that in the shortest path tree rooted at v all edges have positive slope and hence if the

evader disappears during Lion’s state, the new pocket pocket(v′,
−→
pv′) will have positive

slope entrance (the entrance is
−→
pv′).

Suppose that there is an edge uw on the shortest path tree rooted at v with negative

slope i.e. u is the parent of w in π(v, w). We will show that there exists a path from

v to w which is shorter than π(v, w) which is a contradiction. See Fig. 4.25(c). Since

the original pocket had a positive slope, there exists a vertex u′ below vw such that w

is visible to u′. Note that u′ can be v itself. Also since w is visible to u, it must be

that x(u′) < x(u) because otherwise u′ would block the edge uw (note that slope of

uw is negative and the slope of u′w is positive). Then according to the triangulation

property the shortest path from v to u′ followed by the edge u′w yields a shorter path

than π(v, w) = π(v, u) + uw. A contradiction.

ep
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v′

u′

(a)

ep

v
u′

(b)

v

w

u

u′

(c)

Figure 4.25: (a) The evader disappears into the shaded pocket. (b) Result of

the simple pocket strategy. (c) Proof of Lemma 4.8.14.
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4.9 Concluding Remarks

In this chapter, we showed that a single deterministic pursuer with line-of-sight visibility

can capture an evader whose speed is equal to the pursuer’s in any monotone polygon.

We present our strategy on x-monotone polygons where the x coordinate of the points

along the boundary increases from the left-most point to the right-most point. Our

proposed strategy has three states: search, guard, and lion’s move. In the search state,

the evader is invisible and the goal of the search sub-strategy is to find the evader. In

the lion’s move state, the evader is visible and furthermore the pursuer is on the shortest

path between the evader and the left-most point on the boundary of the polygon. As a

result, the pursuer can perform the lion’s strategy and make progress. The guard state

is an intermediate state between search and lion’s move, which enables the pursuer to

locate itself on the shortest path to the evader. In other words, the guard state enables

the pursuer to chase the evader by lion’s move. As the pursuer is performing its strategy

it is possible that it retreats back to the left. We show that even though the pursuer is

retreating, it is making progress and hence the evader is captured in finite time.

In the next chapter, we study the full-visibility version of the pursuit-evasion game

where the players are aware of each other’s location at all times. We will study the

game on three-dimensional surfaces.



Chapter 5

Pursuit-Evasion Games with

Full-Visibility

In Chapter 4, we studied a variant of the pursuit-evasion game where the pursuer has

line-of-sight vision in a monotone polygon. In this chapter, we turn our attention to

the full-visibility case, i.e., when both players have complete knowledge of the location

of their opponent. We study the game when played in a more complex environment:

the surface of polyhedrons. First, in Section 5.2 we investigate the game on general

polyhedral surfaces. We show that there exists a finite-time capture strategy with three

pursuers even in the presence of obstacles. Then, in Section 5.3 we show that surfaces

of convex terrains (height-maps) are single-pursuer-win.

Let us start this chapter by presenting the game model and the notation used

throughout the chapter.

5.1 Game Model and Notation

A team of a finite number of pursuers, denoted by p1, p2, ..., pn wish to capture an

evader which is denoted by e. When our pursuit strategy involves only one pursuer (in

Section 5.3), we drop the subscript and denote the pursuer by p.

Throughout this chapter, we consider the discrete time turn-based version of the

lion and man game: The players take turns and each turn takes a unit time step. At

the beginning of the game, first the pursuers choose their initial positions and then the

92
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evader places itself. Afterwards, the pursuers move first, followed by the evader’s move.

The pursuers can move simultaneously or sequentially as long as they finish their moves

within their turn. In one time step each player can move along any path contained

in the environment which is at most one unit in length. The players can observe each

other’s locations at all times. The pursuers’ goal is to capture the evader in finite time.

The evader is captured if at any time the distance between some pursuer pi and the

evader is less than the capture distance δ. The pursuers win the game if they can

capture the evader in finite time, while the evader wins if it can escape forever.

The game environment is denoted by S. Roughly speaking, S is the surface of a

polyhedron. Later in each section we will give a more accurate specification of the

environment we study (polyhedral surfaces with obstacles in Section 5.2, and convex

height-maps in Section 5.3). The surface S is represented by a set of faces fi, a set

of edges ei, and a set of vertices vi (Fig. 5.1(c)). We assume that each face fi is

triangulated, which can be done in time O(n log n) where n is the number of vertices on

a polygonal face [78]. Thus, each face fi is a triangle. An edge joins exactly two vertices

of the polyhedron. A boundary edge lies on exactly one face, while a non-boundary

edge is on two adjacent faces.

We denote the boundary of a set R ⊆ S by ∂R.

An arbitrary path on the surface, which is not necessarily a shortest path, is denoted

by Π. For a given path Π on S, we use |Π| to denote the length of Π. A geodesic shortest

path between points a and b is denoted by Π∗(a, b). The length of Π∗(a, b) is denoted

by d(a, b). We drop (a, b) if the source and destination points of Π∗ are clear from

the context. Given two points p and q on Π we denote the sub-path of Π from p to

q by Π(p, q). Given two paths Π1(a, q) and Π2(q, b), we denote the path obtained by

concatenating them at q by Π1(a, q) + Π2(q, b). Given two points p and q on the same

face of S, we denote the line segment between them by pq and its length by |pq|.
We are now ready to start our investigation of the game on polyhedral surfaces.

5.2 Three Pursuers on Polyhedral Surfaces with Obstacles

In this section, we show that three pursuers suffice for capture on a polyhedral surface

(Fig. 5.1(a)) when the capture distance is non-zero. We show that our pursuit strategy
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is applicable even if the surface does not have boundary, and also in the presence of

“obstacles” i.e. subsets of the surface that neither player can enter. As an example,

Fig. 5.1(b) shows a geodesic terrain which is a special case characterized by unique

height values for points in the two-dimensional plane.

To be more precise, in this section the environment S can be the surface of any

polyhedron possibly with obstacles. Obstacles are forbidden subsets of S that neither

the pursuers nor the evader can enter. Topologically, the surface in the absence of

obstacles may be equivalent to a disk, in which case it has a boundary, or a sphere, in

which case it does not have a boundary. Each obstacle is homeomorphic to a disk in

R2. Obstacles are added by punching holes on the surface without introducing handles.

We denote the set of obstacles on S by {O1, O2, ..., OM}.

∗

(a)

∗

(b)

∗

(c)

Figure 5.1: Illustration of the key concepts. (a) A polyhedral surface which is not

a terrain. When the red face is excluded the surface has a boundary, and thus is

homeomorphic to a disk. If it is included in S, the surface is homeomorphic to the

surface of a sphere. (b) A geodesic terrain. When the players are restricted to stay

outside water, the lakes are modeled as obstacles. (c) A triangulated polyhedral surface.

Here, faces are the triangles, edges are shown as line segments and vertices are depicted

as dots.

We present a pursuit strategy which uses a subroutine for guarding shortest paths

inspired by Aigner and Fromme [28] (see Chapter 3). We show how the evader can

be constrained to a region formed by two shortest paths each of which is guarded by

a pursuer. We use the third pursuer to split this region to two smaller regions such

that one of them contains the evader. The splitting algorithm is applied iteratively. We

prove that the evader will be captured in finite time by obtaining a lower-bound on how
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much the evader’s region shrinks at each iteration.

This section is organized as follows. In Section 5.2.1 we discuss the required modules

for our strategy. The details of the pursuit strategy are given in Section 5.2.2. In

Section 5.2.3 we show that the evader is captured in finite time. Finally, in Section 5.2.4

we present the lemmas required for the analysis of the correctness of our strategy.

5.2.1 Ingredients of the Pursuit Strategy

At a high level, our three pursuer strategy for capturing the evader on S is similar to

the strategy proposed in [38] for polygonal environments with obstacles. Let us start by

presenting the idea for polygons. The pursuit strategy is divided into phases. In each

phase, the pursuers make progress by restricting the evader to a smaller region. Let us

refer to the subset of S that the evader is restricted to during the ith phase as the con-

taminated region and denote it by Si. The strategy has two components: guarding

and splitting. Two pursuers guard the boundary of the current contaminated region

Si in order to prevent the evader from exiting Si. A pursuer can guard a shortest path

Π by locating itself on the projection of the evader onto Π. The evader cannot cross Π

without being captured by the guarding pursuer. Therefore, we maintain the invariant

that the subsets of ∂Si that are guarded by two pursuers are shortest paths in Si.
Since only two pursuers are used to guard Si, the third pursuer is free. This third

pursuer splits Si into two smaller regions by guarding a third shortest path inside Si. The

splitting shortest path is selected in such a way that one of the two pursuers guarding Si
becomes free. This allows the pursuers to continue the splitting process until capture.

The evader will be now restricted to one of the resulting smaller regions inside Si which

is denoted by Si+1. The evader can never return to Si \ Si+1. Furthermore, using the

free pursuer the splitting process can be continued on the new contaminated region

Si+1.
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Figure 5.2: The paths Π1, Π2, and Π3 are shown with dashed lines and ∂S is shown

with solid lines. (a) The path Π3 is selected as the shortest path between a1 and b2

when a1 6= a2, b2 and b1 6= a2, b2. (b) In polygons multiple shortest paths are possible

only because of obstacles. (c) On a polyhedron multiple shortest paths can be built by

hills and valleys.

The critical parts of the strategy are choosing the path for the splitting procedure

and showing that progress toward capture is guaranteed after each splitting step. There

are significant differences between the polygonal and polyhedral cases involving these

steps. First, let us explain the difficulties in the splitting step. Suppose that S has a

boundary. Let Π1 and Π2 be the two paths on ∂Si that are guarded by pursuers p1

and p2 respectively. Let a1 and b1 be the two endpoints of Π1, and a2 and b2 be the

endpoints of Π2. Initially, ai, bi are chosen on ∂S. If these endpoints are disjoint, i.e

a1 6= a2, b2 and b1 6= a2, b2, then it is not too difficult to see that a path Π(a1, b2),

which is a shortest path inside Si, can be used for splitting (Fig. 5.2(a)). Next, suppose

a1 = a2 but b1 6= b2. In this case, we can pick a point c along the portion of the

boundary from b1 to b2 and use a path Π(a1, c), which is a shortest path inside Si, to

make progress.

The remaining case a1 = a2 and b1 = b2, i.e. when there are two shortest paths

between a1 = a2 and b1 = b2, is challenging on a polyhedron (Fig. 5.2(c)). In particular,

after removing Π1 and Π2, the next-shortest path between a1 and b1 can be infinitesi-

mally close to either Π1 or Π2. Let us refer this candidate path as Πmin (Fig. 5.3). If

we choose Π3 as Πmin, then the splitting procedure may go on forever and we cannot

have finite time capture. On the other hand, if we choose any other path as Π3, then

p3 may not guard Π3. This is because the evader can cross Π3 by traveling along Πmin
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since Πmin is shorter than Π3.

In polygonal settings, multiple shortest paths between two points are possible only

when they touch obstacles (Fig. 5.2(b)). In this case, the contaminated region is dis-

connected and we can make progress by removing components that do not contain the

evader.

Π1

Π2

Π3

Πmin

Figure 5.3: After removing Π1,Π2, the next shortest path Πmin can be very close to

Π1,Π2.

In order to find the splitting path in the case of multiple shortest paths, we make use

of the capture distance δ of the pursuers. In particular, for each of the shortest paths Πi

we define a capture region as a region around Πi that the evader cannot enter without

being captured by the guarding pursuer pi. Let C(Πi) denote the capture region of Πi.

We use the intersection points between ∂C(Π1) and ∂C(Π2) as the endpoints of the

splitting path (Section 5.2.2).

In order to show that the number of splitting phases is finite, the first idea is to

provide a lower bound on (area(Si)− area(Si+1)). In particular, it must be shown that

there exists a constant number ε > 0 such that (area(Si)− area(Si+1)) ≥ ε. Instead of

directly computing the area, which is hard, we partition the surface of the polyhedron

into δ
2-small triangles, that is, triangles with all sides shorter than δ

2 . We show that

at the end of each phase the pursuers claim at least one of these triangles as cleared

for the rest of the game, i.e. the evader cannot return to the cleared triangles. This

provides a lower bound on the progress.

Our result is the following theorem which we will prove in Section 5.2.3.

Theorem 5.2.1 (Finite time capture with three pursuers). In the lion and man game

on a polyhedral surface S, possibly with holes, three pursuers with non-zero capture
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distance δ can capture the evader in time O(( A
δ2

+ L
δ +N)2 δ

2) where A denotes the area

of the surface, L is the sum of the lengths of the edges on S, and N is the number of

triangular faces used in the representation of S.

In the following, we formally present the definitions of projections used for guard-

ing the evader region, capture regions used for shrinking the evader region, and small

triangles used to prove capture.

5.2.1.1 Projection

In Section 3.1.7 we introduced the concept of projection mapping. Recall that the

projection of the evader onto Π∗ is a point on Π∗ which is closer to each point on Π∗

than the evader. Aigner and Fromme [28] discussed guarding of shortest paths on graphs

using projections. This idea was later used for guarding shortest paths in polygonal [38]

and polyhedral environments [43]. Inspired from the guarding strategies in [28] and [38],

Klein and Suri [43] show that shortest paths on polyhedral surfaces are guardable using

the following projection mapping:

Definition 3 (Projection mapping [38]). Given a shortest path Π∗(a, b) between two

points a and b, and the current evader location e, a point p(e) on Π∗(a, b) is a projection

mapping of e onto Π∗ if d(a, p(e)) = min(d(a, e), d(a, b)).

In order to guard Π∗(a, b), the pursuer can locate itself on the projection of the

evader as follows. The pursuer starts from a and moves along Π∗(a, b) towards b. As

the evader moves its projection gets closer or farther away from the pursuer. Since the

pursuer is moving in the same direction, it will eventually reach the evader’s projection.

The number of required steps is bounded by O(D+d(a, b)) where D is the length of the

longest shortest path on S. Here, the O(D) component accounts for the number of steps

required for the pursuer to initialize itself on a, and the d(a, b) component accounts for

the number of steps required to travel along the path Π∗(a, b) from a to b. The total

number of steps is O(D) because d(a, b) ≤ D.

When the pursuer establishes its location on the evader’s projection, it can maintain

its position on the projection of the evader as the evader moves. In other words, as the

evader moves from et to et+1, the guarding pursuer can move from the projection of et

to the projection of et+1 in one step. This is because d(a, p(et)) = min(d(a, et), d(a, b)),
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d(a, p(et+1)) = min(d(a, et+1), d(a, b)), and moreover d(a, et+1) ≤ d(a, et) +d(et, et+1) ≤
d(a, et) + 1. For a more elaborate proof, see [38].

The second important property of the projection is that since the projection is closer

to all the points on Π∗ than the evader itself, the evader cannot cross Π∗ without being

captured [38].

5.2.1.2 Capture Regions

For a given shortest path Π∗, its capture region, denoted by C(Π∗), is defined by:

C(Π∗) = {q ∈ S : ∃p ∈ Π∗, d(p, q) ≤ δ

2
}. (5.1)

The following properties of the capture region play a crucial role in our strategy.

Lemma 5.2.2. Let Π∗ be a shortest path that is being guarded by a pursuer located on

the projection of the evader. Then, the evader cannot enter the capture region of Π∗

without being captured.

Proof. Suppose that on its turn the evader crosses C(Π∗). That is, the evader moves

from e1 to e2 to e3 such that e2 ∈ C(Π∗) (Fig. 5.4). If e2 ∈ Π∗ then the evader is

captured because the pursuer is located on e2 which is the projection of e2. Otherwise,

let p1 and p2 denote the projection of e1 and e2 onto Π∗ respectively. Since e2 ∈ C(Π∗),

there exists a point q ∈ Π∗ such that d(q, e2) ≤ δ
2 (Eq. 5.1). We show that the pursuer

can capture the evader on its next move.

e1

e2

e3

p1

p2
q

Figure 5.4: C(Π∗) is shown in gray. The evader will be captured if it enters C(Π∗).

More specifically, we prove that the path Π = Π∗(p1, p2) + Π∗(p2, q) + Π∗(q, e2) +

Π∗(e2, e3) has length less than 1 + δ. Thus, the pursuer can move along Π for one unit,
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and at the end of the move its distance from the evader is at most δ. Therefore, the

evader will be captured.

First, p1, p2 are the projections of e1, e2 respectively. Therefore, d(p1, p2) ≤ d(e1, e2).

Next, since p2 is the projection of e2 it is closer to q than e2 is (Section 5.2.1.1). In

other words, we have d(p2, q) ≤ d(e2, q). Recall that d(e2, q) ≤ δ
2 by definition of q .

Thus, d(p2, q) ≤ δ
2 .

Finally, notice that the length of the evader’s path from e1 to e3 is at most one.

Thus, d(e1, e2) + d(e2, e3) ≤ 1. Consequently, we have:

|Π| = d(p1, p2) + d(p2, q) + d(q, e2) + d(e2, e3)

≤ d(e1, e2) +
δ

2
+
δ

2
+ d(e2, e3) ≤ d(e1, e2) + δ + d(e2, e3) ≤ 1 + δ

Thus, the pursuer can take Π and and the end of the move, it can capture the evader.

Next we show that the capture region is a connected set. As we will see later in

Section 5.2.2, this property allows us to analyze our divide-and-conquer approach.

Lemma 5.2.3. Given a shortest path Π∗, its capture region C(Π∗) is connected.

Proof. Assume to the contrary that C(Π∗) is not connected, and let R be one of the

connected components of C(Π∗). Let q be an arbitrary point in R. According to Eq. 5.1,

there exists a point p ∈ Π∗ such that d(p, q) ≤ δ
2 . Let l be a shortest path between p

and q. The length of l is d(p, q) which is less than δ
2 . Therefore, all of the points on l

are in C(Π∗). Thus, R is connected to Π∗ through l. Consequently, all components of

C(Π∗) are connected to Π∗. Hence, C(Π∗) is a connected set.

Remark 7. The capture region of a shortest path is not necessarily a polyhedral subset

of S because the boundary of the capture region can be curved e.g. it can contain circular

arcs. In this paper, we assume that we have an oracle that computes the capture region

of a given shortest path.

5.2.1.3 Triangulation into Small Triangles

As we discussed earlier, we will partition S into small triangles in order to show that the

evader will be captured in finite time. Later in Section 5.2.3 we prove that after each
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phase the pursuers remove at least one of the small triangles from the contaminated

region. In the following, we present the algorithm for triangulating the faces into δ
2 -small

triangles where δ is the capture distance. We also bound the number of triangles.

Definition 4 (Small Triangles). A triangle is α-small if all of its edges are shorter than

α.

Recall that the input surface is represented as a mesh of triangles. In the following,

we show how each of these triangles can be further partitioned into δ
2 -small triangles.

Suppose that 4abc is a triangle which is not δ
2 -small.

In the first step, we find one of the bounding rectangles of 4abc as follows. In any

triangle we have at least two vertices whose angles are less than π
2 . Let b and c be those

vertices in 4abc. We choose the bounding rectangle such that one of its edges is bc

(Fig. 5.5). The length of the other edge of the rectangle, which is perpendicular to bc,

is the same as the height of the third vertex a with respect to the edge bc (Fig. 5.5).

a

δ
4

b

cd

e

(a)

a

δ
4

b

cd

e

(b)

Figure 5.5: Triangulation of 4abc into δ
2 -small triangles. Case (1) and Case (2) are

shown in part (a) and part (b) respectively.

Let us denote the vertices of the bounding rectangle by b, c, e, d as shown in Fig. 5.5(a).

There are three cases based on whether the edges of the rectangle have lengths less than
δ
4 or not.

Case (1): Both of the edges bc and bd have length greater than δ
4 (Fig. 5.5(a)).

In this case, we put a grid of squares of side length δ
4 on the rectangle. Since both

bc and bd have length greater than δ
4 we have O( |bc|δ .

|bd|
δ ) square cells. Notice that

O( |bc|δ .
|bd|
δ ) = O(Ai

δ2
) where Ai is the area of 4abc.
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We next partition each square cell into four δ
4 -small triangles using its diagonals. In

the final step, we consider only the small triangles that are covered by 4abc. Some of

these small triangles might intersect the edges ac and ab. As a result they are divided

into smaller triangles, quadrilaterals or pentagons. This is because the edge ac divides

a triangle into a triangle and a quadrilateral. If the edge ab intersects the quadrilateral,

a pentagon is introduced1 . We can easily partition the resulting quadrilaterals and

pentagons into O(1) δ
2 -small triangles by adding diagonals. Therefore, the number of

small triangles on 4abc is O(Ai
δ2

) where Ai is the area of 4abc.
Case (2): Exactly one of the edges bc and bd has length greater than δ

4 (Fig. 5.5(b)).

In this case, we create a grid of single row with width equal to the longer edge. Using

this grid, we can partition 4abc into O(Liδ ) small triangles where Li denotes the length

of the longest edge of 4abc.
Case (3): Both of the edges bc and bd have lengths less than δ

4 . In this case, 4abc
is already δ

2 -small.

We apply this partitioning algorithm to each triangular face on S which is not δ
2 -

small.

Lemma 5.2.4. Using the triangulation algorithm above, the polyhedral surface S is

partitioned into O( A
δ2

+ L
δ +N) small triangles where A is the area of S, L is the sum

of the lengths of the edges on S, N is the number of triangles in the original mesh

representation of S, and δ is the capture distance.

Proof. The surface is initially represented by a mesh of N triangles (see Section 5.1).

Each of these triangles falls into one of the three cases of the algorithm above. The

three cases introduce O(Ai
δ2

), O(Liδ ) or O(1) small triangles where Ai is the area and

Li is the length of the longest edge on the corresponding triangle. Notice that Li =

max (|aibi|, |aici|, |bici|) where 4aibici is the ith face on S. Therefore,∑
4aibici

Li ≤ 2L

where

L =
∑
4aibici

(|aibi|+ |aici|+ |bici|)

1 Since ac and ab intersect each other at the endpoint a, the quadrilateral is cut into a triangle and
a pentagon and not a 6-gon.
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As a result, we have

O(
∑
4aibici

(
Ai
δ2

+
Li
δ

+ 1)) = O(
A

δ2
+
L

δ
+N)

small triangles in total.

5.2.2 The Three Pursuer Strategy

We are now ready to present the details of our pursuit strategy. Let us denote the

paths Π1,Π2 and Π3 guarded at the ith phase by Πi
1, Πi

2 and Πi
3 respectively. Moreover,

let aj and bj be the two endpoints of Πi
j for j ≤ 3. The pursuer pj is assigned to guard

the path Πj .

5.2.2.1 Initialization: Phase i = 1

We first present the initialization of Π1 and Π2. Initially in the first phase i = 1, two

distinct points in S are selected as the endpoints of Π1. Then Π1 is a shortest path

between a1 and b1 inside S. If ∂C(Π1) \∂S = ∅ then by Lemma 5.2.14, the evader will

be captured by the pursuer p1. If ∂C(Π1) \ ∂S 6= ∅, the endpoints of Π2 are selected

as two arbitrary points in ∂C(Π1) \ ∂S. See Fig. 5.6. Then, Π2 is a path that connects

a2 to b2 and is a shortest path inside S \ C(Π1).

Note that even though the endpoints of Π2 are selected arbitrarily, Π2 will not inter-

sect Π1 since Π1 is contained inside C(Π1). As we will formalize later, the property that

Π1 does not intersect Π2 is an invariant that the pursuers try to maintain throughout

the game.

Two pursuers p1 and p2 guard Π1 and Π2 by locating themselves on the projection

of the evader onto Π1 and Π2 respectively. Therefore, at the end of the first phase, the

evader is restricted to lie in the region S1 = S \ (C(Π1) ∪ C(Π2)).
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o1o2

C(Π1)

C(Π2)

Π1

Π2

Figure 5.6: Initially, Π1 is selected as a shortest path between two arbitrary points in

S \O. Recall that
⋃M
i=1 ∂Oi ⊆ ∂S. The obstacles are shown in black while the capture

regions are depicted in gray. The endpoints of Π2 are chosen as non-boundary points

on ∂C(Π1).

Definition 5 (The contaminated region Si). The contaminated region Si is the con-

nected component of Si−1 \ (C(Πi
1) ∪ C(Πi

2)) that contains the evader at the ith phase.

The evader cannot exit Si without being captured. The region Si is bounded by

C(Πi
1), C(Πi

2) and ∂S. Notice that initially S0 = S.

5.2.2.2 Invariants

By exploiting the properties of capture regions, which we discuss shortly, we will show

that the pursuers can maintain the following invariants:

• Invariant (I0): At each phase i, the boundary of the contaminated region ∂Si is

topologically equivalent to a Jordan curve.

• Invariant (I1): At each phase i, the structure of ∂Si falls into one of the following

two cases (Lemma 5.2.7). Fig. 5.7 shows an illustration.

– Case (1): ∂Si is composed of a connected non-empty subset of ∂C(Πi
j1

)∪ ∂S
and also a connected non-empty subset of ∂C(Πi

j2
)∪∂S where j1, j2 ∈ {1, 2, 3}

and j1 6= j2. In other words, both paths contribute to the contaminated

region.
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– Case (2): ∂Si is composed of a connected non-empty subset of ∂C(Πi
j1

)∪ ∂S
(j1 ∈ {1, 2, 3}). In other words, only one path contributes to the contami-

nated region.

Remark 8. From now on, for simplicity of notation we re-label the paths and their

guarding pursuers at the beginning of each phase such that j1 = 1 and j2 = 2.

• Invariant (I2): The paths Πi
1 and Πi

2 do not intersect each other.

In Lemma 5.2.5, we present a property of capture regions, which is crucial to main-

tain the above invariants. We provide its proof in Section 5.2.4. In the lemma, we

consider the connected components of ∂Si and label them as A,B,C based on whether

they are associated with Π1,Π2 or ∂S.

Lemma 5.2.5. Suppose that ∂Si is partitioned into a set of connected components

{A1, A2, · · · , Ak1 , B1, B2, · · · , Bk2 , C1, C2, · · · , Ck3} such that Aj ⊆ ∂C(Πi
1) \ ∂C(Πi

2),

Bj ⊆ ∂C(Πi
2) \ ∂C(Πi

1), and Cj ⊆ ∂S. Let L1 =
⋃j=k1
j=1 Aj, L2 =

⋃j=k2
j=1 Bj and

F =
⋃j=k3
j=1 Cj. Then there exists a partitioning of F into F1, F2 such that both F1 ∪ L1

and F2 ∪ L2 are connected.

Intuitively the lemma says that if ∂Si is composed of ∂S, ∂C(Πi
1) and ∂C(Πi

2), then

as we traverse ∂Si between two points q1, q2 ∈ L1 (or L2), we only encounter points that

belong to L1 (respectively L2). Here, Lj is in fact the contribution of pj for keeping the

evader contained in Si.

5.2.2.3 Strategy: Phase i > 1

By maintaining the above invariants on the structure of Si we guarantee that guarding

the boundary of Si requires at most two pursuers. Consequently, at the end of each

phase at least one pursuer is free.
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a1

e
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Π1

Π2

b1

b2

w1 w2 w3w4

(a)

a1

e

a2

Π1

Π2

b1

b2

4

(b)

a1

e

Π1
b1

4

(c)

Figure 5.7: The paths Π1 and Π2 are shown in dashed lines (For simplicity of the

notation, we omit the superscript i in Πi). The boundary of the capture regions are

shown in dots. The capture regions are shaded in gray. (a,b) Two examples for case (1)

are illustrated. (c) Case (2) is demonstrated.

The free pursuer p3 is used for splitting the contaminated region Si by guarding Πi
3.

We will choose the path Πi
3 to divide Si into two smaller subsets. After placing p3 on

guard position at Πi
3, the evader cannot cross Πi

3. The new contaminated region Si+1 is

the subset of Si that contains the evader defined by either Πi
3,Π

i
1 or Πi

3,Π
i
2. Therefore,

Si+1 is guarded by p3, p1 or p3, p2. As a result, one of the pursuers p1 or p2 is free.

Thus, we can repeat splitting Si+1 using the free pursuer. Notice that the pursuers and

their corresponding paths are re-labeled so that p3 is the free pursuer (Remark 8).

Lemma 5.2.6. Consider the contaminated region Si in the ith phase. We can select a

path Πi
3 inside Si such that:

• Πi
3 is a shortest path in Si such that it does not intersect Πi

1 and Πi
2.

• Πi
3 splits Si into two smaller subsets.

• Each of the resulting smaller subsets can be guarded by at most two pursuers.

Proof. In Lemma 5.2.7 we show that Πi
3 can be selected such that the resulting two

subsets can be guarded by only two pursuers. In Lemma 5.2.9 we show that the resulting

subsets are strictly smaller than Si.

Let us first discuss the selection of the endpoints of the splitting path Πi
3 such that
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the invariants (I1) and (I2) are maintained throughout the game. Later in Section 5.2.3

we show that the contaminated regions shrinks every time p3 splits it.

Lemma 5.2.7. At each phase i, the path Πi
3 can be selected such that it is a shortest

path in Si, and it does not intersect Πi
1 and Πi

2. Furthermore, Πi
3 is guaranteed to split

Si into two subsets each of which can be guarded by at most two pursuers.

Proof. For simplicity of notation we omit the superscript i in Πi. We prove the claim

by induction on the phase number i. In particular, we first assume that the invariants

hold for Si. Then, in a constructive approach we show that for each of the three cases

we can select the endpoints of Π3 such that Si+1 conforms to the invariants as well.

For the induction basis, notice that S1 is the connected component of S \ (C(Π1) ∪
C(Π2)) that contains the evader. Therefore, ∂S1 is composed of ∂S, ∂C(Π1) and C(Π2),

and is also homeomorphic to a Jordan curve. Thus according to Lemma 5.2.5, ∂S1 is

composed of a connected component of ∂C(Π1) ∪ ∂S and perhaps a a connected com-

ponent of ∂C(Π2) ∪ ∂S. In other words, ∂S1 conforms to Invariant (I1). Furthermore,

since Π2 is chosen inside S \ C(Π1), Invariant (I2) is also satisfied for S1.

Next, for the inductive step, suppose that (I1) holds for Si. Therefore, ∂Si is com-

posed of a connected component of ∂C(Π1) ∪ ∂S and perhaps a connected component

of ∂C(Π2) ∪ ∂S. Let us denote these components by L1 and L2 respectively. First, for

each of the two cases in Invariant (I1), we present the selection of a3, b3 such that (I1)

is satisfied in the next phase for Si+1.

• Case (1): Consider the intersection arcs between L1 and L2. From each arc select

an arbitrary point and denote them by w1 and w2 respectively (Fig. 5.7(a)). Then,

we select {a3, b3} to be the pair {w1, w2}.

• Case (2): The endpoints a3, b3 are chosen as two arbitrary distinct points on ∂Si
(Fig. 5.7(c)).

We next show that (I2) holds for Si+1. First, ∂Si is homeomorphic to a Jordan

curve. Second, Π3 is a path inside Si between a3 and b3. Therefore, Π3 divides Si into

two smaller subsets.

Without loss of generality suppose that the evader is in between L1 and Π3. Notice

that C(Π3) is connected (Lemma 5.2.3). Therefore, the subset of Si that contains the
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evader is bounded by ∂C(Π1), ∂C(Π3) and ∂S. As a result of Lemma 5.2.5, the new

subset conforms to Invariant (I1).

5.2.2.4 Examples

We now present interesting examples for each of the two cases in invariant (I1). An

abstract illustration of case (2) is shown in Fig. 5.7(b) and a specific example of this

configuration is presented in Fig. 5.8. The example in Fig. 5.8 is the following. Imagine

a cone and cut it at height δ
2 from its base and then mount a half-sphere on top of

it (Fig. 5.8(a)). The endpoints of Π1 are chosen as the antipodal points on the base

circle. The endpoints of Π2 are also antipodal on the cutting circle (Fig. 5.8(a)). The

perimeter of the base circle, the circle that a1, b1 lie on, is chosen small enough such that

C(Π1) includes the whole base circle and also the portion of the surface up to height δ
2 .

Now, observe that if a2, b2 are chosen as antipodal points on ∂Si, there exists a shortest

path between them that in on the top of the half-sphere as shown in Fig. 5.8(a). With

the choice of the evader location shown in Fig. 5.8(b), which provides a top view of the

environment, we will have the configuration illustrated in Fig. 5.7(b).

Π1

Π2

a1

a2
b1

b2

e

(a)

Π1

Π2
a1

a2 b1b2

e

(b)

a1 b1
e

(c)

Π1

a1
b1

e

(d)

Figure 5.8: The capture regions of the paths Π1 and Π2 are shown in gray. The

examples for case (2) and case (3) are shown. Notice that in both examples the shortest

path Π1 is on the cone and is obtained as follows. Flatten the cone into a plane. Then

Π1 is a line segment in this plane. (a, b) Side view and top view of an example for case

2 are shown respectively. (c, d) Side view and top view of an example for case 3 are

shown.

A similar example for case (3) is shown in Fig. 5.8(c) and Fig. 5.8(d). The example

is a cone, and the endpoints of Π1 are the antipodal points on the base circle of the

cone. The perimeter of the base circle is chosen small enough such that the base circle
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is completely inside C(Π1).

Remark 9. Notice that for simplicity the examples presented above are not polyhedral.

It is not difficult to see that these examples can be approximated by polyhedral surfaces

such that the argument above is still valid.

In the next section, we show that there can only be finitely many phases before the

evader is captured.

5.2.3 Making Progress

We now prove that the evader will be captured in finite time. To do so, we provide an

upper bound on the number of phases as well as an upper bound on the number of time

steps in each phase.

Let us first introduce our notion of progress after each phase. Let Πi
3 be the shortest

path inside Si that splits the contaminated region Si. We start by marking all δ
2 -small

triangles of S as contaminated. At the end of the ith phase, we mark the small triangles

that are touched by the splitting path Πi
3 as cleared. We show that each small triangle is

marked at most once. Thus the number of phases is bounded by the number of δ
2 -small

triangles on S. We take advantage of the following observation:

Lemma 5.2.8. The capture region of Πi
3 contains all the δ

2 -small triangles f that are

being touched by Πi
3.

Proof. The distance between any pair of points inside a δ
2 -small triangle is at most δ

2 .

Since Πi
3 and f have a common point, namely q, the distance between q and all the

points inside f is at most δ
2 . Thus f ∈ C(Πi

3) (see Definition 5.1).

Intuitively, after guarding Πi
3 we remove the capture region of Πi

3 from Si in order

to obtain the new contaminated region Si+1. Therefore, f does not appear in Si+1 and

also in the future regions Sj , j > i. Hence, the small triangle f cannot be marked by

Πj
3 because Πj

3 marks the faces that it is touching in Sj and Sj does not contain f . The

following lemma provides a formal proof:

Lemma 5.2.9. The three pursuer strategy ensures capture after at most M phases

where M is the number of δ
2 -small triangles on S.
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Proof. The splitting path Πi
3 is computed inside Si. Therefore:

f is marked clear in the ith phase if Πi
3 ∩ f ∩ Si 6= ∅ (5.2)

Clearly, Πi
3 is touching at least one small triangle f . This is because the endpoints of

Πi
3 are distinct (otherwise Si = ∅ which means that the evader is already captured). In

the following, we show that each f is marked clear at most once. Assume the contrary

and suppose that a small triangle f is marked twice: at phases i and j where i < j.

According to Definition 5 we have Si+1 ∩ C(Πi
3) = ∅. Together with the observation

that f ⊆ C(Πi
3), as in Lemma 5.2.8, we must have f ∩ Si+1 = ∅. According to our

assumption, f is marked at the jth phase as well. Thus, according to (5.2) we must

have f ∩ Sj 6= ∅.
Now observe that Sk+1 ⊂ Sk for all k since Sk+1 is obtained by removing C(Πk

3)

from Sk. Therefore, we have Sj ⊂ Si for j > i. Thus, Sj ⊆ Si+1, and also we have

f ∩ Sj ⊆ Sj ⊆ Si+1. Therefore, f ∩ Sj ⊆ Si+1. Moreover, f ∩ Sj ⊆ f . Consequently,

f ∩ Sj ⊆ f ∩ Si+1. But, f ∩ Si+1 = ∅ and f ∩ Sj 6= ∅ which is a contradiction. Hence,

each small triangle is marked at most once. Therefore, the number of phases is bounded

by the number of δ
2 -small triangles on S.

w1

w2

f

(a)

C1

C2

q1

q2
Πi

3

f

(b)

Figure 5.9: (a) The shortest path between w1 and w2 in S is a line segment. When we

remove the gray region from S, the shortest path in the new region is longer than the

original shortest path. (b) In order to catch up with the projection, the pursuer moves

along the segment q1q2.

Next, we provide an upper bound on the number of time-steps in each phase. This

time is required for p3 to catch up with the evader’s projection. The pursuer’s strategy
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is to walk along Πi
3 until it hits the evader’s projection. We show that we need O(M δ

2)

steps where M is total number of small triangles on S. First, notice that the number

of steps needed cannot be bounded in terms of the length of Πi
3. This is because Πi

3

is computed in Si and not S, and the shortest path between two points in Si can be

longer than their shortest path in S (Fig. 5.9(a)).

The pursuer’s strategy is as follows. Let f be a small triangle on Πi
3. Moreover, let q1

and q2 be the endpoints of Πi
3∩f (see Fig. 5.9(b)). Instead of moving along Πi

3(q1, q2) the

pursuer takes a shortcut and simply moves along the segment q1q2. Since Πi
3 is within

the capture distance of the pursuer, the evader cannot cross Πi
3(q1, q2). As a result,

the pursuer can protect Πi
3 and meanwhile travel a shorter distance. Furthermore, Πi

3

enters each small triangle at most once. Thus, the number of steps is at most O(M δ
2).

We are now ready to prove our result which was given in Theorem 5.2.1.

Proof of Theorem 5.2.1 Let M be the total number of δ
2 -small triangles on

S. There are at most M phases (Lemma 5.2.9). Each phase takes at most O(M δ
2)

steps. Thus, the capture time is O(M2 δ
2). According to Lemma 5.2.4 we have M =

O( A
δ2

+ L
δ +N) where A is the area of S, L is the sum of the length of the edges on S,

and N is the number of triangles in the original triangular mesh representation of S.

Therefore, the capture time is O(( A
δ2

+ L
δ +N)2 δ

2).

Finally, in the next section we present proofs of the lemmas we saw throughout the

section as well as auxiliary lemmas that are needed.

5.2.4 Correctness Proofs

In this section, we present the proofs of our lemmas to show the correctness of our

proposed strategy. We start by proving Lemma 5.2.5. We then continue by presenting

some auxiliary lemmas that are required in our proofs.

Proof of Lemma 5.2.5. For simplicity of notation, let us drop the superscript i in Πi
1,Π

i
2

and denote them by Π1 and Π2 respectively. Notice that ∂Si is homeomorphic to a

Jordan curve.

Assume to the contrary that for any choice of F1, F2 either L1 ∪ F1 or L2 ∪ F2

is disconnected. Observe that ∂Si is homeomorphic to a Jordan curve, and L1, L2, F

partition ∂Si. Therefore, according to Lemma 5.2.12 there are points q1, q2 ∈ L1 and
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w1, w2 ∈ L2 that are arranged as q1, w1, q2, w2 in clockwise or counter clockwise order

around ∂Si.
Main idea: The main idea of our proof is the following: First, using q1, q2, Π1

and a portion of ∂Si we construct a Jordan curve. Then using w1, w2 we show the

existence of a point in the interior of ∂Si and a point in the exterior of ∂Si which results

in the existence of a path in C1 which intersects a path in C2. Therefore, according

to Lemma 5.2.10 we conclude that q1 ∈ C2 or q2 ∈ C2 or w1 ∈ C1 or w2 ∈ C1 which

contradicts the assumption that q1, q2 ∈ C2 \ C1 and w1, w2 ∈ C1 \ C2

Construction of a Jordan Curve: Let us begin by noticing that since q1 ∈ C1

there exists a point on Π1 namely s1
q such that d(s1

q , q1) ≤ δ
2 . Similarly, there exists

a point s2
q on Π1 such that d(s2

q , q2) ≤ δ
2 . Likewise, define s1

w, s
2
w ∈ Π2 such that

d(s1
w, w1), d(s2

w, w2) ≤ δ
2 . Consider Π(s1

q , q1) and Π(s2
q , q2) and observe the following

properties:

1. Both Π(s1
q , q1) and Π(s2

q , q2) are not self-intersecting. Because otherwise they

could be shortened.

2. Both Π(s1
q , q1) and Π(s2

q , q2) do not intersect Π1. Because otherwise q1, q2 would

belong to the interior of C1 and not ∂C1 (recall that q1, q2 ∈ ∂Si).

Π1

m

w1

w2

s1q

s2q

q2

q1

∂Si

(a)

Π1

m

w1

w2

s1q

s2q

q2
C

q1

∂Si

(b)

Figure 5.10: Construction of the Jordan curve C is shown. (a) The case when Π(s1
q , q1)

and Π(s2
q , q2) intersect each other is demonstrated. (b) C is shown in the aforementioned

case.
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Now we construct a Jordan curve by concatenating sub-paths of ∂Si,Π1, Π(s1
q , q1)

and Π(s2
q , q2). Let us denote this Jordan curve by C (Fig. 5.10(b)). Since ∂Si is a Jordan

curve, it divides S into two sets: the interior and the exterior of ∂Si. All the paths

Π1, Π2, Π(s1
q , q1) and Π(s2

q , q2) are in the exterior of ∂Si. There are two cases whether

Π(s1
q , q1) intersect Π(s2

q , q2) or not:

1. Π(s1
q , q1) does not intersect Π(s2

q , q2): In this case, construct C by concatenating

Π(q1, s
1
q),Π(s1

q , s
2
q),Π(s2

q , q2) and ∂Si(q1, q2) where ∂Si(q1, q2) is chosen arbitrarily

among the two sub-paths between q1, q2 along ∂Si.

2. Π(s1
q , q1) intersects Π(s2

q , q2): Let m be the intersection point which is closest to

q1 along Π(s1
q , q1). See Fig. 5.10(a). Then construct C by concatenating Π(q1,m),

Π(m, q2) and ∂Si(q1, q2) where ∂Si(q1, q2) is chosen arbitrarily among the two

sub-paths between q1, q2 along ∂Si. See Fig. 5.10(b).

Contradiction: Finally, we construct a path between w1 and w2 that intersects C
as a result of the Jordan curve theorem. As a corollary of the intersection we will show

a contradiction by Lemma 5.2.10 and Lemma 5.2.11.

Π2

m1

m2

w1

w2

s1w

s2w

q2
C

q1

∂Si

Figure 5.11: The path Π = Π(w1, s
1
w) + Π2(s1

w, s
2
w) + Π(s2

w, w2) intersects the Jordan

curve C.

Let us begin by constructing a path Π = Π(w1, s
1
w) + Π2(s1

w, s
2
w) + Π(s2

w, w2). See

Fig. 5.11. Then there exist two points m1,m2 on Π one of which is in the neighborhood

of w1 and the other is in the neighborhood of w2 such that either:

m1 ∈ interior(C) ∧m2 ∈ exterior(C) (5.3)
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or:

m1 ∈ exterior(C) ∧m2 ∈ interior(C) (5.4)

Therefore Π(m1,m2) intersects C (by Jordan curve theorem). Let h be the intersection

point. There are two cases:

1. h /∈ Π1 ∪Π2: According to Lemma 5.2.10 either q1 ∈ C2 or q2 ∈ C2 or w1 ∈ C1 or

w2 ∈ C1. But this is a contradiction because q1, q2 ∈ C1 \C2 and w1, w2 ∈ C2 \C1.

2. h ∈ Π1 or h ∈ Π2: Without loss of generality suppose that h ∈ Π2. Since Π1 and

Π2 are non-intersecting it must be that h ∈ Π(q1, s
1
q) or h ∈ Π(q2, s

2
q). Without

loss of generality suppose that h ∈ Π(q1, s
1
q). According to Lemma 5.2.11 we have

q1 ∈ C2 which contradicts the initial assumption that q1 ∈ C1 \ C2.

Both cases result in contradiction which proves our lemma.

Lemma 5.2.10. Let C1 and C2 be the capture regions of paths Π1 and Π2 respectively.

If for a point p1 ∈ C1 and a point p2 ∈ C2, a shortest path between Π1 and p1, and a

shortest path between Π2 and p2 intersect, then it must be that p1 ∈ C2 or p2 ∈ C1.

Proof. Let Π(s1, p1) and Π(s2, p2) be the corresponding shortest paths: Π(s1, p1) is

between s1 ∈ Π1 and p1, and Π(s2, p2) is between s2 ∈ Π2 and p2. Since p1 is inside the

capture region of Π1, it must be that d(s1, p1) ≤ δ
2 (Definition 5.1). Similarly, we have

d(s2, p2) ≤ δ
2 . Let q be an intersection point between Π(s1, p1) and Π(s2, p2).

The main idea of our proof is the following. The intersection point q divides each

of the shortest paths Π(s1, p1) and Π(s2, p2) into two sub-paths. We will concatenate

a sub-path from one shortest path to a sub-path from the second one and construct

new paths of length at most δ
2 between p1 and Π2 and similarly between p2 and Π1.

Therefore, it can be concluded that p1 ∈ C2 and p2 ∈ C1.

We now start our proof. Consider the sub-path of Π(s2, p2) from q to p2, i.e. Π(q, p2),

and the sub-path of Π(s1, p1) from q to p1 i.e., Π(q, p1). Regarding the length of these

two sub-paths, there are two cases:

1. |Π(q, p2)| ≤ |Π(q, p1)|: Adding |Π(s1, q)| to both sides we get |Π(s1, q)|+|Π(q, p2)| ≤
|Π(s1, q)|+|Π(q, p1)|. Thus |Π(s1, p2)| ≤ |Π(s1, p1)|. Since |Π(s1, p1)| = d(s1, p1) ≤
δ
2 we have |Π(s1, p2)| ≤ δ

2 . Furthermore, since s1 ∈ Π1 we have p2 ∈ C1.
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2. |Π(q, p2)| > |Π(q, p1)|: Adding |Π(s2, q)| to both sides we get |Π(s2, q)|+|Π(q, p2)| >
|Π(s2, q)|+|Π(q, p1)|. Thus |Π(s2, p2)| > |Π(s2, p1)|. Since |Π(s2, p2)| = d(s2, p2) ≤
δ
2 we conclude |Π(s2, p1)| ≤ δ

2 . Since s2 ∈ Π2 we have p1 ∈ C2.

p1

p2

s1
s2

Π1

Π2

q

Π(s2, p2)

Π(s1, p1)

Figure 5.12: Proof of Lemma 5.2.10 is illustrated. A shortest path between s1 ∈ Π1

and p1 ∈ C1 intersects a shortest path between s2 ∈ Π2 and p2 ∈ C2.

Lemma 5.2.11. Let C1 and C2 be the capture regions of paths Π1 and Π2 respectively.

If for a point p1 ∈ C1, a shortest path between Π1 and p1 intersects Π2, then it must be

that p1 ∈ C2.

Proof. Let Π(s1, p1) be the corresponding shortest path: Π(s1, p1) is between s1 ∈ Π1

and p1. Let h be an intersection point between Π(s1, p1) and Π2. Consider the sub-

path of Π(s1, p1) from h to p1. Since p1 ∈ C1 we have d(s1, p1) ≤ δ
2 (Definition 5.1).

Therefore d(h, p1) ≤ δ
2 . Together with the fact that h ∈ Π2 we conclude that p1 ∈ C2.

Lemma 5.2.12. Let {L1, L2, F} be a partitioning of a Jordan curve C into three sets

with the extra condition that F can be the empty set, i.e., L1, L2 6= ∅ and F ∪L1∪L2 = C
and F ∩ L1 = ∅, F ∩ L2 = ∅, L1 ∩ L2 = ∅. Let F1, F2 be any partitioning of the

set F into two (possibly empty) sets. If for any choice of F1, F2 either L1 ∪ F1 or

L2 ∪F2 is disconnected then there are points q1, q2 ∈ L1 and w1, w2 ∈ L2 that appear as

q1, w1, q2, w2 in clockwise or counter clockwise order around C.
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Proof. Consider the particular choice of F1, F2 where F1 = F and F2 = ∅. According to

Lemma 5.2.13, since C is a Jordan curve, and either L1 ∪ F1 = L1 ∪ F or L2 ∪ F2 = L2

is disconnected, there are two non-empty disconnected components of L1 ∪ F , namely

V1, V2 and two non-empty disconnected components of L2, namely W1,W2, such that

Vj ,Wj , j ≤ 2 are arranged as V1,W1, V2,W2 in clockwise or counter clockwise order.

The take-away conclusion here is that W1,W2 ⊂ L2, W1,W2 6= ∅ and that W1,W2 are

disconnected components of L2. Similarly, with the choice F1 = ∅, F2 = F , we can show

the existence of nonempty connected components of L1 namely Q1, Q2.

We now prove the claim of the lemma. There are two cases regarding the arrange-

ment of Q1, Q2,W1,W2:

1. With proper labeling Qi,Wj are arranged as Q1,W1, Q2,W2 in clockwise order

around C: Then any pair of points q1 ∈ Q1, q2 ∈ Q2 and any pair of points

w1 ∈W1, w2 ∈W2 will establish the arrangement q1, w1, q2, w2.

2. With proper labeling Qi,Wj are arranged as Q1, Q2,W1,W2 in clockwise order

around C: Assume to the contrary that such qi, wi do not exist. Therefore, as we

a point q along C from Q1 to Q2 as shown in Fig. 5.13 q ∈ F . Similarly, as we

move a point q along C from W1 to W2 as shown in Fig. 5.13 q ∈ F .

Now, move a point p1 along C from Q1 to W1 as in Fig. 5.13. In the following we

enumerate all the possibilities of whether p1 ∈ L1 or p1 ∈ L2 or p1 ∈ F . We use

an arrow sign (→) to show the transition from one set to the other e.g., L1 → L2

means that as we move p1 first p1 ∈ L1 and then at some point p1 ∈ L2:

(L1 ∪ F ) → (L2 ∪ F )

L2 → (L2 ∪ F )

(L1 ∪ F ) → (L1)

L2 → L1

(5.5)

Similarly, move a point p2 along C from Q2 to W2 as shown in Fig. 5.13. The

enumeration of all possibilities whether p2 ∈ L1 or p2 ∈ L2 or p2 ∈ F is the same

as (5.5). Since for any choice of F1, F2 either L1 ∪ F1 or L2 ∪ F2 is disconnected

then at least one of p1, p2 has to fall into the fourth case in (5.5). Either case, the

points q1, q2, w1, w2 can be selected with the desired arrangement.
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Q1
Q2

W1
W2

p1
p2

C

q

q

Figure 5.13: Proof of Lemma 5.2.12.

Lemma 5.2.13. Let {L1, L2} be a partitioning of a given Jordan curve C into two sets2

. An example is shown in Fig. 5.14(a). If either of L1, L2 is disconnected then there are

non-empty disconnected components Q1, Q2 ⊂ L1 and W1,W2 ⊂ L2, that are arranged

as Q1,W1, Q2,W2 in clockwise or counter-clockwise order. See Fig. 5.14(b).

Proof. Without loss of generality suppose that L1 is disconnected. Let Q1, Q2 be two

disconnected components of L1. Let q denote any point on C. Move q along C in

clockwise direction. Since Q1, Q2 are disconnected components of L1, at some point q ∈
L2. Let q1 denote this point (Fig. 5.14(c)). Similarly, as we move q in counter-clockwise

direction, at some point q ∈ L2. Let q2 denote this point. Both q1, q2 belong to L2 and

furthermore they are disconnected by Q1, Q2. Therefore, there are two disconnected

components of L2 namely W1,W2 such that q1 ∈W1 and q2 ∈W2. Finally, Q1, Q2 and

W1,W2 establish the desired arrangement in Fig. 5.14(b).

2 Note that L1, L2 6= ∅ since {L1, L2} is a partitioning. Moreover, each Li is a collection of sub-paths
of C where each sub-path could be a single point.
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L1

L1

L1

L2

L2

L2

(a)

Q1

Q2

W1

W2

(b)

Q1

Q2

q1

q2

(c)

Figure 5.14: (a) A partitioning of the closed curve C into two sets L1, L2 is depicted.

Here, both L1, L2 have three connected components. (b) If either L1 or L2 is discon-

nected, then there are disconnected components of L1, L2 that are arranged as shown in

this figure. (c) Since Q1, Q2 are disconnected components of L1, there exist disconnected

components of L2 namely X,Y in between them.

Lemma 5.2.14. Let C denote a capture region in S. If ∂C \ ∂S = ∅ then S ⊆ C.

Proof. Since ∂C \ ∂S = ∅ then ∂C ⊆ ∂S. If ∂C = ∅ then we have S ⊆ C. If ∂C 6= ∅
then S ⊆ C since both C and S are connected.

5.2.5 Summary

So far, we have studied the lion and man game on the surface of a polyhedron with

obstacles. The surface is homeomorphic to a sphere or a disk that can contain holes

(handles are not allowed). We showed the existence of a capture strategy with three

lions when the capture distance is non-zero. In order to compute the strategy on a

given polyhedron a subroutine which computes the capture region of a shortest path

is needed. This region is then removed from the environment and the computation

proceeds iteratively.

Next, we focus on a smaller class of polyhedral surfaces, i.e., convex height-maps

which we refer to as convex terrains.
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5.3 Single Pursuer on Convex Terrains

In this section, we study the lion and man game on surfaces of convex terrains3 . We

show that the lion can capture the man in finite number of steps determined by the

terrain geometry.

A terrain is obtained by assigning a single height value to each point in a bounded

region of a plane in R2. In particular, a terrain is a polyhedral surface with boundary

in R3 such that each of its vertices has a single height value associated with it, i.e.

terrains are height maps [79]. To make the presentation easier, we assume that all

terrain vertices are at different heights which is attainable by slightly perturbing the

height function. A convex terrain is a terrain with a convex height function.

Our pursuit strategy is based on guarding wavefronts and pushing them towards the

evader. A wavefront at height z is defined as the set of points on the terrain that are on

the same height z. We first discretize the terrain by a set of wavefronts. The pursuer

starts from the highest wavefront and pushes the frontier wavefront downwards while

preventing the evader from entering any previously guarded wavefront. Intuitively, the

perimeter of the frontier wavefront is increased in this downward sweep. This allows

the pursuer to use the difference between the perimeter of two consecutive wavefronts

in order to make progress.

In Section 5.3.1 we present the key concepts we use throughout the section. An

overview of the proposed strategy is presented in Section 5.3.2. The discretization

of the terrain into wavefronts is explained in Section 5.3.3. Details of the pursuer

strategy for guarding the current wavefront and making progress to the next wavefront

are presented in Section 5.3.4 and Section 5.3.5 respectively. We present the detailed

proof of our lemmas in Section 5.3.6.

5.3.1 Key Concepts: Wavefront, Projection and Image

Let us begin by presenting some important concepts that we will use in our strategy.

We refer to the two-dimensional plane with the lowest height, i.e. the z = 0 plane, as

the base plane. We occasionally refer to this plane as the XY -plane. Moreover, we use

the coordinate frame XY Z with its origin placed on any arbitrary point in the base

3 The material in this section appears in [16].
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XY -plane (Fig. 5.15).

Definition 6 (The Perpendicular Image and Pre-Image). For a point p = (x, y, z) on

S, the point q = (x, y) is called the perpendicular image of p onto the base plane. Also,

p is called the pre-image of q. Similarly, one can define the image (pre-image) of a path

on S (on the XY -plane).

Note that we reserve the term projection for an important ingredient of our strategy

which we will present shortly. We have the following useful proposition.

Proposition 5.3.1. The pre-image of any continuous path in the XY -plane is a con-

tinuous path on S.

Definition 7. Let p1 and p2 be two distinct points which are on the same face f of S.

Consider the straight line segment that connects them on S, and denote its length by L.

Also, let l be the length of its perpendicular image. We refer to the ratio α(p1, p2) = l
L

as the length coefficient associated with p1 and p2.

The length coefficient α(p1, p2) is in fact the cosine of the angle between the segment

p1p2 and the XY -plane. Notice that the largest possible value of this angle is the angle

between the face f and the XY -plane. Therefore, the minimum length coefficient is

well defined in the sense that it is a finite positive number. This is because faces with

vertical edges are not allowed, and also the two points p1 and p2 are distinct.

Proposition 5.3.2. The length coefficients are positive and less than or equal to one,

i.e. 0 < α(p1, p2) ≤ 1. We refer to the minimum possible length coefficient on S as

α = minf∈S minp1,p2∈f α(p1, p2).

Lemma 5.3.3. Let p1 and p2 be two distinct points on S. Let s be the shortest path

between p1 and p2 on S. Denote the length of s and its image by aS and a respectively.

Then aS ≤ a
α .

Proof. Let f1, f2, · · · , fk be the sequence of faces that s passes through. Observe that

the portion of s which is on fi is a line segment (because otherwise, s can be shortened

by taking the line segment between the entry and the exit points of fi). Let si denote

the line segment on fi. Denote the length of si and its image by aS,i and ai respectively.

Then, aS =
∑

i aS,i and a =
∑

i ai. By proposition 5.3.2, we have aS,i ≤ ai
α . Therefore,∑

i aS,i ≤
∑

i
ai
α . Thus, aS ≤ a

α .
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We next present an important ingredient of our strategy: the wavefronts.

Definition 8 (Wavefronts). We refer to the set of points on S which are on the same

height z as the wavefront at z. Throughout the paper, we reserve the letter W for the

wavefronts.

Observe that the wavefront at height z is the intersection of S with the plane Z = z

which are both convex sets. Therefore, wavefronts are also convex polygons. Also, the

image of a wavefront in the XY -plane is obtained by taking the perpendicular image of

every point of the wavefront.

Definition 9. Let p1, p2 ∈W be two points on the wavefront W . We denote the shorter

path from p1 to p2 along W by W (p1, p2), and its length by dW (p1, p2). We also denote

the length of the segment pi1p
i
2 in the XY -plane by dXY (p1, p2).

z

x

y

p

(a)

edge region

wedge region

wj

wj+1

W i

ei1ei2

p

(b)

w

e

ei
πi(e)

π(e)

p

(c)

Figure 5.15: (a) Discretization of S by a set of wavefronts. (b) The partitioning of the

exterior of W i into wedge regions and edge regions. (c) The projection of e onto the

wavefront W . Here, p1 and p2 are the projections of e1 and e2 respectively.

Let W i be the perpendicular image of a wavefront W . We partition the region

outside W i (in the base plane) into regions of two types: the edge regions and the

wedge regions as follows. Suppose that the vertices of W i are labeled as {w1, w2, ..., wn}
in the clockwise order. See Fig. 5.15(b) for an illustration. Let l1j and l2j be the two

perpendicular lines to edges wj−1wj and wjwj+1 which are drawn from wj .
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Definition 10 (Wedge Regions and Edge Regions). For an edge wjwj+1, its corre-

sponding edge region is the region in between l2j and l1j+1. For a vertex wj ∈ W i, its

corresponding wedge region is the region in between l1j and l2j . Notice that these regions

are non-overlapping since W is a convex polygon.

We use the following feature of S to provide the capture time of our strategy:

Definition 11 (Wedge Angle). For a given wavefront vertex wj, the wedge angle is

defined as the angle between l1j and l2j in the base plane.

We are now ready for presenting the key concept in guarding the wavefronts: the

projection of the evader onto a wavefront. Let ei and W i be the perpendicular images of

e and a wavefront W onto the XY -plane respectively. Also, suppose that ei is outside

the region enclosed by W i. The projection of e onto the wavefront W is defined as

follows.

Definition 12 (Projection onto a Wavefront). Consider the partitioning of the exterior

region of W into wedge regions and edge regions. See Fig. 5.15(b). There will be two

cases based on the location of ei: 1) ei is inside the edge region associated with an edge

wjwj+1 (e.g. ei1); 2) ei is inside the wedge region of a vertex wj (e.g. ei2). In the first

case, let p denote the intersection of the edge wjwj+1 and the perpendicular line to the

edge wjwj+1 which passes through ei. In the second case, let p denote the vertex wj.

Then, the projection of e onto W is the pre-image of p on S (Fig. 5.15(c)). We denote

this point on S as π(e,W ).

Remark 1. Notice that the perpendicular image in Definition 6 is different from the

projection onto a wavefront in Definition 12. For a point p ∈ S, its image is denoted

by pi while its projection onto W is denoted by π(p,W ).

5.3.2 Overview of the Pursuit Strategy

The idea of our pursuit strategy is the following. We first discretize the surface of S by

a set of wavefronts (Section 5.3.3). Initially, the pursuer goes to the highest point of S.

(We assume that this point is unique. It is not too difficult to show that our strategy

is applicable if there are more than one point with the same height.). The highest

point is in fact the first wavefront in the set of wavefronts. The pursuer’s strategy has
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two components: (1) guarding the current wavefront in order to prevent the evader

from crossing it without being captured, (2) making progress by moving to the next

wavefront.

Definition 13. We refer to the wavefront that the pursuer is currently guarding as the

frontier wavefront. Throughout the paper, we denote the frontier wavefront by W and

the wavefront right below it by Wn.

We achieve these two goals as follows. We consider the images of the wavefronts in

the XY -plane (Fig. 5.17(b)). Meanwhile we use the images of the players and projection

of the evader onto wavefronts to transform the game to the base plane and guide the

pursuer’s strategy on S (Fig. 5.15(c)). In order to guard the current wavefront W , the

pursuer uses the projection of the evader onto W because the projection has the nice

property that it is closer to all points on W than the evader.

e2
e1

p

W
Wn

p1

p2

l

dπ

(a)

e2
e1

p
W

Wn p1
l

dπ

(b)

Figure 5.16: (a) The projection of e1 and e2 onto W are p1 and p2 respectively. (b)

Progress in rook strategy.

Therefore, if we place the pursuer on the projection of the evader, then the evader

cannot cross W without being captured (Lemma 5.3.14). Although locating p at π(e,W )

accomplishes our guarding goal, it makes it difficult to achieve the progress goal as

follows. Suppose that the evader is in an edge region and let l be the corresponding

edge in W . See Fig. 5.16(a). The evader can make it impossible for the pursuer to make

progress by using the following strategy. The evader moves back and forth between e1

and e2 such that ei1e
i
2 is parallel to l. In response, the pursuer has to move between p1

and p2 (the projection of e1 and e2 respectively) to stick to its strategy of staying on

the projection of the evader. Since the segment ei1e
i
2 is parallel to l and also because the
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length of ei1e
i
2 can be one, the length of p1p2 is one. Consequently, the pursuer has to

use all of its one unit of motion for guarding W : Nothing is left for it to make progress

and move to Wn. The evader can repeat this for infinitely many steps, and thus it can

escape forever against the pursuit strategy of staying on the projection.

We resolve the aforementioned problem by placing the pursuer “close” to π(e,W )

instead of “exactly” at π(e,W ). In particular, we place the pursuer on W at distance

dπ > 0 from the projection of the evader onto W (to the left side of π(e,W )). For

example in Fig. 5.16(a), if the evader is at e1 the pursuer is located at p instead of p1.

Under certain conditions on dπ, the pursuer can still prevent the evader from crossing

W . The pursuer can accomplish even more by making progress to the next wavefront

in certain events such as when the evader moves to the left (Fig. 5.16(b)). We refer to

this idea as the rook strategy. We present the details of guard and progress components

of the strategy in Section 5.3.4 and Section 5.3.5 respectively. Our main effort in this

paper is dedicated to providing the necessary conditions on dπ.

Finally, our pursuit strategy has another design parameter in addition to dπ: the

discretization distance D which is the distance between two consecutive wavefronts (we

will define the distance between two wavefronts in Section 5.3.3). We show that dπ and

D must satisfy constraints that are functions of the terrain geometry (Lemma 5.3.5,

Section 5.3.5.1, Lemma 5.3.8 and Lemma 5.3.10).

5.3.3 Discretization of the Surface into Wavefronts

We now study the discretization of S onto wavefronts. To do so, we move a plane which

is parallel to the XY -plane downwards along the z direction starting from the highest

point of the terrain. Notice that this plane is moved continuously. We then look at the

images of the corresponding wavefronts in the XY -plane.
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Figure 5.17: (a) A vertex event at v: The edge associated with face f4 disappears. Then

a new edge associated with f3 appears. (b) The image of the wavefronts is shown.

We show that the changes in the combinatorial structure of these images occur at

the vertices of S. We refer to these changes as the discrete events. The set of wavefronts

is then determined with regard to these discrete events.

In particular, before encountering a vertex two consecutive wavefronts are polygons

that are similar to each other. Here, by similar we mean the following. Let W1 and W2

be two wavefronts such that there is no terrain vertex in between them (Fig. 5.17(a)).

Then W i
2 is obtained from W i

1 by shifting all the edges of W i
1 in parallel. The shifting

amount can be different for each edge (Fig. 5.17). When the frontier reaches a vertex in

S, we still have this parallel shifting pattern. However, some edges disappear from the

frontier, and then new edges appear as the frontier passes the vertex (Fig. 5.17). We

now formalize these events as follows.

Consider the wavefront W at height z and let F (z) denote the set of faces that

intersect W . We use F (W ) to denote the same set of edges if W is clear from the

context. Also, let w be an edge in W which lies on the face f ∈ F (z) (Fig. 5.17(a)). We

refer to w as the edge in W which is associated with the face f . Now, as W is moved

downwards, there can be no vertex on its way (no vertex event), or it will encounter a

vertex (vertex events).

No vertex event: Let W1 and W2 be two wavefronts at heights
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Figure 5.18: (a) W1 and W2 on S. (b) Their images.

z + ε (ε > 0) and z respectively such that F (z) = F (z + ε) = F (Fig. 5.18(a)). In

other words, there is no vertex in S at height between z and z + ε. Let f be a face in

F , and let w1 and w2 be the two edges in W1 and W2 respectively that are associated

with f . Then, the images of w1 and w2 in the XY -plane are parallel to each other

(Fig. 5.18(b)). Moreover, this observation is true for all edges of W1 and W2.

Disappearing and appearing vertex events: Let v be a vertex of S which is at height

z, and let W be the wavefront at z. Notice that if there are multiple vertices at the

same height, we have multiple vertex events at the same time, one for each vertex. The

argument below is still valid in this case.

Let Wu be the wavefront at z+ ε1 (ε1 > 0) such that for heights h in z < h ≤ z+ ε1

we have F (z + ε1) = F (h) = U (Fig. 5.19(a)). Next, denote the two faces that are

adjacent to v in W by f1 and f2 (Fig. 5.19(a)). Let U ′ be the subset of U which is

adjacent to v excluding f1 and f2 (U ′ ⊂ U − {f1, f2}). Then, as the frontier wavefront

moves from z + ε1 to z, the edges in W i
u that are associated with U ′ disappear in W i.

See Fig. 5.19(b). We refer to this event as the disappearing vertex event.
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Figure 5.19: (a) the surface S. (b) the XY -plane.

Similarly, let Wl be the wavefront at z − ε2 (ε2 > 0) such that for heights h in

z − ε2 ≤ h < z we have F (z − ε2) = F (h) = L. Let L′ ⊂ L− {f1, f2} be the set of faces

that are adjacent to v excluding f1 and f2 (Fig. 5.19). Then, as the frontier moves from

z to z − ε2 new edges associated with L′ appear in W i
l . We refer to this event as the

appearing vertex event.

The following Definition will be useful later when we define the distance between

two wavefronts.

Definition 14 (The closing and opening wavefront vertices). Consider the portion

of Wu that intersects U ′ (Fig. 5.19). We denote the two wavefront vertices on Wu

that enclose this portion by c1 and c2. We also refer to them as the closing vertices .

Similarly, o1 and o2, the opening vertices, are defined on Wl.

Now that we have the discrete events, we are ready to define the distance between

two consecutive wavefronts.

Distance Between Two Wavefronts: The distance between two consecutive

wavefronts W and Wn, which is denoted by d(W,Wn), is defined as follows for each of

the three types of transitions between W and Wn:

No vertex event: Let us denote the image of the wavefront vertices in W by {w1, w2,

· · · , wk}. Similarly, denote the vertices in Wn by {w′1, w′2, · · · , w′k} (Fig. 5.20(a)). Then,

d(W,Wn) is defined as 1
α max1≤j≤k wjw

′
j .
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Figure 5.20: Images of W and Wn are shown in the base plane. (a) No vertex event.

(b) Appearing vertex event. The appearing edges on W i
n are shown in thicker line. (c)

Disappearing vertex event.

Appearing vertex event: See Fig. 5.20(b). We define an auxiliary polygon in the

XY -plane based on the image of Wn. Let us denote this new polygon by Wa. Then

Wa is obtained by taking the extension of the two edges in Wn that are adjacent to

o1 and o2. Let vn be the intersection of these two extension lines. Then, d(W,Wn) is

defined as the maximum of d(W,Wa) (from the previous no vertex event definition) and
1
α max(vioi1, v

ioi2).

Disappearing vertex event: See Fig. 5.20(c). Similar to the no vertex event case, let

wi and w′i denote the rest of the wavefront vertices on W and Wn respectively. Then,

d(W,Wn) is defined as the maximum of 1
α max(vici1, v

ici2) and 1
α max1≤j≤k wjw

′
j .

We are now ready to present the discretization of S by wavefronts.

Discretization of S by the Wavefronts: In order to discretize S, we need the

discretization distance D as the input parameter. For a given value of D, we can choose

the wavefronts on S such that the distance between any two consecutive wavefronts is

at most D.

Specifically, the procedure for obtaining the wavefronts is the following. We add

the highest point as the first wavefront. Starting from this first wavefront, we move

downwards until the wavefront distance is D or we reach a terrain vertex. We then add

the wavefront at this height as the second wavefront. We continue with this procedure

until we reach the XY -plane and the surface of S is completely swept.

In our strategy we use the following property:

Lemma 5.3.4 (Distance between projections onto two consecutive wavefronts). Let W
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and Wn be two consecutive wavefronts and e be a point outside Wn. The distance between

p1, the image of the projection of e onto W , and p2, the image of the projection of e

onto Wn, is less than D where D is the maximum distance between any two wavefronts

in the XY -plane.

Proof. The point e can be in an edge region or a wedge region of the wavefront W . In

each case, we show that the distance between p1 and p2 is less than D (Lemma 5.3.11

and Lemma 5.3.12).

5.3.4 Guarding Wavefronts

In this section, we present the pursuer’s strategy for guarding the current wavefront W .

The pursuer locates itself on W at distance dπ > 0 along W away from the projection

of the evader onto W . In order to prevent the evader from crossing W , the distance

dπ must satisfy a constraint that we present in this section. We call this configuration

for guarding W the rook configuration which we formalize as follows. Suppose that the

evader is outside the region enclosed by W (i.e. the evader is below W ). Also, suppose

that the pursuer is on the wavefront W . Consider the projection of e onto W which is

denoted by π(e,W ).

Definition 15 (The Rook Configuration on S). The pursuer on the wavefront W is

in rook configuration if dπ = dW (p, π(e,W )) ≤ α
2 where α is the minimum length

coefficient. Fig. 5.21(a) depicts an illustration (See Definition 9 and Proposition 5.3.2

for dW and α respectively.).

In the following, we first show that when the pursuer is in the rook configuration,

it can capture the evader if it tries to cross the wavefront W (Lemma 5.3.5). We then

show that once the pursuer establishes the rook configuration on the frontier W , it can

maintain it afterwards as the evader moves (Lemma 5.3.6).

Lemma 5.3.5. Suppose that the pursuer is on the wavefront W in rook configuration

(i.e. at distance dπ ≤ α
2 along W away from the projection of e). Then, the evader

cannot cross W without being captured.

Proof. Our proof has two parts. First, we show that the condition dπ ≤ α
2 implies that

either the evader is already captured or dπ is less than the shortest distance between
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the evader and the wavefront W . We use this result in the second part of the proof and

show that the pursuer can capture e if it tries to cross W .

First part: We would like to show that if dπ ≤ α
2 , then either we have capture or

the distance between the evader and W is at least dπ. We first introduce a lower bound

on the distance between e and W . We then show that this lower bound is more than

dπ.

To find the lower bound, we take another step to find another lower bound in the

base plane. We connect this lower bound in the base plane to the lower bound on

S by means of Lemma 5.3.3 and Proposition 5.3.2. Consider the image of e and W

in the base plane (Fig. 5.21(a)). In the base plane, we know that the image of the

projection of the evader onto W (i.e. πi(e,W )) is the closest point on W i to the image

of e (Lemma 5.3.14). Notice that the shortest path between ei and πi(e,W ) is a line

segment (since S is convex). Let us denote the length of this shortest path by h. Thus,

all paths in the base plane are longer than h, and the length of the pre-image of each

path in the base-plane is more than the length of its image. Therefore, all paths on S
between p and e are longer than h.

We now show that h > dπ. To do so, we consider the triangle between the image of

e, the image of p and the image of the projection of the evader onto W in the base plane,

and we use the triangle inequality as follows. See Fig. 5.21(b). Let a denote the length

of the segment between ei and pi in the base plane and aS denote the length of its pre-

image on S. Similarly, let m denote the length of the segment between pi and the image

of the projection of the evader. If aS ≤ 1, the evader is already captured. Therefore,

suppose that aS > 1. Thus, a > α (Lemma 5.3.3). According to triangle inequality we

have m+ h ≥ a. We also have dπ ≥ m. Therefore dπ + h ≥ m+ h ≥ a. Together with

a > α we have dπ + h > α. Now if α
2 ≥ dπ, we conclude that h > α − dπ ≥ α

2 . Thus

h > α
2 and hence h > dπ. To recap, the shortest distance between the evader and the

wavefront is at least h and h is more than dπ. Thus, dπ is a lower bound for the shortest

distance between p and e.
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Figure 5.21: Proof of Lemma 5.3.5. (a) The players are shown on S along with their

images on the base plane. (b) The images in the base plane. (c) If dπ < h, the evader

cannot cross W without capture.

Second part: We next show that if the evader crosses W it will be captured by

the pursuer. We show that there exists a path on S from the pursuer to the evader

which is shorter than two. Therefore, the pursuer can capture the evader by moving

along this path for one unit (at the end of this move the distance between the players

is less than step size and hence we have capture). Suppose that the evader moves from

e1 to e2 and crosses W at point q. Let us denote the length of the evader path from

e1 to q by l1. Similarly, let l2 be the length of the evader path from q to e2. Thus

l1 + l2 ≤ 1. See Fig. 5.21(c). We show that the length of the path composed of W (p, q)

and the evader path from q to e2 is less than 2. Let us denote the length of this path

by lp. Notice that lp = dπ + le + l2 where le is the distance between the projection

of the evader onto W and q along W (Fig. 5.21(c)). From the first part of the proof

we know that dπ ≤ l1. Also, according to Lemma 5.3.14 we have le ≤ l1. Therefore,

lp = dπ+ le+ l2 ≤ l1 + l1 + l2 ≤ 1+1. Thus, at the end of the pursuer’s turn the distance

between the players is less than the step size.

Finally, we show that the pursuer can keep up staying close to the projection of the

evader onto W as the evader moves.

Lemma 5.3.6. The distance that the projection of the evader onto W travels is less

than the distance that the evader travels.
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Proof. Consider the partitioning the region outside W i into the wedge regions and the

edge regions (Fig. 5.15(b)). The distance that the evader travels in each region is more

than the distance that its projection onto W travels.

5.3.5 Making Progress

We now focus on the pursuer’s strategy for making progress towards the next wavefront

Wn which is based on the motion of the evader.

Remark 2. Without loss of generality, we assume that the pursuer establishes the rook

configuration by locating itself to the left of π(e,W ). We then use the clockwise direction,

as the base direction for classifying the evader’s motion.

The evader’s motion can be categorized into three types of events: 1) the evader does

not move in its current turn, 2) the evader moves in the counter clock-wise direction

in its current turn, 3) the evader moves in the clock-wise direction for the next O(N)

steps where N is finite and we will specify it later in Section 5.3.5.3. In all of these

events, we show that the pursuer can move to the projection of the evader onto the next

wavefront Wn (π(e,Wn)). After moving to π(e,Wn), the pursuer needs only one extra

step to locate itself in the rook configuration i.e. at distance dπ away from π(e,Wn).

The pursuer repetitively applies this strategy to make progress to the next wavefront.

Therefore, the evader will be captured in finite number of steps.

The key property that we incorporate in order to show that the pursuer can move to

the projection of the evader onto the next wavefront is that for all points e the distance

between the projection of e onto two consecutive wavefronts is less than the distance

between the wavefronts themselves (Lemma 5.3.4).

The result of our paper is the following theorem.

Theorem 5.3.7 (Capture on Convex Terrains). Our proposed pursuit strategy guaran-

tees capture in finite number of steps. Specifically, the pursuer captures the evader in

O((DSD +n). |S|
1−dπ−D ) where n is the number of vertices on S, |S| denotes the perimeter of

S, DS is the diagonal of S, dπ is the rook configuration distance, and D is the distance

between wavefronts.

Proof. In Lemma 5.3.9 we show that N = |S|
1−dπ−D . Therefore, after at most N =

|S|
1−dπ−D steps, the pursuer can move from W to Wn and update W to Wn. The distance
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between two consecutive wavefronts is D or less than D when we have a vertex in

between them (according to the construction phase). Thus, we have at most DS
D + n

wavefronts. Hence, the capture time is O((DSD + n). |S|
1−dπ−D ).

5.3.5.1 Evader Stays Still

In this section, we consider the case that the evader remains still in its turn. The pursuer

uses this extra step in order to make progress towards the next wavefront. The key idea

is that the distance between the projection of e onto two consecutive wavefronts W and

Wn is at most D (Lemma 5.3.4). Therefore, the distance between the pursuer and the

projection of the evader onto Wn is at most dπ + D. This is because the pursuer is

guarding W in the rook configuration and thus away from the projection of e onto W

for dπ. Consequently, dπ and D can be chosen small enough such that the pursuer can

move to the projection of e onto the next wavefront in one step.

As a result, if we design dπ and D such that dπ + D ≤ 1 the pursuer can move to

the new projection of the evader in only one step.

5.3.5.2 Evader Moves Counter Clock-wise

We now consider the case that the evader is moving in counter clock-wise direction

in the current time-step. Similar to Section 5.3.5.1 we use the observation that the

distance between the projection of any point onto two consecutive wavefronts is at most

D (Lemma 5.3.4). Therefore, the pursuer can move to π(en,W ) along W and then

from there it can go to π(en,Wn) in only one step (Fig. 5.22) if dπ and D are designed

properly.

π(en)
i

π(e)i
pi

ei

ein

W i

W i
n

Figure 5.22: The evader moves counter clockwise.
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Lemma 5.3.8. Suppose that the evader moves counter clock-wise in its turn. Then,

if we design dπ and D such that max(dπ, 1 − dπ) + D ≤ 1, the pursuer can move to

π(en,Wn) in one step.

Proof. Consider the projection of en onto W : it can be to the left or to the right of p

(Fig. 5.22). Therefore, the distance between p and π(en,W ) is at most max(dπ, 1−dπ).

The distance between π(en,W ) and π(en,Wn) is at most D (Lemma 5.3.4). Thus, dπ

and D must satisfy: max(dπ, 1− dπ) +D ≤ 1.

5.3.5.3 Evader Moves in Clock-wise Direction for O(N) Steps

We now consider the case that the evader is moving in the clock-wise direction for the

next O(N) where N is chosen such that after N steps it is guaranteed that either: (1)

we have a time step such that the evader has to stay still or move counter-clockwise, or

(2) the projection of the evader onto the current wavefront W circumnavigates around

W for a complete round. In other words, if e moves clock-wise for N steps, π(e,W ) will

come back to the same point on W .

e1 e2

w

W i

W i
n

h

de

γ

Figure 5.23: The pursuer can make progress as the evader crosses a wedge region.

Notice that if in one of these O(N) steps, the evader stays still or moves counter

clock-wise, then the pursuer can use the strategy in Section 5.3.5.1 and Section 5.3.5.2 for

making progress towards Wn. Therefore, we can assume that during the next O(N) the

evader is moving clockwise. In this case, we show that the pursuer can make progress as

follows. Since π(e,W ) circumnavigates around W , the evader crosses the wedge region

of a wavefront vertex w ∈ W (Fig. 5.23). We show that by properly selecting dπ and
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D the pursuer can move to the projection of the evader onto the next wavefront Wn in

one step. Intuitively, as the evader crosses the wedge region of w its projection onto W

remains fixed i.e. w. Therefore, the pursuer does not need to move along W to maintain

the rook configuration (which is staying close to the projection of the evader onto W ).

Instead, the pursuer moves toward the next wavefront Wn by moving to π(e,Wn). In

the following, we first compute N and then we present the condition on dπ and D for

making progress.

We now compute the number of steps N that are required for moving clock-wise

such that the projection of e onto W circumnavigates around W for a complete round.

In other words, if e moves clock-wise for N steps, π(e,W ) will come back to the same

point on W .

Lemma 5.3.9. Consider the next O(N) steps where N = |S|
1−dπ−D ) and |S| denotes the

perimeter of the boundary of S (Assume that dπ +D < 1.). Then, we will have at least

one of the following events in these O( |S|
1−dπ−D ) steps: 1) for at least one turn e does

not move, or 2) it moves counter clock-wise, or 3) e circumnavigates around W i.e.

π(e,W ) comes back to the same point on W .

Proof. Suppose that we don’t have none of the the first and the second events. We

show that for sure we will have the third event. Since the first and the second events

did not occur, the evader is moving clock-wise. Let e and en denote the location

of the evader before and after a turn. For simplicity let us use the notations de =

dW (π(e,W ), π(en,W )) and dπ = dW (p, π(e,W )). Consider the path S(p, π(en,Wn)) =

W (p, π(e,W )) + W (π(e,W ), π(en,W )) + S(π(en,W ), π(en,Wn)). The length of this

path is dπ + de +D. Let us denote this length by dp. There will be two case: 1) dp ≤ 1,

2) dp > 1. In the first case, if dp ≤ 1, the pursuer can move to π(en,Wn) and make

progress to the next wavefront Wn.

In the second case we have 1 < dp = dπ + de + D. Consequently, 1− dπ −D < de.

In this case, the evader’s projection onto W moves for at least 1− dπ −D. Notice that

the perimeter of W is at most |S| since the boundary of S and W are convex polygons.

Therefore, after at most |S|
1−dπ−D steps, π(e,W ) comes back to the same point on W .

Notice that here the following condition is required: 0 < 1− dπ −D ⇒ dπ +D < 1.

Next, we show that if π(e,W ) circumnavigates around W , the pursuer can make
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progress to the next wavefront Wn by moving to π(e,Wn).

Lemma 5.3.10. Suppose that the evader moves in the same direction (clockwise) such

that its projection onto W comes back to the same point on W . Then, if dπ and D satisfy

the following inequality the pursuer can move to the projection of the evader onto the

next wavefront Wn: dπ +D ≤ (α− dπ) sin γ where γ is the wedge angle (Definition 11)

in S with minimum sin γ and α is the minimum length coefficient (Proposition 5.3.2).

Proof. Since the projection of the evader onto W circumnavigates for a complete round

around W , the evader crosses the wedge region of a wavefront vertex w ∈ W . Let

us denote the image of the evader in the base plane by e1 and e2 as it crosses the

corresponding wedge region (Fig. 5.23). In the following, we first find a lower bound

on the length of the evader path e1e2. We then show that there is path between the

pursuer and the projection of e2 onto Wn of length at most dπ + D. By choosing dπ

and D such that dπ +D is less than the lower bound on the length of the evader path

e1e2 we ensure that the pursuer can move to π(e2,Wn) and thus make progress to Wn.

We now present the lower bound on the length of the evader path e1e2. Consider the

segment in between the images of p and e1 in the base plane. Since S is convex and also

according to Proposition 5.3.1, the pre-image of this segment is a valid path on S. Let

us denote the length of this path on S from p to e1 by aS . Also, let a be the length of

the image of this path (the segment in the base plane). Since the evader is not captured,

it must be that 1 < aS . Therefore, α < a (Lemma 5.3.3). Next, let h be the length of

the segment e1w
i in the base plane, and de be the length of the evader path S(e1, e2).

Notice that the pursuer is in the rook configuration. Thus, the distance dW (p, w) = dπ.

Therefore, using the triangle property, we have dπ + h ≥ a. Thus, h ≥ α− dπ. Observe

that the length of the evader path between e1 and e2 is at least h sin γ (See Fig. 5.23).

Therefore, de ≥ h sin γ ≥ (α− dπ) sin γ. Therefore, the path that the evader travels on

S from e1 to e2 is longer than (α− dπ) sin γ.

Next, we present the pursuer path to π(e2,Wn). Observe that the projection of

e1 and also e2 onto W is w. Since the pursuer is in the rook configuration on W

the distance between the pursuer and w along W is dπ. Also, the distance between

π(e2,W ) = w and π(e2,Wn) is at most D (Lemma 5.3.4). Therefore, the pursuer path

W (p, w) +S(w, π(e2,Wn)) is shorter than dπ +D. Consequently if we design dπ and D
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such that dπ +D ≤ (α−dπ) sin γ, then the pursuer path will be shorter than the evader

path. Therefore, we must have: dπ(1 + sin γ) +D ≤ α sin γ ⇒ dπ <
α sin γ
1+sin γ . Hence, the

pursuer can move to π(e2,Wn) as a response to evader motion from e1 to e2.

We next provide the proofs of lemmas that we skipped in the section.

5.3.6 Correctness Proofs

We now present the proofs of our lemmas. In the following, we treat the disappearing

vertex event as a no vertex event with edge length zero for the disappearing edges.

Lemma 5.3.11. Let W1 and W2 be two consecutive wavefronts, and e be a point outside

W i in the XY -plane. Suppose that e is in the edge region of an edge m1 in W1. Then,

the distance between p1, the image of the projection of e onto W1, and p2, the image of

the projection of e onto W2, is less than D where D is the maximum distance between

any two wavefronts in the XY -plane.

Proof. Fig. 5.24 shows the images of the wavefronts as well as the required points in

the XY -plane. Let m2 be the edge in W2 which is parallel to m1 (This edge exists in

both cases of the no-vertex event and the appearing vertex event. For the disappearing

event). The segment ep1 is perpendicular to m1 (Definition 10). There are two cases

with regard to the location of m2: (1) m2 intersects ep1 , (2) m2 does not intersect ep1.

1. m2 intersects ep1: This case is illustrated in Fig. 5.24(a). In this case, p2 is in fact

the intersection point between m2 and ep1. Therefore, the length of the segment

p1p2 is less than D.

2. m2 does not intersect ep1: In this case without loss of generality suppose that m2

is to the right of ep1. The argument for the other case, when m2 is to the left

of ep1, is similar. An illustration is shown in Fig. 5.24(b). Let q1 and q2 be the

left endpoints of m1 and m2 respectively. We show that p2 must be inside the

rectangle made by m1, the extension of m2, ep1 and the line parallel to ep1 which

passes through q2, denoted by l. This rectangular region is shaded in Fig. 5.24(b).

Therefore, p1p2 ≤ p1q2 since êp1q1 is a right angle. Together with the fact that

p1q2 ≤ q1q2 (since q̂1p1q2 ≥ π
2 ), we conclude that p1p2 ≤ q1q2 ≤ D.
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Let us now prove that p2 is inside the aforementioned rectangle. We show that p2

cannot be to the left of ep1 and also it cannot be to the right of l.

Before proceeding, notice that e must be above the line that contains m2. Other-

wise, if e is below m2, the distance between p1 and e will be less than D. Thus,

the pursuer at p1 capture the evader at e becasue their distance is less than 1.

First, we show that p2 cannot be to the left of ep1. For this purpose, assume the

contrary and suppose that p2 is to the left of ep1 as shown in Fig. 5.24(c). Notice

that since W2 is convex, p2 has to be below the line that contains m2. Therefore,

p2 is inside the third quadrant made by m2 and ep1. Thus, êp2q2 ≤ π
2 . Observe

that p2 and q2 are both on W2 and W2 is convex. Therefore, the segment p2q2

is inside W2. Hence, the edge on W2 that contains p2 must be inside the wedge

made by ep2 and q2p2. Therefore, the angle made by this edge and ep2 is less than
π
2 since êp2q2 ≤ π

2 . But this is a contradiction because the angle made by ep2 and

W2 must be a reflex angle (Lemma 5.3.13).

Finally, we show that p2 cannot be to the right of l. Similar to the previous

argument, assume the contrary: suppose that p2 is to the right of l. Notice that

p2 is inside the fourth quadrant made by l and m2. Therefore, êp2q2 ≤ π
2 . Likewise

to the proof above, êp2q2 ≤ π
2 contradicts the fact that the angle between W2 and

ep2 is a reflex vertex.
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Figure 5.24: Proof of Lemma 5.3.11.

Lemma 5.3.12. Let W1 and W2 be two consecutive wavefronts, and e be a point outside

W i in the XY -plane. Suppose that e is in the wedge region of a vertex w1 in W1. Then,
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the distance between p1 = wi1, the image of the projection of e onto W1, and p2, the

image of the projection of e onto W2, is less than D where D is the maximum distance

between any two wavefronts in the XY -plane.

Proof. We prove the claim for the case that there is a no-vertex event between W1 and

W2. The appearing and disappearing vertex events can be concluded from the no-vertex

event. Therefore, suppose that the transition from W1 to W2 is a no-vertex event.

Let w2 be the vertex in W2 which corresponds to w1 (w2 is adjacent to edges in

W2 that are parallel to the edges in W1 which are adjacent to w1). Consider the circle

centered at w1 with radius w1w2 ≤ D. We show that p2 is inside this circle and thus

the distance between p1 = w1 and p2 is at most D. The main idea is the following. For

contradiction, we assume that p2 is outside this circle. We show that the angle ŵi2p2e

is less than π
2 . This contradicts the fact that the angle between W2 and e2p2 must be

at least π
2 (Lemma 5.3.13). We now present the proof that ŵi2p2e <

π
2 . Let us denote

the image of the two edges in W1 that are adjacent to w1 by m1 and m2. Also, let q1

and q2 be the image of the two edges in W2 that are parallel to m1 and m2 respectively

(and thus adjacent to w2). We have two cases whether w2 is inside the wedge region of

w1 or outside it:

1. w2 is inside the wedge region of w1: First, notice that wi1w
i
2 is inside the angle

made by m1 and m2 as shown in Fig. 5.25(b). To see this assume the contrary as

illustrated in Fig. 5.25(a) and observe that W i
2 cannot contain W i

1 which is a con-

tradiction. Therefore wi1w
i
2 is inside the angle made by m1 and m2 (Fig. 5.25(b)).

Let g1 and g2 be the intersection points between the circle and e2p2. Notice that

ê2p2w2 is less than half of the arc length g2w2 (Fig. 5.25(b)). Notice that the arc

g2w2 is smaller than π. Therefore, ê2p2w2 <
π
2 .

2. w2 is outside the wedge region of w1: This case is illustrated in Fig. 5.25(c). Notice

that the angle between m1 and m2 must be greater than π
2 because otherwise W i

2

cannot contain W i
1. Similar to the previous case it can be shown that ê2p2w2 is

less than π
2 which is a contradiction.
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Figure 5.25: Proof of Lemma 5.3.12. (a,b) The case that w2 is inside the wedge region

of w1. In (b) the arc g2w2 (the marked one) is smaller than π. (c) The case that

w2 is outside the wedge region of w2. (c,d) Proof of Lemma 5.3.13. (e) Proof of

Lemma 5.3.14.

Lemma 5.3.13. Consider the image of a wavefront W in the XY -plane. Let e be a

point in the XY -plane which is outside W i. Let p be the projection of e onto W i. The

line segment ep makes two angles with W i (Fig. 5.25(d) and Fig. 5.25(e)). Then both

of these angles are larger than π
2 .

Proof. According to definition 10 there are two cases: the point e can be in an edge

region or a wedge region. In both cases, the two angles made by ep and W i are reflex

angles.

Lemma 5.3.14. Consider the image of a wavefront W onto the XY -plane, i.e. W i.

Let e1 be a point in the XY -plane which is outside the region enclosed by W i. Moreover,

let e denote the projection of e1 onto W i ( i.e. π(e1,W ), see Definition 12). Then, for

all points q ∈W i, we have:

• In the XY -plane, e is closer to q than e1. We show this by proving that dW (e, q) ≤
dXY (e1, q).

• In the XY -plane, e is closer to e1 than any other point q on W i. In other words,

dXY (e, e1) ≤ dXY (q, e1).

Proof. First, notice that e1 can be in an edge region or a wedge region (Definition 12).

In both cases, the angle between e1e and the edge(s) on W i that contain e is at least π
2 .



141

Next, consider the edges on W i that are on W i(q, e) (Fig. 5.25(f)) and denote them

by {m1, · · ·mk}. Consider the lines that contain these edges. Denote the intersection

of these lines with the segment ee1 by {q1, · · · qk}. Observe that the angle between

mj ∈ {m1, · · ·mk} and e1e is greater than π
2 . Therefore, it can be easily shown that

dW (e, q) ≤ dXY (e1, q).

Now, let us prove the second claim, that is dXY (e, e1) ≤ dXY (q, e1). Let n be

the intersection of the edge that contains e and the segment e1q. Since the angle

between e1e and en is at least π
2 , it can be shown that dXY (e, e1) ≤ dXY (n, e1). Thus,

dXY (e, e1) ≤ dXY (q, e1).

5.3.7 Summary

We showed that the class of convex terrains (height-maps with boundary) are single-

pursuer-win when capture distance is non-zero. Our strategy is based on the rook

strategy we discussed in Chapter 3. Intuitively, the pursuer starts from the highest

point on the surface and guards wavefronts downward such that the surface is completely

swept. The capture time of our proposed strategy is a function of the terrain’s properties

such as its height and maximum slope as well as the perimeter of its projection onto

the base plane.



142

5.4 Concluding Remarks

In this chapter, we studied the lion and man game on the surface of a polyhedron. In

Section 5.2 we studied general polyhedral surfaces with obstacles. We showed that if

the capture distance is non-zero, three pursuers can capture the evader in finite time.

Our strategy is based on a divide-and-conquer approach where two pursuers restrict the

evader to a subset of the environment and the third pursuer divides the evader region

to two smaller subsets. The evader is then confined to one of these smaller regions. The

divide procedure continues until capture is achieved.

Our result is related to the result of Aigner and Fromme [28] who showed that in the

game of cops and robbers, three cops suffice for capture on planar graphs. It might be

tempting to use this result directly since the vertices and edges of a polyhedral surface

with genus zero constitute a planar graph. It turns out that the conversion from the

geometric version to the graph setup is not directly applicable for the following reasons.

First, in the geometric version the players are not restricted to move only between the

vertices. In fact, in the geometric version, the players can be anywhere in the continuous

set of points on the surface and not just the discrete set of vertices. One might suggest

to convert the geometric version to the graph setup by mapping the locations of the

players to their nearest vertex on the surface. However, this mapping does not capture

all possible movements of the players. For example, consider two points p1 and p2 on

the surface that are at distance one from each other. These two points might be mapped

to two vertices v1 and v2 that are not connected by any edge in the graph equivalent.

As a result the movement between p1 and p2 cannot be described in the graph model.

In Section 5.3 we studied the lion and man game on convex terrains and presented

a pursuit strategy which guarantees that the pursuer can reduce the distance between

the players to the step size in finite time. One of the questions left open in this work is

the optimality of this strategy. A second research direction is to characterize terrains in

which a single pursuer suffices for capture. Even though convexity is sufficient, it is not

necessary. A related question is to compute minimum number of pursuers for a given

terrain.



Chapter 6

Stochastic Target (Probabilistic

Search)

In Chapter 4 and Chapter 5 we studied variants of the lion and man game where the

goal is to capture an adversarial target. In this chapter, we study the problem of

finding a target which is simply moving randomly in a graph environment. That is, in

each step it moves to one of its neighboring nodes according to a predefined probability

distribution. We will investigate two classes of graphs: linear graphs (Section 6.2) and

two-dimensional grids (Section 6.3). Our motivating application for this problem is our

ongoing project on monitoring invasive carp in Minnesota lakes. Therefore, we also

present our field experiments to demonstrate the applicability of our proposed model

and search strategies for finding invasive carp.

Let us begin this chapter by giving a high-level description of the problem as well

as our experimental system description.
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Figure 6.1: (a) Target’s motion model is a simple random walk: with probability p it

moves one step to the left, and with probability q = 1 − p it moves one step to the

right. (b) A crossing event is illustrated: at time t, the searcher is at node i, the target

is at node i+ 1, and they move toward each other by taking the same edge in opposite

directions.

6.1 Problem Statement and Experimental Setup

We first provide our search problem statement which is briefly to design a search strategy

that maximizes the probability of finding a random walking target. Throughout the

chapter, we will present more specification of the problem for linear graphs and grids.

We then give an overview of our robotic system which is used in our field experiments.

6.1.1 Problem Statement

Let us begin by presenting the general formulation of the search problem. The searcher

and the target are moving in a graph. We study two types of graphs: linear graphs

in Section 6.2 and two-dimensional grids in Section 6.3. The searcher and the target

move in turns, in discrete time steps and with equal speed. At each time-step, both of

the players can move to one of their adjacent nodes or choose to stay in their current

nodes. The target is doing a random walk i.e., the target moves to one of its adjacent

neighbors according to a given probability. In the case of linear graphs (Section 6.2), we

will study simple random walks where the target moves to the left or to the right with

equal probability 1
2 . In the case of two-dimensional grids (Section 6.3) we investigate

the case that the target is moving to its four adjacent neighbors or stays on its current

node with equal probability 1
5 .

The direction that the searcher chooses to move is referred to as its action. In the

case of linear graphs (Section 6.2), the set of actions we allow for the searcher are: left,
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right, stay. In the case of grids, we will consider macro-actions which are basically

a sequence of actions (left, right, up, down), specifically a column to sweep (more

details in Section 6.3).

We consider a maximum time T to complete the task. The objective of the searcher

is to design a capture strategy that maximizes the probability of capture given the

maximum search time T :

max
Γ

Pc(Γ = a1a2 · · · ak) s.t. k ≤ T , (6.1)

where ai denotes searcher’s actions, Γ = a1a2 · · · ak is the searcher’s strategy and Pc(Γ)

denotes the corresponding probability of capture.

6.1.2 Experimental Setup

In this section we present a description of our robotics platform including our sensor

(directional antenna) and radio-tags used to detect the target. For our experimental

demonstration, we will use Autonomous Surface Vehicles (ASV) in summer months and

Autonomous Ground Vehicle (AGV) in winter months over frozen lakes. After present-

ing our proposed search strategies, we will provide our field experiments in Section 6.2.4

and Section 6.3.3.

Our first system, shown in Fig. 6.2(a), consists of two Autonomous Surface Vehicles

(ASVs) carrying radio tracking equipment. The ASVs are built on boats manufactured

by OceanScience [80] and were originally designed for remote operation. We added

autonomous navigation with on-board GPS, digital compass and laptop, wireless com-

munication via ad-hoc networking and remote override capabilities [81].
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(a) (b) (c) (d)

Figure 6.2: (a) Two ASVs used in field experiments. The tracking equipment are

installed on the boat that acts as the searcher. (b) The directional antenna used for

sensing the target. (c) The tag used to track the target (in case of the fish the tag is

implanted by surgery in the fish). The length of the tag is approximately 5 cm, and a

30cm antenna trailing off (From [1]) (d) The Husky A100 as our AGV.

For our experiments, one of the ASVs was designated as the searcher robot and

the other used as the random-walking target. The searcher robot (the red boat in

Fig. 6.2(a)) was equipped with a directional antenna (Fig. 6.2(c)), real time spectrum an-

alyzer, and a laptop to process and track signals. The target robot (yellow in Fig. 6.2(a))

had a radio tag attached to a tow line. The radio tags transmit a low-power, uncoded

pulse on a unique frequency approximately once per second. The antenna is direction-

ally sensitive. To detect nearby tags, the antenna must be aligned with the tag. Our

experiments are performed in Lake Staring, Minnesota.

As our Automatic Ground Vehicle (AGV), we used the Husky A100 built by Clearpath

Robotics [82] which is a six wheel, two motor, differential drive machine. Fig. 6.2(d)

shows the Husky equipped with the antenna.

We next study the search problem for finding a simple random walker in a linear

graph.
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6.2 Simple Random Walker on Linear Graphs: Crossing

Detection Model

In this section, we study the random walk search problem in linear graphs1 . The

environment is a set of discrete locations {0, 1, . . . , N} equally distanced along a line

segment. The target starts from an unknown node, and afterwards, it performs a simple

random walk as follows: from location 0 < i < N , with probability q it moves one unit

to the right, and with the remaining probability p = 1− q it moves one unit to the left.

Throughout this chapter, we mainly focus on the case of a symmetric random walk, i.e.

q = p = 0.5, but most of our results can be easily extended to other values of p and q

as well as to the case of a non-zero probability of staying at the current node (i.e. when

1− q−p 6= 0). In addition, the boundary points 0 and N are reflective (see Fig. 6.1(a)).

The searcher, on the other hand, starts from the left-most node x(0) = 0. At each

time step, it can decide to move to the right, to the left or stay at its current node.

Throughout the paper, we refer to these actions as R,L, S respectively. The searcher’s

strategy Γ is defined as a sequence of these actions a ∈ {R,L, S}. An example strategy

can be Γ = (RiSjLl)∗ which is move to the right for i steps, then stay for j steps, move

to the left for l steps, and repeat forever.

The searcher is able to sense the target only on a node. As a result, crossing on

edges, by which we mean taking the same edge in opposite directions, will not lead to

capture (see Fig. 6.1(b)). We refer to this detection model as the crossing model2. In

this model, traveling along the same edge as the target does not count as capture in

this model. As a result, at any time the target can be on both sides of the searcher.

This makes the problem of analyzing the capture probability challenging even when the

search strategy is given.

In the rest of this section, we first present a method for computing the capture

probability of a given strategy. The calculation is later used to compare the performance

of the proposed search strategies. To find the optimal search strategy, we then formulate

the problem as a POMDP. As it is well-known, the POMDP can be converted to a MDP

by considering the searcher’s belief, i.e. the probability distribution that the target is

1 The material in this section appears in [6]
2 Our results in the case of no-crossing detection model, i.e., when the target is detected also in

crossing events, are presented in [6].
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on each node, as the states. The resulting state space is large: it is exponential in the

number of nodes. To deal with curse of dimensionality, we present two approximation

methods. We refer to the first method as the belief-binning method. In this method,

the intuition is that the shape of the belief at farther points is less important for the

searcher in picking the best action at its current position. This is because by the time

that the searcher reaches those points, the shape of the belief will change. In the second

method, the problem is formulated as a Mixed Observability MDP (MOMDP) [58] where

the fully observable variables of the state are separated from the partially observable

ones. In both methods, the planning is done in a lower dimensional space. The two

methods approach the problem differently and provide approximate solutions. However,

both of them reveal a similar structure in their solutions (Section 6.2.3). We analyze the

performance of the strategies in this particular structure in closed form (Theorem 6.2.1).

We use this analysis to find the best set of parameters within the structure, and propose

our final solution which is given in Table 6.3.

We next present the calculation method for computing the capture probability of a

given strategy.

6.2.1 Capture Probability of a Given Strategy

To compare different search strategies given the crossing model, we first show how the

probability of capture for a given strategy can be computed. Let us denote the searcher’s

location at time t by s(t) and the target’s location by e(t). The target is initially at

e(0). The searcher is performing the strategy Γ given as a sequence of actions R, L and

S. Fig. 6.3 shows an illustrative example of the location of the searcher for a specific

strategy, and the target for a specific random walk path as a function of time.

We are interested in computing the probability of capturing the target at time t

denoted by Pc(t). The capture events are those that the searcher and the target are at

the same position at the same time. Thus, we must consider the target’s paths that

end up at s(t) at time t, i.e. e(t) = s(t). Counting the events that the target starts at

e(0) and reaches s(t) at t is not too difficult. However, we cannot simply sum up the

probability of these events to obtain Pc because they include overlapping capture events

with e(k) = s(k) for multiple values of k ≤ t. First, we must only count the events such

that the target has not been captured sooner than t. Second, since crossing is allowed,
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path interactions such as the one marked by the arrow in Fig. 6.3 do not count as

capture. In order to tackle these two challenges, we look at the searcher’s path s(t) as a

piecewise constant function. That is, s(t) is composed of a set of time intervals [tk, tk+1)

such that s(t) is constant in [tk, tk+1) and has the value sk (the searcher is staying at

sk in [tk, tk+1)). In Fig. 6.3 the searcher is at sk−1 in the time interval [tk−1, tk).

In order to compute Pc(t), we take a divide and conquer approach to recursively

compute the target paths that yield capture at time t but are safe before t. By safe we

mean that the target has not been captured before time t. To do so, we consider the

intervals before t. Each time-interval acts as the basis in our divide and conquer method,

and we can employ them to overcome the two issues mentioned above as follows. Since

in each interval s(t) is constant we do not have the crossing events such as the one

marked by the arrow in Fig. 6.3. We also can enumerate the target paths that co-locate

the target and the searcher for the first time at t by counting the target paths that are

completely to the left or to the right of si during [ti, ti+1) for ti < t. This enables us to

compute the capture events using recursive equations as follows. Let us introduce the

following probabilities:

location (x)

x
crossing event

y

e(0)

time

sk−1

sk

tk−1

2

0

N

tk tk+1t

Figure 6.3: The position of the players as a function of time. The target’s path is

shown in dashed lines. The time marked by the arrow is not capture because crossing

is allowed.

• Psafe(x, t): the probability that the target safely arrives at location x at time t.
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Here safe refers to the fact that the target has not been captured before time t.

• Psafe(x1, tk, x2, tk+1 − 1): This is the probability that the target safely reaches

x2 at time tk+1 − 1 assuming that it is at x1 at time tk. Notice that the target

has to stay either to the left, or to the right of sk during [tk, tk+1) in order to

avoid capture and remain safe. Referring to Fig. 6.3, the target paths must be

either below or above sk at [tk, tk+1). Note that this function is different from

the previous one in the sense that it counts the safe events in a single interval

[tk, tk+1).

• F (x1, x2, t): the probability that for the first time the target reaches at x2 after t

time steps starting from x1 (first passage probability).

• G(x1, x2, t): the probability that the target starts at location x1 and reaches at

x2 after t time steps (not necessarily for the first time).

Our goal is to compute Pc(t), the probability of capturing the target at time t.

First, we consider the time interval [tk, tk+1) that t belongs to. See Fig. 6.3. Let x be

the target’s position at time tk − 1. The searcher is at sk−1 at [tk−1, tk). The capture

events can be described as follows: The target safely arrives at x at time tk − 1, i.e.

Psafe(x, tk − 1) and then, from x it reaches sk for the first time after t − tk + 1 time

steps:

Pc(t) =
∑
x

Psafe(x, tk − 1)F (x, sk, t− tk + 1) .

The safe events Psafe(x, tk − 1) can be obtained from the following recursive equations:

Psafe(x, tk − 1) =
∑
y

Psafe(y, tk−1, x, tk − 1)Psafe(y, tk−1)

The probability function Psafe(x1, tk−1, x2, tk − 1) is computed as follows:

Psafe(x1, tk−1, x2, tk − 1) = G(x1, x2, tk − 1− tk−1)

−
tk−1−tk−1∑

t=0

(F (x1, sk−1, t)G(sk−1, x2, tk − 1− tk−1 − t))
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In other words, the events that the target crosses sk−1 (second term in r.h.s. of the

equation above) are excluded from the total number of events (first term in r.h.s. of the

equation above). Notice that the searcher is at sk−1 in the time interval [tk−1, tk).

Finally, computing G(x1, x2, t) and F (x1, x2, t) is straightforward and we refer the

interested reader to [61] for the corresponding equations.

6.2.2 Partially Observable Markov Decision Process

In this section we present the formulation of our search problem as a Markov Decision

Process (MDP) [66]. Recall from Section 3.2.1 that an MDP is a tuple (S,A,T,R) where

S is the set of possible states, A is the set of actions, T is the probability of transitioning

between the states as a result of performing each action, and R is the reward collected

for each transition.

capturesc
T(R, capture)

T(L, capture)

T(S, capture)

1− T(R, capture)

1− T(L, capture)

1− T(S, capture)

Figure 6.4: MDP state transitions. In the current state sc, by performing a ∈ {R,L, S},
with probability T(a, capture) the searcher captures the target and with the remaining

probability the next state will be sn.

Formulating the search problem as an MDP, the states could be defined as (p, e)

where p is the position of the searcher and e is the position of the target. However, we

cannot use this setup since the location of the target is not observable to the searcher.

The searcher’s only observation is that it has not captured the target yet. Therefore,

our problem is in fact a Partially Observable Markov Decision Processes (POMDP).

However, we can convert it to an MDP by defining the states as the searcher’s belief

about the target’s location [83]. The goal is to find the policy that maximizes the reward

collected by the searcher upon execution of the policy. The following are the sets which

define our MDP (Fig. 6.4):

• The states are defined as (B,E, s) where B is the belief of the searcher about
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the position of the target, E is the current energy of the searcher and s is the

current position of the searcher. Here B is represented as the probability vector

B = [p0, p1, ..., pN ] where pi is the probability that the target is at position i given

that it is not captured yet. A set of terminal states is given by {scapture, sno-time}
where scapture denotes the capture state, and sno-time denotes the state in which

the robot runs out of time budget.

• The set of actions that the searcher can perform in each state are: stay at its

current position, move one step to the left, or one step to the right.

• The transition probability matrix with entries T(si, sj , a) that represent the prob-

ability that the searcher transitions to state sj by performing action a in state

si.

• The reward matrix which represents the transition reward from state si to state

sj after performing action a.

In the following, we describe the details of the state space and the proper definition

of the reward function. We skip the calculation of the probability transition matrix

since it is straightforward.

Figure 6.5: Blue is the actual belief and red is its approximation by bins. The searcher

is at x = 14.



153

Method 1: The belief-binning approximation method: Initially, the searcher

starts from the location x = 0. The searcher begins its mission with no information

about the position of the target (except that the target is not captured yet). Therefore,

the initial belief vector is the uniform probability distribution over [0, N ].

Note that the number of states will be exponential in the number of discrete levels

used for representing the probability vector B = [p0, p1, ..., pN ] (with the exponent

equal to N , the size of the environment). To deal with this problem, one method is

to approximate the belief by a specific function which can be represented by a small

number of parameters. However, this approach cannot be applied to the crossing case

directly, because here the belief is not a smooth function. A sample of the searcher’s

belief is shown in Fig. 6.5.

Intuitively, the value of the belief at the nodes that are far away from the searcher’s

current position is not effecting the best action. Based on this observation, we represent

the belief by bins with exponentially increasing width as follows. There are two bins

with width 2i that start at nodes s+ 2i and s− 2i respectively (0 ≤ i ≤ log(N)). The

approximate belief in each bin is uniform. To compute its value we first compute the

cumulative belief in each bin and then we take the average of this cumulative value in

the corresponding bin. Finally, we assign the closest discretization level to the average

value as the bin value. An example is shown in Fig. 6.5.

The reward matrix: As expressed in (6.1), we are looking for the strategy that

maximizes the probability of capture. In order to associate the value of MDP states

with the probability of capture, the reward function is defined as follows. The transition

reward from all states (except scapture and sno-time) to the capture state scapture is one.

All other transition rewards are zero. The state values of the aforementioned MDP is

an approximation of the probability of capture. Therefore, the strategy that maximizes

the state values, i.e. the solution to the MDP, is in fact the one that maximizes the

probability of capturing the target.

The solution technique: Finally, we use finite-horizon MDP implementation avail-

able in INRA MDP MATLAB Toolbox [84] which uses backward induction algorithm.

The number of stages is set to T , the time constraint. The terminal reward is set to

zero for all states except scapture which is set to one.

Method 2: The MOMDP approximation method: An alternative approach to
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tackle the large state space of our problem is to formulate the problem as a Mixed

Observability MDP [58]. In this formulation, the state components that are fully ob-

servable are separated from the ones that are partially observable. As a result, the

belief is maintained on a smaller set of variables, and the size of the state space can be

reduced significantly.

Recall from Section 3.2.2 that a MOMDP is specified as a tuple (X,Y,A,O,Tx,Ty,
Z,R) where X represents the set of fully observable components, Y represents the set

of partially observable components, and A,O are the set of actions and observations

respectively. The function Z(o, s, a) is the conditional probability of observing o after

performing action o and moving to the state s, Tx(x, y, a, x′) represents the transition

probability of the fully observable state component x, and Ty(x, y, a, y′) is the transition

probability of the partially observable component y.

Adopting the MOMDP formulation to our problem, the searcher’s position and also

the time budget are fully observable while the target’s location is partially observable.

We use the Approximate POMDP Planning (APPL) toolkit which is available at [73].

The APPL toolkit combines MOMDP with SARSOP which is a point-based POMDP

algorithm [58].

6.2.3 Simulation Results

We are now ready to solve for the search strategies using the proposed formulations.

We consider three cases: 1) T is enough for at least two sweeps of the line, i.e. T > 2N ;

2) T ≤ 1.5N ; 3) 1.5N < T ≤ 2N . In the first case, we present intuitive strategies

and show that they guarantee a high probability of capture. In the remaining cases, we

provide the strategies obtained from the MDP formulations. The simulations for the

MDP formulations are done on a Dell Poweredge 6950 machine with 14GB memory. In

the belief-binning approach, we used 50 levels for discretizing each bin. Thus, if there

are n bins, the number of possible states would be 50n. In the MOMDP method, we let

the solver run until a target precision3 less than 0.001 is reached or a timeout happens

after 3 hours of execution.

3 Target precision is a function of |V − V | for the set of samples in the SARSOP method.
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When Time is Enough for Two Sweeps: In this case, the searcher has enough

time for at least two sweeps T > 2N . We start by considering the case that T = 2N+1.

One intuitive strategy is to sweep the whole line twice. However, if the searcher moves

all the time, the parity of its distance to the target will never change, unless the target

does a stay action at one of the boundary points (Fig. 6.1(a)). This is because, at other

points, the target always moves one step to the right or to the left, and thus its distance

to the searcher changes by two. Therefore, we add a wait step in order to increase the

probability of capture in the event that the target starts from an odd node. We call

this strategy the Sweep strategy: the searcher moves all the way to the right, waits

for one step at the last point N and then moves back to the left toward the first node

(RNSLN ...).

We also analyze a second strategy, which we call StopAndGo: the searcher moves

for one step, then waits for one step and so on (RSRS...).
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Figure 6.6: Cumulative probability of capture obtained from Section 6.2.1. Here

N = 40.

The probability of capture for these two strategies is computed using the analysis

in Section 6.2.1. Fig. 6.6 depicts the cumulative probability of capture for N = 40. As

shown in this figure, these strategies achieve a very high probability of capture: 0.95 and

0.90 for Sweep and StopAndGo respectively. Since the highest possible performance for

the probability of capture is one, we choose the Sweep strategy as our best strategy for

this case. Notice that for larger values of T > 2N we can repeat the proposed strategy
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until time exceeds T .

T = 9 T = 14 T = 19 T = 24 T = 29

Belief-binning
R S

R2SR3S

(RS)2 R3S

(R2S)2
(R3S)4R2S

R2SR3S

(R2S)3(R3S)2
R2SR3S(R2S)3

(RS)2R3SR2SRS

Pc(Belief-binning) 0.2966 0.4201 0.5711 0.6991 0.8020

Uniform (R3S)2R (R3S)3R2 (R5S)3R (R3S)6 (R2S)9S2

Pc(Uniform) 0.2971 0.4294 0.5642 0.7095 0.8031

MOMDP (R2S)2RSL
R2SR3S

(R2S)2L

R2S(R3S)3

R2SL

R2S(R3S)4R2

S2L

(R2S)6(R3S)2

S2L

Pc(MOMDP) 0.2179 0.3787 0.5323 0.6633 0.7873

Table 6.1: The MDP solutions for N = 20.

T = 14 T = 24 T = 35 T = 44

Belief-binning (R2S)3R4S
R3SR5SR3

SR6SR2S
R30S5

RS3R19SR3S

R2S(RS)2

Pc(Belief-binning) 0.2830 0.4625 0.58 0.675

Uniform (R3S)3R2 (R3S)6 (R4S)7 (R2S)14R2

Pc(Uniform) 0.2818 0.4656 0.6638 0.787

MOMDP
R2SR3S

(R2S)2L

R2S(R3S)4

R2S2L

R2S(R3S)2

(R4S)3R5S3L

RS(R2S)10R6

SR2S2L

Pc(MOMDP) 0.2421 0.4219 0.6333 0.7651

Table 6.2: The MDP solutions for N = 31.

When Time is less than 1.5 sweeps: In this case T ≤ 1.5N . The strategies

found by the two approximation methods for N = 20 and N = 31 are shown in Table 6.1

and Table 6.2 respectively.

A first interesting result is that, as shown in these tables, the solutions have a

common property: the stay actions are uniformly distributed among the right actions.

In other words, the strategies are of the form (RkS)m. Let us refer to this class of

strategies as the uniform strategies. Table 6.1 and Table 6.2 also present the best

uniform strategy for the same values of N and T which are obtained by changing the

number of rights k in each group of (RkS) and computing the probability of capture
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using the analysis in Section 6.2.1. Observe that the uniform strategy is very close to

the solutions found by the two MDP methods.

To compare the belief-binning and the MOMDP performance, observe that for N =

20 in Table 6.1 the solutions of belief-binning method are all better than the MOMDP in

terms of capture probability. This is true also in Table 6.2 for for N = 31 and T = 14, 24.

However, for T = 35, 44 the MOMDP solution outperforms the belief-binning strategies

which is due to the error corresponding to the resolution in binning levels. On the other

hand, the MOMDP solutions exhibit the uniform structure in all instances which makes

MOMDP a more suitable approach for larger values of N and T 4 .

Next, we focus on the problem of finding a good uniform strategy. In fact, we

would like to find the correct number of right actions before each stay action and

optimize k. In order to find the best k, we take the following approach. We first

derive closed form equations to approximate the capture probability of (RkS)m. Our

approximation is applicable for k ≥ 3. Therefore, we use it to find the best k ≥ 3.

We then compare this best solution with k ∈ {1, 2} both in simulations and also using

our analysis (Section 6.2.1). From this comparison, we conclude our proposed optimal

strategy of the form (RkS)m.

The following theorem, presents the aforementioned closed form. We present the

details of the proof in [6].

Theorem 6.2.1. The probability of capture for the strategy (RkS)M where T = M(k+1)

and 3 ≤ k can be approximated as:

Pc ≈


M(k+2)

2N = T+M
2N if Mk < N

T+M−1
2N if Mk = N

(6.2)

Therefore, for a given T the capture probability is maximum when M takes its

largest possible value. That is the optimum number of rights in each group of RkS is

k = 3 when k ≥ 3.

Next, let us compare the performance of k = 3 with k ∈ {1, 2}. Fig. 6.7 shows this

comparison for the following strategies: (RS)35 and N = 35, (R2S)17 and N = 34,

4 Note that the APPL toolkit can handle instances where N < 100 and T < 40.
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(R3S)12. This comparison suggests that the performance of (R2S)m is comparable to

the other uniform strategies and sometimes it is the best. Thus, we pick (R2S)m as our

proposed strategy when T < 1.5N .
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Figure 6.7: Comparison of uniform strategies (RkS)m. Here N = km to prevent extra

R at the end of the strategy.
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Figure 6.8: Comparison of four strategies when 1.5N < T for N = 72 obtained from

simulation.

When Time is greater than 1.5 sweeps

Let us now investigate the case that 1.5N ≤ T < 2N . We compare four strategies.
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The first one is the Sweep strategy we introduced earlier. Then, we define the following

strategies:

• (R2S)
N
2 (L2S)m: repeat the pattern R2S until the searcher is at node N , then

repeat the pattern L2S for the rest.

• (R3S)kLm: repeat the pattern (R3S) until the searcher is at node N , then move

back to the left.

• RightLeftRight: move to the right for 3N
4 , then turn back and move to the left

for N
2 , and then move to the right for the rest of time-steps.

As shown in Fig. 6.8 for N = 72, the performance of (R2S)
N
2 (L2S)m is better

for T < 120, and then afterwards the Sweep strategy becomes better. It is worth

emphasizing that both are above 0.81 after time 120. We observed the same behavior

for N = 30 and N = 54. Thus, we declare both of them as our candidate strategies for

the case that 1.7N < T . When 1.5N < T < 1.7N , we consider (R2S)
N
2 (L2S)m our best

strategy.

A summary of the best strategies found for different cases is depicted in Table 6.3.

Best Strategy

2N < T Sweep

1.7N < T ≤ 2N Sweep

1.5N < T ≤ 1.7N (R2S)
N
2 (L2S)m

T ≤ 1.5N (R2S)m

Table 6.3: Summary of the proposed best strategies for different cases.

6.2.4 Experimental Demonstration

We now present experiments to demonstrate the applicability of our proposed search

strategies in the carp monitoring project. Here the target is the common carp which

are tagged and can be detected by our directional antennas (See Section 6.1.2). We

conduct our experiments in Minnesota lakes instead of rivers for the following reasons.

In addition to safety reasons for our autonomous robots, we expect that considering a
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1D search path is a reasonable assumption for this application because these fish tend

to move near the shore (where there is more vegetation) most of the time [85]. See

Fig. 6.9 for an illustration. We present preliminary results which are mainly focused

on modeling. First, we provide evidence that taking measurements on a discrete set

of nodes produces reliable detection. In particular, as the robot stops and turns off

its motor, the noise interference which is a main reason for false positives is reduced.

It must be noted that an important feature of our system is the directional sensitivity

of the antenna. That is, our sensor must be aligned with the target for maximum

signal strength received from the target. As a first approach, we chose to rotate the

antenna and take measurements at multiple orientations when the robot is stopped.

This simplifies the modeling as we no longer need to model the antenna orientation.

We present results from the summer months using Autonomous Surface Vehicles (ASV)

and winter months using an Autonomous Ground Vehicle (AGV). Finally, it must be

noted that in the case of ASVs the ratio of movement cost to stationary keeping cost is

cm/cs = 5.7/0.2 while in the case of AGVs the stationary keeping has zero cost.

Figure 6.9: The target is performing a random walk on a corridor of width equal to the

sensing range (red dotted path). The searcher moves on the corresponding line segment

(blue path).

6.2.4.1 Experiments with the ASVs

In the following experiment, the searcher sweeps an L-shaped corridor of length 320m

as shown in Fig. 6.10. For safety reasons, we use this short length in order to keep the

ASVs within the communication range.

The searcher sweeps the path from the first node to the last node such that after

uniform time intervals it turns off its motor and takes measurements by rotating the

antenna. This will give us a comparison between the signal strength during motion

versus waiting, and ultimately the effect of the noise interference from motor. In the
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following plots, we use the propeller speed as an indicator of the time intervals that the

boat has turned off its motor.

Fourteen radio frequencies (corresponding to known tags which were not included

in the trials) were monitored for transmissions, while the target transmitted only at

frequency 49611 KHz. Notice that in a realistic search for a target, the target frequency

is unknown. Therefore, we need a comparison between the true and a noise frequency

that we know it is not present in the trial.

Figure 6.10: The experiment area which includes 9 nodes with distance 40m (total

length is 320m) along an L-shaped path.

To determine detection, we use the following method. For each frequency that the

antenna is listening to, let m and σ be the corresponding mean and variance for the

signal strength respectively. Also, let f be the current signal strength. Consider the

following criterion for all frequencies:

f −m
σ

(6.3)
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Figure 6.11: The Signal Strength (SS) for the target tag (49611 KHz) and 49124 KHz

that is not present in the trial. Also, the distance between the searcher and the target

are shown. Notice that we have false negative at [t2, t3] although the target is close

to the searcher (around 15m). One reason for a false negative could be mis-alignment

between the antenna and the tag.

There will be four cases:

1. One particular frequency has a sharp rise in f−m
σ while others do not. We declare

detection for this frequency.

2. All frequencies have a sharp rise in f−m
σ . This case is a false positive because in

a realistic situation we cannot differentiate between a possible detection from a

nearby tag and the background noise.

3. No frequencies have a rise in f−m
σ . Then, that is a non-detection.

4. There is no rise in f−m
σ , but the tag is close-by. Then, this is a false negative.

Since the antenna is directional, false negatives are caused by mis-aligned antenna.
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Figure 6.12: (a) The target’s and the searcher’s location along the corridor versus

time. Here, the searcher and the target are denoted by T and S respectively. (b) The

Signal Strength (SS) for target tag (49631 KHz) and an example frequency (49134 KHz)

that does not correspond to a nearby tag. The mean level (m) for both frequencies is

highlighted by the middle ellipse. The highlighted peak for 49134 is a false positive

detection of tag 49134.

Fig. 6.11 depicts the signal strength for the frequencies associated with target (tag

number 49611) and tag number 49124 that is not present in the trial. First, observe

that the signal strength for both frequencies drops considerably as the robot stops and

turns off its motor (zero speed intervals in Fig. 6.11).

Second, notice the peak in the strength for 49124 KHz marked by t6. Observe that

according to criterion in (6.3) we would declare a detection which is clearly wrong as

no transmitters for 49124 KHz were present. Also, this makes the target detection at

time t4 an uncertain detection. This instance is in favor of our crossing model. That

is, we must turn off the motor on a discrete set of nodes in order to reduce the noise

interference from motor and avoid false positives. Similar false positives and negatives

were observed to occur on both the ASV and AGV platforms.

6.2.4.2 Experiments with the AGV

In this experiment, the searcher and the target move along a corridor of length 120m

while they have an offset of 20m.
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The target, carries the tag marked by 49631. Similar to the ASV case, the searcher

sweeps the corridor from left to right. During this sweep, the searcher stops after uniform

time intervals which are indicated by zero speed of the vehicle. Fig. 6.12(a) illustrates

the location of the searcher and the target along the line as well as the waiting intervals

of the searcher. Here, the searcher’s strategy is an example of our proposed R2SR2S...

strategy.

Fig. 6.12(b) depicts the signal strength received by the searcher from the tag as well

as the frequency associated with tag number 49134 which is not present in the trial.

First, observe the peaks in the signal strength from the target tag. Here, according to

the distances in Fig. 6.12, the peaks at t3, t4 and [t6, t7] are true detections. Notice that

the searcher does not miss the target at the particular crossing event at [t6, t7]. Also,

the detection at t5, despite the large distance (73m), is because of complete alignment

between the antenna and the target.

Observe from Fig. 6.12(b) the two highlighted peaks in the signal strength at [t1, t2]

and t3. Notice that the peaks for both frequencies are of similar maximum value and are

both higher than their corresponding mean level (which is also highlighted). Therefore,

according to our criterion f−m
σ (6.3), we would declare detection for these frequencies at

t3 and [t1, t2] respectively. However, the detection for 49134 would be a false detection

since no transmissions on this frequency were used in the trial. Notice that this false

detection is received while the vehicle is moving and its motors are on. On the other

hand, the peak from the target frequency corresponds to a true detection since the

searcher and the target are very close (see Fig. 6.12). Moreover, the measurement is

taken while the searcher’s motors are off. To summarize, this example supports our

discrete crossing model. That is, the searcher has to stop in order to take reliable

measurements.

6.2.5 Summary

We studied the problem of searching for random walker on a set of discrete nodes

while lie on a line segment. The goal is to design search strategies that maximize the

probability of capturing the target subject to constraints on the available search time.

The searcher’s possible actions are move to left or right or stay on the current node.

We studied the crossing detection model, and formulated the problem as a POMDP.
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We observed an interesting structure in the POMDP solutions: a groups of right actions

interleaved with stay actions, i.e. (RkS)m. After analyzing the capture probability of

these strategies as a function of k and m we showed that the best solution is (R2S)m. We

then demonstrated the applicability of our proposed strategies in our carp monitoring

project. We used ASVs and AGVs as our searcher robot and target. We showed that

the crossing detection model is a good assumption for our directional sensors.

In the next section, we study search strategies to find a two-dimensional random

walker.
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6.3 Simple Random Walker on Two-Dimensional Grids

In this section, we study the problem of finding a target which is moving in a two-

dimensional grid. In particular, the searcher and the target are moving in a square

region. The searcher’s goal is to detect the target which is possible when the target is

within the searcher’s capture range. As a result, we discretize the square into cells where

the sides of each cell is proportional to the capture radius. Therefore, the environment

is modeled as a N ×N grid. The searcher and the target move in discrete time steps.

We have capture when the searcher and the target are in the same cell at the same time.

At each time step the target moves to the left or to the right with probability h,

up or down with probability v, and it stays at its current cell with probability s. We

assume that the borders are reflective: If the target is about to leave the grid, it will

reverse directions instead. For example, if the target is on the top edge of the grid, with

probability 2h it moves down. Throughout this paper, we often assume that movement

is uniform: h = v = s = 1
5 .

The searcher on the other hand may choose among what we will call macro-actions.

Before executing a macro-action, the searcher will select a column. The macro-action

itself consists of three stages. In the first stage the searcher will travel horizontally to the

selected column. Then the searcher will wait until N time steps have passed. The final

stage is to sweep across the column. Afterwards, the searcher chooses another macro-

action. We implement the waiting period in order to ensure that all macro-actions take

2N time steps, which simplifies the decision process.

The search task is to design a sequence of at most T actions (macro-actions) for the

searcher such that the probability of capturing the target is maximized. Specifically,

the goal is to design a search trajectory (strategy) Γ such that:

max
Γ

Pc(Γ = {A1, A2, · · · , Ak}) s.t. k ≤ T (6.4)

Ai ∈ {column1, column2, · · · , columnN}

where Pc(Γ) represents the capture probability of Γ.

We denote the probability distribution describing the target’s location on the grid

at time t by Xt. This is the base distribution of the target, and it is independent of the
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searcher’s strategy. In this section, we assume X1 = f , where f is:

f(x) =


1

(N−1)2
if x is in the interior of the grid

1
4(N−1)2

if x is in a corner of the grid

1
2(N−1)2

otherwise

(6.5)

for any location x on the grid. This assumption is justified by the following lemma:

Lemma 6.3.1. Suppose h > 0, v > 0 and s > 0. For any distribution X1 over the grid,

lim
t→∞

Xt = f (6.6)

Proof. This is true as a direct consequence of the Fundamental Theorem of Markov

Chains.

The distribution f is known as a stationary distribution:

Definition 16. The Stationary Distribution, f , is the unique distribution over the grid

such that if X1 = f , then Xt = f for all t > 1.

We next present the formulation of our grid search problem as a MOMDP.

6.3.1 Approximation as a One-Dimensional Problem

We now present our approximation of the problem as a one-dimensional search problem

which we formulate as a Mixed Observability Markov Decision Process (MOMDP). In

the original two-dimensional problem, the target moves to the neighboring cells with

equal probabilities. Using macro-actions, the target’s motions is viewed only between

the columns. As a result, there are N nodes to search for the target. Projecting

the target’s motion vertically, the target moves to the left or the right column with

probability h and stays in its current column with probability 2v + s. Therefore, in

the one-dimensional setup the target’s transition matrix for one time-step is obtained

from a N ×N tridiagonal matrix M where the values on the main diagonal are 2v + 1,

the values on the first diagonal below and above the main diagonal are h5. Since the

length of the macro-actions is 2N we should use the transition probabilities after 2N

5 The reflective boundary properties should be taken care of the first and the last rows.



168

time-steps. Thus, the final transition matrix for the target in the one-dimensional setup

is M2N along a single macro-action.

In summary, the one-dimensional approximation is formalized as a MOMDP as

follows. There are N nodes along a line. The searcher’s set of actions (macro-actions)

is to visit each of the N nodes. The state is represented by (ps, pe, t, fc, ) where ps ∈
1, 2, · · · , N is the searcher’s location, pe ∈ 1, 2, · · · , N is the location of the target,

t ≤ T is the amount of the time budget consumed so far, and fc is the capture indicator

variable. After performing action columnk the location of the searcher ps will change

to i, and the available time budget is decreased by one. The location of the target pe

evolves according to the transition matrix M2N . The aforementioned MOMDP model

is depicted in Figure 6.13. In this figure, the state at time t is st = (ps, pe, t, fc). After

applying action At the next state is st+1 = (p′s, p
′
e, t+ 1, f ′c).

Figure 6.13: The MOMDP approximation of the problem.

In order to solve the optimization problem in (6.4) the reward function should be

defined carefully. We are interested in finding a sequence of macro-actions Γ such that

the capture probability is maximized:

Pc(Γ) =P (capture|s0, A0)+ (6.7)

P (s1|s0, A0)P (capture|s1, A1)+

P (s1|s0, A0)P (s2|s1, A1)P ( capture|s2, A2) + · · ·

Notice that if we set the reward function for transitions to the capture state to one

and all the remaining transitions to zero, the collected reward in our POMDP will be
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equal to the desired capture probability in (6.7).

We are interested in the capture probability of performing A = columnk in a given

state (ps, pe, t) = (i, j, t).

Sub-problem 1. Compute the probability that the searcher and the target in the N×N
grid colocate in the same cell when the target starts somewhere in column j and the

searcher performs the following strategy: The searcher starts from (1, i) and moves

toward (1, k), waits at (1, k) for (N −|k− i|) steps and then moves along the kth column

from (1, k) to (N, k).

In order to get a handle on the problem above, we need to first provide some as-

sumptions about the exact location of the target along column j. Here, we assume that

it is equally likely that the target is in any row along the column j.

The probability in sub-problem 1 can be lower bounded by the probability of capture

only when the searcher sweeps the kth column. When the searcher is sweeping columnk

it is at cell (r, k) at time N + r. Therefore, the problem of computing the capture

probability reduces to counting the number of events that the target is at (r, k) at

time N + r given that the searcher has not captured the target earlier. An important

observation here is that the only event that the searcher captures the target at time

N + r and also in an earlier time-step, namely at N + r′, is when the target moves

straight up from (r, k) to (r′, k). We can neglect this single event in computing the

capture probability. Therefore, the sub-problem 1 is converted to:

Sub-problem 2. Count the number of events that the target starts at (x, j) at time 0

and reaches at (r, k) at time N + r.
Let nu, nd, nr, nl, ns denote the number of time-steps that the target moves up, down,

right, and left, and the number of actions that the searcher stays respectively. In fact,

we should count the solutions to:

nu − nd = r − x (6.8)

nr − nl = k − j

ns + nu + nd + nr + nl = N + r

We now have all the ingredients for computing the MOMDP solutions. We use the

Approximate POMDP Planning (APPL) toolkit which is available at [73,86]. Next, we

present the results of our approximation.
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6.3.2 Simulation Results

In this section we present the solutions of our proposed MOMDP strategies as well as

the comparison of their performance against some heuristic strategies. We present the

results for a grid of size 40×40. Let us first introduce the following sweeping strategies:

• Boustrophedon: Cover the grid column by column.

• K-boustraphedon: The searcher sweeps columns at horizontal distance k i.e. 1, k+

1, · · · . When the right-most edge is hit, the search is restarted from the first

column.

• Random Selection: The searcher picks a column at random, sets a timer to 2N ,

sweeps the column and at the end of the sweep waits until timeout. The searcher

repeats this strategy until the time budget is used.

• Greedy: In the greedy strategy at each iteration the searcher selects the column

which will maximize the probability that the target will be captured.

To obtain the optimal solution for the MOMDP, we used the solver by [86].
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Figure 6.14: (a) Performance of k-boustrophedon for different ks. (b) Performance of

different sweeping strategies.
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Figure 6.15: Comparison of the k-boustrophedon strategy (k = 6) with heuristic

strategies.

We first compare the performance of k-boustraphedon strategies for different values

of k. It turns out the best value is k = 6 (Fig. 6.14(a)).

Next, we compare the best k-boustraphedon strategy with the greedy, MOMDP, and

random selection strategies. Figure 6.14(b) shows the cumulative capture probability

versus time for these sweeping strategies. From Fig. 6.14(b) the best strategy is the k-

boustrophedon candidate with k = 6. Next, we compare the k-boustrophedon strategy

(k = 6) with the following heuristic strategies. Here, the strategies with “local” keyword

are the ones that divide the region into smaller regions and perform a strategy in each

of them.

• Global Random Direction (GRD): The searcher picks a random point on the

boundary. Then moves there by first adjusting vertically and then horizontally.

• Local Random Direction (LRD): The searcher divides the region into smaller

square regions, selects one of them at random and performs the Global Random

Direction (GRD) strategy in each of them.

• Local Random Direction Not Neighbors (LRDNN): The searcher performs the

LRD strategy such that the consequtive local regions are not adjacent.
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• Global Spiral (GS): The searcher moves along a square path, and repeats by

increasing the side of the square.

• Local Spiral (LS): The searcher divides the region into smaller square regions;

Selects one of them at random, and performs the GS strategy in each of them.

• Local Spiral Not Neighbors (LSNN): The searcher performs the LS strategy such

that the consequtive local regions are not adjacent.

Fig. 6.15 shows the performance of the above heuristic strategies against our best sweep-

ing strategy i.e. k-boustrophedon with k = 6. The strategies are very close in perfor-

mance, which is an interesting observation: As long as there is “some” gap between the

columns, the precise choice of column does not affect the performance drastically.

Next, we present our field experiments to show our proposed strategies in action.

6.3.3 Experimental Demonstration

In this section, we present our field experiments to demonstrate the applicability of our

column sweeping strategies. A description of our system is given is Section 6.1.2. Similar

to the linear graph case, in our experiments we use we use one ASV as the searcher

robot while the other ASV plays the role of the fish which moves around randomly.

We performed our experiments in Lake Staring, Minnesota. In order to keep the boats

close to the shore so that we have control over them in case of GPS signal loss, we

conducted the experiments in a square region of relatively small size, 40m × 40m. We

discretized the region into cells of size 10m × 10m, and thus N = 4. We executed the

greedy strategy. Figure 6.16(b) provides the GPS traces for the target and the searcher

and Fig. 6.16(a) shows the distance between them. Here the target is programmed to

perform an instance of a random walk.
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Figure 6.16: (a) The distance between the searcher and the target during the trial is

depicted. (b) The GPS traces for the searcher and the target are shown. The trajectories

are marked at three different time instances t1, t2 and t3.

6.3.4 Summary

In this section we studied search strategies to find a random walker on a grid. We

restricted our attention to a specific class of strategies which we refer to as the sweeping

strategies. These strategies are composed of macro-actions which are sweeping an entire

column. As a result the problem is reduced to finding the best set of columns such that

the detection probability is maximized.

We first presented the approximation of our problem as an MOMDP. Then we com-

pared the performance of MOMDP solutions with some heuristic strategies such as

greedy and random column selection. Perhaps the main take-away from our results is

that sweeping strategies are robust to column selection. This makes sweeping strate-

gies a good choice for robotics applications where disturbances, sensing and actuation

uncertainties may make it hard to follow precise trajectories. Finally, we showed our

field experiments to show the application of our sweeping strategies in the invasive fish

monitoring projection.
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6.4 Concluding Remarks

In this chapter, we studied the problem of searching for random walker on a discrete line

segment and also a two-dimensional grid. The goal is to design search strategies that

maximize the probability of capturing the target subject to constraints on the search

time budget. In the case of the linear graph and crossing detection model, we showed

that the best strategy is of the form (R2S)m. In the case of two-dimensional grids, we

compared the performance of heuristic strategies such as random column selection with

MOMDP solutions for the best set of columns. We showed that in simulation these

strategies are similar in terms of detection probability. Finally we presented our prelim-

inary experiments for application of our results to a practical problem, where the main

objective is to find radio-tagged fish in a lake by using an autonomous surface/ground

vehicle. After the description of the robotic system and its sensor model, we presented

results from field experiments carried out in a Minnesota lake.



Chapter 7

Open Problems and Concluding

Remarks

In this dissertation, we studied two types of search problems in robotics: adversarial

and probabilistic search problems. The goal for adversarial search problems, which

are known as pursuit-evasion games, was to capture an adversarial mobile target that

is capable of performing the best possible strategy to escape capture. We studied

versions of pursuit-evasion games on three-dimensional surfaces as well as in polygonal

environments with limited sensing specifically line-of-sight visibility. Our results in this

domain are in the form of capture strategies with guaranteed finite time capture.

In probabilistic search problems our goal was to find a mobile target which is moving

according to a random walk motion model, and thus independent of the searcher’s strat-

egy. Our goal was to design a search strategy that maximizes the detection probability

subject to the restrictions that the searcher has such as the time budget. Our results

are near-optimal strategies with the presented capture probability.

In the following, we first summarize our contributions in both domains and also

highlight some future research directions and open problems.

7.1 Summary of Contributions and Open Problems

In Chapters 4 and 5 we studied pursuit-evasion games while in Chapter 6 we studied

probabilistic search problems for finding a random walker.
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In Chapter 4, we showed that a single deterministic pursuer with line-of-sight vis-

ibility can capture an evader whose speed is equal to the pursuer’s in any monotone

polygon. It turns out that if we slightly relax the monotonicity constraint and consider

the class of weakly monotone polygons1, capture is no longer guaranteed. Fig. 7.1 shows

a weakly monotone polygon in which the evader can escape forever.

It is worth mentioning that our proposed capture time in monotone polygons is im-

proved by Berry et al. [47] who use rook strategy and show capture in strictly sweepable

polygons which are a generalization of monotone polygons.

x1 x2 x3 x4 x5

y1 y2 y3

s
t

Figure 7.1: A weakly monotone polygon with respect to s and t. The upper chain that

connects s to t is a repetition of the chain from s to y4. The number of repetitions can

be arbitrarily large. The chains from s to x1, from x2 to x3, and from x4 to x5 are

x-monotone chains. Also, the chains from x1 to y1, from y1 to x2, from x3 to y2 to x4,

from x5 to y3 are y-monotone chains. After disappearing from the pursuer’s sight, the

evader can hide in an upper or lower y-monotone polygon (whichever will be visited by

the pursuer last) and escape when the evader is searching the other one.

In Chapter 5, we studied the lion and man game on polyhedral surfaces when the

1 A simply connected polygon is weakly monotone with respect to vertices s and t if the following
hold. Consider a particle that walks from s to t along the boundary in clockwise and counterclockwise
directions. If in each of these walks, the range of the directions that the particle sweep does not include
the negative x-axis, the polygon is weakly monotone with respect to s, t and x [87].
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pursuer and the evader have complete knowledge of one another’s location at all times.

Our first result was the existence of a capture strategy with three lions and non-zero

capture distance when the game is played on a general polyhedral surface in the presence

of obstacles. One avenue for future research is to complement our existence result with

an efficient algorithm to compute the strategy on a given polyhedron.

In Chapter 5, we also studied the lion and man game on convex terrains (height-

maps). We presented a pursuit strategy which guarantees finite time capture when

capture distance is non-zero. One of the questions left open is the optimality of our

strategy in terms of capture time.

In Chapter 6, we studied the problem of searching for a one-dimensional random

walker on a discrete line segment. Assuming the crossing detection model, using the

structure of POMDP/MOMDP we showed that (R2S)m is performing close to the strate-

gies found by the MDP methods. We then studied the problem of finding a random

walker on a two-dimensional grid. In order to tackle curse of dimensionality in the

state space, we limited the form of the search strategies to sweeping strategies. In these

strategies a set of columns is selected and each column is swept entirely. We approxi-

mated the problem of finding the best set of columns as a MOMDP. Then we compared

the MOMPD solutions with some heuristic strategies such as boustrophedon. We con-

cluded that these strategies are close to each other in terms of capture probability as

long as the distance between the consecutive columns is not too small and not too large.

We conjecture that the best separation is
√
N in an N ×N grid.

From application perspective, one interesting direction is to extend our experimental

results for detecting radio-tagged fish. One approach is to define a more accurate model

of the system. For example, the antenna might miss a tag (false negative) or it may

report a tag mistakenly (false positive). In addition, the antenna is directional and so

its detection region is more accurately modeled by an oval and not a circle. Another

approach is designing strategies that are more robust to the conditions at the specific

lake environment (such as wind) or the uncertainties in the platform (such as the sensor,

the signal strength of the radio tags, and the underlying controller of ASVs).
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7.2 Future Research Directions

This thesis presents fundamental results in pursuit-evasion games and probabilistic

search problems. However, the open problems in the field are far more than the known

results. We now present a list of open problems.

Continuous Time Model versus Turn-based Discrete Model

While in this dissertation we focused on the turn-based model, the techniques presented

are applicable to the continuous-time version. It can be shown that any given turn-

based capture strategy to get within distance r of the evader can be adopted to a

continuous-time capture strategy with capture radius r + s where s is the step size.

(The continuous-time pursuer simply plays the discrete-time game with respect to the

perceived previous location of the evader). Therefore, as long as the pursuer can change

its step-size s, the capture guarantee for the continuous time model can get arbitrarily

close to the capture guarantee in the turn-based model2. However, this argument is not

applicable when planning must be performed in the configuration space. In fact, the

problem is mostly open in the presence of non-holonomic constraints [88] on the motion

of the players.

Environment Complexity

An interesting open question regarding pursuit-evasion games in two-dimensional se-

tups is to determine the classes of polygons that are two-pursuer-win [89]. In addition,

although pursuit-evasion problems in higher dimensions are very important from a prac-

tical perspective many questions remain unanswered. For example, while we know that

three pursuers are sufficient for capture on general three-dimensional surfaces, the set of

one-pursuer-win or two-pursuer-win surfaces are unknown. Similarly, determining the

minimum number of pursuers to guarantee capture on terrains modeled as height maps

is an open question.

2 In the turn-based strategy, the time unit ∆t can be chosen arbitrarily small. Consequently, the
step-size s can be arbitrarily small since the players’ speed is fixed.
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Limited Visibility Pursuit-Evasion Games

Very few results are available regarding limited visibility pursuit-evasion games. In this

dissertation we showed than single-pursuer line-of-sight visibility capture is guaranteed

in monotone polygons, but we do not yet have a full characterization of the class of

polygons that are pursuer-win. Berry et al. [47] describe a line-of-sight pursuit strategy

when the game is played in strictly sweepable polygons, which are a generalization of

monotone polygons. A polygon is strictly sweepable if a straight line can be moved

continuously over the entire polygon (via a sequence of translations and rotations) such

that (1) the intersection of the line and polygonal area is always a connected line seg-

ment, and (2) no point is swept more than once. In particular, a monotone polygon is

the special case of sweeping the polygon via a single translation. An intermediate goal

would be to determine whether sweepable polygons are pursuer win. In this family of

polygons, the sweep line may visit points more than once.

Finally, there are no results regarding the problem with limited-sensing pursuers on

polyhedral surfaces. Questions such as the minimum number of pursuers with line-of-

sight visibility, and conversely the class of surfaces that are k-pursuer-win for a given k,

are rich open problems.

Unmanned Autonomous Vehicles (UAVs) as the Searcher or the Target

In recent years Unmanned Autonomous Vehicles (UAVs) have received increasing at-

tention. Interesting variants of the problem can be designed when the players have the

ability to fly. For example, suppose that the evader is restricted to move on the ground

which is modeled as a geodesic terrain while the pursuer is able to fly. What is the

outcome of the game subject to limitations on the highest altitude accessible by the

pursuer? Can we provide guarantees on capture when we have a heterogeneous team of

flying and ground pursuers?

Different Motion Models

Finally, in all of the variants above different motion models can be considered for the

evader. Depending on the application, we can choose between adversarial or various

stochastic motion models. Another interesting extension is to consider various models
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for the movement of the pursuer. For example, Ruiz and Isler [90] show that a pursuer

modeled as a Differential Drive Robot (DDR) captures an Omnidirectional evader in

a convex environment. A full characterization of the lion and man game with car-like

motion models in more complex environments remains unknown.

7.3 Final Remarks

The field of search and pursuit-evasion remains rich with lots of interesting applications

in robotics. The everyday progress in robotic platforms, which makes the application of

search problems practical, together with their theoretical soundness foster an important

research direction for robotics community. In this dissertation, we studied fundamental

problems in the field. However, many questions remain open each of which have the po-

tential for years of research demanding the knowledge of different groups of researchers.

Our hope is that researchers continue the progress in both the algorithmic and the

technological aspects and robotic searchers become feasible in everyday applications.
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de Paris VI, pages 131–145, 1978.

[27] N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H. Papadimitriou.

The complexity of searching a graph. J. ACM, 35(1):18–44, January 1988.

[28] M. Aigner and M. Fromme. A game of cops and robbers. Discrete Applied Mathe-

matics, 8(1):1–12, 1984.

[29] A. S. Goldstein and E. M. Reingold. The complexity of pursuit on a graph. Theo-

retical Computer Science, 143(1):93 – 112, 1995.

[30] W.B. Kinnersley. Cops and robbers is exptime-complete. Journal of Combinatorial

Theory, Series B(111):201–220, 2015.

[31] A. Kehagias, D. Mitsche, and P. Pralat. Cops and invisible robbers: The cost of

drunkenness. Theoretical Computer Science, 481(0):100–120, 2013.

[32] J. E. Littlewood. A mathematician’s miscellany / J. E. Littlewood. Methuen,

London :, 1953.

[33] J. Sgall. Solution of David Gale’s lion and man problem. Theoretical Computer

Science, 259(1–2):663 – 670, 2001.



184

[34] L. Alonso, A. S. Goldstein, and E. M. Reingold. ‘Lion and Man’ : Upper and Lower

Bounds. Informs Journal on Computing, 4:447–452, 1992.

[35] V. Isler, S. Kannan, and S. Khanna. Randomized pursuit-evasion in a polygonal

environment. Robotics, IEEE Transactions on, 21(5):875–884, Oct 2005.

[36] A. Beveridge and Y. Cai. Two dimensional pursuit-evasion in a compact domain

with piecewise analytic boundary. http://arxiv.org/abs/1505.00297.

[37] Z. Zhou, J. R. Shewchuk, H. Huang, and C. J. Tomlin. Smarter lions: Efficient

full-knowledge pursuit in general arenas. Last accessed: December 13, 2015, 2012.

[38] D. Bhadauria, K. Klein, V. Isler, and S. Suri. Capturing an evader in polygonal

environments with obstacles: The full visibility case. The International Journal of

Robotics Research, 31(10):1176–1189, 2012.

[39] S. Bhattacharya and S. Hutchinson. On the existence of nash equilibrium for a two-

player pursuit-evasion game with visibility constraints. The International Journal

of Robotics Research, 29(7):831–839, 2010.

[40] S. Kopparty and C. V. Ravishankar. A framework for pursuit evasion games in Rn.

Information Processing Letters, 96(3):114–122, 2005.

[41] S. D. Bopardikar and S. Suri. k-capture in multiagent pursuit evasion, or the lion

and the hyenas. Theor. Comput. Sci., 522:13–23, February 2014.

[42] S. Alexander, R. Bishop, and R. Ghrist. Pursuit and evasion in non-convex domains

of arbitrary dimensions. In Robotics: Science and Systems, 2006.

[43] K. Klein and S. Suri. Pursuit-evasion on polyhedral surfaces. In Algorithms and

Computation, volume 8283 of Lecture Notes in Computer Science, pages 284–294.

Springer Berlin Heidelberg, 2013.

[44] L. J. Guibas, J. C. Latombe, S. M. Lavalle, D. Lin, and R. Motwani. A visibility-

based pursuit-evasion problem. Internat. J. Comput. Geom. Appl., 9(4-5):471–493,

1999.



185

[45] K. Klein and S. Suri. Catch me if you can: Pursuit and capture in polygonal

environments with obstacles. In 26th Annual Conference on Artificial Intelligence

(AAAI ’12, 2012.

[46] K. Klein and S. Suri. Capture bounds for visibility-based pursuit evasion. In

Proceedings of the Twenty-ninth Annual Symposium on Computational Geometry,

SoCG ’13, pages 329–338, New York, NY, USA, 2013. ACM.

[47] L. Berry, A. Beveridge, J. Butterfield, V. Isler, Z. Keller, A. Shine, and J. Wang.

Line-of-sight pursuit in strictly sweepable polygons. CoRR, abs/1508.07603, 2015.

[48] S. D. Bopardikar, F. Bullo, and J. P. Hespanha. On discrete-time pursuit-evasion

games with sensing limitations. Robotics, IEEE Transactions on, 24(6):1429–1439,

Dec 2008.

[49] N. Karnad and V. Isler. Bearing-only pursuit. In Robotics and Automation, 2008.

ICRA 2008. IEEE International Conference on, pages 2665–2670, May 2008.

[50] S. M. Pollock. A simple model of search for a moving target. Operations Research,

18(5):883–903, 1970.

[51] J. G. Wilson. On optimal search plans to detect a target moving randomly on the

real line. Stochastic Processes and their Applications, 20(2):315 – 321, 1985.

[52] J. M. Dobbie. A two-cell model of search for a moving target. Operations Research,

22(1):79–92, 1974.

[53] Y. C. Kan. Optimal search of a moving target. Operations Research, 25(5):864–870,

1977.

[54] K. E. Trummel and J. R. Weisinger. The complexity of the optimal searcher path

problem. Operations Research, 34(2):324–327, 1986.

[55] T.J. Stweart. Experience with a branch-and-bound algorithm for constrained

searcher motion. Search Theory and Applications, 8:247–253, 1980.

[56] A. R. Washburn. Branch and bound methods for a search problem. Naval Research

Logistics (NRL), 45(3):243–257, 1998.



186

[57] G. Hollinger, S. Singh, J. Djugash, and A. Kehagias. Efficient multi-robot search for

a moving target. The International Journal of Robotics Research, 28(2):201–219,

2009.

[58] S. Ong, W. Shao, D. Hsu, and W. Lee. Planning under uncertainty for robotic

tasks with mixed observability. The International Journal of Robotics Research,

29(8):1053–1068, 2010.

[59] H. Lau, S. Huang, and G. Dissanayake. Probabilistic search for a moving target in

an indoor environment. IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 3393–3398, Oct 2006.

[60] F. Bartumeus, MGE. da Luz, GM. Viswanathan, and J. Catalan. Animal search

strategies: a quantitative random-walk analysis. Ecology, 86(11):3078–3087, 2005.

[61] S. Redner. A Guide to First-Passage Processes. University Press, Cambridge, 1st

edition, 2001.

[62] L. Lovász. Random walks on graphs: A survey. Combinatorics, Paul Erdös is

eighty, 2(1):1–46, 1993.

[63] J.K. Anlauf. Asymptotically exact solution of the one-dimensional trapping prob-

lem. Physical review letters, 52(21):1845–1848, 1984.

[64] S. Redner and PL Krapivsky. Capture of the lamb: Diffusing predators seeking a

diffusing prey. American Journal of Physics, 67:1277–1283, 1999.

[65] A. Gabel, S. N. Majumdar, N. K. Panduranga, and S. Redner. Can a lamb reach

a haven before being eaten by diffusing lions? Journal of Statistical Mechanics:

Theory and Experiment, 2012(05), 2012.

[66] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. Adaptive

Computation and Machine Learning Series. Mit Press, 1998.

[67] L. Kaelbling, M. Littman, and A. Cassandra. Planning and acting in partially

observable stochastic domains. Artificial Intelligence, 101(1–2):99 – 134, 1998.



187

[68] S. Guy, J. Pineau, and R. Kaplow. A survey of point-based pomdp solvers. Au-

tonomous Agents and Multi-Agent Systems, 27(1):1–51, 2013.

[69] J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime

algorithm for pomdps. In Proceedings of the 18th International Joint Conference

on Artificial Intelligence, IJCAI’03, pages 1025–1030, San Francisco, CA, USA,

2003. Morgan Kaufmann Publishers Inc.

[70] D. Silver and J. Veness. Monte-carlo planning in large pomdps. In Advances in

Neural Information Processing Systems 23, pages 2164–2172. Curran Associates,

Inc., 2010.

[71] H. Kurniawati, D. Hsu, and W. S. Lee. Sarsop: Efficient point-based pomdp

planning by approximating optimally reachable belief spaces. In Robotics: Science

and Systems, volume 2008. Zurich, Switzerland, 2008.

[72] A. Somani, N. Ye, D. Hsu, and W. S. Lee. Despot: Online pomdp planning with

regularization. In Advances In Neural Information Processing Systems, pages 1772–

1780, 2013.

[73] Approximate POMDP Planning (APPL) toolkit. http://bigbird.comp.nus.

edu.sg/pmwiki/farm/appl. Accessed March, 2015.

[74] M. De Berg, O. Cheong, and M. van Kreveld. Computational geometry: algorithms

and applications. Springer, 2008.

[75] V. Isler, S. Kannan, and S. Khanna. Randomized pursuit-evasion in a polygonal

environment. IEEE Transactions on Robotics, 21(5):875–884, 2005.

[76] L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. Tarjan. Linear-time algo-

rithms for visibility and shortest path problems inside triangulated simple polygons.

Algorithmica, 2:209–233, 1987.

[77] J. Sgall. Solution of david gale’s lion and man problem. Theor. Comput. Sci.,

259:663–670, May 2001.

http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl
http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl


188

[78] M. de Berg, O. Cheong, M. Van Kreveld, and M. Overmars. Computational Ge-

ometry: Algorithms and Applications. Springer-Verlag TELOS, Santa Clara, CA,

USA, 3rd ed. edition, 2008.

[79] S. Eidenbenz, C. Stamm, and P. Widmayer. Inapproximability results for guarding

polygons and terrains. Algorithmica, 31(1):79–113, 2001.

[80] Oceanscience. http://www.oceanscience.com/.

[81] P. Tokekar, E. Branson, J. Vander Hook, and V. Isler. Coverage and active local-

ization for monitoring invasive fish with an autonomous boat. IEEE Robotics and

Automation Magazine, 30(3):33–41, 2013.

[82] Clearpath robotics. http://www.clearpathrobotics.com/.

[83] S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. MIT press Cambridge,

MA, 2005.

[84] MDP MATLAB toolbox. http://www.inra.fr/mia/T/MDPtoolbox. Accessed

November, 2012.

[85] P. G. Bajer and P. Sorensen. Recruitment and abundance of an invasive fish,

the common carp, is driven by its propensity to invade and reproduce in basins

that experience winter-time hypoxia in interconnected lakes. Biological Invasions,

12(5):1101–1112, 2010.

[86] S. C. W. Ong, S. W. Png, D. Hsu, and W. S. Lee. Planning under uncertainty

for robotic tasks with mixed observability. The International Journal of Robotics

Research, 29(8):1053–1068, 2010.

[87] P. J. Heffernan. Linear-time algorithms for weakly-monotone polygons. Computa-

tional Geometry, 3(3):121 – 137, 1993.

[88] Z. Li and J. F. Canny. Nonholonomic motion planning, volume 192. Springer

Science & Business Media, 2012.

[89] B. P. W. Ames, A. Beveridge, R. Carlson, C. Djang, V. Isler, S. Ragain, and

M. Savage. A leapfrog strategy for pursuit-evasion in a polygonal environment.

http://www.oceanscience.com/
http://www.clearpathrobotics.com/
http://www.inra.fr/mia/T/MDPtoolbox


189

International Journal on Computational Geometry and Applications, 25:77–100,

2015.

[90] U. Ruiz and V. Isler. Capturing an omnidirectional evader in convex environments

using a differential drive robot. IEEE Robotics and Automation Letters, 2016. To

Appear.


	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	Contributions: Adversarial Target
	Partial Knowledge of Target's Location (Limited-Visibility)
	Complete Knowledge of Target's Location (Full-Visibility)

	Contributions: Stochastic Target
	Simple Random Walker on Linear Graphs:
	Simple Random Walker on Two�-Dimensional Grids:


	Related Work
	Adversarial Target (Pursuit-Evasion Games)
	Cops and Robber Game in Graphs
	Lion and Man Game in Planar Environments
	Lion and Man Game in Non-Planar Environments
	Lion and Man Game with Limited-Visibility

	Stochastic Target (Probabilistic Search)
	Two-Cell and N-Cell Problems
	Random Walks


	Technical Background
	Pursuit-Evasion Games
	Notation
	Approach 1. The Lion's Strategy
	Approach 2. Multiple Guards
	Approach 3. The Rook's Strategy
	Lion's Strategy Versus Rook's Strategy
	Centered Rook's Strategy
	Path Guarding and Projection Mappings

	Probabilistic Search
	Partially Observable Markov Decision Process (POMDP)
	Mixed Observability Markov Decision Process (MOMDP)


	Pursuit-Evasion Games with Limited-Visibility
	Game Model and Notation
	Monotone Polygon Capture Strategy: Overview
	Definitions, Invariants and the Notion of Progress
	An Illustrative Example
	Search State
	Guard State
	Zig-Zag Guard
	Simple Guard
	Vertical Guard
	Horizontal Guard

	Analysis of Capture Time
	Correctness Proofs
	Properties of Monotone Polygons
	Zig-Zag Guard
	Simple Guard
	Vertical Guard and Horizontal Guard 
	Simple Pockets

	Concluding Remarks

	Pursuit-Evasion Games with Full-Visibility
	Game Model and Notation
	Three Pursuers on Polyhedral Surfaces with Obstacles
	Ingredients of the Pursuit Strategy
	The Three Pursuer Strategy
	Making Progress
	Correctness Proofs
	Summary

	Single Pursuer on Convex Terrains
	Key Concepts: Wavefront, Projection and Image
	Overview of the Pursuit Strategy
	Discretization of the Surface into Wavefronts
	Guarding Wavefronts
	Making Progress
	Correctness Proofs
	Summary

	Concluding Remarks

	Stochastic Target (Probabilistic Search)
	Problem Statement and Experimental Setup
	Problem Statement
	Experimental Setup

	Simple Random Walker on Linear Graphs: Crossing Detection Model
	Capture Probability of a Given Strategy
	Partially Observable Markov Decision Process
	Simulation Results
	Experimental Demonstration
	Summary

	Simple Random Walker on Two-Dimensional Grids
	Approximation as a One-Dimensional Problem
	Simulation Results
	Experimental Demonstration
	Summary

	Concluding Remarks

	Open Problems and Concluding Remarks
	Summary of Contributions and Open Problems
	Future Research Directions
	Final Remarks

	References

