Using functional traits to understand community assembly, responses to drought, and restoration in tropical dry forests

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Using functional traits to understand community assembly, responses to drought, and restoration in tropical dry forests

Published Date

2017-12

Publisher

Type

Thesis or Dissertation

Abstract

Tropical forests have been extensively degraded and deforested. Recent global restoration initiatives, such as the Bonn challenge, have emerged in an attempt to reverse these trends. To ensure these initiatives are effective, continued effort must be made to integrate ecological theory with restoration practice. It is imperative that some of this effort is focused on tropical dry forests (TDFs), as they are critically endangered and their restoration is understudied. Conservation efforts in NW Costa Rica have been effective in passively regenerating extensive areas of TDF, but the presence of degraded Vertisols in this region present a unique challenge and requires an active restoration approach. Furthermore, functional traits have been used to predict the outcomes of applied restoration of tropical wet forests, but their utility had not been evaluated in TDF. The goal of this research was therefore to determine how tree species in passively and actively restored TDFs use different functional strategies, to cope with stressful environmental conditions such as extreme drought and growing in degraded soils. In Chapters 1 and 2 I focused on determining how the functional strategies of tree species drive patterns in passively restored TDFs. In Chapter 1, I studied how abiotic and biotic gradients predict the landscape scale occurrence of TDF tree species, and I found that functional traits clarify community assembly mechanisms along these gradients in passively regenerating TDFs. In Chapter 2, I focused on the hydraulic responses of woody species to extreme drought and I found that trees and lianas have overlapping water-use strategies, but different in their leaf economic traits. In Chapters 3 and 4 I focused on using a similar functional trait-driven approach to actively restore TDF on degraded Vertisols. In Chapter 3, I implemented a 32 species trial to select native TDF species for Vertisol restoration. My results suggest that functional traits most predictive of survivorship and growth in TDF restoration correspond to how species capture carbon and tolerate drought. Finally, for Chapter 4, I used a 6 hectare Vertisol restoration project to conduct the first empirical test of how species with contrasting functional strategies perform at different TDF successional stages. The results from this study suggest that resource acquisition strategies of TDF tree species can be used to predict species’ responses to changes in microclimatic conditions over succession. Collectively these four studies contribute significantly to our understanding of how functional strategies of TDF tree species dictate their responses to drought and gradients in abiotic conditions in both passively and actively restored TDF.

Description

University of Minnesota Ph.D. dissertation. December 2017. Major: Plant and Microbial Biology. Advisor: Jennifer S. Powers. 1 computer file (PDF): xiv, 205 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Werden, Leland Kendall. (2017). Using functional traits to understand community assembly, responses to drought, and restoration in tropical dry forests. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/200474.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.