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ABSTRACT 
 

Although the rumen microbiome plays a critical role in beef cattle health and productivity, 
the effect of early-life management practices on the rumen metagenome of beef calves 

has been scarcely studied. Through two research studies, this thesis investigated the 
effect of four castration time windows and two weaning strategies on the rumen 

metagenome of beef calves through a comprehensive metagenomic sequencing 
approach that included a technical comparison of shotgun metagenomic sequencing and 

16S rRNA gene sequencing to study the rumen microbiome. We found that castration 
timing had limited long-term effects on the rumen microbiome, while weaning strategy 

showed short-term effects on the microbiome composition and methanogenic gene 

content of the rumen, but not on the rumen resistome. In addition, our results showed 
that despite technical discrepancies, 16S rRNA gene sequencing and shotgun 

metagenomic sequencing methods led to similar ecological inferences about the effect 
of weaning strategy on the rumen microbiome of beef calves. These studies highlight the 

importance of considering early-life interventions in beef cattle management and provide 
insights into the comparability of rumen microbiome sequencing methods. 

Understanding rumen microbiome dynamics and choosing appropriate sequencing 
approaches are crucial for advancing rumen microbiome research in beef cattle. 
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CHAPTER 01: LITERATURE REVIEW 
 

Within the production cycle of beef cattle, the cow-calf operation is a critical phase as it 
represents most of the production costs (~60%) [1], has high associated methane 

emissions (~77%) [2] and has the highest mortality rate across the production cycle 
(~6.4%) [3]. The cow-calf operation is characterized by an extensive pasture-based 

feeding system that produces weaned calves to stockers, backgrounding or feedlot 
systems [4]. Several management practices are implemented to optimize the production 

and health of the animals in the cow-calf stage, some of them having a long-term impact 
on animal productivity [5]. Due to its central role in beef cattle physiology, the microbial 

community of the rumen has been deeply investigated in the last decades using culture-

independent sequencing methods [6]. 16S rRNA gene sequencing, and recently shotgun 
metagenomic sequencing, have allowed a comprehensive description of the taxonomy, 

diversity, and putative function of the rumen microbial community, also known as the 
rumen microbiome.   

 
Unlike dairy cattle, the early-life dynamics of the beef cattle rumen microbiome and the 

impact of management practices on it are scarcely documented. Furthermore, the 
various culture-independent approaches used to describe the rumen microbiome have 

not been robustly compared, which leads to a lack of understanding about whether or 
how we can compare results across different studies that use different approaches. To 

address these knowledge gaps, this review will focus on (1) current knowledge about the 

rumen microbiome of beef cattle and its association with production traits, (2) a 
description of the sequencing methods used to study the rumen microbiome of beef 

cattle, and (3) the impact of management practices on the rumen microbiome, primarily 
focused on early life (cow-calf stage) of beef cattle. 
 

ASSOCIATION OF THE RUMEN MICROBIOME WITH PRODUCTION TRAITS 
OF BEEF CATTLE 
 
General description of the cattle rumen microbiome 

The cattle rumen microbiome is a specialized microbial community made up of bacteria, 
fungi, archaea, protozoa and viruses with cellulolytic, hemicellulolytic, amylolytic, 
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proteolytic, and lipolytic functions [7]. These microorganisms transform fibrous feedstuff 

into volatile fatty acids (VFAs) such as acetate, propionate, and butyrate [8] in a 3-level 
cascade process that includes: (1) cellulose and hemicellulose degradation into 

oligosaccharides via glycosyl hydrolase enzymes, (2) soluble sugar fermentation mainly 
via Embden–Meyerhoff–Parnas pathway, pentose phosphate pathway and anaerobic 

fermentation, and (3) use of fermentation products, specifically organic acids to produce 
VFAs, and hydrogen and methanol to produce methane and acetate via 

hydrogenotrophic, methylotrophic and acetoclastic pathways [6]. VFAs provide the host 
with around 70% of its metabolizable energy to produce human edible products, such as 

meat and milk [6,8]. 
 

Bacteria are the most abundant members of the rumen microbiome with more than 50% 

of the microbial biomass, whereas archaea account for less than 4% of this biomass [8]. 
A multisite study in Europe found that a small proportion of microbial species regardless 

of geographic location and diet can predict animal productivity, rumen metabolites and 
methane emissions in dairy cows. These few but highly abundant species (0.25% of the 

overall species with 30-60% overall abundance) included the cellulose degraders 
Fibrobacter succinogenes, Ruminococcus flavefaciens and Ruminococcus albus, and 

hemicellulose degraders within the Prevotella, Butyrivibrio and Pseudobutyrivibrio 
genera [9]. Other important bacterial species included Treponema bryantii and 

Selenomonas ruminantium which use fermentation products [6], and Sphaerochaeta 
spp. which typically produces acetate [10]. The most important archaeal genera were 

Methanobrevibacter spp., a methanogenic taxon that accounts for up to 70% of the 

ruminal archaeal community. Methanobrevibacter spp. are known as hydrogen (electron) 
sinks because they transform free hydrogen into methane, which benefits the hydrolytic 

activity of cellulose degraders, inhibited sometimes by saturated hydrogen concentration 
in the rumen [6] (Table 1.1).  

 
Ciliate protozoa and fungi are other important members of the rumen microbiome that 

account for up to 50% and between 10-20% of the microbial biomass, respectively [11]. 
The fungal genera Lewia, Neocallimastix, Phoma, Alternaria, Candida, 

and Piromyces spp. [12], and the ciliate protozoa families Isotrichidae, Dasytrichidae, 

Entodiniinae, Diplodiniinae, Ophryoscolecinae [13], are involved in the degradation of 
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plant cell walls. Other important but still neglected members of the rumen microbiome 

are bacterial phages, which mainly include the Siphoviridae and Podoviridae families, 
members of the viral order Caudovirales that infect Bacteroides, Ruminococcus, 

and Streptococcus bacterial genera [14].  
 

Beef cattle rumen microbiome development 
Microbial colonization of the rumen starts right after birth [15]. First, a rapid invasion of 

aerobic bacteria occurs, followed by an increasing dominance of anaerobic taxa within 
days [16]. Minutes after birth, some genera such as Methanobrevibacter spp. and 

Geobacter spp., and some species such as F. succinogenes, R. flavefaciens, 
and P. ruminicola, are found in the rumen and gastrointestinal tract of calves [17].  

 

A study found that the Bacteroidetes and Proteobacteria phyla decreased, while the 
Firmicutes phylum increased to dominate the rumen microbiome at day 14, within the 

first 2 weeks of life of beef calves before weaning [18]. The genera Bifidobacterium, 
Veillonella and Megasphaera increased, while the genera Actinomycetes, Oscillospira, 

and Fusobacterium decreased in the same time frame. After day 21, the microbial 
community did not experience drastic changes, however, the microbial alpha diversity 

continued to increase. The Cyanobacteria, Elusimicrobia, WPS-2 and planctomycetes 
phyla increased after day 21, and the genus Fibrobacter increased while the genera 

Succinivibrio and Catenibacterium decreased by day 96. Overall, the bacterial genera 
Prevotella and the archaeal genera Methanobrevibacter spp. were the most abundant 

taxa present in the rumen during early life [18]. Other study found that while calves were 

kept with their dams, the rumen microbiome beta diversity of both were very similar [19]. 
 

After weaning, when calves directly transitioned to a high-grain diet, the Bacteroidetes 
phylum increased, while Verrucomicrobia and Planctomycetes phyla and the archaeal 

population (mostly Methanobrevibacter genera) decreased. These changes were 
reflected in alpha diversity decrease and an increasingly dissimilar beta diversity 

compared to their dams [19]. When calves were supplemented with concentrate mostly 
composed of corn, soybean meal and molasses, the genera Firmicutes and Prevotella 

increased in abundance, while the genus Fibrobacteres decreased [20]. When creep 

feeding was provided to calves before weaning, the genus Prevotella increased 
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compared to calves without creep feeding, but within 4 weeks the rumen microbiome 

stabilized with similar composition between the groups [21] 
 

Before the feedlot phase of beef production, the use of perennial pasture for 
backgrounding favored the dominance of orders Clostridiales and Bacteroidales to tackle 

the high fiber content of the diet [22]. When a high roughage haylage-based diet was 
provided for backgrounding, calves showed a substantial increase in the 

Succinivibrionaceae family, which antagonizes methanogenic bacteria in the rumen by 
competing for hydrogen to favor propionate production. Nonetheless, the metabolic 

products of Succinivibrionaceae family may inhibit the growth of some butyrogenic taxa, 
resulting in a potential imbalance in the rumen. Calves under perennial pasture 

backgrounding exhibited compensatory growth, improving their performance in the 

feedlot [22].  
 

 
Rumen microbes associated with production traits in beef cattle 

Many lines of evidence have associated the rumen microbiome of dairy cattle with 
important economic and environmental traits such as feed efficiency [23], methane 

emission [24] and milk composition [25,26]. However, as the purpose of dairy and beef 
cattle are different, their production lifecycles, genetics, nutritional needs, and relevant 

production traits are different as consequence. We will focus this section only on studies 
that associate rumen microbiome with beef cattle production traits. 

 

Feed efficiency is one of the most valuable traits of beef cattle. It is not only oriented to 
reduce feed costs, which are estimated at ~70% of total input costs in beef operations 

[8] but also to reduce the environmental impact of the beef industry. Since the ruminal 
production of methane can decrease between 2 to 12% of feed efficiency in cattle [8], it 

is expected that efficient beef cattle will produce less methane while also reducing land 
use for pasture [27]. Although feed efficiency can be improved by increasing concentrate 

and decreasing forage in diet, it can also generate distress in the rumen leading to an 
adverse health impact on the animal [10]. The rumen microbiome may present some 

alternatives to improve feed efficiency in beef cattle. 
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The genus Eubacterium, a butyrate- and propionate- producing taxon, was positively 

associated with highly efficient beef cattle, while low feed efficiency was associated with 
some potential pathogenic members of the Proteobacteria phylum and the 

Spirochaetales order, which are known to produce less energy-rich substrates such as 
acetate [10]. A particular species of the Eubacterium genus, E. ruminantium, was found 

in higher abundance in efficient beef cattle, along with Fibrobacter succinogenes and 
Megasphaera elsdenii, [28]. Additionally, the families Prevotellaceae, 

Paraprevotellaceae, Fibrobacteraceae, RF16, RFP12, S24-7, Lentisphaerae, and 
Tenericutes were associated with selective absorption of VFAs in the rumen, which 

increase energy availability to the host [29]. On the other hand, a high ratio of 
Proteobacteria to (Firmicutes + Bacteroidetes) was found to be an indicator of rumen 

dysbiosis. An excessive abundance of Proteobacteria has been associated with high 

propionate concentration and low rumen pH [30]. 
 

Regarding methane emissions, there is a clear positive correlation between 
Methanobrevibacter and Methanosphaera abundance and ruminal methanogenesis in 

beef cattle [31]. Specifically M. ruminantium has been associated with high methane 
emitter cattle [32]. In addition, the Butyrivibrio and Pseudobutyrivibrio genera were highly 

correlated with high methane emissions [33], as well as the genus Desulfovibrio [31]. 
Conversely, the genera Methylomonas, Megasphaera and Acidaminococcus [33] were 

associated with low methane emissions, as well as the Succinivibrionaceae family [31], 
which may be associated with the competition between this taxon and methanogens for 

hydrogen in the rumen [34]. 

 
Meat quality is an important trait for beef cattle production. The Verrucomicrobia phylum, 

the Oscillospira class, families RFP12 and Porphyromonadaceae, and the Paludibacter 
genus were positively correlated with high marbling score (intermuscular fat deposition), 

whereas the Olsenella genus was negatively correlated [35]. Another study found that 
the family S24-7 is positively correlated with marbling score and longissimus muscle lipid 

content [36]. Interestingly, this family was also positively correlated with increased 
intramuscular fat in pigs [37]. Also, some members of the Proteobacteria phylum in the 

rumen microbiome have been positively associated with an increased beneficial fatty 

acid content in beef, such as the Pseudomonas, Vibrio, Aeromonas and Serratia genera. 
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These taxa have been shown to have lipolytic activity and have been involved in 

microbial protein synthesis, carbohydrate metabolism and transport, and 
lipopolysaccharide biosynthesis [38]. 

 
It is important to mention that some of these beef cattle rumen microbiome taxa have 

some degree of heritability. Four key bacterial taxa were found to be heritable and highly 
correlated with other bacteria in the beef cattle rumen: unclassified Clostridiales, 

unclassified Succinivibrionaceae, unclassified Coriobacteriaceae, and unclassified 
Christensenellaceae. The phylum Bacteroidetes showed low heritability, while the 

Firmicutes phylum showed moderate heritability [39]. Although not a production trait, but 
relevant for public health, there is evidence that the species Ruminococcus spp, 

Prevotella ruminicola, Muribaculaceae spp. and Collinsella aerofaciens are bacterial 

hosts of highly expressed antimicrobial resistance genes in the rumen of beef cattle [40]. 
 

SEQUENCING METHODS TO STUDY THE RUMEN MICROBIOME OF BEEF 
CALVES 
 

As shown above, several studies have explored the rumen microbiome of beef cattle, 
however most of these studies have not extensively addressed the benefits and 

limitations of the sequencing method used. Microbiome research, in general, is based on 
bulk DNA sequencing through long and complex protocols, from sample collection to 

bioinformatic analysis [41]. Each point within this workflow has its own challenges and 
limitations, which oftentimes cannot be tackled due to budgetary and technical 

constraints.  
 

16S rRNA gene sequencing was the first method used to study microbial communities in 

the rumen [42], as it offers a cost-efficient taxonomic description of bacterial and 
archaeal microorganisms. The method is based on the amplification of a hypervariable 

region of the 16S rRNA gene, a well-conserved gene in bacteria and archaea [43]. An 
extensive explanation of the mechanism, advantages and limitations of the method is 

offered in chapter 03. However, it is important to mention that 71% of the studies 
focused on the rumen microbiome of beef cattle listed in this literature review used 16S 

rRNA gene sequencing (Table 1.2). 
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Shotgun metagenomic sequencing is an untargeted method that sequences all the DNA 
content in a sample [44]. Despite the abundant information that this method provides 

about a microbial community, it is still cost- and resource- prohibitive for many rumen 
microbiome researchers. A detailed explanation of the method can be found in chapter 

03. As DNA sequencing price steadily decreases, shotgun metagenomic sequencing 
gains more popularity in the rumen microbiome research field. Specifically in beef cattle 

rumen microbiome research, 29% of studies listed in this literature review used shotgun 
metagenomic sequencing (Table 1.2).  

 
The DNA sequencing reads obtained by shotgun metagenomic sequencing are 

classified using reference database [44]. However, it has been evidenced that a high 

proportion of sequencing reads obtained from rumen microbiome samples are not 
classifiable [13,45–48]. This relevant challenge needs further investigation because 

many reported associations in literature may be based on misclassification and may not 
reflect an accurate diversity of microorganisms. Since both the shotgun metagenomic 

and 16S rRNA methods rely heavily on reference databases, the lack of well-described 
genomes of the rumen microbial community impedes a complete classification of the 

DNA obtained from the rumen, particularly for metagenomic studies [46–48]. 
Researchers have attempted to expand reference databases with genomes obtained 

from rumen samples, and this effort did improve classification rates in some studies 
[45,47,48]. However, even with these efforts, between 30 to 50% of rumen metagenomic 

data remain unclassified. Some ways to address this issue are discussed in chapter 02 

and chapter 03 of this manuscript.  
 

Based on our literature review, we identified only a single study that used both16S rRNA 
gene and shotgun metagenomic sequencing of rumen microbiome samples; and this 

study involved dairy cattle. Although both methods were used, a formal comparison of 
the methods was not explicitly explored in the study. Overall, shotgun metagenomic 

sequencing identified more genera than 16S rRNA sequencing, and discrepancies in the 
microbial abundance of the phyla Firmicutes and Bacteroidetes, and the genus 

Selenomonas were reported [49]. 
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Within the cattle rumen microbiome research field (both dairy and beef), 16S rRNA gene 

sequencing is still commonly used. In a PubMed literature search, 91.5% (279/305) of 
studies that contain the research query “(cattle) AND (rumen) AND (microbiome)” used 

16S as the sequencing method, while 8.5% (26/305) with the same research query used 
shotgun metagenomics (accessed in May 2023). A growing number of studies infer 

important associations of a given relevant outcome with rumen microbiome features 
without further phenotypic or mechanistic validation. Also concerning is the prospect that 

the inconsistent and still changing methodological approach to study the rumen 
microbiome may present incompatibility issues for robust comparisons between studies, 

both past and future. Both 16S rRNA and shotgun metagenomic sequencing produce 
valuable information about the microbial community of the rumen, but as DNA 

sequencing price decreases, shotgun metagenomic sequencing will likely become a 

commonly used method. In this context, a comparison of performance between 16S 
rRNA gene sequencing and shotgun metagenomic sequencing is necessary to 

understand the benefits and limitations of each method, and even more importantly how 
each method may generate systematically biased results. Understanding methodological 

sources of bias is critical for interpreting the results from beef cattle rumen microbiome 
studies. 

 

THE IMPACT OF EARLY-LIFE MANAGEMENT PRACTICES ON THE RUMEN 
MICROBIOME OF BEEF CATTLE 
 
The early life of cattle is a key stage for rumen microbiome development, as the 

assembly of the initial microbial community in the rumen has a long-lasting impact [15]. 
Correct priming of the rumen microbiome early in the life of cattle may lead to a 

predictable mature microbiome state [16]. Host genetics and diet are deterministic 

factors that govern the development of a microbial community in the rumen. Increasing 
evidence shows that the rumen microbiome is subjected to host genetic control to some 

extent [50], as it has a core microbiome that is heritable and quite stable later in adult life 
[9,16]. The dietary regimen in early life might be another potential way to select a given 

production trait during animal development, particularly because the rumen is quite 
dynamic and plastic at this stage of development [15]. Later, as the cattle age to 
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maturity, dietary interventions can have a significant but not permanent effect on the 

rumen microbiome [7].  
 

Some studies showed that a higher concentration of dietary fiber had some beneficial 
outcomes compared to a higher concentrate content, but also may have some important 

pitfalls. A forage-based diet in beef cattle favors the abundance of Planctomycetes, LD1-
PB3 and SR1 phyla and Lachnospira and Sutterella genera in the rumen, while a grain-

based diet favors the abundance of starch-fermenting bacteria of the family of 
Succinivibionaceae and the genus Succinimonas [51]. Likewise, a dry lot backgrounding 

(grain-based) diet for beef calves favored the abundance of the Succinivibrionaceae 
family. This taxon antagonizes methanogenic bacteria but may also inhibit the growth of 

some butyrogenic bacteria, which can potentially have detrimental effects on rumen 

health [22]. Importantly, forage-based diets increase the rumen microbiome alpha 
diversity but also increase methanogenic bacteria, as they have been shown to be 

positively correlated [8]. Thus, dietary requirements may typically meet a delicate grain-
forage balance, and altering this balance can lead to unintended or negative 

consequences. 
 

The impact of weaning has been broadly described in dairy cattle. Calves weaned at 48 
days of life had a reduction in alpha diversity indices and a shift in beta diversity post-

weaning, mainly led by an increase of the Proteobacteria and Firmicutes phyla and the 
Prevotella genus, and simultaneous decrease of the Bacteroides genus. However, 

weaning strategy (i.e., gradual or abrupt) had a limited impact on the development of the 

rumen microbiome of weaned dairy calves [52]. Importantly, the age of weaning has 
been shown to have an impact on the maturation process of the rumen. Early-weaned 

calves, either at 6 [53] or 7 weeks of age [54], have shown reduced growth rate, reduced 
alpha diversity and a rapid shift of rumen microbiome beta diversity compared to late-

weaned calves. Late-weaned calves, either at 8 [53] or 48 weeks of age [54], showed a 
gradual beta diversity change in the rumen microbiome, resulting in less ruminal distress 

[53]. A decrease in the genus Olsenella, a carbohydrate fermenter, and an increase in 
unclassified Clostridia and Fibrobacteres genera were observed post-weaning as a 

higher forage content was introduced to the calves’ diet [54]. 
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The effect of weaning has not been formally studied in beef calves. However, using 16S 

rRNA gene sequencing, a series of studies have described the temporal dynamics of the 
rumen microbiome of beef calves from birth to weaning [55], from day 7 to day 96 of life 

[18] and from weaning day to feedlot arrival [19]. Importantly, one study assessed the 
effect of different creep-feeding diets before weaning compared to a uniform post-

weaning diet in beef calves [21]. The temporal dynamics of beef cattle rumen 
microbiome after weaning, and once they received a concentrate-based diet (high grain 

content) in the feedlot, showed an increase of the Bacteroidetes phylum, and a decrease 
of the Verrucomicrobiota and Planctomycetes phyla and the Methanobrevibacter genus. 

These changes were reflected in an alpha diversity decrease post-weaning, which was 
maintained at a decreased level until arrival at the abattoir. Notably, the beta diversity of 

the calves’ rumen microbiome at weaning was similar to their dams, but dissimilarity 

increased once they moved to a feedlot [19].  
 

Although a common practice in beef calf management, the effect of castration on the 
rumen microbiome has not been formally assessed. However, in dairy cattle, castration 

at 36 weeks of age resulted in an alpha diversity decrease and an increase in the 
abundance of the Prevotellaceae family in the rumen 3 days after the procedure, which 

was more pronounced in low-weight calves. Interestingly, members of the 
Prevotellaceae family have been previously associated with stressful procedures, such 

as heat stress [56]. Furthermore, the authors pointed to a masking effect of age, which 
may confound the association between rumen microbiome changes and the stress 

produced by invasive procedures performed at an early age [57].  

 
Although valuable for cattle research in general, most of what we know pertains to dairy 

cattle research. Since the production lifecycle and nutritional requirements of beef cattle 
are different, the trajectory of rumen microbiome maturation may differ from dairy cattle, 

particularly because beef cattle experience multi-factor changes at each production 
stage (e.g., cow-calf, backgrounding, feedlot). Lack of longitudinal studies in beef cattle 

hinders a complete picture of the rumen microbiome development, especially during 
early life events. What is more, the impact of common early-life management practices, 

such as castration timing and weaning strategy, on the rumen microbiome of beef cattle 
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has not been explored through a comprehensive metagenomic sequencing approach. 

Most of the works cited in this literature review have used 16S rRNA gene sequencing to 
study the beef cattle rumen microbiome, which precludes the investigation of important 

taxa other than bacteria and archaea, and the study of the putative function of the rumen 
microbial community. As microbiome research moves to shotgun metagenomic 

sequencing, comparing both sequencing methods will help to integrate and fully 
leverage extant 16S data to understand the beef cattle rumen microbiome. 
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TABLES AND FIGURES 
Table 1.1. Relevant microorganisms in cattle rumen. 
 

Taxonomic 
rank Name Function Reference 

Order    
 Bacteroidales Part of the core microbiome [9] 

 Clostridiales Part of the core microbiome [9] 

Family    
 Lachnospiraceae Part of the core microbiome [9] 

 Paraprevotellaceae Part of the core microbiome [9] 

 Prevotellaceae Part of the core microbiome [9] 

 RF16 Part of the core microbiome [9] 

 RFP12 Part of the core microbiome [9] 

 S24−7 Part of the core microbiome [9] 

 Succinivibrionaceae 

Part of the core and heritable microbiome, predominant 
family, cellulolysis, competes which methanogens for 
hydrogen witch this family use to produce succinate, 
potential target for methane emission mitigation 

[6,9] 

 Victivallaceae Part of the core microbiome [9] 

Genus    
 Acidaminococcus Associated with low feed efficiency [10] 

 Anaeromyces Predominant fungi [7] 

 Anaeroplasma Part of the core microbiome [9] 

 BF311 Part of the core microbiome [9] 

 Butyrivibrio Part of the core microbiome, predominant genus, degrades 
hemicellulose and metabolizes polysaccharides and peptides 

[6,9] 

 Buwchfawromyces Predominant fungi [7] 

 Caecomyces Predominant fungi [7] 

 Coprococcus 

Part of the core microbiome, involved in methanogenesis 
and acetogenesis, produce lactate and acetate, use hydrogen 
and lactate to produce propionate via acrylate metabolic 
pathway 

[6] 

 Cyllamyces Predominant fungi [7] 

 Desulfococcus Associated with low feed efficiency, reduces sulfate [10] 

 Entodinium Predominant protoza [7] 

 Epidinium Predominant protoza [7] 

 Eubacterium Associated with high feed efficiency [10] 

 Eudiplodinium Predominant protoza [7] 

 Fibrobacter Predominant genus, metabolizes polysaccharides and 
peptides 

[7] 

 Lactobacillus Associated with high feed efficiency [10] 
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Table 1.1. (continued). 
Taxonomic 

rank Name Function Reference 

Genus 
  

 

 Megasphaera 
Competes with methanogens for hydrogen which this genus 
use to produce propionate via acrylate metabolic pathway, 
potential target for methane emission mitigation 

[6] 

 Methanobrevibacter 
Predominant archaea that account for up to 70% of rumen 
archaeal community, positively correlated with methane 
emissions 

[6] 

 Methanosphaera Part of the core microbiome, positively correlated with 
methane emissions 

[6] 

 Neocallimastix Part of the core microbiome, predominant fungi [7,9] 

 Ontomyces Predominant fungi [7] 

 Orpinomyces Predominant fungi [7] 

 Piromyces Predominant fungi [7] 

 Polyplastron Predominant protoza [7] 

 Prevotella Part of the core microbiome, predominant genus, degrades 
hemicellulose and metabolizes polysaccharides and peptides 

[6,9] 

 Providencia Associated with low feed efficiency [10] 

 Pseudobutyrivibrio Predominant genus, degrades non-crystalline hemicellulose [6] 

 Ruminococcus Part of the core microbiome, cellulolysis [9] 

 Sharpea 
Competes with methanogens for hydrogen which this genus 
use to produce lactate, potential target for methane 
emission mitigation 

[6] 

 Sphaerochaeta Associated with low feed efficiency [10] 

 Succiniclasticum Associated with low feed efficiency [10] 

 Treponema Associated with low feed efficiency [10] 

 Trichomonas Protozoa associated with low feed efficiency [10] 

 Variovorax Associated with low feed efficiency, reduces sulfate [10] 

Species    

 Acetitomaculum 
ruminis 

Part of the core microbiome, ferments soluble sugar to 
produce acetate, propionate and butyrate, involved in 
methanogenesis and acetogenesis 

[6] 

 Anaeroplasma 
abactoclasticum 

Part of the core microbiome, ferments soluble sugar to 
produce acetate and butyrate 

[6] 

 Bifidobacterium 
ruminale 

Part of the core microbiome, ferments soluble sugar to 
produce acetate and lactate 

[6] 

 Butyrivibrio 
fibrisolvens 

Part of the core microbiome, degrades crystalline cellulose 
and hemicellulose (polymers), ferments soluble sugar to 
produce acetate and butyrate 

[6] 

 Butyrivibrio hungatei 
Part of the core microbiome, degrades crystalline cellulose 
and hemicellulose (polymers), ferments soluble sugar to 
produce acetate and butyrate 

[6] 

 Butyrivibrio 
proteoclasticus 

Part of the core microbiome, degrades crystalline cellulose 
and hemicellulose (polymers), ferments soluble sugar to 
produce acetate and butyrate 

[6] 

 Christensenella 
minuta 

Part of the core microbiome, ferments soluble sugar to 
produce succinate, lactate, acetate and butyrate 

[6] 
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Table 1.1. (continued). 

Taxonomic 
rank Name Function Reference 

 Fibrobacter 
succinogenes 

Part of the core microbiome, degrades crystalline cellulose 
and hemicellulose (polymers), ferments soluble sugar to 
produce succinate, acetate and formate 

[6,9] 

 Lachnoclostridium 
clostridioforme 

Part of the core microbiome, ferments soluble sugar to 
produce acetate and lactate 

[6] 

 Lachnospira 
multiparus 

Part of the core microbiome, ferments soluble sugar to 
produce acetate, lactate and formate 

[6] 

 Methanobrevibacter 
gottschalkii Predominant archaea, involved in methanogenesis [7] 

 Methanobrevibacter 
ruminantium 

Predominant archaea, involved in methanogenesis and 
acetogenesis 

[6,7] 

 Methanosphaera 
stadtmaniae 

Predominant archaea, involved in methanogenesis and 
acetogenesis 

[6] 

 Olsenella umbonata Part of the core microbiome, ferments soluble sugar to 
produce acetate and lactate 

[6] 

 Oribacterium sp. 
strain C9 

Part of the core microbiome, ferments soluble sugar to 
produce acetate and lactate 

[6] 

 Prevotella ruminicola 
Part of the core microbiome, degrades crystalline cellulose 
and hemicellulose (polymers), ferments soluble sugar to 
produce acetate, lactate, succinate, propionate and formate 

[6] 

 Pseudobutyrivibrio 
ruminis 

Part of the core microbiome, ferments soluble sugar to 
produce acetate 

[6] 

 Pseudobutyrivibrio 
xylanivorans 

Part of the core microbiome, degrades crystalline cellulose 
and hemicellulose (polymers), ferments soluble sugar to 
produce acetate and butyrate 

[6] 

 Pseudoscardovia suis Part of the core microbiome, ferments soluble sugar to 
produce acetate and lactate 

[6] 

 Roseburia faecis Part of the core microbiome [9] 

 Ruminobacter 
amylophilus 

Part of the core microbiome, ferments soluble sugar to 
produce acetate, lactate, succinate and formate 

[6] 

 Ruminococcus albus Part of the core microbiome, predominant specie, degrades 
cellulose 

[6,9] 

 Ruminococcus 
flavefaciens 

Part of the core microbiome, degrades crystalline cellulose 
and hemicellulose (polymers), ferments soluble sugar to 
produce succinate, acetate and formate 

[6,9] 

 Selenomonas 
ruminantium 

Part of the core microbiome, predominant species, degrades 
crystalline cellulose and hemicellulose (polymers), ferments 
soluble sugar to produce succinate, acetate, lactate, 
propionate and formate 

[6] 

 Succiniclasticum 
ruminis 

Part of the core microbiome, ferments soluble sugar to 
produce acetate, succinate  and propionate, use secondary 
fermentation products 

[6] 

 Succinimonas 
amylolytica 

Part of the core microbiome, ferments soluble sugar to 
produce acetate, lactate, succinate and formate 

[6] 

 Succinivibrio 
dextrinosolvens 

Part of the core microbiome, ferments soluble sugar to 
produce acetate, lactate, succinate and formate 

[6] 

 Treponema bryantii Part of the core microbiome, predominant specie, ferments 
soluble sugar to produce acetate and succinate 

[6] 
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Table 1.2. Beef cattle rumen microbiome studies listed in this literature review.  
 

Method Study design Sample size Country Year Beef cattle age Beef cattle breed Reference 

16S-V1-V3 & 
16S-V6-V8 

Cross-sectional 709 China 2019 Adult Purebred Angus, 
Charolais , and the 
Kinsella composite 

hybrid 

[39] 

16S-V3-V4 Cross-sectional 6 Brazil 2021 Adult Nellore pure breed [58] 

16S-V3-V4 Cross-sectional 14 Korea 2020 Adult Korean beef cattle 
(Hanwoo) 

[35] 

16S-V3-V4 Cross-sectional 18 USA 2022 Adult Wye Angus beef [51] 

16S-V3-V4 Cross-sectional 6 USA 2020 Calves (155 d) Angus [20] 

16S-V3-V4 Longitudinal 12 (x4) USA 2022 Post-weaned 
Calves (7.5 m) to 

abattoir 

Angus [19] 

16S-V3-V4 Cross-sectional 24 USA 2020 Adult Angus [36] 

16S-V3-V4 Cross-sectional 25 USA 2019 Calves pre and 
post weaning 

Angus [21] 

16S-V4 Cross-sectional 586 USA 2020 Adult Cross bred [29] 

16S-V4 Cross-sectional 
longitudinal 

38 USA 2022 Post-weaned 
calves 

Angus and Angus x 
Simmental 

[22] 

16S-V4 Cross-sectional 247 USA 2018 Adult Cross bred [59] 

16S-V4 & 
16S-V6-V8 

Cross-sectional 35 Ireland 2020 Calves (7d-96d) Aberdeen Angus-sired [18] 

Shotgun Cross-sectional 72 UK 2020 Adult Purebred Luing and 
crossbred Charolais 

[10] 

Shotgun Cross-sectional 50 UK 2018 Adult Purebred Luing (LU), 
crossbred Charolais 

(CH, Aberdeen Angus 
(AA) and Limousin 

(LIM) 

[33] 

Shotgun Cross-sectional 48 USA 2022 Adult Angus, Charolais, 
Kinsella composite 

hybrid 

[40] 

Shotgun Cross-sectional 363 UK 2022 Adult Cross bred of  
Aberdeen Angus and 

Limousin breeds, 
Charolais-crosses and 

purebred Luing 

[38] 

Shotgun Cross-sectional 72 UK 2015 Adult Aberdeen Angus and 
Limousin cross bred 

[31] 
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OBJECTIVES 
 

 

Overall aim 
Study the effect of two early-life common management practices on the rumen 

metagenome of beef cattle through a comprehensive metagenomic sequencing 
approach. 

 

Specific aims 
SA 1: Investigate the effect of four castration timing windows and two weaning strategies 

on the rumen metagenome of beef calves. 

 
SA 2: Compare the performance of shotgun metagenomic sequencing and 16S rRNA 

gene hypervariable region V4 sequencing for taxonomic characterization of beef calf 
rumen microbiome. 
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ABSTRACT 
 

Background 
Beef cattle experience several management challenges across their lifecycle. Castration 

and weaning, two major interventions in early life of beef cattle, have demonstrated a 
substantial impact on animal performance. Despite the key role of the rumen microbiome 

on productive traits of beef cattle, the effect of castration timing and weaning strategy on 
this microbial community has not been formally described. We assessed the effect of 

four castration time windows (at birth, at turnout, pre-weaning and at weaning) and two 
weaning strategies (fence-line and truck transportation) on the rumen metagenome in a 

randomized controlled study with 32 male calves across 3 collection days. Ruminal fluid 

samples were submitted to shotgun metagenomic sequencing and changes in the 
taxonomic and functional profile of the rumen metagenome were described.  

Results 
Using a comprehensive yet stringent taxonomic classification approach, we identified 

37,894 unique taxa classified under 7 archaeal, 40 bacterial, 14 viral, 6 protozoa, 3 
fungal phyla across all samples. Castration timing had a limited long-term impact in the 

rumen metagenome and was not associated with changes in alpha and beta diversity. 
The interaction of collection day and weaning strategy was associated with changes in 

the rumen microbiome, having a significant decrease in alpha diversity and differences 
in beta diversity within 48 hours post-weaning, especially in calves abruptly weaned by 

truck transportation. Calves sequentially weaned using a fence-line weaning strategy 

had lower relative abundance of Bacteroides, Lachnospira, Fibrobacter and 
Ruminococcus compared to calves weaned by truck transportation. While some genes 

(DNA level) from the hydrogenotrophic methanogenesis pathway (fwdB and fwdF) had 
higher relative abundance in fence-line-weaned calves post-weaning, the antimicrobial 

resistance gene tetW consistently represented more than 50% of the resistome across 
time, weaning and castration groups, without any change in the relative abundance. 

Conclusions 
Within the context of this study, castration timing had limited long-term effects on the 

rumen metagenome while weaning strategy had short-term effects on the rumen 
metagenome. These effects influenced the microbiome composition and methanogenic 

genes but not the rumen resistome.  
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BACKGROUND 
 

Beef cattle, like other ruminants, have the ability to turn non-edible feedstuff into highly 
nutritious resources that humans could not otherwise use [6]. The microbial community 

inhabiting the rumen, termed the rumen microbiome, achieves this through fermentation 
processes that can generate up to 70% of animal energy needs [8]. These processes 

also result in the generation of greenhouse gases (e.g., methane), which have been 
estimated to contribute up to 40% of total livestock emissions worldwide [60]. Recent 

culture-independent molecular techniques have allowed an intensive exploration of the 
rumen microbiome and its association with relevant production traits in the bovine host. 

Multiple members of this microbial community, made up of bacteria, fungi, archaea, 

protozoa and viruses [7], have been associated with feed efficiency [10,23,59], methane 
emissions [24,33,61] and meat quality [38]. The bacterial and archaeal communities of 

the rumen microbiome have been shown to have a life-long influence on not only their 
host, but also that host’s offspring [9,39]. For example, the initial colonization of 

microbes in the neonatal calf rumen is a significant predictor of rumen microbiome 
composition later in life, i.e., once the rumen has developed [15], and a small bacterial 

subset of the rumen microbiome has been identified as a heritable microbial core in adult 
cattle [9]. In light of current evidence, manipulation of the rumen microbiome may be an 

effective strategy to improve many aspects of beef production, much like leveraging 
cattle genetics has led to myriad impacts across the beef production system. However, 

we still lack longitudinal studies to understand how external factors impact the 

establishment, composition and function of the rumen microbiome throughout the beef 
cattle life cycle [6,18].  

 
A typical beef cattle lifecycle can involve moving animals through several stages, 

including cow-calf, backgrounding, stocker-feeder, and feedlot [4]. As calves move 
through these stages, they experience different management practices that can include 

various physical interventions (e.g., castration, weaning, dehorning); changes in diet, 
environment and herd; as well as transport [62]. Some of these changes happen 

suddenly and represent stressors that can affect a calf’s metabolism, immune system, 
health and performance [63]. Specific evidence shows that choice of strategy for 
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castration [64], weaning [65], dehorning [66] and high-energy diet supplementation [67] 

can directly impact welfare, health and performance of beef cattle.  
 

Similarly, a growing body of evidence suggests that the rumen microbiome of beef cattle 
is also impacted by these management practices, including diet changes [20,22,68–70] 

and stress factors [58]. Despite the importance of early-life events for both long-term 
beef cattle performance [3] and rumen microbiome assembly and establishment [15], 

very little is known about the effect of management practices on the beef calf rumen 
microbiome, especially in comparison to the body of literature that pertains to dairy 

calves [52–54,57]. Furthermore, the existing literature related to the rumen microbiome 
of beef calves is based on 16S rRNA gene sequencing [18,20,71] instead of shotgun 

metagenomic sequencing. This technical difference has important repercussions on the 

insight that can be gained from these studies. Specifically, the use of 16S rRNA data 
does not allow for detection of microbial organisms other than bacteria and archaea with 

a limited taxonomic resolution [26]; or for the characterization of the putative function of 
ruminal microbes, which play an important role in antimicrobial resistance [30], 

environmental impact [61] and productivity [10] of adult cattle. 
 

While weaning and castration of beef calves have been shown to significantly impact 
animal performance (i.e., food intake, average daily gain, and health status), the effect of 

these practices on the rumen microbiome remains unexplored. We hypothesized that 
castration timing and weaning strategy impact the diversity, taxonomy and potential 

functional profile of the rumen microbiome of beef calves. To test this hypothesis, we 

designed a longitudinal randomized controlled study in which 32 male calves from a 
single cow-calf herd were randomly assigned at birth to 4 different castration windows 

and 2 different weaning strategies using a factorial design. Other than castration timing 
and weaning strategy, calves were managed identically and kept together within the 

same herd. Ruminal fluid was collected twice before weaning and once 48 hours after 
weaning (Sup Figure 2.1). Samples were sequenced by shotgun metagenomics and 

analyzed using several bioinformatic pipelines. In addition to overall taxonomic 
microbiome composition, we analyzed the effect of our interventions on gene 

composition associated with 2 relevant processes driven by microbial communities: 

antimicrobial resistance (AMR) and methane emissions. Regression models were used 
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for hypothesis testing, considering collection day, castration timing and weaning 

strategies as independent variables (predictors), and diversity metrics and differential 
abundance of a given feature as dependent variables (outcomes). 
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RESULTS 
 

Low classification rate but high resolution in the taxonomic profiling of the rumen 
microbiome with kraken2   

We collected 95 samples of rumen fluid: 32 at pre-weaning processing (September 21st), 
32 at weaning (October 18th) and 31 at post-weaning (October 20th). One calf assigned 

to turnout castration and fence-line weaning was dropped from the study due to health 
issues that occurred at weaning that eventually ended in euthanasia. Despite formal 

randomization, there was a significant difference in age (days) and average daily gain 
(ADG) of calves weaned via fence-line and truck (Kruskal-Wallis Test, P < 0.05). Calves 

weaned by fence-line were on average 6 days younger and had on average 0.11 kg 

higher ADG compared to truck-weaned calves (Table 2.1). 
 

Samples were subjected to total DNA extraction and shotgun metagenomic sequencing, 
which generated 5.1 x 109 paired-end (PE) sequencing reads across all 95 rumen fluid 

samples (mean 55.8 x 106 PE reads per sample, range 30.5 – 75.8 x 106) with an overall 
mean quality score of 35.1. The initial standard protocol for taxonomic profiling of the 

rumen microbiome (see methods) classified a low proportion of initial sequencing reads 
(Sup. Table 2.1). Based on previous evidence [46], we customized our protocol for the 

rumen microbiome, including a host decontamination of Bos taurus and dietary plants 
sequences and the bacterial taxonomic classification using a customized database that 

included rumen-specific bacteria and archaea (see methods). After trimming low quality 

sequencing reads and removing host and dietary plants reads, an average of 38.3 x 106 
PE reads per sample remained (70.7% of raw reads). The trimmed non-host reads were 

classified using Kraken2 (confidence score = 0.1) with the rumen-specific database, 
resulting in an average of 1.6 x 106 PE reads classified per sample (4.2% of trimmed 

non-host reads). Our customized protocol increased the rate of host-reads removal, from 
22.7% using only Bos taurus genome to 29.3% using Bos taurus and dietary plants 

genomes; while increased the proportion of non-host reads classified by kraken2 
(confidence score = 0.1), from 3.1% using a standard database to 4.2% using a rumen-

specific database (Sup. Table 2.1). Overall, with our customized protocol, 96.2% of 
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classified reads were resolved to the phylum level, while 75.7% were resolved to the 

species level (Sup. Table 2.2). 
 

Two positive controls (mock communities) sequenced alongside the rumen samples 
yielded 51.6 and 47.6 x 106 PE reads per sample, while the 3 negative controls yielded 

10298, 97 and 82 x 103 PE reads per sample. Positive and negative controls were 
classified with kraken2 using the same approach as with the rumen samples. The 

positive controls obtained 32.4 and 29 x 106 PE reads classified per sample, and the 
negative controls had 244, 6 and 4 x 103 PE reads classified per sample. At the genus 

level, the positive controls contained Listeria spp. as the predominant taxa, which was 
expected according to the mock community composition (ZymoBIOMICS Microbial 

Community Standard II Log Distribution – Catalog N° 6310). Bacillus spp., 

Saccharomyces spp. and Enterococcus spp. were above their expected abundances 
(0.89%, 0.89% and 0.0089%, respectively), while Pseudomonas spp., E. coli and 

Salmonella spp. were under their expected abundance (8.9%, 0.089% and 0.089%, 
respectively). The negative controls contained mostly Butyrivibrio spp., Prevotella spp., 

Cutibacterium spp. and human DNA, which are expected contaminants from rumen 
samples and human manipulation (Sup. Figure 2.2). 

 
Rumen microbiome of beef calves was depicted as a complex and dynamic 

community by kraken2 using a comprehensive reference database 
A total of 37,894 OTUs (operational taxonomic units) were identified across the 95 

rumen fluid samples by kraken2 using a confidence score = 0.1 and a comprehensive 

reference database that included archaea, bacteria, virus, plasmids, human, 
UniVec_core, protozoa and fungi reference genomes, and 410 rumen-specific bacteria 

genomes from the Hungate project [72]. We identified OTUs at every taxonomic level for 
Bacteria, Archaea, Fungi, Protozoa and Virus, but we focused our downstream analysis 

on the bacterial and archaeal domains due to their major role in ruminant metabolism. 
Within the bacterial domain (98.6% of the total classified reads), 40 unique phyla, 93 

classes, 219 orders, 519 families, 1909 genera and 8674 species were identified across 
all rumen fluid samples. Within the archaeal domain (1.4% of the total classified reads), 

7 unique phyla, 18 classes, 31 orders, 48 families, 140 genera and 351 species were 

identified (Sup. Table 2.3). Overall, the most abundant bacterial phyla across all ruminal 
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fluid samples were Bacillota (48.1% ± 13%, mean ± SD), Bacteroidota (42.7% ± 11%), 

Fibrobacteres (5.16% ± 3.48), Pseudomonadota (2.05% ± 0.62), Actinomycetota (1.57% 
± 0.36) and Spirochaetes (1.28% ± 0.24) (Figure 2.1.A). The 10 most abundant 

bacterial genera across all ruminal fluid samples were Prevotella sp. (40.5% ± 10.9, 
mean ± SD), Butyrivibrio sp. (16.4% ± 7.72), Selenomonas sp. (5.50% ± 2.64),  

Fibrobacter sp. (5.46% ± 3.67), Oribacterium sp. (3.9% ± 1.31), Succiniclasticum sp. 
(3.73% ± 2), Pseudobutyrivibrio sp. (3.65% ± 1.73), Ruminococcus sp. (2.94% ± 1.28), 

Eubacterium sp. (1.8% ± 0.96), and Sarcina sp. (1.82% ± 0.78). Within the archaeal 
domain across all ruminal fluid samples, the 5 most abundant genera were 

Methanobrevibacter sp. (83.8% ± 7.03), Methanosphaera sp. (14.7% ± 4.04), 
Methanomicrobium sp. (2.72% ± 2.49), Methanosarcina sp. (1.55 ± 0.1) and Candidatus 

Methanoplasma sp. (1.45% ± 0.39) (Sup. Figure 2.3). 

 
Alpha diversity results were summarized using 2 main indices at the genus level: 

richness and Shannon’s index. We used linear mixed effects modeling with indices as 
response (outcome) variable; and collection day, castration timing and weaning strategy 

as explanatory (predictor) variables. We added age and average daily gain (ADG) as 
potential confounders, and animal ID as a random effect to account for non-

independence due to repeated measures on each calf. Collection day was significantly 
associated (ANOVA-III P<0.001) with Shannon’s index, but not with richness (Figure 

2.2.A). Specifically, rumen samples collected at post-weaning contained significantly 
lower Shannon’s diversity (adjusted mean ± SE, 2.18 ± 0.03) than before weaning (2.50 

± 0.03) (Figure 2.2.B).  

 
The rumen microbiome composition shifted significantly in the 48 hours post-weaning. 

Using multivariate zero-inflated Gaussian mixture models with animal ID as a random 
effect and collection day, weaning strategy, age and average daily gain (ADG) as fixed 

effects, we measured the differential abundance (log2 fold change) of phyla between 
collection days, weaning and castration groups. We observed numerous differentially 

abundant phyla when comparing samples collected at weaning and post-weaning. Eight 
phyla were in higher abundance at post-weaning, while seven phyla were in lower 

abundance. Considering only phyla with high average abundance across samples, the 

phyla Spirochaetes, Euryarchaeota and Bacillota were in lower abundance post-weaning 
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compared to at-weaning, while phyla Fibrobacteres and Bacteridota were in higher 

abundance (Figure 2.2.C).  
 

Dissimilarity matrices of Bray-Curtis distances at the genus level were used for non-
metric multidimensional scaling (NMDS) ordination and permutational multivariate 

analysis of variance (PERMANOVA) testing of rumen microbiome variation by collection 
day, castration timing, and weaning strategy; the marginal effect (R2) was obtained for 

each predictor (option by=”margins” in adonis2). A relatively large and statistically 
significant proportion of between-sample rumen microbiome variability was partitioned to 

collection day (R2 = 31.9, P < 0.001) (Figure 2.3.B). 
 

Weaning strategy but not castration timing was associated with rumen 

microbiome differences in beef calves 
Not only collection day but also its interaction term with weaning strategy was 

significantly associated with alpha diversity of the rumen microbiome (ANOVA-III, 
P<0.001). Specifically, rumen samples collected from truck-weaned calves 48 hours 

after weaning had significantly lower diversity compared to the fence-line weaned calves 

sampled at pre-weaning (b = -0.18, 95% CI = -0.31, -0.05) (Figure 2.3.A). Weaning 

strategy was associated with 5.2% (PERMANOVA P<0.01) of the overall variability in 

beta diversity across all of the rumen samples (Figure 2.3.B). However, when only post-
weaning samples were analyzed, weaning strategy was associated with 32.5% 

(PERMANOVA P<0.01) of the between-sample variability.  
 

Differential abundance testing by weaning strategy stratified by collection day showed 
that the majority of differences between weaning groups were observed at the post-

weaning time point. Specifically, 564 genera identified in the post-weaning samples were 
significantly differentially abundant between fence-line and truck-weaned calves, 

compared to 266 and 239 genera at the pre-weaning and weaning collection days, 
respectively (Figure 2.3.C). Considering only the most abundant genera across all 

samples, we identified Bacteroides, Lachnospira, Petrimonas, Micromonospora, 

Fibrobacter, Sarcina, Streptococcus and Ruminococcus genera as having significantly 
lower abundance (log2 fold change < -1) in fence-line-weaned calves compared to truck-

weaned calves post-weaning; while the Rhodococcus, Agrobacterium, Anaerovibrio, 
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Oribacterium, Plantibacter, Variovoraxgenera and Lachnoclostridium genera were in 

higher abundance (log2 fold change > 2) (Sup. Table 2.4). 
 

Unlike weaning strategy, castration timing was not significantly associated with 
differences in Shannon’s index at any collection day (pre-weaning P=0.4, weaning P=0.8 

and post-weaning P=0.8). When beta diversity was assessed separately for each 
collection day, the variation partitioned to castration timing was small and not statistically 

significant (Figure 2.4.A - C). These results do not provide evidence that castration 
timing impacts the diversity of the rumen microbiome of beef calves, at least during the 

collection time points included in this study.  Differential abundance testing revealed 
limited statistically significant differences in relative abundance of any phyla when 

comparing castration timing groups at pre-weaning, weaning (data not shown) and post-

weaning (Figure 2.4.D). 
 

Weaning strategy was associated with differences in the relative abundance of 
methanogenic microbes and genes  

We assessed the effect of weaning strategy specifically on the methanogenic microbial 
community and associated genes using a dedicated database and bioinformatic tool 

[73]. The relative abundance of these microbes across time and between weaning 
strategies was highly heterogeneous (Sup Figure 2.4.A.). As with the overall 

microbiome, the associations between methanogenic gene diversity and both weaning 
strategy and time were significant. Shannon’s index for methanogenic genes was 

significantly lower in truck-weaned calves (adjusted means ± SE, 3.96 ± 0.01) compared 

to fence-line-weaned calves (4.03 ± 0.01) at post-weaning (Sup Figure 2.4.B). Likewise, 
a large proportion of the variation in the methanogenic gene portion of the rumen 

microbiome was attributed to weaning strategy and collection day (R2= 8.1%, p<0.01, 
and R2= 24.3%, p<0.01, respectively) (Sup. Figure 2.4.C).  

 
Differential abundance testing for post-weaning samples revealed that 64 methanogenic 

genera and 98 methanogenic genes had significantly lower relative abundance in fence-
line-weaned calves, while 45 genera and 45 genes had significantly higher relative 

abundance, when compared to truck-weaned calves (Figure 2.5). Within the most 

abundant methanogenic genera and genes across samples we identified that the 



 28 

archaeal genus Candidatus Methanomethylophilus, and some genes in the 

methylotrophic methanogenesis pathway (mtmB and mtaB) had significantly lower 
relative abundance in fence-line-weaned calves compared to truck-weaned calves; while 

archaeal genus Methanobrevibacter and some genes in the hydrogenotrophic 
methanogenesis pathway (fwdB and fwdF) had significantly higher relative abundance 

(Sup. Table 2.5). 
 

Rumen resistome of beef calves was consistently dominated by tetracycline 
resistance genes  

After trimming and removing host and dietary plant genomes, we assessed the 
Antimicrobial Resistance genes in the rumen microbiome using AMR++ v2, which uses a 

comprehensive database that includes 4 antimicrobial compound types [74]. The 

composition of antimicrobial resistance genes within the rumen (i.e., the rumen 
resistome) did not change significantly over time nor did it differ significantly between 

weaning groups. More than 90% of the resistome at the gene-group level was composed 
of tetracycline resistance genes, namely Tet40, Tet44, TetO, TetQ and TetW, with the 

latter comprising more than half of the total resistome content (Figure 2.6.A). The 
homogeneous composition of tetracycline resistance genes was reflected in our analysis 

of both alpha and beta diversity, none of which demonstrated significant associations 
with weaning strategy (data not shown). In addition, differential abundance testing 

revealed limited statistically significant differences between weaning groups at weaning 
and post-weaning collection days (Figure 2.6.B). 
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DISCUSSION 
 

This study assessed the effect of castration timing and weaning strategy on the rumen 
microbiome of beef calves using a randomized controlled trial and longitudinal sampling. 

The dataset alone represents a substantial contribution to the limited body of literature 
pertaining to the rumen microbiome of beef calves specifically [18,55]. Using this 

dataset, we showed that the rumen microbiome shifted as calves approached weaning 
age, with a very noticeable and rapid change occurring within the first 48 hours after 

weaning. We did not find a significant effect of castration timing on the temporal 
dynamics of the rumen microbiome, although our sampling intervals may not have been 

frequent enough or close enough to the early castration events to capture short-term 

differences that may have occurred. Recent studies have found an association between 
the intestinal microbiome and increased adiposity [75] and growth inhibition [76], both of 

which can be impacted by the hormonal changes that occur with castration. Given this 
prior evidence and the limitations of our sampling design, we cannot definitively rule out 

an association between castration timing and rumen microbiome development, and thus 
more studies are warranted.  

 
Our study showed that the changes in the rumen microbiome 48 hours post-weaning 

were significantly different in the calves weaned by fence-line compared to those 
weaned by truck. This effect was also observed when analyzing only the methanogenic 

genes and microbes of the rumen microbiome; specifically, Methanobrevibacter and 

some genes in the hydrogenotrophic methanogenic pathway were found in higher 
abundance in calves weaned by fence-line, while some genes in the methylotrophic 

methanogenesis pathway were in higher abundance in truck-weaned calves. In contrast, 
the antimicrobial resistance genes of the rumen microbiome (i.e., the rumen resistome) 

were not detectably altered by weaning, instead demonstrating a consistent dominance 
of tetracycline resistance genes across time and intervention groups.   
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Rumen microbiome dynamics around weaning could be driven by dietary and 

stress factors  
The overall dominance of the phyla Bacillota (synonym Firmicutes) and Bacteroidota in 

the rumen microbiome of beef calves of weaning age was previously reported [19,22]. 
Both phyla seem to be dominant throughout rumen development in beef calves as 

previously reported [18]. The phyla Actinomycetota and Fibrobacteres had different 
relative abundances in previously reported rumen samples collected from beef calves at 

about the same weaning age; while the phyla Verrucomicrobia and Tenericutes 
represented less than 1% of total abundance in our study but were present in at least 

2% relative abundance in other studies [19,22,55]. This heterogeneity in findings may be 
explained by several factors such as different genetics, diets and environments. In our 

study, the phyla Bacillota was highly abundant pre-weaning but decreased in relative 

abundance post-weaning. This phylum is represented mainly by the genera Butyrivibrio 
spp., a hemicellulose degrader and main producer of butyrate, which has been reported 

as highly abundant from birth to 96 days of age [18]. During this same three-week period 
just prior to weaning, the low abundant (<1%) phylum Elusimicrobia decreased 

remarkably across all calves. This phylum is an understudied anaerobic bacteria 
reported to be increased in feedlot finisher cattle [77] and in high-forage-fed dairy cattle 

during the dry period [78]. As previously described, the time-dependent changes of the 
rumen microbiome have been shown to be influenced by age and diet in cattle 

[15,19,68,79] and other ruminants [80,81].  
 

Weaning strategy was associated with immediate differences in the rumen microbiome 

of the beef calves in this study. Weaning is an important physiological and life cycle 
event across all mammalian species; it can be especially important in livestock species 

because it involves not only dietary changes, but often concomitant separation from the 
dam, social regrouping, and transport to a new environment. The effects of weaning on 

animal productivity and welfare have been studied extensively [65,82,83], but their 
mechanisms and the overall benefits and drawbacks of different weaning strategies on 

various important phenotypes and production outcomes are still being investigated. The 
impact of weaning on the gastrointestinal microbiome has recently gained attention and 

has been described in swine [84], horses [85], sheep [86], goats [81] and dairy cattle 

[52], but to date not in beef cattle.  
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Consistent with other studies in cattle [52] and other livestock species [80,84], we 
observed a significant decrease in rumen microbial diversity shortly after weaning, which 

was especially marked in truck-weaned calves. Stressors such as heat [87] and long-
distance ground transportation [88] have also been associated with decreased rumen 

microbiome diversity in cattle, suggesting that physiological stressors at the host level 
may also manifest as decreased diversity within host-associated microbiomes. 

Interestingly, the rumen of truck-weaned calves had the lowest microbial diversity across 
all collection days and groups, which may be explained by the additional stressors these 

calves experienced due to ground transportation, physical separation from their dams, 
and change of environment as well as diet. The mechanisms involved in the response of 

gastrointestinal microbiomes to physiological stressors are still unclear but may include: 

oxidative stress, erratic activation of immune response against bacteria and the 
secretion of bacterial toxins [89–91]. To note, our study did not measure stress levels 

using biological markers and thus did not present our results in terms of “high” or “low” 
stress weaning methods. However, the body of evidence shows that sequential weaning 

(i.e., via fence line) is associated with decreased levels of stress-associated biomarkers 
compared to abrupt weaning by long-distance transportation [65,82]. 

 
We observed a significant increase in the relative abundance of the 2 most abundant 

genera, Fibrobacter spp. and Prevotella spp., in the 48 hours after weaning. Fibrobacter 
spp. are cellulose degraders previously identified as part of the core heritable rumen 

microbiome [9] that colonizes the rumen of beef calves after 7 days of age [18]. The 

transition of calves to a forage- or grass-exclusive diet may provide a fiber-rich substrate 
that supported the relative increase of this genus with the rumen microbial community. 

The increase of Prevotella after weaning and during dietary transitions has been 
described in cattle [15,52,79], pigs [84] and horses [85]. This genus is composed of 

several species with a variety of biological functions, including use of readily available 
carbohydrates, degradation of hemicellulose, and protein and peptide breakdown 

[92,93]. The wide metabolic plasticity of the genus Prevotella offers evidence of the 
complex functional profile of the rumen microbiome. For instance, some Prevotella 

species have been associated simultaneously with both low and high methane emission 

cattle [32], while other species such as Prevotella ruminicola have been identified as the 
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bacterial host of antimicrobial resistance genes in the cattle rumen [40]. Interestingly, 

increases in the abundance of this genus in the rumen have also been associated with 
other non-dietary stressors in cattle [56,57], suggesting a role of microbes in the 

physiological response of cattle to diverse stressors. It is challenging to identify a single 
or definitive mechanistic link between rumen microbiome variation and host-level 

stressors such as a change of diet and weaning. In humans, the gut microbiome is 
considered part of the gut-brain axis, which helps regulate stress through processes that 

include vagus nerve modulation, gut hormone signaling, the immune system and 
microbial metabolites [94].  The role of rumen microbes in the stress response of 

ruminants is still unclear and requires further study. 
 

Weaning as a process represents numerous changes (i.e., diet, age and change of 

environment), all of which can impact both the bovid host and its associated microbes. 
Our study was not designed to isolate the effect of each factor, but instead to describe 

the total effect of typical weaning processes as a multi-factor event that occurs during 
the cattle life cycle. Dietary shifts and aging are co-occurring factors that affect the 

rumen microbiome and are nearly impossible to disentangle. Nonetheless, we tried to 
limit the potentially confounding effect of other covariates such as pre-weaning diet and 

genetic background, while also appropriately mimicking two common weaning practices 
in the US [83], as they happen in the field. Our study did not include long-term sampling 

to understand the long-term effects of weaning on the rumen microbiome. If they exist, 
such long-lasting shifts in the rumen microbiome may be highly relevant to important 

animal health and production outcomes, and thus should be addressed by future 

studies.  
 

Ruminal methanogenic genes may be more readily influenced by external factors 
than antimicrobial resistance genes 

The cattle rumen produces methane [95], and the archaeal community (particularly the 
phylum Euryarchaeota) contains many of the main methane-associated microbes. These 

microbial taxa are found in the rumen microbiome from an early age and may be part of 
the initial microbial colonization of the rumen [17,18]. Through a variety of studies, a set 

of non-archaeal microbes have also been associated to high methane emission in cattle: 

Methanobrevibacter (particularly Mbb. Gottschalkii and Mbb. Ruminantium), 
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Christensenellaceae, Mogibacteriaceae, Ruminococcaceae, Lachnospiraceae and 

Rikenellaceae [24,34,96,97]. On the other hand, several others are highly abundant in 
low methane emitters: Methanosphaera, Vellionellales and Desulfovibrionales [24,98]. 

The literature in this area is still somewhat ambiguous, but previous findings combined 
with environmental evidence have allowed the development of a preliminary database of 

methane-associated bacteria, archaea and genes [73]. Using this tool, we observed a 
significant association between weaning strategy and the composition of methane-

associated genes in the rumen of beef calves. From 10 different methane cycle 
pathways in the database [73], rumen methanogens only use 3: hydrogenotrophic, 

methylotrophic and acetoclastic [7,95]. We identified the genus Methanobrevibacter and 
genes from the hydrogenotrophic (fwdB and fwdF) methanogenic pathways in higher 

relative abundance in fence-line-weaned calves compared to truck-weaned calves. 

Considering that Methanobrevibacter is an important methanogenic archaeon and that 
the hydrogenotrophic pathway is the main methanogenic pathway in ruminants [95], our 

findings may suggest that the ruminal microbial community of calves weaned by fence 
line could have an increased capacity to generate methane, at least in the very 

immediate post-weaning period.  
 

However, we caution against over-interpretation of these results, particularly because 
our analysis is conducted at the DNA level, which does not necessarily correlate with 

transcription and production of metabolites such as methane. Proper correlation with 
metatranscriptomics, proteomics, metabolomics and/or phenotypic testing remains to be 

elucidated in future studies. Additionally, more extensive phenotypic measurements 

would provide more actionable results, including respiratory chambers or antimicrobial 
susceptibility testing to measure methane and phenotypic antimicrobial resistance, 

respectively.  Since these metrics are beyond the scope of this study, the reader should 
not extrapolate our DNA-level results to phenotypic expression. Moreover, metagenomic 

studies require replication, particularly given the relatively sparse information and 
sequence databases available for methane-production pathways and microbes. 

Specifically, the lack of gene ontology annotation in the available methanogenic 
database prevented an aggregated pathway-level analysis, and thus we were only able 

to analyze the rumen microbiome on a gene-by-gene basis. Given that methane 

production is typically the result of complex gene-gene interactions, the results 
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generated from this gene-by-gene approach need further validation. A rumen-specific 

methanogenic database with comprehensive annotations is a critical gap for future 
metagenomic studies of the rumen microbiome and methane production.  

 
Recent evidence suggests that the rumen can be a potential source of antimicrobial 

resistance genes, with a highly diverse and concentrated microbial community that can 
favor horizontal gene transfer [30,99,100]. Our study found a very consistent and 

dominant distribution of tetracycline (tet40, tet44, tetO, tetQ, tetW) and nitroimidazole 
(nimJ) resistance genes within the rumen resistome. Our findings regarding the 

dominance of tetracycline resistance genes are consistent with previous studies of the 
rumen resistome of dairy cattle, both at the DNA [101,102] and RNA levels [100]. 

Furthermore, this pattern of a tetracycline-dominated resistome has been described in 

numerous beef and dairy resistome studies investigating different sample types (e.g., 
feces, soil and water) and even different countries [103–105]. Contrasting to our results, 

chloramphenicol, microcin, aminoglycoside and streptomycin resistance genes have 
been reported to be more prevalent in the rumen of adult beef cattle not exposed to 

antibiotics [30]. While concentrate-based diet [30] and even milking traits [102] have 
been associated with differences in the rumen resistome, we did not observe an 

association with age, castration timing or weaning strategy in beef calves. Interestingly, 
the predominant tetracycline resistance pattern in the rumen is reflected in feces, as 

described not only in dairy calves [106] but also in unexposed wild ungulate species (elk 
and bison). The presence of tetracycline resistance genes in wild ruminants suggests 

that this phenomenon may have broader origin in wild animals [107].   

 
The most abundant gene across all samples in this study was tetW. Recently, a high 

abundance of tetW transcription within the rumen of beef cattle was reported using a 
metatranscriptomics approach; and the carbohydrate degraders Ruminococcus spp., 

Prevotella ruminicola, Muribaculaceae spp. and Collinsella aerofaciens were listed as 
common bacterial hosts of expressed ARGs [40]. Additionally, the highly abundant tetW 

gene has been found located in a novel integrative and conjugative element in the 
ruminal community [100], supporting the hypothesis that horizontal gene transfer of AMR 

genes within the rich and complex microbial community of the rumen supports the 

abundance and persistence of tetW in the rumen. Further research is needed to both 



 35 

replicate this finding and to understand its importance, considering the rumen 

microbiome of cattle not only as a potential source of antimicrobial resistance genes 
[30], but also as a potential ecosystem favorable to increased horizontal gene transfer 

[95].  
 

Microbial dark matter dominated the rumen metagenomic data 
The use of metagenomics in microbiome research has drawn attention to the high 

amount of still unidentified genomic material that makes up these communities [108]. 
The proportion of unclassified sequences, referred to as microbial dark matter [108] or 

dark microbiome [109], varies depending on the niche. Between 25-81% [108,110] of 
microbial genomic material in diverse environmental niches has been cataloged as 

unknown. Whereas in potentially less diverse niches the unclassified sequences are 

lower. For instance, around 50% of non-host sequences have been reported as 
unclassified in the microbiome of Arabidopsis thaliana leaves [111], while between 2-4% 

of sequences in industrial food ingredients could not be identified [112]. Although well 
documented, this limitation is scarcely reported and addressed in rumen microbiome 

research. From 22 rumen microbiome studies that cited kraken [113] or kraken2 [114] as 
taxonomic classifier in Pubmed (accessed on April 2023), only 5 addressed the 

classification rate issue [13,45–48].  
 

Three of the 5 studies showed that the use of the Hungate project genomes and [72] 
their own (self-produced) Metagenome-assembled genomes (MAGs) to customize the 

reference database for the taxonomic classification of rumen microbiome, increased the 

classification rate on average up to 50% [47], 62.6% [45] and 70% [48] on their studies. 
Despite the substantial increase in classification rate with MAGs, a recent study 

evidenced that incomplete or informal taxonomic lineages of MAGs (i.e., lack of 
appropriate labels at every taxonomic rank) limit the classification at lower taxonomic 

levels (i.e., genus or species) [46]. Interestingly, one of these 5 studies identified on 
average 12% of the previously unclassified metagenomic reads as ciliates by adding 52 

high-quality rumen ciliate genomes to their reference database [13]. Altogether, these 
efforts highlighted the importance of reference database customization with rumen-

specific organisms (bacterial and non-bacterial) to increase the classification rate and 

revealed how poorly explored is the rumen microbiome. For this reason, we increased 
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our classification rate while also ensured an accurate genus-level classification by 

customizing our reference database with the genomes of the Hungate project and the 
most comprehensive collection of archaea, bacteria, virus, plasmids, human, 

UniVec_core, protozoa and fungi from RefSeq NCBI.  
 

There is a serious bias in reference databases that limit our interpretation not only of the 
taxonomic profile of microbial communities but also of the functional characterization of 

this microbial dark matter [115]. When it comes to the rumen microbiome, said 
limitations can hinder numerous potential biotechnological applications of their unknown 

microorganisms. As potential solutions, some research efforts have added up to the 
hungate project [72], exploring the yet-unknown microorganisms of the rumen through 

culturomics [116], and even more, investigating the neglected viral [117] and plasmid 

[118] communities of the rumen. More studies are warranted to shed some light on this 
rumen microbial dark matter.  

 

CONCLUSION 
 
The rumen microbiome of beef calves is a complex and dynamic community that shift 

around weaning. Significant changes in the taxonomic and functional profile of the 
rumen microbiome of beef calves are associated with weaning strategy within the first 48 

hours after weaning. Unlike methanogenic genes, the rumen resistome was not 
impacted by time neither weaning strategy. Castration timing was not associated to 

rumen microbiome changes in this study. However, given the sampling design 
constraints an association cannot be definitively ruled out. More studies are warranted to 

describe the short-term effects of castration timing and long-term effects of weaning 

strategy on the rumen microbiome, while overcoming the methodological limitations of 
shotgun metagenomics to investigate this unique microbial community. 
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METHODS 
 

We conducted a randomized longitudinal “2x4” factorial study with 32 beef calves 
randomly assigned to 2 different weaning strategies nested within 4 different castration 

timing windows. Rumen fluid samples were collected at pre-weaning, at weaning and at 
post-weaning. DNA was extracted and submitted for shotgun metagenomic sequencing. 

Bioinformatic analysis was used to determine the composition of the rumen microbiome 
for taxa features (taxonomic profiling) and gene features (functional profiling) and was 

represented in terms of: (1) feature relative abundance, (2) alpha diversity (richness, 
Shannon index and Pielou’s index), (3) beta diversity and (4) feature differential 

abundance testing. Differences in these metrics were compared between collection 

days, castration timing and weaning strategy groups. 
 

Study design and interventions 
This randomized controlled trial was conducted in a single cow-calf herd at the North 

Central Research and Outreach Center (NCROC) at the University of Minnesota (Grand 
Rapids, MN) from March to October 2021. The herd contained around 120 certified 

Angus cows raised on 801,278 m2 of mixed pasture. Our study assessed two 
management interventions in a 4x2 factorial design: 4 different castration timings and 2 

weaning strategies. All bull calves born in the 2021 season were eligible for study 
enrollment unless they were born under dystocia conditions, with a visible abnormality or 

disease. Thirty-two bull calves were enrolled at birth consecutively in a 26-day window of 

time (March – April).  Animals were randomized at birth to both interventions with a 
balanced and crossed design, with 8 animals per each castration timing group and 16 

animals per weaning strategy group. The study calves (N=32) had similar genetic 
backgrounds, were fed the same diet, were turned out in a single group and, except for 

castration timing, managed under the same standard procedures until weaning.  
 

The 4 castration timing groups assessed were: castration within 48 hours of birth (N=8, 
March 14th – April 9th), at turn-out (N=8, May 25th), at pre-weaning (N=8, September 21st) 

and at weaning (N=8, October 18th). Birth and turnout castrations were done using the 
Ideal® Calf and Lamb Bander (Neogen, USA). Briefly, the testicles and scrotum were 
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pulled down, the band was opened and placed up over the scrotum, and after checking 

that the testicles were still in the scrotum, the band was released just above the top of 
the testicles. A final check was done to ensure both testicles were still in the tip of the 

scrotum and that the ring was placed properly. Pre-weaning and weaning castrations 
were done in the chute located at the handling facility following a similar procedure but 

using a XL Castrating Bander (Wadsworth Manufacturing, USA). All animals, regardless 
of their castration group, were checked for testicles at pre-weaning and weaning 

collection days. As part of the health management plan, several treatments and 
vaccinations were administered to the study calves on the same days as the castrations, 

as follows: at turn-out Ultrachoice® 8 (Zoetis, USA), Inforce® 3 (Zoetis, USA), Nuplura® 
PH (Elanco, USA) and Cydectin® (Elanco, USA); at pre-weaning Titanium® 5 (Elanco, 

USA), Nuplura® PH (Elanco, USA) and Ultrachoice® 8 (Zoetis, USA); at weaning 

Valbazen® (Zoetis, USA), Titanium® 5 (Elanco, USA), Nuplura® PH (Elanco, USA) and 
Ultrachoice® 8 (Zoetis, USA).  

 
The 2 weaning strategies assessed were weaning by fence-line and truck. On the day of 

weaning, all study calves (N=32) were brought through the chute for sample collection, 
and the calves in the “at-weaning” castration group were banded (N=8). Upon exiting the 

chute, calves assigned to the “fence-line weaning” strategy (N=16) were brought to a 
pasture that adjoined a pasture housing their dams, but with separation via an electric 

fence; both pastures contained a mix of Kentucky bluegrass (Poa pratensis), tall fescues 
(Festuca arundinacea), red clover (Trifolium pratense), timothy grass (Phleum pratense), 

orchard grass (Dactylis glomerata), perennial ryegrass (Lolium perenne), smooth brome 

(Bromus inermis), with no extra dietary supplementation. Calves assigned to the “truck 
weaning” strategy (N=16) exited the chute and were assembled in a preloading pen and 

then loaded onto a truck and transported for 2 hours. After transport, they were unloaded 
into a feedlot-sized pen at the south station of NCROC, where they were kept in a roofed 

pen with a thick layer of straw bedding and a J-bunk concrete feeder. They were given a 
moderate quality 25/75 alfalfa to grass mix, supplemented by Wind and Rain® mineral 

and American Stockman® salt. This formulation was intended to better reflect the 
pasture-based diet of the fence-line weaning group, i.e., a grass-based diet without 

concentrate-based supplementation.  
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Ruminal samples were collected on 3 collection days: at pre-weaning (September 21st); 

at weaning (October 18th); and at 48 hours post-weaning (October 20th). Weights were 
collected on these days and at birth and turn-out. For each collection day, all study 

calves were run through the chute to collect ruminal samples. Calves assigned to the 
pre-weaning castration group were banded in the chute at pre-weaning collection day, 

and calves assigned to the weaning castration group were banded in the chute at 
weaning collection day. Thus, at pre-weaning collection, half the calves had already 

been castrated (8 at birth and 8 at turnout); at the weaning collection, 24 of the calves 
had already been castrated (8 at birth, 8 at turnout and 8 at pre-weaning); and at post-

weaning collection, all calves had already been castrated. Thus, the castration groups 
varied depending on the collection day: 3 castration strategies were contrasted at pre-

weaning (Birth, Turn-out and Not castrated); 4 at weaning (Birth, Turn-out, Pre-weaning 

and Not castrated); and 4 at post-weaning (Birth, Turn-out, Pre-weaning and Weaning). 
At the same time, 2 weaning strategies were assessed: Fence-line and Truck (Supp. 

Figure 1). 
 

Sample collection and DNA extraction 
Sample collection and animal handling were done following ethical guidelines approved 

by the Institutional Animal Care and Use Committee (IACUC) of the University of 
Minnesota. Rumen fluid was collected by esophageal tubing using a Frick’s speculum 

adapted to a collection flask and vacuum pump. Between each animal, the tubing and 
collection flask were emptied, disinfected with sodium hypochlorite at approximately 10% 

concentration, and rinsed thoroughly with tap water. The tube was inserted into the oral 

cavity and advanced down the esophagus until the fiber mat was reached, at which point 
the tube was retracted 5-8 cm in order to obtain fluid. Rumen fluid was collected in 50 ml 

sterile tubes, immediately transported to the laboratory at approximately 4°C and stored 
at -80°C within 4 hours of collection. Weight was collected from each calf using a floor 

scale adapted to the cattle chute. The average daily gain (ADG) was obtained 
individually for each animal, subtracting the birth weight to the post-weaning weight and 

dividing the result by the age in days. The cohort of 32 calves was monitored closely by 
NCROC staff, who reported any variation in diet, behavior, or health issues. 
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DNA was extracted from each sample in randomized batches of 12 samples under 

aseptic conditions to avoid batch effect and cross-contamination. DNA extraction blanks 
consisting of CD1 buffer were used as negative controls. To begin DNA extraction, 

rumen fluid was thawed and homogenized by vortex for 3 minutes. An aliquot of 1 ml 
was centrifuged at 16 000 rcf for 10 minutes in an Eppendorf 5415R centrifuge at room 

temperature. Supernatant was discarded, and the remaining pellet was used as initial 
sample for column-based DNA extraction using the Dneasy® PowerSoil® Pro Kit 

(QIAGEN, USA) following the manufacturer’s protocol without modifications. Briefly, the 
pellet was resuspended in 800 µl lysis buffer (CD1 solution), suspension was transferred 

to PowerBead Pro® Tubes (zirconium beads), then bead beating was performed in 3 
cycles of 20 seconds at 2,200 rpm with 30 seconds intervals and centrifuged at 16 000 

rpm for 2 minutes. Finally, 600 µl supernatant were transferred to QIAcube Connect® 

equipment (QIAGEN, USA) for a fully automated DNA extraction.  
 

Library preparation and shotgun metagenomic sequencing 
DNA extractions were submitted to the University of Minnesota Genomics Center 

(UMGC). Along with sample DNA and negative controls, mock community DNA 
(ZymoBIOMICS Microbial Community Standard II Log Distribution – Catalog N° 6310) 

already extracted following the process described above, was included as a positive 
control for the library preparation and sequencing process. DNA quantity and quality was 

assessed using the PicoGreen assay (Thermo Fisher, USA) and 260/230 ratio in 
Nanodrop1000 (Thermo Fisher, USA), respectively. Barcoded libraries were generated 

using Illumina Nextera XT DNA library preparation kit (Illumina, USA) following 

manufacturer’s protocol. Shotgun metagenomic paired-end sequencing (2x150 bp) was 
performed in a single pool across 2 lanes of S4 flow cells (2,250 million reads/lane 

expected) of a NovaSeq 600 platform (Illumina, USA) using kit v1.5 (300 cycles).  
 

Bioinformatic analysis 
Demultiplexed paired-end sequencing reads were analyzed using the AMR ++ version 

2.0 pipeline [74]. This suite includes quality-based trimming and filtering of sequencing 
reads using Trimmommatic [119], alignment of surviving high-quality reads to the host 

genome using Burrows-Wheeler-Aligner (BWA) [120], removal of host-aligned reads by 
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BEDTools [121], and resistome and microbiome taxonomic profiling using the filtered 

non-host reads as input.  
 

The initial protocol for microbiome taxonomic profiling included the following standard 
processes: (1) host-decontamination aligning high-quality reads to Bos taurus reference 

genome (Genome Bos_taurus_UMD_3.1, accession number: GCA_002263795.3), (2) 
taxonomic classification with kraken2 [114] using a confidence score of 0 and the 

standard genome database (accessed in July 2020), which contained archaea, bacteria, 
virus, plasmids, UniVec_Core and the human genome. As this protocol was not able to 

classify a high proportion of sequencing reads, we attempted a classification rate 
increase by a customized rumen-specific protocol detailed as follows: (1) For the host-

reads decontamination step we aligned the high-quality reads to Bos taurus reference 

genome (Genome Bos_taurus_UMD_3.1, accession number: GCA_002263795.3) and 
dietary plants genomes available in GenBank, which included: Trifolium pratense (full 

genome, accession: ARS_RC_1.1), Dactylis glomerata (full genome, accession: 
GCA_007115705.1), Lolium perenne (full genome, accession: MPB_Lper_Kyuss_1697), 

Poa pratensis (chloroplast genome, accession: NC_057962.1), Festuca arundinacea 
(chloroplast genome, accession: NC_011713.2), Phleum pratense (chloroplast genome, 

accession: NC_067044.1), Bromus inermis (chloroplast genome, accession: 
NC_067047.1), and Festuca pratensis (plastid genome, accession: NC_019650.1); (2) 

taxonomic profiling using Kraken2, with a confidence parameter at 0.1 to decrease the 
likelihood of spurious (i.e., false positive) classifications [122]. Instead of using the 

default kraken2 database, we built a custom database that included reference genomes 

from RefSeq’s NCBI for archaea, bacteria, virus, plasmids, human, UniVec_core, 
protozoa and fungi (accessed in January 2023). In addition, we added genomes 

obtained from 410 rumen-specific bacteria isolated for the Hungate project [72] (source: 
https://genome.jgi.doe.gov/portal/pages/dynamicOrganismDownload.jsf?organism=Hung

ateCollection). It was previously shown that including these genomes significantly 
increases the taxonomic classification of rumen microbiome samples [46].  

The resistome analysis, implemented in AMR++, was carried out by aligning filtered non-
host reads to the MEGARes 2.0 database [74] using BWA [120]. Antimicrobial 

resistance genes (ARGs) that obtained at least 80% gene fraction were considered 

present in the respective sample, and all aligning reads were output to a count matrix 
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used for downstream analysis. ARGs labeled as ‘RequiresSNPConfirmation’ were 

excluded from the count matrix and not considered for downstream analysis. 
 

The taxonomic and functional profiling for methanogenic microbes and associated genes 
was done using McycDB database and scripts, using default pipeline and tool settings 

[73]. Briefly, for functional profiling, the forward and reverse non-host reads were merged 
using PEAR [123] and then a translated search in the McycDB database was done using 

DIAMOND [124] with e-value= 1e-4. For methanogenic analysis only, the number of 
sequences in every sample was normalized by random subsampling to 6,188,129 reads 

per sample (the minimum number of sequences per sample within our dataset) for 
downstream analysis. Results were reported at the gene level. For taxonomic profiling of 

methanogenic taxa, in addition to the previously described steps, the merged reads 

matching a methanogenic gene were subsetted using SeqKit [125] and taxonomically 
classified using Kraken2 [122]. Results were reported at the phylum, class, order, family, 

genus and species levels.  
 

Feature and OTU data analysis 
The feature or Operational Taxonomic Unit (OTU) count matrices obtained by the 

bioinformatic analyses, and the study metadata, were used for descriptive microbiome 
analysis in R (version 4.1.0, https://www.r-project.org/). We analyzed the relative 

abundances of features and OTUs; alpha diversity (richness, Shannon’s and Pielou’s 
indices); beta diversity (Bray-Curtis distance method); and performed differential 

abundance testing with the phyloseq [126], metagenomeseq [127] and vegan [128] 

packages. The first metric represents the percentage of total abundance that one feature 
represents in the microbiome (usually in the 0-100% scale); the second metric 

represents the variance within each sample considering number, distribution and 
abundance of features; the third one represents the variance between samples 

expressed as a distance matrix; the fourth is used to identify specific features that differ 
between 2 groups of samples [129]. Data visualization was performed with the ggplot2 

package [130].  
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Statistical analysis 

Statistical analysis was done in R using the metagenomeseq [127], limma [131], vegan 
[128], lme4 [132], lmerTest [133], emmeans [134] and car [135] packages. The major 

independent (predictor) variables were the 2 interventions (castration timing and 
weaning strategy), collection day and their interaction when appropriate. Unless 

otherwise stated, statistical significance was considered at a P-value < 0.05. 
For alpha diversity, the dependent (outcome) variables were richness and Shannon’s 

indices calculated at the genus level. We used a linear mixed-effect model considering 
animal ID as a random effect (to account for repeated measures over time on each calf) 

and independent variables (castration timing, weaning strategy and their interaction) as 
fixed effects. Type-III ANOVA was used to assess statistical significance for each 

independent variable in the model. When statistically significant, a post-hoc comparison 

was done between groups with least square means. For differential abundance testing, 
CSS-normalized OTU counts at the phylum and genus levels were considered as 

dependent variables. We used multivariate zero-inflated Gaussian mixture models with 
animal ID as a random effect and independent variables as fixed effects. When 

statistically significant, pairwise comparison of the log2-fold change between groups was 
performed with Benjamin-Hochberg (BH) p-value correction for multiple comparisons. 

For beta diversity, the dependent variable was dissimilarity index calculated at the genus 
level using Bray-Curtis distances. We performed PERMANOVA to infer statistically 

significant associations between dependent variables and beta diversity ordination. The 
R2 value was used to estimate the amount of variation partitioned to a given dependent 

variable and the associated p-value to determine statistical significance. We used 

Kruskal-Wallis or ANOVA to assess statistical significance of other independent but 
potentially confounding variables (e.g., number of raw sequencing reads, number of 

classified reads, average daily gain and age) to determine whether to include them as 
potential covariates in the regression models. 
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TABLES & FIGURES 
 

Table 2.1. Summary of calf ages and weights, by castration timing and weaning groups (mean ± SE) 

Variable 
Castration 

p-value* 
Weaning 

p-value* 
Birth Turnout Pre-weaning Weaning Fence-line Truck 

Age at Post-weaning (days) 213 ± 2.56 212 ± 1.56 209 ± 3.32 209 ± 3.71 0.8 208 a ±2.17 214 b ±1.63 0.01 
Weight at birth (kg) 38.21 ± 1.99 37.06 ± 1.74 38.1 ± 1.66 37.64 ± 1.07 0.9 38.52 ± 0.95 37.07 ± 1.24 0.2 
Weight at Post-weaning (kg) 263.83 ± 7.67 267.44 ± 8.17 267.18 ±11.08 275.06 ± 8.95 0.8 276.52 ± 6.89 260.8 ± 5.05 0.1 
Average daily gain (kg) 1.06 ± 0.04 1.09 ± 0.04 1.1 ± 0.05 1.14 ± 0.05 0.6 1.15 c ± 0.03  1.04 d ± 0.02  0.02 

*Kruskal-Wallis test, values with different superscript letters were significantly different 
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Figure 2.1. Relative abundance plots of phylum-level microbiome composition for A) Bacteria, B) Archaea, C) Fungi, D) 
Protozoa, E) Virus, grouped by collection day (Pre_weaning, At_weaning and Post_weaning). Phyla with < 1% relative 
abundance are grouped as “Others”. Each bar represents one sample.  
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Figure 2.2. Rumen microbiome, comparisons over time. Box plots of A) richness and B) Shannon’s index, at the genus 

level, grouped by collection day. Boxes represent the 25th to 75th percentile; horizontal line represents the median; and whiskers 
indicate 1.5× the interquartile range (IQR), P-values from Type-III ANOVA, collection days with different superscript letters were 
significantly different. C) Differential abundance of phylum-level counts between collection days, expressed as log2 fold 
change (LogFC). Statistically significant logFC values (adjusted P<0.05) are depicted in red, and non-significant in grey. Circle 

diameter is proportional to the average abundance of each phylum across all samples. 

A B
P < 0.05

b b c
Ca aa
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Figure 2.3. Rumen microbiome, differences by weaning strategy. A) Box plots of Shannon’s Index at the genus level, 

stratified by weaning strategy across collection days. Boxes represent the 25th to 75th percentile; horizontal line represents the 
median; and whiskers indicate 1.5× the interquartile range (IQR), P-values from Type-III ANOVA, weaning groups with different 

superscript letters were significantly different. B) Non-metric multidimensional scaling (NMDS) ordination plots based on Bray–
Curtis distances at the genus level colored by weaning strategy. P-value and R2 values from PERMANOVA testing. C) 
Differential abundance of microbial genera between fence-line and truck weaned calves at different collection days, 

expressed as log2 fold change (LogFC). Statistically significant logFC (adjusted P<0.05) are depicted in red and non-significant in 
grey. Circle diameter is proportional to the average abundance of each phylum across all samples. 

BA

C

P < 0.01

a b

Pre-weaning At weaning Post-weaning

Weaning group
R2=5.2%, p<0.001
Collection day
R2=31.9%, p<0.001

Stress=0.215
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Figure 2.4. Rumen microbiome, differences by castration timing. Non-metric multidimensional scaling (NMDS) ordination 

plots based on Bray–Curtis distances at the genus level for A) Pre-weaning, B) At weaning, and C) Post-weaning collection 
days, colored by castration timing group. P-value and R2 values from PERMANOVA testing D) Differential abundance of 

microbial phyla between castration timing groups at post-weaning day expressed as log2 fold change (LogFC). Statically 
significant logFC (adjusted P<0.05) are depicted in red and non-significant in grey. Circle diameter is proportional to the average 

abundance of each phylum across all samples. 
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Figure 2.5. Differential abundance of methanogenic microbes (A) and genes (B) within rumen microbiome samples 
collected at 48 hours post-weaning, compared between weaning strategy and expressed as log2 fold change (LogFC). 

Statistically significant log2FC (Benjamin-Hochberg adjusted P<0.05) are depicted in red, non-significant are depicted in grey. Circle 
diameter is proportional to the average abundance of each feature (i.e., genus or gene) across all samples.  

 
 

A BMethanogenic genera: Fence-line vs truck Methanogenic genes: Fence-line vs truck
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Figure 2.6. Rumen resistome by weaning strategy across collection days. A) Relative abundance plot of antimicrobial 

resistance genes (ARGs) at the ARG group level, grouped by collection day and weaning strategy. ARGs with < 1% 
abundance are grouped as “Others”. Each bar corresponds to an individual sample. B) Differential abundance of ARG groups 

between fence-line and truck weaned calves, at weaning and post-weaning days, expressed as log2 fold change (LogFC). 
Statistically significant logFC (adjusted P<0.05) are depicted in red and non-significant in grey. Circle diameter is proportional to the 

average abundance of each ARG group across all samples. 
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SUPPLEMENTARY MATERIAL 
 

Supplementary Table 2.1. Number of reads per sample analyzed by 2 taxonomic profiling protocols (mean [min – max]) 

Step 

Standard protocol 
 

Customized protocol 

Sequencing 
reads per 

sample (x106) 

Proportion of 
initial sequencing 

reads (%) 

Proportion 
of non-host 
reads (%) 

 

Sequencing 
reads per 

sample (x106) 

Proportion of 
initial sequencing 

reads (%) 

Proportion 
of non-host 
reads (%) 

Raw sequences  54.2 [30.5 - 75.8] 100 - 
 

54.2 [30.5 - 75.8] 100 - 
Sequence trimming 52.3 [29.2 - 73.2] 96.5 - 

 
52.3 [29.2 - 73.2] 96.5 - 

Host decontamination 41.9 [24.9 - 59.9] 77.3 100 
 

38.3 [23.3 - 55.2] 70.7 100 
Taxonomic classification 

       
Confidence score = 0 5.9 [3.5 - 8.2] 10.9 14.1 

 
8 [4.9 - 11.3] 14.8 21 

Confidence score = 0.1 1.3 [0.7 - 2] 2.4 3.1   1.6 [0.9 - 2.3] 3 4.2 
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Supplementary Table 2.2. Read classification rates by taxonomic level. 

Taxonomic Rank 
Number of rank-specific 

classified reads/non-host 
reads (%) 

Number of rank-specific 
classified reads/total number 

of classified reads (%) 

Domain 4.15 100.0 

Kingdom 3.99 96.2 

Phylum 3.99 96.2 

Class 3.95 95.1 

Order 3.94 94.9 
Family 3.87 93.2 

Genus 3.77 91.0 

Species 3.14 75.7 

 
 

 

 
Supplementary table 2.3. Number of unique OTUs identified at different taxonomic levels 

Domain/sub-
kingdom 

% of total 
classified reads* Phylum Class Order Family Genus Species 

Archaea 1.365 7 18 31 48 140 351 
Bacteria 98.589 40 93 219 519 1909 8674 

Virus 0.006 14 25 34 77 368 390 

Protozoa 0.001 6 11 13 15 18 40 
Fungi 0.017 3 12 16 27 48 83 

* Human (homo sapiens) reads accounted for 0.022% of classified reads. 
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Supplementary Table 2.4. List of significantly differentially abundant genera between fence-line 
and truck weaned calves at post-weaning day (reference group: fence-line). Only genera with 
logFC > 0.5 or < -0.5 and average abundance > 5 are listed. 
Genus logFC Average abundance adj.P.Val 
Rhodococcus 2.09 6.86 1.17E-15 
Agrobacterium 3.14 7.16 4.46E-13 
Anaerovibrio 2.77 7.90 1.52E-09 
Oribacterium 2.43 12.15 7.35E-13 
Plantibacter 2.42 5.87 9.91E-13 
Lachnoclostridium 2.14 9.30 3.09E-10 
Variovorax 2.52 5.21 1.32E-11 
Mogibacterium 1.26 5.56 9.50E-11 
Selenomonas 1.99 12.67 1.69E-09 
Microbacterium 1.86 7.98 3.92E-12 
Eubacterium 1.60 10.15 1.53E-08 
Arthrobacter 0.91 5.49 9.17E-09 
Succiniclasticum 1.28 13.40 1.49E-04 
Stenotrophomonas 0.99 7.24 6.40E-04 
Mycolicibacterium 1.06 6.50 2.73E-07 
Butyrivibrio 0.95 14.36 1.30E-06 
Berryella 0.76 5.22 6.61E-06 
Nocardioides 1.03 6.62 8.16E-06 
Pseudomonas 0.72 9.66 1.76E-02 
Rhizobium 0.80 5.55 2.12E-05 
Sodaliphilus 0.75 6.02 3.47E-05 
Methanobrevibacter 0.71 11.41 4.71E-04 
Bradyrhizobium 0.96 6.23 8.03E-05 
Vescimonas 0.55 7.31 5.93E-04 
Lachnobacterium 0.73 6.20 5.24E-03 
Kandleria 1.65 6.96 6.15E-03 
Methylorubrum 0.56 5.27 1.06E-02 
Methylobacterium -0.69 8.50 3.88E-03 
Bacteroides -1.01 11.27 6.18E-05 
Lachnospira -1.06 7.76 7.29E-03 
Petrimonas -0.56 5.00 8.60E-03 
Micromonospora -0.53 6.09 1.05E-02 
Fibrobacter -1.12 14.26 1.23E-02 
Sarcina -1.21 12.07 9.07E-06 
Ruminococcus -1.38 13.07 3.80E-08 
Streptococcus -2.31 9.85 6.41E-13 
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Supplementary Table 2.5. List of significantly differentially abundant methanogenic 
genera and genes between fence-line and truck weaned calves at post-weaning day 
(reference group: fence-line). Only features with logFC > 0.5 or < -0.5 and average 
abundance > 5 are listed. 
 
Feature logFC Average abundance adj.P.Val 

Genera 
    

 
Methanobrevibacter 0.78 10.68 1.2E-05 

 
Selenomonas 0.82 7.74 3.4E-06 

 
Fibrobacter -1.19 8.50 6.2E-04 

 
Candidatus Methanomethylophilus -0.82 5.17 2.6E-03 

 
Ruminococcus -0.59 7.58 3.3E-05 

Genes 
    

 
echB 0.49 5.62 1.6E-04 

 
fwdB 0.46 5.51 2.6E-04 

 
echA 0.41 6.37 5.4E-04 

 
fwdF 0.49 5.67 1.5E-03 

 
mtmB -1.40 5.05 1.0E-07 

 
mtaB -0.87 5.29 4.4E-08 

 
glpX -0.60 7.51 5.5E-06 

 
pqqF -0.55 8.02 3.5E-05 

 
fdhA-K00148 -0.55 7.94 2.0E-05 

 
fpoJ -0.53 5.50 4.7E-04 

 
metF -0.51 9.45 1.1E-04 

 
fpoC -0.50 5.61 6.2E-06 

  rnfD -0.50 10.38 4.7E-05 



 55 

 

 
Supplementary Figure 2.1. Study design. Castration and weaning interventions per collection day, dashed lines indicate the 
procedure performed, numbers in white indicate the sample size for each group, each color indicates an intervention (red: birth 
castration, blue: turnout castration, yellow: pre-weaning castration, green: weaning castration, purple: fence-line weaning, black: 

truck weaning, grey: no intervention). 
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Supplementary Figure 2.2. Relative abundance of genus-level microbiome composition for A) Positive and B) Negative 

controls. Most abundant species are shown, and species < 1% abundance are grouped as “Others”. Each bar represents a single 
sample. 
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Supplementary Figure 2.3. Relative abundance plot of genus-level bacterial (A) and archaeal (B) composition, grouped by 
weaning strategy and collection day. Genera with < 1% abundance are grouped as “Others”. Each columns represents a single 

sample. 
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Supplementary Figure 2.4. Methanogenic genera and gene content in the rumen, stratified by collection day and weaning 
strategy. A) Relative abundance plot of genus-level methanogenic microbe composition grouped by collection day and 

weaning strategy. Taxa with < 1% relative abundance are grouped as “Others”. Each bar corresponds to an individual sample. B) 
Alpha and C) Beta diversity plots at the methanogenic gene level. Shannon Index is depicted as an alpha diversity index (Boxes 

represent the 25th to 75th percentile; horizontal line represents the median; and whiskers indicate 1.5× the interquartile range, p-
values from Type-III ANOVA). Beta diversity is depicted in a Non-Metric Multidimensional Scaling (NMDS) ordination plot based on 

Bray–Curtis distances (P and R2 values from PERMANOVA testing).  
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ABSTRACT 
Microbiome studies rely heavily on the sequencing approach used. Currently, 16S rRNA 

sequencing (16S) and shotgun metagenomic sequencing (SMS) are the most commonly used 
approaches. Despite well documented trade-offs between each of these sequencing 

approaches, they have not been formally compared for taxonomic profiling of samples obtained 
from the rumen of beef cattle. Rumen microbiome research is moving rapidly from 16S to SMS, 

particularly due to the large proportion of key non-bacterial microorganisms that cohabit the 
unique environment of the rumen and the limited resolution that 16S offers to characterize them. 

To better interpret the information gained from 16S and SMS rumen data, it is important to 
understand how they compare to one another, and specifically whether results from 16S are 

replicable using SMS, or vice versa.  To answer this question, we used rumen fluid samples 

collected from beef cattle previously used in chapter 02. These samples were subjected to SMS 
and 16S-V4 workflows, and we compared the performance of the resulting data for taxonomic 

profiling, as well as for concordance of results. Although we observed discrepancies in 
taxonomic detection, resolution and classification, all methods led to similar ecological 

inferences. The inherent technical nature of each sequencing method and inconsistent 
databases explained the taxonomic discrepancies, while high correlation between genus 

abundance and moderate correlation between Shannon’s indices and dissimilarity matrices may 
explain why ecological inferences were similar despite these technical discrepancies. 

 
Keywords: 16S rRNA gene, shotgun metagenomics, rumen, microbiome, taxonomic 

profiling, comparison 
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BACKGROUND 
 

The study of microbial communities, i.e., microbiomes, has increased in the past decades due 
to the association of microbiomes with important physiological outcomes in humans [136], 

animals [137] and the environment [138]. The development of metagenomics has overcome the 
limitations of conventional microbiology by using the genomic material of the entire microbial 

community to assign microbial taxonomy without need of bacterial isolation. The most prominent 
culture-independent approaches are 16S rRNA gene sequencing and shotgun metagenomic 

sequencing. The former uses targeted amplification of the 16S rRNA bacterial gene, while the 
latter analyzes DNA fragments from all genetic material in a given sample [139]. It is important 

to carefully consider the advantages and limitations of each method in the context of the specific 

research question being investigated in a given study.    
 

16S rRNA gene sequencing is based on PCR amplification and sequencing of the 16S rRNA 
gene, which is highly conserved in bacteria and archaea. The 16S gene contains 9 

hypervariable regions that can provide enough information to classify bacteria and archaea to 
the genus level, depending on the hypervariable region(s) used [129]. The resulting sequences 

are usually denoised by clustering similar sequences into amplicon sequence variants (ASVs), 
and removing false ASVs using a Bayesian model that accounts for PCR-induced errors [140]. 

This method is cost-effective because with a relatively low sequencing depth we can capture 
most of the taxonomic diversity in a given sample, at least at the genus or higher classification 

levels [141]. In addition, the use of ASVs does not necessitate a reference database, thus 

enabling the identification of uncharacterized microorganisms [142]. However, the method's 
effectiveness can vary depending on which hypervariable region of the 16S rRNA gene is 

targeted, as some regions are more variable than others [143]. In particular, the use of only one 
hypervariable region typically limits the ability to distinguish between different species. 

Additionally, the 16S method can only provide taxonomic information for bacterial and archaeal 
organisms (and not other microorganisms such as viruses, fungi or microscopic eukaryotes) 

[144]. The ability to infer functional potential from 16S bacterial taxonomy is also severely 
limited [145]. Dynamic evolutionary mechanisms such as horizontal gene transfer, gene 

duplication or gene loss can hinder an accurate functional prediction based on taxonomy 
because function is not always associated to a given taxon [146,147]. Functionally divergent 
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species within a genus, such as Prevotella [92], can be overlooked when only genus-level 

taxonomy is considered to predict functionality.   
 

Shotgun metagenomic sequencing involves random fragmentation of all the DNA contained 
within a sample, coupled with short-read sequencing of the fragments. Analysis of shotgun 

metagenomic sequence data involves computationally-intensive tools that can assign microbial 
taxonomy to sequencing reads or to the longer fragments, i.e., contigs, obtained by assembling 

these sequencing reads [139]. Most shotgun metagenomic taxonomic profiling tools use a 
reference database to classify the shotgun sequencing reads based on one of 3 approaches: 

DNA-to-DNA (e.g., Kraken 2), DNA-to-protein (e.g., Kaiju), and DNA-to-marker-gene (e.g., 
Metaphlan2) [148]. In selecting an approach, one should consider the impact of the database 

used for the classification and the tradeoffs on precision-recall and computational requirements 

[149]. For instance, Metaphlan 2 [150] has high precision with shallow sequencing data and low 
computational requirements but lacks a customizable database; Kaiju [151] has the highest 

precision but also the highest computational requirements; while Kraken 2 [114] has the highest 
recall and customizable database but low precision [148,149]. Due to its untargeted nature, 

shotgun metagenomic data can be used to classify organisms other than bacteria and archaea 
with a resolution up to the species or even strain level [152]. The generated DNA sequence 

dataset can also be used to infer putative function and reconstruct bacterial genomes, known as 
metagenome-assembled-genomes (MAGs) [48]. However, these analyses require a higher 

sequencing depth (and thus cost) to accurately represent all the organisms in a microbial 
community. Moreover, the accuracy of taxonomic and functional profiling depends on the 

reference database used, which can lead to biased classification towards genomes and 

functions that are overrepresented in databases [148]. 
 

Previous microbiome studies have compared 16S rRNA gene sequencing and shotgun 
metagenomic approaches in human stool [141,153], soil [154] and the chicken gastrointestinal 

tract [155]. The results from these studies showed that shotgun metagenomic sequencing can 
be used to detect most of the taxa identified by 16S sequencing, as well as additional, 

biologically meaningful low-abundant taxa not identified by 16S sequencing with a higher 
resolution power. This observation suggests that sequencing depth and the ability of the method 

to resolve taxa are critical factors to fully represent the diversity of a microbial community.  
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These considerations are especially germane to the rumen microbiome, which is known to be a 

complex and rich microbial community with a key role in feed conversion and methane 
production in cattle [7,156]. However, no study has systematically compared the capability of 

these two methods for taxonomic profiling of the rumen microbiome. This is a problem because 
many of the earlier rumen microbiome studies based their conclusions on the 16S rRNA gene 

sequencing approach [9,15,25,157], whereas in recent years, shotgun metagenomics has 
become an increasingly popular approach to study the rumen microbiome [33,61,158]. The lack 

of clarity regarding the similarities and differences between methods impedes the ability to 
interpret and compare results between existing rumen microbiome studies. This ambiguity can 

confound discernment of whether differences in results arise from biological variation or 
discrepancies in methodologies, leading to inconsistencies in the scientific literature. A deeper 

evaluation of both approaches is required to understand their consistencies and inconsistencies, 

and to leverage the synergism of both methods to study the rumen microbiome. 
 

Our objective was to help fill this scientific gap by undertaking a formal comparison of 16S and 
shotgun metagenomic rumen datasets. We hypothesized that taxonomic classification of paired 

rumen samples using 16S rRNA and shotgun metagenomic sequencing would lead to similar 
conclusions about microbiome diversity in the rumen. To test our hypothesis, we used ruminal 

fluid DNA samples collected from our previous study that described the effect of weaning 
strategy on the rumen microbiome of beef calves. These samples were subjected to both 

shotgun metagenomics and 16S rRNA gene sequencing and the resulting datasets (i.e., 16S 
and shotgun metagenomic) were compared in terms of (1) performance for taxonomic profiling 

of the rumen microbiome, and (2) concordance in terms of taxonomic classification and 

conclusion inferences about microbiome dynamics. 
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RESULTS 
 

Discrepancies in taxonomic resolution and taxa identification 
We compared results of taxonomic classification of beef calf rumen samples using 16S rRNA 

gene hypervariable region V4 sequencing (“16S-V4”) and shotgun metagenomic sequencing 
(“SMS”). A total of 93 rumen fluid samples from 32 beef calves collected at pre-weaning, 

weaning and post-weaning (see chapter 02) were used to compare both sequencing 
approaches. After trimming and pre-processing steps, the 16S-V4 reads were classified using 

dada2 v1.22 [140] with default parameters, while the SMS reads were classified using kraken2 
[114] with the minimum confidence score (cs = 0, “SMS cs0”) and the maximum confidence 

score (cs = 1,  “SMS cs1”). On average, 16S-V4 produced 96 x 103 paired-end (PE) reads per 

sample; after the trimming process, 61.4 x 103 PE sequencing reads per sample (63.9% of raw 
reads) remained for taxonomic classification. SMS produced on average 54.2 x 106 PE reads 

per sample, but only 5.8 x 106 PE sequencing reads per sample (10.8% of raw reads) were 
classified with SMS cs0, and 52 x 103 PE sequencing reads (0.1% of raw reads) with SMS cs1 

(Table 3.1). From the total number of classified reads, 98.7%, 89.3% and 77.6% were resolved 
to the order level by 16S-V4, SMS cs0 and SMS cs1, respectively. At the genus level, this 

pattern was inverted, with the proportion of classified reads lowest for 16S-V4 (70%) compared 
to SMS cs0 (83.9%) and SMS cs1 (72%). Likewise, the number of unique taxa identified across 

all samples at the order level was similar for 16S-V4 (n=178), SMS cs0 (n=173) and SMS cs1 
(n=156) but was lower for 16S-V4 at the genus level (n=403) compared to SMS cs0 (n=1145) 

and SMS cs1 (n=861) (Figure 3.1). 

 
Across all samples, the 16S-V4 method identified a relative abundance > 1% for the 

Patescibacteria, Spirochaetota and Verrumicrobiota phyla, while SMS cs0 and SMS cs1 
identified these phyla as low abundance (i.e., < 1%). Another important discrepancy in relative 

abundance at the phylum level was with Proteobacteria, Actinobacteria and Firmicutes; 
specifically, 16S-V4 identified Proteobacteria and Actinobacteria in lower relative abundance 

and Firmicutes in higher relative abundance compared to both SMS methods. Noticeably, SMS 
cs0 identified Proteobacteria and Actinobacteria phyla in higher relative abundance compared to 

SMS cs1 (Supplementary figure 3.1). At the genus level across all samples, 16S-V4 estimated 
the relative abundance of Olsenella, Lachnospiraceae, Succiniclasticum, Rikenellaceae, 

NK4A214 group (family Ruminococcaceae) and Ruminococcus genera at > 3% each, while the 
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SMS methods identified the relative abundance of these genera < 3%. SMS cs1 identified 

across all samples the Fibrobacter, Butyrivibrio and Prevotella genera in higher relative 
abundance compared to the other 2 methods, while the Methanobrevibacter genus was 

identified in higher relative abundance across all samples by 16S-V4 compared to the SMS 
methods. Strikingly, SMS cs0 identified a much higher proportion of low-abundant genera 

(defined as genera with <3% relative abundance) across all samples compared to the other 2 
methods (Figure 3.2). 

 
We investigated the number of taxa commonly identified by the 3 methods and by each method 

individually, at the phylum and genus levels. At the phylum level, we identified 13 phyla with 
discordant names in the reference databases for 16S-V4 versus SMS, even though these 

differently-named phyla were actually the same taxon (Supplementary table 3.1). After 

correcting this naming disagreement, we identified 18 phyla that were detected by all 3 
methods, 11 phyla detected solely by 16S-V4 and 6 solely by SMS cs0 (Supplementary figure 

3.2). At the genus level, we noticed that there were discrepancies not only with phylum-level 
names but also with order-level names for some genera. Even when the genera had the same 

genus-level name, they were classified differently at phylum and order levels (Supplementary 
table 3.2). Thus, we kept only the genus name (ignoring other taxonomic information), and then 

agglomerated the full matrix to obtain the genera that were identified by multiple methods (i.e., 
16S-V4, SMS cs0 or SMS cs1), and the genera that were identified by only one of the methods. 

From 403 genera identified by 16S-V4, 148 were also identified by SMS cs0 and SMS cs1, 
while 253 were exclusively identified by 16S-V4. From 1145 genera identified by SMS cs0, 2 

were also identified by 16S-V4, 713 were also identified by SMS cs1, while 282 were exclusively 

identified by SMS cs0 (Figure 3.3). The 148 genera identified by all 3 methods represented 
45% (148/403) of total genera identified by 16S-V4 across all samples, 13% (148/1145) of 

genera identified by SMS cs0, and 17.2% (148/861) of genera identified by SMS cs1. However, 
the proportion of total classified reads represented by these 148 genera had the opposite 

pattern across the 3 methods; namely, they represented 29.3% (1.7/5.8 x 106), 49.5% 
(266.7/538.5 x 106) and 64.6% (3.1/4.8 x 106) of total classified reads across all samples for 

16S-V4, SMS cs0 and SMS cs1 method, respectively. 
 

Using the 148 genera identified by all 3 methods, we analyzed the pairwise Pearson’s 

correlation of genera abundance across the 3 methods and found them to be significantly 



 66 

different (ANOVA P < 0.05, Figure 3.4). The genus-level abundances in the SMS cs0 and SMS 

cs1 datasets had the highest average correlation values (R2= 0.94, min= 0.79, max=0.99), while 
the abundances from 16S-V4 and SMS cs1 had the lowest (R2= 0.85, min=0.59, max=0.97). 

The average correlation value for 16S-V4 and SMS cs0 abundances was 0.89 (min= 0.58, 
max=0.96). 

 
Different but correlated diversity estimates led to similar inferences about rumen 

dynamics 
Using shotgun metagenomic data and a kraken confidence score of 0.1, we previously 

concluded that both the act of weaning and weaning strategy are significantly associated with 
changes in rumen alpha and beta diversity (see chapter 02). In the current analysis, we 

evaluated whether diversity estimates obtained from the 16S-V4, SMS cs0 and SMS cs1 

methods would lead to similar inferences regarding rumen dynamics at weaning. We obtained 
the alpha and beta diversity metrics separately for each method. Overall, SMS cs0 had the 

highest genus-level Shannon’s index values across all samples (mean= 5.04, min=4.55, 
max=5.34), while cs0 had the lowest (mean=1.93, min=1.29, max=2.66). The association of the 

genus-level Shannon’s index with both weaning strategy and collection day was statistically 
significant using results from all 3 methods. Despite differences in the point estimates, the 

Shannon’s index was significantly different between post-weaning samples collected from 
calves weaned by fence line (adjusted means ± SE: 16S-V4= 3.92 ± 0.0336; SMS cs0= 4.93 ± 

0.0354; SMS cs1= 1.81 ± 0.0590) and calves weaned by truck (adjusted means: 16S-V4= 3.8 ± 
0.0325, SMS cs0= 4.83 ± 0.0342, SMS cs1= 1.58 ± 0.0571). These results are consistent with 

the results previously described (see chapter 02). The difference in Shannon’s index (effect 

size) between the truck and fence-line weaning groups in the post-weaning samples was largest 
in the SMS cs1 results compared to SMS cs0 and 16S-V4 (0.23 versus 0.1 and 0.12, 

respectively) (Figure 3.5. A-C).  
 

Similarly, all 3 methods indicated a significant difference in beta diversity by both collection day 
and weaning strategy, which was also consistent with patterns reported previously (see chapter 

02). However, estimates of the amount of variability partitioned to each variable (i.e., the R2 
values from PERMANOVA testing) were different for each method. When the genus-level 16S-

V4 dissimilarity matrix was used, 20.5% and 3.1% of the between-sample variability was 

partitioned to collection day and weaning strategy, respectively (both PERMANOVA P < 0.001). 
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When genus-level SMS cs0 and cs1 dissimilarity matrices were used, the amount of variability 

partitioned to collection day increased relative to the 16S-V4 estimate, while the amount 
partitioned to weaning strategy remained consistent; specifically, the SMS cs0 R2 values for 

collection day and weaning strategy were 30.1% and 3.1%, respectively, while for SMS cs1 
these values were 31.1% and 3.3% (all PERMANOVA P < 0.001, Figure 3.5. D-F).  

 
To explore how the diversity metrics estimated from the 3 methods led to similar conclusions 

despite being different in magnitude (i.e., effect size), we evaluated the correlation between 
alpha diversity indices and beta diversity results. The R2 Pearson’s correlation value for richness 

between the three methods was neither high nor statically significant, however the Shannon’s 
index values between SMS cs0 and SMS cs1 were highly correlated (R2= 0.88, p-value < 

0.001), while the Shannon’s index values of 16S-V4 were slightly more correlated with values of 

SMS cs0 (R2= 0.52, p-value < 0.001) than with SMS cs1 (R2= 0.50, p-value < 0.001) (Table 
3.2). When the correlation of the dissimilarity matrices obtained by each method were evaluated 

using Procrustes analysis, we found a statistically significant correlation between all pairwise 
comparisons, with correlation between SMS cs0 and SMS cs1 achieving the highest value 

(Procrustes m2=0.17; correlation=0.9). The 16S-V4 dissimilarity matrix was more correlated with 
SMS cs0 (Procrustes m2=0.23; correlation=0.88) than with SMS cs1 (Procrustes m2=0.33; 

correlation=0.82) (Figure 3.6). These results were consistent with the correlation of genera 
abundance and genus-level Shannon’s index: 16S-V4 indices had a higher correlation with SMS 

cs0 than with SMS cs1, and the correlation between SMS cs0 and SMS cs1 was the highest. 
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DISCUSSION 
 

As the cost of DNA sequencing steadily decreases, shotgun metagenomic sequencing (SMS) 
will likely become a major component of a multi-omics framework to study microbial 

communities. Comparison of the taxonomic profiling capabilities of 16S rRNA gene sequencing 
(16S) versus SMS will provide valuable insights to leverage the large extant 16S-based 

microbiome literature. This is relevant for rumen microbiome research because the use of SMS 
to understand the functional role of rumen microbes in cattle production is rapidly increasing. 

Using rumen fluid samples collected from a cohort of 32 beef calves at three collection days 
(see chapter 02) and simultaneously sequenced by SMS and 16S-V4, we compared: (1) the 

performance of 16S-V4, SMS cs0 and SMS cs1 for taxonomic profiling of the rumen microbiome 

of beef cattle and (2) the agreement between methods in terms of taxonomic classification and 
inferences about microbiome dynamics. We identified discrepancies in taxonomic classification 

resolution, number of unique taxa identified and taxonomic labels at different levels; the 
magnitude of the discrepancy depended on taxonomic rank, with much larger discrepancies at 

the genus level. Technical differences inherent to the sequencing methods and disagreement in 
the taxonomic information embedded in the databases used for 16S-V4 and SMS can be 

pointed to as possible explanations for these discrepancies. Importantly, despite these 
discrepancies, similar conclusions about the overall study results were inferred with the 3 

methods, including consistency in statistical significance and the direction of associations. This 
overall concordance in results could be explained by the high correlation of abundances (i.e., 

counts) of commonly identified genera across all methods; as well as moderate correlation 

between Shannon’s indices (alpha diversity); and dissimilarity matrices (beta diversity). 
 

The agreement between 16S and SMS to infer the same conclusion from an experimental 
design has been widely reported in microbiome research. Regardless of the bioinformatic 

analysis method, sequencing depth or type of sample, results obtained from 16S and SMS 
datasets were generally concordant when compared in soil [154], human gut [141,153,159], 

chicken gut [155], horse gut [160] and even pollen [161] microbiome studies. However, a 
previous rumen microbiome study [49] reported inconsistent results in differential abundance 

testing, especially for Firmicutes and Bacteroidetes phyla when rumen samples were analyzed 
in parallel by 16S and SMS methods. The reasons for these contrasting results are likely related 

to differences in sample size, 16S hypervariable region, OTU picking method and SMS analysis 



 69 

methods. Ultimately, the level of concern about method concordance depends on the research 

question and the biological signal that is being investigated. For instance, in our study, 
Methanobrevibacter and Ruminococcus genera were identified in higher relative abundance 

across samples by 16S-V4, while Fibrobacter, Butyrivibrio and Prevotella genera were identified 
in higher abundance by SMS methods. Having an specific genus-driven research question 

would leverage the advantage of each method to detect a given genera as each taxa is 
associated with different roles in the rumen microbiome [9,32]. Nonetheless, a higher signal 

obtained for a given genera does not always guarantee an accurate measurement of the 
microbial community.  

 
The discrepancies in genus identification between 16S and SMS reported in this study are likely 

attributable to differences in the reference databases and intrinsic technical characteristics of 

each method. For example, SMS’ ability to identify more low-abundant taxa and its superior 
classification resolution compared to 16S have been previously discussed in other comparison 

studies in soil [154] and chicken gut microbiome [155], suggesting that sequencing depth and 
the untargeted nature of SMS are important for identifying more genera and thus improving 

genus-level analyses. Conversely, 2 comparison studies in water [162] and pediatric fecal 
microbiome samples [141] identified more genera using 16S than SMS. The low sequencing 

depth of SMS (i.e., 10-12M reads per sample) and the use of a marker-gene-based SMS 
classifier with non-customizable database (i.e., MetaPhlan2) in those two studies may explain 

the contrasting findings. 
 

An important constraint that we experienced in the current study is the inconsistent taxonomic 

labels in the taxonomic classification schemes used by 16S (e.g., SILVA) and SMS (e.g., 
RefSeq NCBI). These inconsistent taxonomic labels prevented a more comprehensive 

comparison between the methods. The need for a unified taxonomy for all databases has also 
been pointed out by other comparison studies [141,153,160]. Some solutions have been 

proposed, such as the use of cross classification across databases using a bioinformatic tool 
[163], and the use of a candidate 16S-SMS-harmonized database [153]. Regarding the 

taxonomic profiling of rumen microbiome by SMS, we already showed the impact of the 
reference database in taxonomic classification rate (see chapter 02) consistent with other 

studies [46,48]. 
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The prevalence and abundance of the 148 genera identified by all three methods (i.e., 16S-V4, 

SMS cs0 and SMS cs1) exhibited contrasting patterns across the three approaches. While 
these genera represented a high proportion of total genera (45%), but low proportion of total 

reads classified by 16S-V4 (29.3%), the opposite was true for SMS methods, i.e., these same 
genera represented a low proportion of total genera (13% and 17.2%) but a high proportion of 

total classified reads (49.5% and 64.6%). We did not expand on the relevance of genera 
commonly and exclusively identified by different methods in our study, but a recent comparison 

study showed that unlike 16S-exclusive genera, the genera solely identified by SMS could 
reflect key diversity differences from the experimental design [155]. This result and the 

differences in genus-level relative abundances estimated by 16S and SMS, brings to discussion 
the potential pitfalls of the 16S method that could explain our findings. Several sources of bias 

have been shown to impact the performance of 16S rRNA sequencing, such as different 16S 

rRNA gene copy number in bacteria [164], the polymerase, primers and amplification cycles 
used in the 16S PCR [165,166], and the methods used for clustering or denoising 16S 

sequences during bioinformatic analysis [167]. It is important to mention that our study was 
limited to the commonly used V4 hypervariable region of 16S rRNA gene, but the use of full-

length 16S gene sequencing (~1.5 Kbp) may provide improved taxonomic resolution for many 
sequences, thus ameliorating the discrepant diversity results corresponding to different 16S 

hypervariable regions [168,169]. 
 

Despite the taxonomic and functional profiling advantages of SMS [139], this method also 
contains sources of bias, including those related to the library preparation process (e.g., DNA 

fragmentation, library amplification, polymerase performance and GC% content of sequenced 

genomes) [170]; the proportion of host DNA in a sample [171]; reference databases; and the 
technical tradeoffs of choosing different SMS taxonomic classifiers [148,149]. The advantages 

of microbiome research are widely known but their limitations are often poorly addressed. 
Regardless of the sequencing method, microbiome studies present several sources of bias 

which are beyond the scope of this study but are well discussed elsewhere [41,172,173]. This 
study was not designed to compare our results with a ground truth, thus we cannot rule out 

other potential sources of bias that can be adding variability to our 16S-SMS comparison. 
 

Remarkably, despite all these methodological constraints and the numerous discrepancies in 

taxonomic results, all 3 methods that we compared led to similar overall conclusions about the 
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dynamics of the rumen microbiome in beef calves. We provided evidence that this congruence 

in results may be due to relatively robust correlation of diversity metrics across the three 
methods. Our observation that Shannon’s index obtained by SMS cs0 was higher than 16S-V4 

has been previously reported, suggesting that the much higher sequencing depth of SMS may 
help to detect genera that are either very low-abundance and/or not resolvable at the genus 

level by 16S rRNA sequencing [154,159,160]. Likewise, the moderate correlation we observed 
between Shannon’s indices calculated by 16S and SMS methods was consistent with previous 

studies. A moderate-to-high correlation (R2= 0.63) between Shannon’s indices obtained by 16S-
V4 and SMS was reported in human gut samples [159], while a moderate (R2= 0.46) but still 

statistically significant correlation in Shannon’s indices obtained by 16S-V4 and shallow SMS 
was reported in samples collected from the equine gut [160]. The significant correlation between 

Bray-Curtis dissimilarity matrices calculated with 16S and SMS was also supported by a recent 

study of the horse gut microbiome [160]. 
 

Kraken 2 is a widely used method for taxonomic profiling of metagenomic short-read data. Both 
versions, kraken [174] and kraken2 [114] account for a total of 5801 citations registered in 

PubMed (accessed on May 2023). Because Kraken 2 favors recall over precision [149], the 
developers provide a way to control for potential false positive results, i.e., the confidence score. 

This parameter sets the stringency level used in the k-mer-based classification using a lowest-
common ancestor (LCA) approach [114]. However, little information or recommendation is 

provided by the authors on how to use this confidence score and the impact that it may have on 
microbiome studies. In the same way, studies that use Kraken 2 do not typically provide details 

on the confidence score used, or the reasons for its selection. For instance, from 22 rumen 

microbiome studies that cited kraken or kraken 2 as taxonomic classifiers according to PubMed 
(accessed on May 2023), only 2 detailed the confidence score that they used for the taxonomic 

classification [40,175]. We compared the 2 most extreme confidence scores and noticed a clear 
impact on classification rate, which was further reflected in the number of genera detected as 

well as the relative abundance of those genera across samples and the diversity metrics 
obtained from those genera. Comparing results obtained from a confidence score of 0 versus 1, 

we observed an ~100-fold decrease in classified reads (Table 3.1); 279 fewer genera; and 
1,598 fewer species across all samples (Figure 3.1). These decreased classifications led to 

Shannon’s indices decreasing by approximately half (Figure 3.5). However, the cs0 and cs1 

methods showed the highest correlation in genus-level abundances, as well as alpha (Table 



 72 

3.2) and beta diversity metrics (Figure 3.6). A recent study comprehensively compared all 

possible kraken 2 confidence scores with different databases and sample matrices and provided 
general recommendations for setting an appropriated confidence score, which we adhered to in 

our previous study of rumen microbiome dynamics (see chapter 02). After performing an initial 
exploratory analysis, the authors suggested to decrease the confidence score under the 

following scenarios: for samples collected from a poorly explored source; when a high level of 
microbiome diversity is expected; or when false negatives are a concern. Conversely, the 

authors suggested increasing the confidence score if samples are from a well-studied 
environment; when diversity is expected to be low; and if false positives are a concern [176]. 

  
Finally, based on the results of this study we make several suggestions for future rumen 

microbiome studies. First, the decision of which sequencing approach to use should be made 

based on the research question. Depending on the hypothesis, researchers may be more 
interested in performing taxonomic profiling of bacteria or archaea at less-resolved levels of the 

taxonomy (i.e., order, class or phylum), in which case 16S-V4 may be preferable. However, if 
taxonomic domains other than bacteria and archaea are desired; or if functional profiling or 

strain-level information is needed; then SMS is a better option. Second, logistical constraints 
such as available budget, sequencing and computational resources will likely influence the 

selection of methodology. Generally speaking, SMS is more costly and requires larger 
sequencing platforms and computational resources than 16S sequencing. Third, in order to 

make future rumen microbiome results more readily comparable and reproducible, authors are 
encouraged to provide as much detail as possible on the methodology, for instance: (a) the 

sequencing depth, (b) the database used for taxonomic classification, (c) detailed information 

about the setup and parameters used with the bioinformatic tools, (d) how any sequencing 
reads were dropped and retained at each step in the bioinformatic workflow, (e) the number of 

unique taxa and percentage of sequencing reads classified at each given taxonomic rank, and 
(f) details on statistical methods used for the analysis. Ideally, these details would also be 

captured in reproducible code files, with the corresponding raw data in a repository. 
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CONCLUSION 

 
This study compared 3 approaches for taxonomic classification of the rumen microbiome of beef 

calves: 16S rRNA gene hypervariable region V4 sequencing, shotgun metagenomic sequencing 
using Kraken2 with confidence score 0 and with confidence score 1. While the methods 

produced discordant results in terms of numbers of unique taxa detected, taxonomic resolution 
and diversity estimates, the overall conclusions inferred from the experimental design of the 

study were similar. Overall, this study highlights the importance of carefully selecting the 
taxonomic classification approach for rumen microbiome studies, while balancing the research 

question(s) with budgetary and resource constraints. Finally, we emphasize the need to publish 
a reproducible and detailed methods protocol, which will support future comparative studies, 

including systematic reviews and meta-analyses. 
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METHODS 

 
Overview 

Using rumen fluid samples from our previous study (see chapter 02), we compared the 
performance of 16S rRNA gene sequencing (hypervariable region V4) and shotgun 

metagenomic sequencing for taxonomic profiling of the rumen microbiome. The same aliquot of 
extracted DNA for each sample was used by apportioning ~20uL to 16S rRNA gene sequencing 

and ~20uL to shotgun metagenomic sequencing. Additionally, 3 negative controls (extraction 
blanks) and 2 positive controls were submitted for both sequencing methods. 16S rRNA gene 

sequences were processed and taxonomically profiled using cutadapt v4.0 [177], dada2 v1.22 
[140] and the SILVA nr99 v138.1 database. Shotgun metagenomic sequences were processed 

using the minor_kraken2.nf module of AMR++ v2 [74], setting 2 confidence scores for 

taxonomic profiling: 0 (cs0, lowest stringency) and 1 (cs1, highest stringency). Kraken2 used the 
refseq database updated in July 2020 (NCBI) as the reference database. One count matrix was 

built with 16S-V4 output, while 2 count matrices (1 per each confidence score) were built with 
SMS output. We compared the 3 matrices in terms of (1) method performance for taxonomic 

profiling of the rumen microbiome, and (2) agreement of the methods to infer conclusions based 
on microbiome diversity from the experimental design of our previous study. 

 
Sample collection and DNA extraction 

In a previous study, we identified rumen microbiome changes in beef calves associated with 
collection day and weaning strategy, using shotgun metagenomic sequencing. The study had a 

randomized longitudinal factorial design, with 32 calves randomly assigned to 2 different 

weaning strategies and ruminal fluid collected twice before weaning and once 48 hours after 
weaning. A total of 95 rumen samples were collected and DNA was extracted using the 

Dneasy® PowerSoil® Pro Kit (QIAGEN, USA), following manufacturer instructions as previously 
described (see chapter 02). A single aliquot of DNA extracted from each ruminal fluid sample 

was submitted for 16S rRNA gene sequencing, targeting the V4 hypervariable region (16S-V4), 
and shotgun metagenomic sequencing (SMS) to the University of Minnesota Genomics Center 

(UMGC). Three negative DNA controls (extraction blanks) and 2 DNA positive controls 
(ZymoBIOMICS Microbial Community Standard II Log Distribution – Catalog N° 6310) were 

submitted alongside the samples. 
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16S-V4 sequencing and analysis workflow 

DNA samples were submitted for qPCR of the 16S rRNA gene and subsequent normalization of 
the estimated initial bacterial DNA concentration for library preparation. The 16S rRNA library 

preparation targeted the V4 hypervariable region of bacterial 16S rRNA gene using a dual-
indexing 16S rRNA Illumina primer set: Forward 5’ -GTGCCAGCMGCCGCGGTAA- 3’; Reverse 

5’ -GGACTACHVGGGTWTCTAAT- 3’ [178]. Paired-end sequencing was performed on the 
MiSeq platform (Illumina, USA) using Illumina v3 cluster chemistry with PhiX control v3 to 

produce 2x300 bp paired-end reads.  
 

Demultiplexed sequences were processed and analyzed using appropriate packages in R 
Statistical Software (v4.2.1; R Core Team 2022; https://www.r-project.org/). V4-region primers 

were removed from the sequencing reads using cutadapt v4.0 [177]. Sequence trimming, 

denoising and taxonomy assignment were done using dada2 v1.22 [140]. Sequence trimming 
was based on the quality profile plots of sequencing reads, considering a truncated quality score 

≤ 2, truncated sequence length of 240 bp for forward and 160 bp for reverse reads, and a 
maximum expected error (maxEE) of 4,4. PhiX control sequencing reads and sequencing reads 

with ambiguous bases (N) were removed. The denoising process of trimmed reads was 
performed with dereplicated sequences, using an error rate estimated with a Bayesian model 

that accounts for PCR-induced errors in our specific dataset [140]. The denoised paired-end 
sequences were merged and the sequence artifacts (sequences with length less than 251bp 

and more than 255bp) and chimeras were removed to obtain the Amplicon Sequence Variants 
(ASV). Taxonomic assignment of ASVs was done by the naïve Bayesian classifier method [179] 

using the SILVA reference database nr99_v138.1 up to the genus level, and the SILVA species-

level database species_assignment_v138.1 up to the species level. Finally, we generated an 
ASV count table and an ASV taxonomic table, which were combined with metadata to obtain a 

count matrix using Phyloseq v1.4 [126]. The frequency-based method was used to remove 
contaminant ASVs from our count matrix using decontam v1.18 [180]. The decontaminated 

count matrix was used for downstream analysis. 
 

Shotgun metagenomics sequencing and analysis workflow 
Library preparation and shotgun metagenomic sequencing were previously described (see 

chapter 02). Demultiplexed paired-end reads (2x150bp) were analyzed using the AMR ++ v2 

pipeline [74], which integrates sequence trimming and filtering by Trimmommatic v0.4 [119], 
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host read decontamination by BWA v0.7.17 [120] and BEDTools v2.3 [181], and k-mer based 

taxonomic profiling by kraken2 v2.1.2 [114]. The Bos taurus reference genome (Genome 
Bos_taurus_UMD_3.1, accession number: GCA_002263795.3) was used for decontamination 

of host reads. For taxonomic profiling with kraken2, we used the standard genome database 
(updated in July 2020, containing archaea, bacteria, virus, plasmids, UniVec_Core and human 

genomes), setting 2 confidence scores: 0 (cs0, minimum threshold) and 1 (cs1, maximum 
threshold). Kraken2 is a taxonomic classifier that assigns a taxonomy label to a sequencing 

read based on its k-mer profile and the lowest common ancestor (LCA) scoring approach . The 
confidence score sets the stringency level used in the LCA scoring approach, and thus can be 

used to generate classifications with varying levels of confidence [114]. Briefly, the process 
works thus: a single sequencing read is classified when the score ratio for a given taxonomic 

label bypasses the confidence score threshold. The score ratio for a taxonomic label is obtained 

by dividing the number of k-mers that map to a given label in the database by the total number 
of unambiguous k-mers in the read. If several labels exceed the threshold, then the LCA is 

chosen (based on the taxonomic tree structure). If the LCA label is at the root of the taxonomic 
tree and its score ratio does not exceed the threshold, the sequence will be labeled as 

“unclassified” [114]. Finally, we generated an Operational Taxonomic Unit (OTU) count matrix 
for the results from each confidence score using Phyloseq v1.4 [126]. Sequencing reads 

classified as viruses, viroids and eukaryotes were excluded from the 2 matrices for downstream 
analysis.  

 
Comparison of method performance for taxonomic profiling of the rumen microbiome 

To compare the taxonomic profiling performance of 16S-V4, SMS cs0 and SMS cs1 we 

reported for each method: (1) the number of sequencing reads obtained through each analysis 
step, (2) the proportion of reads classified and number of unique taxa detected at each 

taxonomic rank across all samples, (3) the relative abundance of the rumen microbial genera, 
(4) the number of genera identified in common and individually by the 3 methods across all 

samples, and (5) the pairwise correlation of genera abundance in each sample as described by 
the 3 methods. All the analyses were performed in R Statistical Software (v4.2.1; R Core Team 

2022; https://www.r-project.org/) and plots were obtained with ggplot2 v3.4.1 package for R 
[130]. Two samples (one from pre-weaning and the other from post-weaning collection) were 

dropped from the 3 count matrices due to technical issues during 16S-V4 sequencing; 

specifically, the pre-weaning sample had very low qPCR concentration and number of 
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sequencing reads, while the post-weaning sample contained more than twice the average 

number of observed genera per sample. Both samples did not present abnormal results with 
SMS method, but they were dropped from kraken2 cs0 and cs1 count matrices to make a 

balanced comparison.  
 

To estimate the proportion of classified reads and number of unique taxa across all samples at 
each taxonomic rank, the 3 matrices were separately agglomerated to every taxonomic rank, 

from Domain/Kingdom to Species, dropping unclassified taxa (NA) using Phyloseq. To estimate 
the genus-level relative abundance, we normalized each raw matrix separately by the 

Cumulative Sum Scaling (CSS) method using metagenomeSeq package v1.4 [127]. Then, each 
normalized matrix was agglomerated to the genus level keeping the taxa that did not get a 

genus-level classification (NAs) and represented as relative abundance in a bar plot using 

ggplot2. To identify and count the number of genera detected by all 3 methods across all 
samples, we combined the 3 genus-level-agglomerated matrices in one matrix, while 

maintaining the sample names and OTU/ASV identification labels. During this process, we 
noticed that some genera were duplicated within the combined matrix because their label 

names at higher taxonomic levels did not match between the 16S-V4 and SMS reference 
taxonomies (Supplementary table 1). To circumvent this issue, we ignored the superior 

taxonomic rank label names and used only the genus-level label names to agglomerate the 
combined matrix. Using MicrobiotaProcess package v1.10.2 [182] in the agglomerated full 

matrix, we identified the genera detected by all three methods across all samples, as well as 
those detected by < 3 methods in combination and separately. Finally, we plotted that 

information as an UpSet plot using UpSetR package v1.4 [183]. We repeat the same procedure 

with a combined phylum-level-agglomerated matrix to identify the phyla detected by the 3 
methods and < 3 methods. To investigate the correlation of genera abundance detected by the 

3 methods for the same sample, we subsetted only genera detected by the 3 methods. Using 
the subset matrix we obtained the Pearson’s correlation R2 value and p-value of the 

comparisons of abundance detected by Kraken cs0 vs 16S-V4, Kraken cs1 vs 16S-V4, and 
Kraken cs1 vs Kraken cs0 for the same sample. We plotted the R2 values for each pairwise 

comparison for each sample and tested if the mean pairwise R2 value was statistically different 
between each category (“Kraken cs0 vs 16S-V4”, “Kraken cs1 vs 16S-V4”, and “Kraken cs1 vs 

Kraken cs0”) using ANOVA and a post-hoc pairwise t-test adjusting the p-values by Bonferroni 

method. 
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Comparison of diversity metrics inferred by the 3 methods and agreement on 
experimental design conclusions 

As we already reported a significant association of alpha and beta diversity with weaning 
strategy and collection day (see chapter 02), we investigated this association using 16S-V4 and 

SMS (cs0 and cs1) methods. Unlike this work, our previous study performed SMS classification 
using kraken2 with a confidence score = 0.1 and a comprehensive reference database that 

included archaea, bacteria, virus, plasmids, human, UniVec_core, protozoa and fungi reference 
genomes, as well as 410 rumen-specific bacteria genomes from the Hungate project [72]. 

Additionally in the previous study, our removal of “host” DNA within the SMS data included 
removal of reads that aligned to B. taurus and several plant genomes that were known to 

dominate the diet of the sampled calves. To compare the estimates and changes in genus-level 

diversity inferred from the experimental design of the study using each method, we evaluated: 
(1) the association of Shannon’s index (alpha diversity) with the interaction of weaning strategy 

and collection day, (2) beta diversity by weaning strategy and collection day, (3) the correlation 
of beta diversity distance matrices obtained by each method, and (4) the Pearson’s correlation 

of alpha diversity indices obtained by all 3 methods.  
 

To investigate the association with alpha diversity, we calculated Shannon’s index for each 
genus-level count matrix using Phyloseq v1.4 package and tested for statistical significance with 

a linear mixed-effect model using lme4 v1.1.32 [132]. We considered Shannon’s index as the 
dependent (outcome) variable, animal ID as a random effect, the interaction of weaning strategy 

with collection day as an independent variable (predictor), and castration timing as a covariate. 

The adjusted mean of Shannon’s index for each weaning strategy was obtained by least square 
means using emmeans v1.8.5 [134]. To investigate the association with beta diversity, we 

calculated the Bray-Curtis dissimilarity indices of the CSS-normalized genus-level matrices and 
tested for statistical significance using Permutational Multivariate Analysis of Variance 

(PERMANOVA), both implemented in vegan v2.4.6 [184]. The R2 value was used to estimate 
the marginal amount of variation partitioned to a given dependent variable and was reported 

along with the associated P-value to determine statistical significance. To calculate the 
correlation between beta diversity ordinations (Bray-Curtis distance matrix) obtained via each of 

the 3 methods, we performed a symmetric Procrustes analysis with vegan v2.4.6 [184]. Before 

performing the analysis, the Bray-Curtis distances were transformed to Euclidean distances 
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using the Cailliez adjustment [185], in order to prevent negative eigenvalues. We tested the 

significance of the correlation from our symmetric Procrustes analysis by a permutational test of 
significance (protest) with 999 permutations, also implemented in vegan v2.4.6. To evaluate the 

correlation of genus-level alpha diversity indices obtained by the 3 methods, we calculated the 
Pearson’s correlation R2 values and the associated p-values for each pairwise comparison: 

“16S-V4 vs SMS cs0”, “16S-V4 vs SMS cs1”, and “SMS cs0 vs SMS cs1”.  
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TABLES & FIGURES 
 

Table 3.1. Sequence read summary statistics, stratified by collection day and method (mean ± SD) 

Collection 
day 

16S rRNA gene sequencing reads (x103)  Shotgun metagenomic sequencing reads (x106) 
qPCR (x106 

molecules/μl) Raw Denoised Classified   Raw  trimmed 
non-host  

Classified 
(cs=0) 

Classified 
(cs=1) 

Pre-weaning 96.3 ± 40.7 96.8 ± 37.5 62.5 ± 29.9 62.2 ± 29.7  54.7 ± 8.9 42.2 ± 6.7 5.7 ± 1 0.049 ± 0.012a 

At weaning 108.4 ± 46.9 92.9 ± 26.8 59.5 ± 22.8 59.2 ± 22.7  53.6 ± 10.7 41.3 ± 8.3 5.8 ± 1.2 0.049 ± 0.012a 

Post-weaning 99.7 ± 27.9 98.4 ± 29.1 63 ± 24.6 62.7 ± 24.4  54.2 ± 8.9 42.4 ± 6.9 6 ± 1 0.058 ± 0.013b 

*Kruskal-Wallis test, statistical significance (P<0.05) indicated by different superscript letters 
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Table 3.2. Pearson’s correlation values for alpha diversity metrics obtained by each 
method 

 
  Richness   Pielou's evenness   Shannon's Index 
  R2 p-value   R2 p-value   R2 p-value 
16S-V4 vs SMS cs0 - 0.03 0.76  0.35 < 0.001  0.52 < 0.001 
16S-V4 vs SMS cs1 0.11 0.28  0.38 < 0.001  0.50 < 0.001 
SMS cs0 vs SMS cs1 - 0.16 0.12   0.87 < 0.001   0.88 < 0.001 

16S-V4: 16S rRNA gene sequencing V4 hypervariable region; SMS cs0: Shotgun metagenomic 
sequencing confidence score 0; SMS cs1: Shotgun metagenomic sequencing confidence score 1. 
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Figure 3.1.  Taxonomic profiling performance of each method across all samples at 
different taxonomic ranks, expressed as A) number of unique identified taxa, and B) 

proportion of classified reads. The denominator in B represents the number of reads 
classified to the Domain/Kingdom level. 16S-V4: 16S rRNA gene sequencing V4 hypervariable 
region; SMS cs0: Shotgun metagenomic sequencing confidence score 0; SMS cs1: Shotgun 

metagenomic sequencing confidence score 1. 
 

 

A
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Figure 3.2 Relative abundance plots of genus-level counts obtained by A) 16S rRNA gene 

sequencing, B) Shotgun metagenomics cs0, C) Shotgun metagenomics cs1. Genera with < 3% 
relative abundance are grouped as “Others”. Each bar represents one sample. NA represents taxa 

not classified at the genus level (i.e., they may have classification at higher taxonomic ranks) 
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Figure 3.3. Upset plot for genera identified by all 3 methods and <3 methods. Set size 

(legend) represents the total number of unique genera identified by each method. Intersection 
size (y-axis) represents the total number of unique genera identified by the corresponding 

method(s) (x=axis). 16S-V4: 16S rRNA gene sequencing V4 hypervariable region; SMS cs0: 
Shotgun metagenomic sequencing confidence score 0; SMS cs1: Shotgun metagenomic 

sequencing confidence score 1.  
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Figure 3.4. Pearson’s R2 values for correlation of genera abundance, comparing the 

counts obtained by the three methods. 16S-V4: 16S rRNA gene sequencing V4 
hypervariable region; SMS cs0: Shotgun metagenomic sequencing confidence score 0; SMS 
cs1: Shotgun metagenomic sequencing confidence score 1. Boxes represent the 25th to 75th 
percentile; horizontal line represents the median; and whiskers indicate 1.5× the interquartile 

range (IQR). Different superscript letters represent values that were significantly different upon 
statistical testing. 

 

ba c
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Figure 3.5. Genus-level diversity metrics, stratified by collection day and weaning strategy. 
Shannon’s index (alpha diversity) obtained by A) 16S rRNA gene sequencing, B) Shotgun 
metagenomic sequencing confidence score 0, and C) confidence score 1. Beta diversity 

obtained by D) 16S rRNA gene sequencing, E) Shotgun metagenomic sequencing confidence 
score 0, and F) confidence score 1. Boxes represent the 25th to 75th percentile; horizontal line 
represents the median; and whiskers indicate 1.5× the interquartile range. P-values from Type-III 

ANOVA. Beta diversity is depicted in a Non-Metric Multidimensional Scaling (NMDS) ordination plot 
based on Bray–Curtis distances (P and R2 values from PERMANOVA testing). 
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Figure 3.6. Procrustes analysis of genus-level beta diversity plots for the pairwise comparison of A) 16S rRNA gene 
sequencing vs Shotgun metagenomic sequencing confidence score 0, B) 16S rRNA gene sequencing vs Shotgun 

metagenomic sequencing confidence score 1, C) Shotgun metagenomic sequencing confidence score 1 vs confidence 
score 0. P-values were calculated by Permutational test of significance of Procrustes analysis with 999 permutations. 

 
 
 
 
  

A CBm2: 0.23
Correlation: 0.88
P=0.001

m2: 0.17
Correlation: 0.90
P=0.001

m2: 0.33
Correlation: 0.82
P=0.001



 88 

SUPPLEMENTARY MATERIAL 
 

Supplementary table 3.1. Discordant phyla names for the same taxa identified by 16S 
rRNA gene sequencing (16S-V4) and shotgun metagenomic sequencing (SMS) 
 

OTU Kingdom Phylum Method 
Otu11894 Bacteria Acidobacteria SMS 
Otu3656 Bacteria Acidobacteriota 16S-V4 
Otu08398 Bacteria Actinobacteria SMS 
Otu0035 Bacteria Actinobacteriota 16S-V4 
Otu09386 Bacteria Armatimonadetes SMS 
Otu1807 Bacteria Armatimonadota 16S-V4 
Otu09394 Bacteria Bacteroidetes SMS 
Otu0007 Bacteria Bacteroidota 16S-V4 
Otu11999 Bacteria Elusimicrobia SMS 
Otu0261 Bacteria Elusimicrobiota 16S-V4 
Otu09739 Bacteria Fibrobacteres SMS 
Otu0025 Bacteria Fibrobacterota 16S-V4 
Otu11910 Bacteria Fusobacteria SMS 
Otu1290 Bacteria Fusobacteriota 16S-V4 
Otu09741 Bacteria Gemmatimonadetes SMS 
Otu7361 Bacteria Gemmatimonadota 16S-V4 
Otu11969 Bacteria Nitrospirae SMS 
Otu3902 Bacteria Nitrospirota 16S-V4 
Otu11781 Bacteria Planctomycetes SMS 
Otu0229 Bacteria Planctomycetota 16S-V4 
Otu11830 Bacteria Spirochaetes SMS 
Otu0118 Bacteria Spirochaetota 16S-V4 
Otu11898 Bacteria Synergistetes SMS 
Otu0537 Bacteria Synergistota 16S-V4 
Otu11760 Bacteria Verrucomicrobia SMS 
Otu0018 Bacteria Verrucomicrobiota 16S-V4 
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Supplementary table 3.2. Some examples of discordant taxonomy at the phylum and 
order levels, for the same genus, identified by 16S rRNA gene sequencing (16S-V4) and 
shotgun metagenomic sequencing (SMS) 

 
OTU Kingdom Phylum Class Order Family Genus Method 

Otu0011 Bacteria Bacteroidota Bacteroidia Bacteroidales Prevotellaceae Prevotella 16S-V4 

Otu09394 Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella SMS 

Otu0025 Bacteria Fibrobacterota Fibrobacteria Fibrobacterales Fibrobacteraceae Fibrobacter 16S-V4 

Otu09739 Bacteria Fibrobacteres Fibrobacteria Fibrobacterales Fibrobacteraceae Fibrobacter SMS 

Otu0105 Bacteria Firmicutes Clostridia Oscillospirales Ruminococcaceae Ruminococcus 16S-V4 

Otu07736 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus SMS 

Otu0013 Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae Butyrivibrio 16S-V4 

Otu07712 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Butyrivibrio SMS 
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Supplementary Figure 3.1. Relative abundance plots of phylum-level counts obtained 
by A) 16S rRNA sequencing, B) Shotgun metagenomic cs0, C) Shotgun metagenomic 
cs1. Phyla with < 1% relative abundance are grouped as “Others”. Each bar represents one 
sample.  
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Supplementary Figure 3.2. Upset plot for phyla identified by all 3 methods and <3 
methods. Set size (legend) represents the total number of unique phyla identified by 
each method. Intersection size (y-axis) represents the total number of unique phyla 

identified by the corresponding method(s) (x=axis). 16S-V4: 16S rRNA gene 
sequencing V4 hypervariable region; SMS cs0: Shotgun metagenomic sequencing 

confidence score 0; SMS cs1: Shotgun metagenomic sequencing confidence score 1. 
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GENERAL CONCLUSIONS 
 

Due to its central role in cattle metabolism, the rumen microbiome has been associated with 
important health and production outcomes in beef cattle. As shown in chapter 01, the scientific 

literature that describes rumen microbiome development and its association with host traits is 
less extensive in beef than in dairy cattle. Specifically, the evidence on how the rumen 

microbiome is impacted by early-life management practices, such as weaning and castration, 
have not been described yet in beef cattle. At the same time, the methodological approach to 

study the cattle rumen microbiome is moving from 16S rRNA gene sequencing to shotgun 
metagenomic sequencing. However, there is still a lack of knowledge on the comparability of 

these methods. Given that rumen microbiome studies rely on these 2 sequencing methods, it is 

essential to consider their advantages and disadvantages in order to accurately interpret results. 
Therefore, the aim of this thesis was to investigate the effect of two early-life common 

management practices on the rumen metagenome of beef cattle through a comprehensive 
metagenomic sequencing approach. 

 
In chapter 02, we investigated the effect of four castration timing windows and two weaning 

strategies on the rumen metagenome of beef calves. After conducting a randomized controlled 
trial to test these interventions on 32 angus beef calves, we collected rumen microbiome 

samples at pre-weaning, weaning and post-weaning and analyzed them using shotgun 
metagenomic sequencing. Our results showed that the rumen microbiome of beef calves 

experienced significant changes around weaning, with notable shifts in both taxonomic and 

functional profiles within 48 hours post-weaning, which differed based on weaning strategy. This 
effect was especially evident in the methanogenic gene content of the rumen microbiome, but 

not in the rumen resistome, which remained consistently dominated by tetracycline resistance 
genes across time and intervention groups. Within the context of our study, castration timing 

had limited long-term effects on the rumen metagenome, although the sampling design may 
have prevented a definitive conclusion. Further research is needed to explore the short-term 

effects of castration timing and long-term effects of weaning strategy on the rumen microbiome 
of beef calves. Despite the limitations of our study, this chapter provided valuable insights into 

beef calf rumen metagenome dynamics in response to different weaning strategies and 
castration timing windows. These findings may have direct implications for the management 

practices that beef producers use to manage calves during the cow-calf stage. Importantly, we 



 93 

emphasize the need for methodological advancements to improve the metagenomic exploration 

of the rumen microbiome, paired with a comprehensive phenotypic validation of results from 
DNA-level rumen microbiome functional profiling. 

 
In chapter 03, we compared the performance of shotgun metagenomic sequencing and 16S 

rRNA gene hypervariable region V4 sequencing for taxonomic characterization of beef calf 
rumen microbiomes. We sequenced all the rumen fluid samples from chapter 02 using both 

methods and compared 3 approaches for taxonomic classification: 16S rRNA gene 
hypervariable region V4 sequencing, shotgun metagenomic sequencing using Kraken2 with 

confidence score 0 and with confidence score 1. The results of this study revealed several 
discrepancies between the methods, which resulted from inherent differences in their technical 

workflows as well as the many inconsistencies across the databases used for taxonomic 

classification. Despite these discrepancies, the 3 approaches led to similar ecological inferences 
about the effect of weaning strategy on the rumen microbiome of beef calves. This important 

finding is consistent with previous studies of other host-associated microbiomes, and can be 
explained by a moderate-to-high correlation between the alpha and beta diversity estimates 

generated by each method, as well as moderate-to-high correlation in the counts of genera that 
were identified by all 3 methods. We underscored the importance of considering the research 

goals and available resources while selecting a sequencing method for taxonomic profiling of 
the rumen microbiome. The results of this chapter will help other researchers seeking accurate 

methodological approaches to study the rumen microbiome. More studies are warranted to 
assess other metagenomic taxonomic profilers and the use of other hypervariable regions of the 

16S rRNA gene for the taxonomic classification of the rumen microbiome. 

 
Altogether, this thesis contributes new information about the rumen metagenome of beef calves, 

specifically in relation to early-life management practices such as weaning strategy and 
castration timing. Moreover, this manuscript provides important technical information about 

common microbiome sequencing methods and the comparability of the results they generate 
from rumen samples. This research may have implications for both beef cattle farming and 

animal microbiome research. Finally, we emphasize the need for phenotypic validation studies 
and the development of bioinformatic tools and databases in order to continuously improve the 

robustness of rumen microbiome results. 
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