Klein, Avi2018-05-252018-05-252018-05https://hdl.handle.net/11299/197537Several strongly correlated electronic materials, such as FeSe, are thought to manifest quantum critical transitions to an electronic nematic state. In my talk, I will discuss an interesting feature of the nematic QCP: its anisotropic (quadrupolar) nature implies the appearance of dynamical fluctuations at finite frequencies but very long spatial scales. These fluctuations encode information on the driving mechanism of the nematic transition: whether it involves an external degree of freedom, such as spin fluctuations, coupled to the electronic charge, or internal charge degrees of freedom (a Pomeranchuk instability). I will show that Raman data for FeSe1-xSx agrees with the hypothesis of a Pomeranchuk instability. Finally, I will also describe how these nematic critical fluctuations are ‘shaped’ by conservation laws (which are constraints on long spatial scales), implying a fascinating interplay between classical and quantum scales.enFTPICESND 2018Identifying mechanisms of quantum nematic transitions from the dynamic susceptibilityPresentation