Escobar Sanabria, David2012-12-112012-12-112012-08https://hdl.handle.net/11299/140744University of Minnesota M.S. thesis. August 2012. Major: Aerospace engineering and mechanics. Advisor: Gary J. Balas, Roger E.A. Arndt. 1 computer file (PDF); viii, 113 pages.Underwater, supercavitating vehicles can achieve higher speeds than conventional submarine vehicles due to the drag reduction result of the vehicle-fluid isolation. Re- search on the control of high speed supercavitating vehicles has led to theoretical so- lutions; however, validation and testing of control laws to drive the vehicle motion are expensive, complex and have not been presented in the open literature. This thesis presents an approach to the experimental validation of control systems for a supercavitating test vehicle in the longitudinal plane. The supercavitating vehi- cle considered in this thesis consists of a cylindrical body with a disk cavitator and two lateral, sweptback, wedge fins. The control validation platform enables the use of the high speed water tunnel located at the Saint Anthony Falls Laboratory to recre- ate realistic flight scenarios including the effect of ocean waves on the vehicle. The test platform uses the hydrodynamic forces produced by the fluid-vehicle interaction, embedded flight computer, and analytical equations of motion to test the closed-loop system performance in real time. The equations of motion for the test vehicle are de- rived based on experiments in which the effect of perturbed flow on the vehicle motion is also considered. A controller for the test vehicle is synthesized using H-infinity op- timization. Water tunnel tests successfully validated the supercavitating vehicle model and controller. The objectives were tracking of pitch angle reference commands and rejection of disturbances produced by an oscillating foil gust generator. The experimental results show the accuracy of the vehicle modeling and control design as well as the effect of the perturbed flow on the closed-loop system performance. The experience gained from this work enabled the introduction of the next generation test platform capable to capture planing phenomena.en-USAerospace engineering and mechanicsModel and Control validation of a high speed supercavitating vehicleThesis or Dissertation