Mast, Nicholas2021-01-252021-01-252020-11https://hdl.handle.net/11299/218064University of Minnesota Ph.D. dissertation. November 2020. Major: Physics. Advisor: Vuk Mandic. 1 computer file (PDF); 387 pages.The dark matter (DM) problem is currently one of the most pressing issues facing physics. This thesis presents some of my work and contributions to the detectors employed by the Super Cryogenic Dark Matter Search (SuperCDMS), one of the many experiments currently investigating DM. First, we present an overview of astrophysical and cosmological observations to give insight into our current understanding of DM and its role in the universe. Some potential particle DM candidates are also discussed. Then we describe the SuperCDMS experiment and relevant detector technologies. We go into particular detail in discussing the phonon sensors, deriving the relationships that define their fundamental working principles and describing their practical deployment. We also discuss the main noise contributions to the phonon sensors which can limit experimental sensitivity. We then present some work related to reconstruction of event position in the detectors, including new analysis techniques and a novel cryogenic calibration source mover we have developed and tested. We also present tests of improving experimental scalability by increasing individual detector masses using the largest-diameter cryogenic Si detectors yet operated. We present first experimental results from the novel use of (n,gamma) processes to calibrate the low energy nuclear recoil energy scale. This work is essential to understand how DM-nuclear interactions will manifest in semiconductor detectors. We also take a short look at the newest, most sensitive detectors currently operated by SuperCDMS and discuss how they are allowing new insights into critical physics processes in all SuperCDMS detectors. Finally, we demonstrate how some of the various improvements discussed in this work can improve the experimental reach of the next generation of SuperCDMS at SNOLAB.enCryogenic Detector Development for SuperCDMSThesis or Dissertation