Lechelt, Joseph2016-04-142016-04-142016-02https://hdl.handle.net/11299/178902University of Minnesota M.S. thesis. February 2016. Major: Conservation Biology. Advisor: Przemyslaw Bajer. 1 computer file (PDF); vi, 91 pages.Processes that regulate common carp (Cyprinus carpio) recruitment (i.e. survival of eggs, larvae and juveniles) are largely unknown. In interconnected lake-marsh systems of Minnesota, young of year (YOY) carp are generally found in marshes that winterkill and lack bluegill sunfish (Lepomis macrochirus), an abundant native predator. This suggests that bluegills might function as a biocontrol agent for carp. Further, whereas YOY carp are commonly found in winterkill marshes of south-central Minnesota, they are not found in similar systems in northern Minnesota where lake productivity is much lower, suggesting an aquatic productivity bottleneck on carp recruitment. Finally, in marshes where carp recruit (productive and bluegill-free), YOY must disperse into adjacent lakes to drive high population abundance. In this study, I conducted three experiments to test 1) the effect of bluegills on carp recruitment; 2) the effect of aquatic productivity on larval carp survival, growth and diet; 3) natural dispersal tendencies of YOY carp from a marsh into an adjacent lake. The first experiment employed four (20 m diameter) impermeable enclosures from 2011-2014. Each year, enclosures were stocked with carp eggs and every other one was stocked with bluegills. Backpack electrofishing surveys conducted five weeks later showed that carp catch per unit of effort (CPUE) was over 10-fold lower in the enclosures stocked with bluegills than in the controls. The second experiment, conducted in 2014 and 2015 used aquaria stocked with carp larvae and supplied with zooplankton densities and community structures from lakes of three different trophic states (oligo-, meso-, and eutrophic). It showed that carp larvae selectively consumed macrozooplankton (> 200 μm) and their growth rates were highest in the eutrophic lake and lowest in the oligotrophic lake. Survival, however, was high in all treatments. The third study was conducted in a natural lake-marsh system and utilized passive integrated transponder (PIT) tags to quantify the outmigration of YOY carp from the marsh to the lake. It showed that < 6% YOY carp outmigrated to the lake, supporting previous indirect estimates. The results of these three studies are important to understanding recruitment dynamics of carp in lake-marsh systems in Minnesota.enBiocontrolCommon CarpInvasive SpeciesJuvenile DispersalLake ProductivityRecruitmentEffects of bluegill predation, lake productivity, and juvenile dispersal on common carp recruitment dynamics in lake-marsh systems in MinnesotaThesis or Dissertation