Lehrke, DerekHourdos, John2017-07-192017-07-192017-04https://hdl.handle.net/11299/188993Large-scale Mesoscopic traffic simulation is a newly adopted tool due to recent advancements in traffic modeling as well as computer hardware. New studies show that modeling on a scale necessary to answer complicated questions such as diversion patterns around multi-corridor work zones is feasible. As with many research projects, the original objective of this project was adjusted to maximize the benefit from the final product. The initial objective was to create a framework and guidelines for the development of a Twin Cites Mesoscopic Dynamic Traffic Assignment (DTA) model. Discoveries during the course of the project as well as MnDOT priorities and urgent needs directed the project away from the development of guidelines and more toward the proof-of-concept and the development of the foundation for such a metro-wide model. In addition, a parallel MnDOT project, undertaken by a consulting group using the DynusT application, developed an almost metro-wide model. The project described in this report, changed its scope to treat this parallel project as a case study and identify its future utility beyond its immediate goals, which were to determine the most cost-effective construction phasing for several projects during the 2017-2020 construction seasons.enmesoscopic traffic flowmicroscopic traffic flowDynamic Traffic Assignmenttraffic simulationFramework and Guidelines for the Development of a Twin Cities Mesoscopic DTA ModelReport