Dey, SanjoyAtluri, GowthamSteinbach, MichaelMacDonald, AngusLim, KelvinKumar, Vipin2020-09-022020-09-022012-02-10https://hdl.handle.net/11299/215880Recent advancement in high throughput data collection technologies has resulted in the availability of diverse biomedical datasets that capture complementary information pertaining to the biological processes in an organism. Biomarkers that are discovered by integrating these datasets obtained from a case-control studies have the potential to elucidate the biological mechanisms behind complex human diseases. In this paper we define an interaction-type integrative biomarker as one whose features together can explain the disease, but not individually. In this paper, we propose a pattern mining based integrative framework (PAMIN) to discover an interaction-type integrative biomarkers from diverse case control datasets. PAMIN first finds patterns form individual datasets to capture the available information separately and then combines these patterns to find integrated patterns (IPs) consisting of variables from multiple datasets. We further use several interestingness measures to characterize the IPs into specific categories. Using synthetic data we compare the IPs found using our approach with those of CCA and discriminative-CCA (dCCA). Our results indicate that PAMIN can discover interaction type patterns that competing approaches like CCA and discriminative-CCA cannot find. Using real datasets we also show that PAMIN discovers a large number of statistically significant IPs than the competing approaches.en-USA pattern mining based integrative framework for biomarker discoveryReport