Brock, Joseph2017-07-182017-07-182017-05https://hdl.handle.net/11299/188867University of Minnesota Ph.D. dissertation. May 2017. Major: Aerospace Engineering and Mechanics. Advisor: Graham Candler. 1 computer file (PDF); x, 108 pages.Boundary layer transition for compressible flows remains a challenging and unsolved problem. In the context of high-speed compressible flow, transitional and turbulent boundary-layers produce significantly higher surface heating caused by an increase in skin-friction. The higher heating associated with transitional and turbulent boundary layers drives thermal protection systems (TPS) and mission trajectory bounds. Proper understanding of the mechanisms that drive transition is crucial to the successful design and operation of the next generation spacecraft. Currently, prediction of boundary-layer transition is based on experimental efforts and computational stability analysis. Computational analysis, anchored by experimen- tal correlations, offers an avenue to assess/predict stability at a reduced cost. Classi- cal methods of Linearized Stability Theory (LST) and Parabolized Stability Equations (PSE) have proven to be very useful for simple geometries/base flows. Under certain conditions the assumptions that are inherent to classical methods become invalid and the use of LST/PSE is inaccurate. In these situations, a global approach must be considered. A TriGlobal stability analysis code, Global Mode Analysis in US3D (GMAUS3D), has been developed and implemented into the unstructured solver US3D. A discussion of the methodology and implementation will be presented. Two flow configurations are presented in an effort to validate/verify the approach. First, stability analysis for a subsonic cylinder wake is performed and results compared to literature. Second, a supersonic blunt cone is considered to directly compare LST/PSE analysis and results generated by GMAUS3D.enComputational Fluid DynamicsG3DIOGlobal AnalysisGMAUS3DModal AnalysisTransitionDevelopment of Modal Analysis for the Study of Global Modes in High Speed Boundary Layer FlowsThesis or Dissertation