Levin, Michael W.Sun, ZongxuanHe, SuiyiZamanpour, MaziarGuo, Jianshe2025-03-102025-03-102024-12https://hdl.handle.net/11299/270177Running red traffic signals is a major cause of traffic collisions and resulting injuries and fatalities. Despite extensive prior work on systems to reduce red light violations, they continue to be a major problem in practice, partly because existing systems suffer from the flaw of providing the same guidance to all drivers. As a result, some violations are avoided, but other drivers ignore or respond inappropriately to red light running systems, resulting in safety issues overall. We present a novel method of providing accurate warnings to individual drivers to avoid the broad guidance approach of most existing systems. Recognizing if a driver will run red lights is highly dependent on signal phase and timing, traffic conditions along the road, and individual driver behavior, the proposed warning system contains three parts: a traffic prediction algorithm, an individual warning signal optimizer, and a driver warning display. The traffic prediction algorithm predicts future traffic states along the road towards the signalized intersections using the latest traffic conditions obtained through vehicle-to-vehicle and vehicleto-infrastructure communications. Then, an optimization problem is formulated to compute the optimal warning signal based on predicted traffic states and driver reaction model. Finally, the optimal warning signal is shown on the display screen to advise driver on how much braking is needed to avoid running the red light. The results of both simulated driving scenarios and real-world road tests show that the proposed system provides more effective and accurate warning signals to drivers, helping them avoid running red lights.Red light running warning systemSignalized intersection safetyConnected vehiclesDevelopment and demonstration of a novel Red Light Running Warning System using connected V2I technologyReport