Scannapieco, Evan2016-08-302016-08-302016-08-24https://hdl.handle.net/11299/182013Random motions are essential to the mixing of entrained fluids, and they are also capable of amplifying weak initial magnetic fields by small-scale dynamo action. I will describe a systematic study of mixing in magnetized media as a function of magnetic Prandtl number and Mach number. Using three-dimensional magnetohydrodynamic simulations that include a scalar concentration field, I show that metallicity gradients are always strongly biased perpendicular to the direction of the magnetic field. This is true both early on, when the magnetic field strength is negligible, and at late times, when the field is strong enough to back-react on the flow. I describe the origin of this anticorrelation and its consequences for modeling metal mixing in the intracluster medium and in other environments.enICMFTPIMetal Mixing in the Presence of a Magnetic FieldPresentation