Van Vleck, Harriet E.2014-01-092014-01-092011-12https://hdl.handle.net/11299/162273University of Minnesota Ph.D. dissertation. December 2011. Major: Ecology, Evolution and Behavior. Advisor: Jennifer Y. King. 1 computer file (PDF); ix, 156 pages.Agricultural management has altered soil carbon (C) and nitrogen (N) inputs, losses, and turnover rates. Understanding how management interacts with landscape factors to regulate soil C and N losses is essential to addressing climate change. Through research conducted in agricultural systems in Minnesota I investigated: (1) how the loss of corn root-derived C as carbon dioxide (CO2), and N as nitrous oxide (N2O) differed among five management systems, and (2) how hillslope position and soil moisture affected the size and turnover of soil C pools. In a field study using stable isotope techniques, I found that the fraction of root-derived C and N emitted as CO2 and N2O, the C and N emission factors, were 35% and less than 1% respectively. Individually, each emission factor was lower in systems with increased rotation diversity. Conversely, the relationship between C and N emission factors differed with tillage and fertilization intensity, not with rotation diversity. The magnitude of root-derived C and N emission factors has agricultural policy implications. Currently an emission factor of 1% is used for all N inputs to agricultural systems. My research suggests that a lower emission factor would better reflect N2O emissions from belowground N sources.In a laboratory study, both position and soil moisture significantly impacted the size and mean residence time of soil C pools along a low slope hillslope. Intact core sections of the upper four horizons from three hillslope positions were incubated at 50, 75, 90 and 100% water-filled pore space (WFPS) for 355 days. Total soil C (TC), N, and the resistant fraction of TC (64%) increased downslope. Under saturated conditions, 100% WFPS treatment, the size and mean residence time of the labile C fraction (<1% of TC) increased. Increased moisture, between 50% and 90% WFPS, also lengthened the mean residence time of slow C. In this low slope landscape I found effects of both position and moisture on C pool dynamics; soil moisture had the most significant impacts on labile C pool size and the slow C pool mean residence time.en-USGreenhouse gasHillslopeRootsSoil carbonSoil moistureSoil NitrogenImpacts of agricultural management and landscape factors on soil carbon and nitrogenThesis or Dissertation