Bayram, HalukVander Hook, JoshuaIsler, Volkan2020-09-022020-09-022015-09-28https://hdl.handle.net/11299/215979We consider the problem of gathering bearing data in order to localize targets. We start with a commonly used notion of uncertainty based on Geometric Dilution of Precision (GDOP) and study the following bi-criteria problem. Given a set of potential target locations and an uncertainty level U, compute an ordered set of measurement locations for a single robot which (i) minimizes the total cost given by the travel time plus the time spent in taking measurements, and (ii) ensures that the uncertainty in estimating the target’s location is at most U regardless of the targets’ locations. We present an approximation algorithm and prove that its cost is at most 28.9 times the optimal cost while guaranteeing that the uncertainty is at most 5.5U. In addition to theoretical analysis, we validate the results in simulation and experiments performed with a directional antenna used for tracking invasive fish.en-USGathering Bearing Data for Target LocalizationReport