Oh, Se Eun2021-05-172021-05-172021-02https://hdl.handle.net/11299/220132University of Minnesota Ph.D. dissertation. February 2021. Major: Computer Science. Advisor: Nicholas Hopper. 1 computer file (PDF); xiii, 161 pages.Tor is perhaps the most well-known anonymous network, used by millions of daily users to hide their sensitive internet activities from servers, ISPs, and potentially, nation-state adversaries. Tor provides low-latency anonymity by routing traffic through a series of relays using layered encryption to prevent any single entity from learning the source and destination of a connection through the content alone. Nevertheless, in low-latency anonymity networks, the timing and volume of traffic sent between the network and end systems (clients and servers) can be used for traffic analysis. For example, recent work applying traffic analysis to Tor has focused on website fingerprinting, which can allow an attacker to identify which website a client has downloaded based on the traffic between the client and the entry relay. Along with website fingerprinting, end-to-end flow correlation attacks have been recognized as the core traffic analysis in Tor. This attack assumes that an adversary observes traffic flows entering the network (Tor flow) and leaving the network (exit flow) and attempts to correlate these flows by pairing each user with a likely destination. The research in this thesis explores the extent to which the traffic analysis technique can be applied to more sophisticated fingerprinting scenarios using state-of-the-art machine-learning algorithms and deep learning techniques. The thesis breaks down four research problems. First, the applicability of machine-learning-based website fingerprinting is examined to a search query keyword fingerprinting and improve the applicability by discovering new features. Second, a variety of fingerprinting applications are introduced using deep-learning-based website fingerprinting. Third, the work presents data-limited fingerprinting by leveraging a generative deep-learning technique called a generative adversarial network that can be optimized in scenarios with limited amounts of training data. Lastly, a novel deep-learning architecture and training strategy are proposed to extract features of highly correlated Tor and exit flow pairs, which will reduce the number of false positives between pairs of flows.enTowards More Effective Traffic Analysis in the Tor Network.Thesis or Dissertation