Quillien, Jean-Baptiste2020-11-172020-11-172019-09https://hdl.handle.net/11299/217149University of Minnesota Ph.D. dissertation. September 2019. Major: Educational Psychology. Advisors: Keisha Varma, Wilma Koutstaal. 1 computer file (PDF); vii, 144 pages.The aim of this paper is to bridge the process of scientific reasoning with the field of cognitive science, and more specifically, the cognitive mechanisms involved during reasoning. This intent of bridging scientific reasoning with cognitive mechanisms gave birth to a new model: the “Z” model of scientific reasoning. This model integrates the traditional scientific reasoning steps while depicting the cognitive mechanisms and mental flexibilities at use during reasoning. The goal of this experiment was to test the “Z” model and thus investigate the role of divergent and convergent thinking during scientific reasoning. In addition, the “Z” model highlights the importance of Contextual Focus during scientific reasoning. Contextual Focus is defined as the cognitive shift between modes of thoughts. Contextual Focus was tested to investigate its predictive power on our specific measure of scientific reasoning (Bouncing Ball Reasoning Task; BBRT) and a broader measure of scientific reasoning (Lawson Test of Scientific Reasoning; LTSR). In addition, the predictive power over scientific reasoning performances of Intellect and Openness, the personality traits of interest, was also tested. First, we hypothesized that participants experimentally primed to think divergently should perform better during the exploration of the problem space during a scientific reasoning task (Phase 1 of BBRT). As predicted, participants in the divergent thinking group generated on average more hypotheses than the participants in the convergent thinking and the control groups. Secondly, we hypothesized that participants experimentally primed to think convergently should perform better during the exploitation of the evaluative space during a scientific reasoning task (Phase 2 of BBRT). As predicted, participants in the convergent thinking group displayed on average fewer categorical errors than the participants in the divergent thinking or the control groups. In addition, Contextual Focus was found to be a significant predictor of the overall performance in exploring the problem space of our specific scientific reasoning problem. Intellect score over broader scientific reasoning (LTSR) performance, Contextual Focus and Intellect were found to be significant predictors of broader scientific reasoning (LTSR) performance. Those findings can also be interpreted with broader cognitive science lenses. Given that complex mental tasks such as problem solving and critical thinking also require divergent and convergent thinking, future research should test whether the priming used during our experimental protocol also leads to an advantage on more general reasoning tasks.encognitionconvergent thinkingdivergent thinkingmodel of scientific reasoningproblem solvingScientific reasoningThe Roles of Convergent, Divergent Thinking, and Contextual Focus during Scientific Reasoning: Birth of the “Z” ModelThesis or Dissertation