Tupper, P.F.2007-08-162007-08-162002-07https://hdl.handle.net/11299/3804Our goal is to obtain a test system for the evaluation of time-stepping methods in molecular dynamics. We consider a family of deterministic systems consisting of a finite number of particles interacting on a compact interval. The particles are given random initial conditions and interact through instantaneous energy- and momentum-conserving collisions. As the number of particles, the particle density, and the mean particle speed go to infinity, the trajectory of a tracer particle is shown to converge to a stationary Gaussian process. We simulate the system with two numerical methods, one symplectic, the other energy-conserving, and assess the methods' ability to recapture the system's limiting statistics.The motion of a tracer particle in a one-dimensional system: Analysis and simulation