Guralnik, ValerieKarypis, George2020-09-022020-09-022001-08-16https://hdl.handle.net/11299/215481In recent years, we have seen an enormous growth in the amount of available commercial and scientific data. Data from domains such as protein sequences, retail transactions,intrusion detection, and web-logs have an inherent sequential nature. Clustering of such data sets is useful for various purposes. For example, clustering of sequences from commercial data sets may help marketer identify different customer groups based upon their purchasing patterns. Grouping protein sequences that share similar structure helps in identifying sequences with similar functionality. Over the years, many methods have been developed for clustering objects according to their similarity. However these methods tend to have a computational complexity that is at least quadratic on the number of sequences, as they need to compute the pairwisesimilarity between all the sequences. In this paper we present an entirely different approach to sequence clustering that does not require an all-against-all analysis and uses a near-linear complexity $K$-means based clustering algorithm. Our experiments using data sets derived from sequences of purchasing transactions and protein sequences show that this approach is scalable and leads to reasonably good clusters.en-USA Scalable Algorithm for Clustering Sequential DataReport