Deterministic and Stochastic Models for the
Unit Commitment Problem*

Kashi Abhyankarf Tiernan Fogarty? Jennifer Kimber? Anhua LinY

Seung Seol Samer Takriti**

July 30, 1998

1 Introduction

Recent advances in computer technology make possible new methods for the distribution and
sale of electricity. Much as the telecommunications network was deregulated, new information
and monitoring systems allow for the deregulation and increased private production of electric
power. Until recently, the generation and transportation of electricity were primarily con-
trolled by a local utility company. As these utilities owned both the generators for electricity
production and the distribution networks, electric power consumers were forced to buy in a
sellers’ market. While each state was responsible for regulating the price of electricity, each
local utility essentially maintained a monopoly on electricity as a commodity.

In 1978 Congress passed the Public Utilities Regulatory Policies Act (PURPA). PURPA
allowed non-utility (unregulated) companies to generate and sell electricity to regulated utility
companies at the regulated price. This act was designed to increase research and development
of renewable energy sources. Specifically, non-regulated companies could profit by the pro-
duction of electricity by alternative means such as windmills, solar power, small dams, and
co-generation plants.

More recently the prospect of complete deregulation has come about through the Energy
Policy Act of 1992 and the Federal Energy Regulatory Commission’s (FERC) Notice of Pro-
posed Rule-making. While FERC has been the driving force behind electric power deregula-
tion, individual states are responsible for erecting specific deregulation policies and electricity
prices. We refer the reader to [2] and [13] for details. Figure 1 provides the current status
of deregulation in each state. Comprehensive information can be found at the Department of
Energy’s website http://wuw.eia.doe.gov/fuelelectric.html and at the website of FERC
http://www.ferc.fed.us/intro/intro2.htm.

*This work was supported in part by the Institute for Mathematics and its Applications, University of
Minnesota.

tDepartment of Mathematics, University of California - Berkeley. email:kashiGmath.berkeley.edu

i Applied Math Department, University of Washington. email:rucksack@amath.washington.edu
$Department of Math and Computer Science, Kent State University. email: jkimber@mcs.kent.edu
IDepartment of Mathematical Sciences, The Johns Hopkins University. email:alin@brutus.mts. jhu.edu
IDepartment of Mathematics, University of Minnesota. email:sseo@math .umn.edu
**Mathematical Sciences Department, IBM Watson Research Center. email:takriti@watson.ibm.com

Bl Festructuring Legislation Enacted
1 com prRhensve Regulaton: Order |sSuad

Figure 1: States which have issued comprehensive deregulation orders and/or enacted restruc-
turing legislation as of June 1, 1998.

Note that the deregulation of electricity only pertains to the generation of power and not
transmission or distribution. Local utility companies still maintain a relative monopoly on the
transmission and distribution of electricity since these aspects use high voltage wires and local
distribution networks that utilities have already installed and own. While the generation of
electricity is now a commodity on the open market, buyers are still required to purchase the
transportation and distribution of power through local utility companies. Here distribution is
defined as the conversion of high voltage (transmission) to lower voltage via the smaller wires
linked to the buyer.

Deregulation has forced utilities to split into two types: electricity production and electricity
distribution. Distribution utilities are responsible for delivering power to the consumers at the
lowest possible price while guaranteeing that the demand is always met. Distribution utilities
usually buy power 24 hours in advance from the lowest bidders among the production utilities.
To ensure that demand will never exceed supply, distribution utilities have separate emergency
contracts with generation utilities capable of producing short-term electricity at a higher cost.

Prior to deregulation, local utilities serviced a relatively constant number of customers.

With the fixed demand of a captive clientele, utilities were able to accurately forecast daily
power generation needs. Profits were high as utilities were able to guarantee meeting the
demand by over-producing and forcing the extra cost onto the consumer. Now that electric
power generation is undergoing deregulation; consumers have the means to switch utilities at
any time. For any single production utility, the change in the stability of the demand for
electricity has forced expected energy demand models to change from static and deterministic
to dynamic and stochastic.

In the next section, we will give details of the resources of a typical production utility
and outline the constraints governing electricity production while attempting to maximize a
production utility’s profit. A deterministic model will be outlined for use in the case where
a production utility has advance knowledge of the demand profile. We will then discuss the
necessary changes in the model that must be made when future demand is stochastic. While
the first model applies to a utility in a pre-deregulated region, the second (stochastic) model
applies to a deregulated production utility.

2 Formulation

14000

12000

10000

8000

6000

4000

2000

-2000 I I I I I
20 30 40 50 60 70 80

Figure 2: Quadratic function with linear least-squares fit.

In order to understand our model, a description of a typical system (generation company) must
be given along with a definition of terms used to describe the model. Each utility has a certain
number of generators, which can be of different types. For example, a system may have 11
coal generators, 3 nuclear generators and 8 natural gas generators. Each of these generators

impose various constraints that the system must satisfy. Once turned on, a generator must
be on a minimum amount of time (up time) and similarly, once turned off, a generator must
remain off for a minimum amount of time (down time). In addition to the cost of running a
generator (determined by the cost function), each time a generator is turned on a start up cost
is incurred. While the cost function for running a generator is usually quadratic,

f(2) = a+bz + c2?,

the coefficient ¢ of the z? term is typically so small that we may approximate the quadratic
cost function with a linear least-squares fit. See Figure 2 for an example of using a linear
least-squares fit to approximate a quadratic with a line. Note that Figure 2 is an exaggerated
example; see Figure 3 for linear fits of actual quadratic cost functions for typical generators in
our study.

3000

2500 J

2000 1

1500 1

1000} J

500 | | | | | |
20 30 40 50 60 70 80 90

Figure 3: Quadratic cost functions of two generators (37 and <) with linear least-squares fit.

2.1 Regulated Deterministic Model

In order to maximize profit, we must minimize the total cost of running the generation system.
The total cost can be written as

I T
SNl — £:(0) + £fi(O)UF + HiGl). (1)

i=11t=0

Here f;(2%) is the cost as a function of generated power 2, where i denotes the ith generator at

4

x 10

15

141

131

12

11p

x 10

18

16

14F

12

0 5 10 15 20 25

Figure 4: Sample 24 hour demand load (MWH) for February(<>) and November(+) (top figure)
with May(o) and August(x) (lower figure) of 1997 for the Southwest Power Pool.

time ¢. There are two binary variables, U; and Gi, associated with each generator. If generator
i is on at time ¢ then U} = 1, while if generator ¢ is off at time ¢ than U} = 0. In addition
to the cost of operation f;(z{), each generator has a start-up cost H;. Since the start-up cost
H; must be accounted for each time a generator is turned on, we set G = 1 if U} ; = 0 and
U} = 1. The value of G is set to zero at all other times. Mathematically, this is represented
as Gi > Uf —U}_;.

The minimization is subject to the following constraints;

e The entire system of generators must produce a combined electric power supply (ZZ-IZI 21)
which meets or exceeds the expected demand (d;) at each hour.

I
Z#Zdt,t:l,“'aT- (2)
i=1

Figure 4 provides examples of 24 hour demand profiles for the Southwest Power Pool
(Figure 5) covering Arkansas, Kansas, Louisiana, and Oklahoma.

e Each generator has a minimum up time and a minimum down time. If a generator is
turned on, then it must stay on for a minimum up time. When a generator is turned
off, it must stay off for a certain down time. The minimum up and down times are
determined by the type of generator. Recall that U} is a binary variable so that we can
specify the minimum up time requirement as

Ul -U! <U:, 7=t ,min{t+L; - 1,T},t =2,---,T, (3)
while the minimum down time can be written as

Uti—l_UtiS]'_Uia T:t:"'amin{t+li_1aT}at:2a"'aT- (4)

Here, L; is the minimum up time of generator i while /; is its minimum down time.

Figure 5: Electricity power pools.

e Each generator has a fixed power output range. Once a generator is turned on, it must
generate a minimum amount of power ¢; and can only generate a certain maximum
output of power @;. Inside the power range, the cost is determined by the cost function
fi described above. The constraint for the power range is given as

Ui <ZA<QUi, t=1,---,T, i=1,---,1. (5)

e The production utility must insure that the demand is met even if a generator fails, thus
we must insure that

I
Y QiU > dy + . (6)

i=1

Here r; is known as the spinning reserves. The value assigned to spinning reserves depends
on the mix of generators and demand constraints in the system.

2.2 Deregulated Stochastic Model

In a deregulated system, the distribution utility owns the transmission lines and has the respon-
sibility of buying power from different production utilities at the lowest price. Since bidding
takes place every 24 hours in advance of the expected demand, the amount of power that a
given production utility must generate has become more uncertain. The stochastic nature of
production forces us to alter our model to include different probabilistic future scenarios. To
model uncertainty, we use a set of scenarios—sample paths—to approximate the continuous
distribution of future demand. Each scenario is assigned a probability, ps, that reflects the
likelihood of its occurrence in the future. One may think of the scenarios as a discretization
of the continuous distribution of electric load. The goal of the optimization becomes that of
minimizing the expected cost of generating electricity while meeting the constraints imposed
by the generating units and by future demand scenarios. We assume that there are S possible
scenarios and denote the load by d(y,), t=1,...,T, s =1,...,5.

Note that as the number of scenarios increases, the solution to our discrete model ap-
proaches that of the continuous one [1]. However, a large number of scenarios results in a
large-scale mathematical model that could be numerically intractable. A good model should
use a moderate number of scenarios that approximate future uncertainty well while maintain-
ing the size of the problem under control. This is the subject of intensive research in the area of
stochastic programming. In this report, we do not discuss the problem of generating scenarios.
Our effort here is focused on solving the stochastic model efficiently.

Our model is a multi-stage stochastic program in which the decision maker may revise
his/her decision at the end of each period of the planning horizon. Revisions are made in order
to react to the load scenario being observed. For example, decisions made at the beginning
of the planning horizon assume that the our knowledge of the future is summarized by the
scenarios d(; ;) and their probabilities ps. As time goes by, we accumulate more information
regarding the system by eliminating some of the scenarios. The model should account for this
ability to make decisions—recourse—as more information becomes available. To do so, we
assign a set of variables, U(it, & and zft 5 to each scenario s.

The resulting mathematical formulation is:

min Y51 ps Si1 St lfilzl,) — £i(0) + iU,) + HiG},)]
st Xic1 #{r,e) 2 dits);
Ulyy ~Uic1,s <UE, 7=t min{t + L; — 1,T},
Ut 1, = Ulyyy <1=Ujy, 7=t min{t +1; = 1,T},
GiU(s) < 2(1,6) < QiU(y 45
Gzt,s) 2 Uft,s) —Ui_1,6-

The variables U(it, 5) and zft, 5) are now functions of generator, time and possible scenario. The
constraint (6), which insures against generator failure is no longer in the model as it is now
the responsibility of the buyer (distribution utility) to ensure that the total demand is met.
Recall that in the above models some variables are continuous while others may only take
integer values. Since we have this mix of variable types (continuous and integer) our models

are known as mixed-integer problems. In the next section we give a brief outline of the methods
used to solve both the deterministic and stochastic mixed-integer models.

3 Solution Strategies

For the past twenty years, the unit commitment problem has been the subject of intensive
research. Proposed solution methods include priority lists, dynamic programming, and La-
grangian relaxation. Priority listing is a heuristic approach in which the generating units are
ranked in the order of their average costs. When demand exceeds supply, the least expensive
unit is committed. Dynamic programming is an exhaustive search approach in which all pos-
sible states of the generating units are studied. As expected, dynamic programming suffers
from the exponential increase in the search space as the size of the problem grows. As a result,
dynamic programming is considered impractical for use in solving these types of problems.

The most successful technique for solving the unit commitment problem seems to be La-
grangian relaxation. The demand constraints are relaxed which decomposes the problem into
smaller optimization problems. Each smaller problem minimizes the cost of operating a single
generator. These single-generator problems can be solved easily using dynamic programming.
The size of the resulting state space is relatively small which permits solving these subproblems
quickly. To find an optimal solution, the Lagrangian is maximized. Given that the model is
a mixed-integer program, the solution of the Lagrangian dual may not have a corresponding
primal feasible solution. Furthermore, the dual function is not differentiable which complicates
the problem of finding a search direction and an appropriate step size. The interested reader
may refer to [7], [4], [14], and [12] for more details.

Although the unit commitment problem is a mixed-integer program, there has not been
any attempt to solve it using branch-and-bound. The reason is that a large space is needed
to store the search tree. Given the increase in computer speed and storage capacity over the
past few years, and advancements in the field of integer programming, problems that were
once considered unsolvable have been successfully solved. For example, problems arising in
the airline industry, such as fleet assignment and crew scheduling, can now be handled with a
reasonable degree of satisfaction. The goal of our study was to investigate the use of branch-
and-bound for solving the unit commitment problem.

To solve the resulting models, we use the mixed-integer programming routine provided by
CPLEX [5]. The solver is based on branch-and-bound [10]. Briefly, the integer requirement
on U(it,s)’ t=1,...,T, s=1,...,5,i=1,...,1, is relaxed. The resulting linear program is
solved establishing a lower bound on the optimal value of (7). If the resulting solution satisfies
the integer requirement, then we stop. Otherwise, two new problems—nodes—are created.
The first is constructed by adding the constraint U("t, 5 = 0 and the second is constructed by
enforcing the condition U("t7 5 = 1. The process of creating new nodes is called branching.
There are several methods for selecting a branching variable U(it, 5" CPLEX seems to choose a
variable, U(it’s), so that the term U(it,s)(l - U(it,s)) is maximized.

After creating two new linear programs, each one is solved using the dual simplex method [9].
The node with the lowest objective value is chosen and, if needed, two new ancestors are cre-
ated. The process is repeated until all nodes in the search space are exhausted. Note that
CPLEX performs many operations to reduce the size of the search space. For example, if
an integer solution is found, all nodes with a lower bound greater than the objective value

corresponding to this feasible solution are eliminated. This process is called pruning. Another
example is the case in which a near-integer solution is found. CPLEX uses heuristic techniques
to construct a feasible solution. This feasible solution could be used to eliminate some of the
nodes in the search tree.

Note that the branch-and-bound process maintains an upper and a lower bound on the
value of the optimal objective function. These bounds get tighter as we investigate more nodes
in the search tree. One may force the search process to continue until both bounds are equal—
optimality. However, finding an exact optimal solution may be time consuming. This is why
the search is usually stopped when the relative gap between the upper and lower bounds is
below a given threshold. We use a threshold of 0.5% for most of our calculations presented in
Section 4.

4 Numerical Experience

To study the effectiveness of branch-and-bound in solving the mathematical program in (7),
we constructed two sets of examples. The first is based on the generation system presented
in [6]. The model has 10 generators and a time horizon of 24 hours. To pass the model to
CPLEX, we used AMPL [11]. The model and data files are listed in the appendix. However,
we only had access to the student version of AMPL which cannot handle large models. To
pass large models, we wrote a C code which could be used to create the necessary CPLEX
files. The code is also listed in the appendix.

The cost functions of the generating units were assumed to be linear. The input parameters
are given in Table 1. The column labeled “fix cost” provides the value of the intercept of the
function f;, while “rate” denotes the slope of f;. Table 2 provides the electric load d;) in
MWH. The mixed-integer programming solver of CPLEX failed to solve the problem and we
had to stop the process after 12 hours. We also tried a 48-hour example and CPLEX failed to
solve it. As a matter of fact, CPLEX struggled with all examples if it was not given help.

To cut down the execution time and the number of searched nodes, we had to carefully
study the data and provide the optimizer with the structure of the optimal solution. We list
some of the approximating assumptions that we used in our calculations.

1. It was clear that the first generator had a lower cost than any other generating unit.
Furthermore, its capacity was lower than the minimum load over the 24-hour planning
horizon. As a result, one can set U(lt) = lforallt=1,...,Tands=1,...,S.

2. Another trick was finding units that are similar and forcing the optimizer to commit
them one at a time. For example, units 3 and 4 have similar properties. The optimizer
may study a large number of nodes trying to decide which unit to choose over the
other. By choosing to dominate generator 3 with generator 4, the execution time was
cut significantly.

3. One can determine if a unit dominates another. This is the case if two units 7 and j
have similar minimum up and down times, and if one of them, ¢, has a smaller start-
up and running costs, then we can impose the constraints U(’t 5) > U(]t 5) t=1,...,T,
s=1,...,85.

4. Finally, to reduce the effect of T', we solved the problem as a sequence of optimization
problems. For example, when T' = 24, we solved the problem as if the horizon was

generator | min load | max load | min on | min off | fix cost | rate | start cost

1 150 455 8 8 1000 | 16.19 4500
2 150 455 8 8 970 17.26 5000
3 20 130 5 5 700 16.6 550
4 20 130 5 5 680 16.5 560
5 25 162 6 6 450 19.7 900
6 20 80 3 3 370 22.26 170
7 25 85 3 3 480 27.74 260
8 10 55 1 1 660 25.92 30
9 10 55 1 1 665 27.27 30

10 10 55 1 1 670 27.79 30

Table 1: Generator properties of example 1.

Hours 1 2 3 4 5 6 7 8 9 10 11 12

Demand | 700 | 750 | 850 | 950 | 1000 | 1100 | 1150 | 1200 | 1300 | 1400 | 1450 | 1500

Hours | 13 14 15 16 17 18 19 20 21 22 23 24

Demand | 1400 | 1300 | 1200 | 1050 | 1000 | 1100 | 1200 | 1400 | 1300 | 1100 | 900 | 800

Table 2: Electric demand of example 1 in MWH

16 hours only. Then, the resulting solution was used to fix the value of U(it7 5) for the
first 8 hours, ¢ = 1,...,8, and for all units and scenarios. Then, the next 16 hours,
t=9...,24, were solved, and so on. This approach seems to work quite well with all of
our test problems.

We attempted to solve each test problem twice. In the first attempt, the model was passed
on to CPLEX with some restrictions on the order in which different units could be committed.
In the second run, we shortened the planning horizon and used a rolling-window approach to
solve the problem. The results of our numerical tests are summarized in Table 3. The first row
provides the results for the case in which the full horizon was considered, while the second row
provides the results when the planning horizon was broken into sequences of 16-hour windows.
For the case of 10 generators, we used 1, 3, and 9 scenarios. The scenarios branched at hours
8 and 16.

The last two rows of Table 3 contain the results for a generation system with 32 generating
units. This system was too large for CPLEX and we had to fix the status of many of the
generating units. Fixing the status of some units is acceptable from a practical point of view.
The generating units are usually split into must-run, cyclers, and peakers. The variables U
corresponding to the must-run units could be set to one. For peakers, these variables could be
set to zero. In practice, a peaker can be started in 5—10 minutes and there is no need to schedule
its use hours in advance. As a result, the model contained 18 generating units—cyclers.

In all cases, we were able to achieve an error of less than 0.5% when using the above-
mentioned approximations. When the full problem—without breaking the horizon—was solved,
the error was approximately three times higher.

10

5

generator | scenario | upper bound | lower bound | % error | nodes | time
10 1 544392 543656 0.135 2011 | 103.55
543923 543746 0.032 870 24.9
10 3 551456 542144 1.688 2170 | 515.24
545671 542933 0.501 914 227.69
10 9 551682 541776 1.795 719 | 1080.95
545511 542656 0.523 2090 | 1881.58
32 9 1120510 1120501 0.001 38 2470.23
1127096 1124295 0.248 217 577.4

Table 3: Branch-and-bound applied to four test problems.

Conclusions

As the electric power industry deregulates electricity generation, power producers are faced
with higher uncertainty in their electric load and prices. Stochastic modeling of these systems
is becoming increasingly important. While the stochastic models can provide well-hedged so-
lutions, they cause serious difficulties from an optimization point of view. These models are
often large mixed-integer programs and solving them requires effective approximating tech-
niques. We attempted to solve these models using CPLEX and managed to attain accurate
results. However, the maximum number of scenarios in our test runs was nine; barely suffi-
cient to approximate future uncertainties in a highly volatile market. More work is needed to
develop better methods for solving such models efficiently.

References

[1]

2]

J. R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer Verlag,
New York, 1997.

Mississippi Public Service Commissio. Revised prosed transition plan for retail competi-
tion in the electric industry, June 1998. Post Office Box 1174, Jackson, MS. 39215-1174.

Darinka Dentcheva and W. ROmisch. Optimal power generation under uncertainty via
stochastic programming. Technical report, Hiimboldt-Universitat Berlin, Institut fir
Mathematik, 1998.

D. P. Bertsekas G. S. Lauer, N. R. Sandell Jr. and T. A. Posbergh. Solution of large-
scale optimal unit commitment problems. IEEE Transactions on Power Apparatus and
Systems, 101(1):79-86, 1982.

CPLEX Optimization Inc. Using the CPLEX Callable Library, 1995.

S. A. Kazarlis, A. G. Bakirtzis, and V. Petridis. A genetic algorithm solution to the
unit commitment problem. IEEE Transactions on Power Systems, 11(1):83-92, February
1996.

11

[7] A. Merlin and P. Sandrin. Anew method for the unit commitment at electricite de france.
IEEE Transactions on Power Apparatus and Systems, 102(2):1218-1225, 1983.
[8] A. Méller and W. Rémisch. A dual method for the unit commitment problem. Technical
report, Hlimboldt-Universitat Berlin, Institut fiir Mathematik, 1995.
[9] K. G. Murty. Linear Programming. John Wiley & Sons, 1983.
[10] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John Wiley
& Somns, Inc, 1988.
[11] D. M. Gay R. Fourer and B. W. Kernighan. AMPL: A Modeling Language For Mathe-
matical Programming. boyd & fraser publishing company, 1993.
[12] G. B. Sheblé and G. N. Fahd. Unit commitment literature synopsis. IEEE Transactions
on Power Systems, 1994.
[13] Penny Tvrik. Iowa utilities board investigates electric wheeling. CIRAS News, 30(2),
winter 1996.
[14] A. J. Wood and B. F. Wollenberg. Power Generation, Operation, and Control. John
Wiley, 1996.
Appendices
AMPL Model

To implement our model, we used AMPL [11]. The following is the AMPL model file for the
deterministic unit commitment problem.

param time;
param gen;

param demand {t in 1..time};
param c_low {i in 1..gen};
param c_upp {i in 1..gen};
param fix {i in 1..gen};
param 1_on {i in 1..gen};
param 1_off {i in 1..gen};
param startc {i in 1..gen};
param rate {i in 1..gen};

var Z {i in 1..gen, t in 1..time} >= 0;
var U {i in 1..gen, t in 1..time} binary;
var G {i in 1..gen, t in 1..time} >= 0;

minimize total_cost:

sum{i in 1..gen, t in 1..time}
(ratel[il* Z[i,t]+ fix[i] * U[i,t] + startc[il*G[i,t]);

12

subject to lowCap {i in 1..gen, t in 1..time}:
c_low[i] * U[i,t] <= Z[i,t] ;

subject to upCap {i in 1..gen, t in 1..time}:
Z[i,t] <= c_upplil* U[i,t];

subject to meetDemand {t in 1..time}:
sum{i in 1..gen} Z[i,t] >= demand[t];

subject to start {i in 1..gen, t in 2..time}:
G[i, t] >= U[i,t] - U[i,t-1];

subject to keepon {i in 1..gen, t in 2..time, r in t..min(t+1l_on[i]-1, time)}:
U[i,t] - U[i,t_l] <= U[i,r];

subject to keepoff {i in 1..gen, t in 2..time,r in t..min(t+1_off[i]-1, time)}:
U[i,t-1] - U[i,t] <=1 - U[i,r];

Constraints that could help the solver in achieving better performance

subject to fixUnit {t in 1..time} :
U[1,t] = 1;

subject to sixOverSeven {t in 1..time}:
ul6,t] >= U[7,t];

subject to fourOverThree {t in 1..time}:
Ul4,t] >= U[3,t];

The following is the data file for a problem with 10 generators, 24 hour horizon, and one
scenario

param gen := 10;

param time := 24;

param:

l_on 1_off c_low c_upp startc fix rate :=

1 8 8 150 455 4500 1000 16.19
2 8 8 150 455 5000 970 17.26
3 5 5 20 130 550 700 16.60
4 5 5 20 130 560 680 16.50
5 6 6 25 162 900 450 19.70
6 3 3 20 80 170 370 22.26
7 3 3 25 85 260 480 27.74
8 1 1 10 55 30 660 25.92
9 1 1 10 55 30 665 27.27
10 1 1 10 55 30 670 27.79;

13

param: demand :=

1 700
2 750
3 850
4 950
5 1000
6 1100
7 1150
8 1200
9 1300
10 1400
11 1450
12 1500
13 1400
14 1300
15 1200
16 1050
17 1000
18 1100
19 1200
20 1400
21 1300
22 1100
23 900
24 800;
C Code

Unfortunately, we only had access to the student edition of AMPL. To pass the large models
to CPLEX, we wrote a C code that helped in creating the input files needed to run CPLEX.
Here is our code.

#include <stdio.h>
#include <stdlib.h>

#define GENERATORS 20
#define PERIODS 72
#define BRANCHES 81
#define NAME 1024
#define FIXPERIODS 12

/* Format a string, change the spaces in a string into 0 */
void format (char string[])

{

char *ptr;

14

for (ptr=string; *ptr!=0; ptr++)
if (*ptr == > ?)
*ptr = ’07;

/* Read the information of the generators */

long readGenerator (char name[],
double minCapacityl[],
double maxCapacityl[],
long minUpTimel[],
long minDoTimel[],
double intercept[],
double slopel],
double startUp[])

long gen;
FILE *fp;

fp = fopen (name, "r");
if (fp == NULL)
{
printf ("-> Could not open %s.\n", name);
exit (EXIT_SUCCESS);
}

for (gen=0; gen<GENERATORS; gent++)
if (fscanf (fp, "41lf%1£f%1ld%ld%1f%1f)1f",
&minCapacity[gen], &maxCapacityl[gen],
&minUpTime [gen], &minDoTime [gen],
&intercept [gen], &slope[gen],
&startUp[gen]) == EOF)
break;

fclose (fp);
printf ("-> The model has %1d generators.\n", gen);
return (gen);

}

/* Read the information of loads */

double** readLoad (char namel[],

long* periods,
long* branches,

15

double probabilityl[]
)

long period,num_of_periods,num_of_branches;
long branch;

int i;

double ** load;

FILE *fp;

fp = fopen (name, "r");
if (fp == NULL)
{

printf ("-> Could not open %s.\n", name) ;
exit (EXIT_SUCCESS);
}
fscanf (fp,"%1d%1d" ,&num_of_branches,&num_of_periods) ;
/* allocate memory for storing the load data */
load=(double **)malloc(sizeof (double *)*num_of_branches);
for (i=0;i<num_of_branches;i++)
load[i]=(double *)malloc(sizeof (double)*num_of_periods);
/* read the load data */
for (branch=0;branch<num_of_branches;branch++)
{
fscanf (fp,"%1f" ,&probability [branch]) ;
for(period=0;period<num_of_periods;period++)
fscanf (fp,"%1£f" ,&load[branch] [period]) ;
}

fclose(fp);

*branches=num_of_branches;
*periods=num_of_periods;

printf ("-> The model has %1d periods\n", period);

return load;

16

/* Write the cost about binary variables */

void writeBinaryObjective (const long periods,
const long generators,
const long num_of_branches,
const double intercept[],
const double startUpl[],
const double probabilityl[],
FILE *fp)
{
char string[NAME];
long generator, period,branch;

fprintf (fp, "Minimize \n");

for (branch=0;branch<num_of_branches;branch++)

{

for (generator=0; generator<generators; generator++)
{
for (period=0; period<periods; period++)
{
sprintf (string, "u’21d%31d7%21d", generator, period,branch);
format (string);
fprintf (fp, " + J%1f %s\n",
probability[branch]*intercept [generator], string);

}
fprintf (fp, "\n");
}
}
for(branch=0;branch<num_of_branches;branch++)
{
for (generator=0; generator<generators; generator++)
{
for (period=0; period<periods; period++)
{

sprintf (string, "v%21d%31d’%21d", generator, period,branch);

format (string);

fprintf (fp, " + J%1f %s\n",
probability[branch]*startUp[generator], string);

}
fprintf (fp, "\n");
}

17

/* Write the linear cost into output file */

void writelLinearObjective (const long periods,
const long generators,
const double slopel],
const double probabilityl[],
const long num_of_branches,

FILE *fp)
{
char string[NAME];
long generator, period,branch;
for (branch=0;branch<num_of_branches;branch++)
{
for (generator=0; generator<generators; generator++)
{
for (period=0; period<periods; period++)
{
sprintf (string, "x%21d%31d’%21d", generator, period,branch);
format (string);
fprintf (fp, " + %1f %s\n",
probability[branch]*slope[generator], string);
}
fprintf (fp, "\n");
}
}
fprintf (fp, "st\n");
}

/* Write the constraints of minimum up time into output file =*/
void writeMinUpTime(const long periods,

const long generators,

const long minUpTime[],

const long num_of_branches,

FILE *fp)

char periodString[NAME],previousString[NAME],tauString[NAME] ;
long generator,period,branch;

long tau;

for (branch=0;branch<num_of_branches;branch++)

18

for (generator=0; generator<generators; generator++)
for (period=1; period<periods; period++)
{
sprintf (periodString, "u%21d’31d%21d", generator, period,branch);
format (periodString);
sprintf (previousString, "u%21d%31d%21d", generator,
period-1,branch);
format (previousString);

for (tau=period; tau<period+minUpTime [generator] && tau<periods;
tau++)
{
sprintf (tauString, "u%21d%31d%21d", generator, tau,branch);
format (tauString);
fprintf (fp, "%s - %s - %s <= O\n", periodString,
previousString, tauString);
}
}
}

/* Write the constraints of minimum down time into output file */

void writeMinDoTime (const long periods,
const long generators,
const long minDoTime[],
const long num_of_branches,
FILE *fp)

char periodString[NAME], previousString[NAME], tauString[NAME];
long generator, period,branch;
long tau;

for (branch=0;branch<num_of_branches;branch++)
{
for (generator=0; generator<generators; generator++)
for (period=1; period<periods; period++)
{
sprintf (periodString, "u%21d%31d%214",
generator, period,branch);
format (periodString);

sprintf (previousString, "u%21d%31d%214d",

19

generator, period-1,branch);
format (previousString);

for (tau=period; tau<period+minDoTime [generator] && tau<periods;
tau++)
{
sprintf (tauString, "u%21d%31d%21d", generator, tau,branch);
format (tauString);
fprintf (fp, "%s - %s + %s <= 1\n",
previousString, periodString, tauString);
}
}
}

/* Write the constraints of start_up variables */

void writeStartUp (const long periods,
const long generators,
const double startUpl[],
const long num_of_branches,
FILE *fp)
{
char string[NAME], periodString[NAME], previousString[NAME];
long generator, period,branch;

for (branch=0;branch<num_of_branches;branch++)

for (generator=0; generator<generators; generator++)
{

for (period=1; period<periods; period++)

sprintf (periodString, "u%21d%31d%214d",
generator, period,branch);
format (periodString);

sprintf (previousString, "u%21d%31d%214d",
generator, period-1,branch);

format (previousString);

sprintf (string, "v%21d%31d%214",
generator, period, branch);

format (string);

fprintf (fp, "%s - %s - %s <= 0",

20

periodString, previousString, string);

fprintf (fp, "\n");
}
}

}

/* Write the constraints of min,max capacities into output file */

void writeBounds (const long periods,
const long generators,
const double minCapacityl[],
const double maxCapacityl[],
const long num_of_branches,
FILE *fp)
{
char uString[NAME], xString[NAME];
long generator, period,branch;

for (branch=0;branch<num_of_branches;branch++)

{

for (generator=0; generator<generators; generator++)
for (period=0; period<periods; period++)
{
sprintf (uString, "u%21d’%31d%21d", generator, period,branch);
format (uString);
sprintf (xString, "x%21d%31d%21d", generator, period,branch);
format (xString);

fprintf (fp, "%1f %s - %s <= 0.0\n",

minCapacity[generator], uString, xString);

fprintf (fp, "%1f %s - %s >= 0.0\n",

maxCapacity[generator], uString, xString);
}

}

/* Write the constraints of demand into output file */

void writeDemand (const long periods,
const long generators,
double** load,
const long num_of_branches,
FILE *fp)

21

char string[NAME];
long generator, period,branch;

for (branch=0;branch<num_of_branches;branch++)
for (period=0; period<periods; period++)

{

for (generator=0; generator<generators; generator++)

{

sprintf (string, "x%21d%31d%214",

generator, period,branch);

format (string);

fprintf (fp, " + %s", string);

if (generator}6==0 && generator>1) fprintf(fp,"\n");

fprintf (fp, ">= %1f\n", load[branch] [period]);

}

/* The common parts of different scenarios should have the same value */

void writeEqual(const long periods,
const long generators,
double ** load,
const long num_of_branches,
FILE * fp)
{
char Stringl[NAME],String2[NAME],String3[NAME],String4 [NAME] ;
long generator,period,branchl,branch2,num_of_equal;
double temp;
long i;

for(period=0;period<periods;period++)
{
branch1=0;branch2=1;num_of_equal=0;
while(branchi<num_of_branches)

/* fix branchl,move branch2 until it’s corresponding load
value is different from the one for branchl */

22

while (branch2<num_of_branches &&
load[branch?] [period]==1load[branchl] [period])
{

num_of_equal++;
branch2++;

}

/* at this period,the load value of branchl is unique */
if (num_of_equal==0)
{
branchil++;
branch2=branchi+1;

}

/* at this period,branchl shares the load value with
num_of_equal other branches x/
else

{

for(generator=0;generator<generators;generator++)

sprintf (Stringl,"u%21d%31d%214",generator,
period,branchl);
format (Stringl);

sprintf (String3,"x%21d%31d%214" ,generator,
period,branchl);
format (String3);

for (i=branchi+1;i<branch2;i++)
{

sprintf (String2, "u%21d%31d%21d",generator,
period,i);

format (String2);

sprintf (String4, "x%21d%31d%214d" ,generator,
period,i);

format (String4) ;

fprintf (fp,"%s - %s =0\n",Stringl,String2);

fprintf (fp,"%s - %s =0\n",String3,String4) ;

branchi=branch2;

23

branch2++;
num_of_equal=0;

}

}

/* Write additional constraints according to the analysis of the
generator’s information into the output file */

/* this function should be changed according to different data of
generators */

void writeAddConstraints (const long periods,
const long generators,
const long scenarios,
FILE *fp)
{
long period, generator, scenario,generatorA,generatorB;
char string[NAME],stringA[NAME],stringB[NAME];

/* The first generator is always on */

generator = 1;
for (period=0; period<periods; period++)
for (scenario=0; scenario<scenarios; scenario++)
{
sprintf (string, "u’%21d%31d%21d", generator-1, period, scenario);
format (string);

fprintf (fp, "%s = 1\n", string);
}

/* Six is better than seven */
generatorA=6;generatorB=7;

for (period=0;period<periods;period++)
for (scenario=0;scenario<scenarios;scenario++)
{
sprintf (stringA,"u’,21d%31d%21d",generatorA-1,period,scenario);
format (stringl);
sprintf (stringB,"u’,21d%31d%21d",generatorB-1,period,scenario) ;
format (stringB);

fprintf (fp, "%s - %s >= O\n",stringA,stringB);

24

/* Three is better than four */
generatorA=3;generatorB=4;

for (period=0;period<periods;period++)
for (scenario=0;scenario<scenarios;scenario++)
{
sprintf (stringA,"u’,21d%31d%21d",generatorA-1,period,scenario);
format (stringh) ;
sprintf (stringB,"u’,21d%31d%21d",generatorB-1,period,scenario);
format (stringB) ;

fprintf (fp, "%s - %s >= O\n",stringA,stringB);
}
}

/* Fix the u variables of the first several periods */

void fix_period(FILE *fp,char name[],long generators,long num_of_branches,
long num_of _fix_periods)

{
char c[8] ,a ,string[NAME],u0;
double v;
long i,j,k,u[GENERATORS] [FIXPERIODS] [BRANCHES] ;
FILE * fpr;

int generator,period,scenario;

fpr=fopen(name,"r");
if (fpr==NULL)
{
printf ("->Could not open %s .\n",name);
exit (EXIT_SUCCESS) ;
}

/* set all the u variables of the first several periods to 0 */
for(i=0;i<generators;i++)
for(j=0; j<num_of_fix_periods;j++)
for (k=0;k<num_of_branches;k++)
ulil [j1 [k]=0;

/* set part of the u variables to 1 */

while(1)
{

25

fscanf (fpr,"%c%21d%31d%21d%1£f%c" ,&u0,&generator,&period,&scenario,
&v,&a);
if (u0!'=’u’) break;
else
if (period<num_of_fix_ periods)
u[generator] [period] [scenario]=1;

}

/* write the constraints into output file */
for (i=0;i<generators;i++)
for(j=0; j<num_of_fix_periods;j++)
for (k=0;k<num_of_branches;k++)

sprintf (string,"u’%21d%31d%21d",i,j,k);
format (string);
if (ulil[j]1[k]1==0)

fprintf(fp,"%s = 0.000000\n",string) ;
else fprintf(fp,"%s = 1.000000 \n",string);

fclose(fpr);

/* All the u variables are binary numbers */

void writeInteger (const long periods,
const long generators,
const long num_of_branches,
FILE *fp)

char uString[NAME] ;
long generator, period,branch;

fprintf (fp, "integers\n");
for (branch=0;branch<num_of_branches;branch++)
for (generator=0; generator<generators; generator++)
for (period=0; period<periods; period++)
sprintf (uString, "u%21d%31d%214", generator, period,branch);

format (uString);
fprintf (fp, "¥s\n", uString);

fprintf (fp, "end\n");

26

/* main function */

void main (void)

{
char name[NAME] ;
long generators, periods,num_of_branches,fix_periods;
long minUpTime [GENERATORS], minDoTime [GENERATORS] ;
double minCapacity[GENERATORS], maxCapacity[GENERATORS],
intercept [GENERATORS], slope [GENERATORS],
startUp [GENERATORS],
probability [BRANCHES] ;
double** demand;
int answer;

FILE *fp;

printf ("-> Enter the name of the generators file: ");
scanf ("%s", name);

/* read information of generators */

generators = readGenerator (name, minCapacity, maxCapacity,
minUpTime, minDoTime, intercept,
slope, startUp);

printf ("-> Enter the name of the demand file: ");
scanf ("%s", name);

/* read information of load */
demand = readLoad (name,&periods,&num_of_branches,probability);

printf ("-> Enter the name of the output file: ");
scanf ("%s", name);
/* fp points to the output file */
fp = fopen (name, "w");

/* write the cost about binary variables into output file */
writeBinaryObjective (periods, generators, num_of_branches,
intercept, startUp, probability,fp);

/* write linear cost into output file */

writeLinearObjective (periods, generators, slope, probability,
num_of _branches,fp);

27

/* write the constraints of minimum up time into output file */
writeMinUpTime (periods, generators, minUpTime,num_of_branches, fp);

/* write the constraints of minimum down time into output file */
writeMinDoTime (periods, generators, minDoTime,num_of_branches, fp);

/* write the constraints about start_up variables */
writeStartUp (periods, generators, startUp,num_of_branches, fp);

/* write the constraints about min,max capacities */
writeBounds (periods, generators, minCapacity, maxCapacity,
num_of _branches,fp);

/* write the constraints about demand */
writeDemand (periods, generators, demand,num_of_branches, fp);

/* the common parts of different scenarios have same values */
writeEqual (periods, generators, demand, num_of_branches, fp);

/* write additional constraints according to analysis of
the information of generators */
writeAddConstraints (periods, generators, num_of_branches, fp);

printf("\n do you need to fix the u values of the first several
periods ?(l1=yes or O=no)\n ");
scanf ("%d",&answer);

if (answer!=0)

{
printf ("\n how many periods you want to fix :");
scanf ("%1d",&fix_periods);
printf ("\n->Enter the name of the solution file for the
first %1d periods:",fix_periods);
scanf ("%s", name);
fix_period(fp,name,generators,num_of_branches,fix_periods) ;
}

28

/* all the u values are binary numbers */
writeInteger (periods, generators,num_of_branches, fp);

fclose (fp);
}

29

