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ABSTRACT 

Based on the Pearson family of distributions, we have derived 

some Lagrangean multiplier tests for the normality and homoscedasticity 

assumptions in the censored regression models. The Lagrangean multi­

plier test statistic for the joint test of selectivity bias, homoscedas­

ticity and normality is the sum of three components. Each component is 

shown to be a conditional Lagrangean multiplier test'statistic. It has 

been shown that they can also be interpreted as tests of significance 

of coefficients in some linear models based on instrumental variable 

estimations. We have pointed out that for some very special cases, the 

Lagrange multiplier tests for selectivity have had no pmver, and are not 

equivalent, for large samples, to the likelihood ratio tests. This 

situation occurs as the likelihood evaluated at the constrained MLE 

is a stationary value of the unconstrained likelihood function. These 

. examples provide, probably, the first set of examples to confirm a con­

jecture in Silvey [1959, p. 399J. 
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A SPECIFICATION TEST FOR NORMALITY 
IN THE GENERALIZED CENSORED REGRESSION MODELS 

By 

Lung~fei Lee* 

1, INTRODUCTION 

The recent developments on the econometric models with censored 

dependent variables attempt to deal with the problems of systematic 

missing data on the dependent variables for census survey data. The 

most common cases are the existence of some selection processes which 

determine the observed samples on the dependent variables. Conditional 

on the appropriate set of exogenous variables, if the dependent variable 

in a regression model is correlated with the selection processes, con-

ventional estimation techniques which ignore the censoring will not 

provide consistent estimates of the parameters in the model. The common 

solution in the literature is to specify a joint probability distribu-

tion on the random elements in the selection processes, which are 

modeled as a probabilistic discrete choice model, and the regression 

model. Multivariate normal distribution is the most commonly specified 

assumption in those models. If the distributional assumption were 

~orrect, the maximum likelihood method would be consistent and asymp­

totically efficient under very general conditions. A rigorous proof of 

these large sample properties can be found in Amemiya [1973J for the 

Tobit model. Under the normality assumption, computationally simple 
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limited information methods have been developed in Amemiya [1974], 

Heckman [1976], Lee [1979J, among others. 

The normal distributional assumption is a crucial assumption in 

the model specification and in the development of the limited informa­

tion estimation methods cited above. As contrary to the standard 

linear models, the misspecification of normality of the disturbances in 

the censored regression model and the Tobit model will, in general, 

provide inconsistent estimates of the parameters under both the maximum 

likelihood and the limited information method~. The main reason under­

lying the inconsistency of the estimators is that the probability of 

a sample being noncensored and its conditional mean depend on the func­

tional form of the specified distribution. The misspecification of the 

distribution of the disturbances is similar, in a loose sense, to the 

misspecification of functional form in a nonlinear regression model. 

Theoretical and numerical evidences on the consequences of misspecifi­

cation of normal distribution have been provided in the simple Tobit-type 

models in Goldberger [1980J. For the censored regression models, some 

investigations are in Olsen [1979]. The misspecification of the dis­

tributions is not the only source of misspecification in those models. 

Heteroscedasticity disturbances will also create inconsistent estimates 

when they are misspecified to be homoscedastic, as demonstrated in 

Hurd [1979J, Maddala and Nelson [1975], ~d Nelson [1981] for the Tobit­

type models. The consequences of these two types of misspecifications 

are serious for those models. 

Since the misspecifications of normal distribution and homo­

scedasticity can create misleading estimates, these assumptions need to 
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be tested rigorously so that investigators can have more confidence 

in the fitted models. One can easily suggest some tests of homoscedas­

ticity or incorporate heteroscedastic errors into the estimation procedure 

if the heteroscedastic variances can be parameterized as linear or non­

linear regression function with finite number of unknown parameters. 

The test of normality seems to be a more difficult problem and needs 

more attention. It is the purpose of this article to provide a large 

sample test for the normality assumption.in the censored regression 

model. Our test is based on the Lagrange Multiplier test principles as 

developed in Aitchison and Silvey [1958J and Silvey [1959J. The Lagrange 

Mu]tiplier method is attractive since the basic model that we will 

consider is too general to be computationally tractib1e under the 

maximum likelihood method. Our test, however, can be easily implemented. 

The test of homoscedasticity can also be incorporated into the testing 

procedure in addition to the test of normality. Our approach can be 

modified to test normality and heteroscedasticity for related econometric 

models such as the probit and Tobit models and the stochastic frontier 

production function model in Aigner, Lovell and Schmidt [1979J. 

Our paper is organized as follows. In Section 2, we will 

specify a basic model which is quite general and contains the model 

with normal distributions as special case. In section 3, we derive 

the Lagrangean multiplier tests for the hypotheses of normality and 

homoscedasticity. In section 4, we analyze the Lagrangean multiplier 

tests for the selectivity bias, heteroscedasticity and normality_ Some 

interpretations of the statistic and its relations with some conditional 
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tests are provided. We will point out that in an unusual case, the 

derived Lagrange multiplier test has no power and should not be used. 

This case may be the first example available to confirm to the conjec­

ture in Silvey [1959J that there may be cases for which the maximum 

likelihood ratio principle is applicable but not the Lagrangian multi­

plier principle. In an appendix, we discuss briefly the modification 

of our test to the probit and Tobit models and provide the tests for 

those models. Finally, we draw our conclusions. 

2. A BASIC CENSORED REGRESSION MODEL 

Consider the simple two equation censored model 

Yl' = x·S + u. 1 1 1 
i=l, ... ,N (2.1) 

yt = z.y - e:. 
1 1 1 

i=l, ... ,N (2.2) 

where x and z are exogenous variable vectors of dimensions kl and k2' 

respectively, E(ulx,z) = 0, E(e:lx,z) = 0 and var (e:lx,z) = 1. The 

disturbances (ui,e:i ) are independent for different i. The dependent 

variable y* is unobservable but has a dichotomous observable indicator I 

which is related to y* as follows: 

I = if and only if y* ~ 0, 

I = a if and only if y* < O. 

The dependent variable Yl conditional on x and z has well-defined mar­

ginal distribution but Yl is not observed unless y* ~ O. The observed 



5 

samples y·s of Yl are thus censored. The exogenous variables are 

observable for each i. We assume further that the exogenous variables 

are uniformly bounded, its empirical distribution converges to a limiting 

distribution, the parameter space is compact and the true parameter 

vector is an interior point. These regular conditions are general 

enough to justify the asymptotic properties of the estimators and the 

tests that will be considered, see, e.g., Amemiya [1973J and Silvey [1959J. 

The popular distributional hypothesis for this model is that 

the disturbances are homoscedastic and the ui and £i are bivariate 

normally distributed. Some tests for normality have been suggested in 

Huang and Bolch [1974J, White and MacDonald [1980J and Bera and Jarque 

[1980J in the linear regression models. These tests are, however, not 

applicable for our model since the observed samples of Yl are censored 

and the corresponding residuals ui will not be normally distributed 

even though the marginal distributions of ui are normal. 

To provide a test of normality and homoscedasticity of the 

disturbances, we assume that the true distribution of u is a member of 

the general Pearson family of distributions. The general probability 

density function g(u) of this system satisfies a differential equation 

of form 

(2.3) 

The density function g(u) can be solved from the above differential 

equation as 
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g(u) 

- 00 < u < 00. (2.4) 

The denominator in (2.4) guarantees that the density function is proper. 1 

This general distribution contains distributions with various shapes, 

in particular, it contains the normal, t, beta and gamma distributions 

as special cases (see, e.g., Elderton and Johnson [1969J, Chapter 4, or 

Johnson and Kotz [1970J, pp. 9-15). Since the disturbance u is speci­

fied to have zero mean, it implies that a = -b1 and the distribution is 

shifted to have mean at zero. After some reparameterizations, the 

density function with zero mean can be rewritten as 

(2.5) 

This density function becomes the normal density function when cl = 0 

and c2 = O. To test normality for our model, we need to specify not 

only the marginal distribution of u but also the joint distribution of 

u and E. Theoretically, it seems desirable to consider the bivariate 

generalization of the Pearson system which contains the bivariate normal 

distribution as special case. Unfortunately, this generalized system is 

too complicated to be useful because the parameters in the system must 

satisfy a highly nonlinear relationship and cannot be chosen completely 

arbitrarily. For the detail discussions, one can consult Elderton and 

Johnson [1969, pp. l37-l39J or Johnson and Kotz [1972, pp. 6-8J. 

.. 
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As an alternative, we suggest the following joint distribution 

which is derived from the translation method in Mardia [1970J with 

given marginal distributions of u and E. Suppose the marginal distri­

butions of u and E are specified as G(u) and F(E), respectively. Let 

¢(.) denote the standard normal distribution function. The random 

variables E and u can be transformed to the standard normal variates 
-1 -1 by the transformations J l = ¢O F and J 2 = ¢O G, respectively. The 

transformed random variables are then assumed to be bivariate normally 

distributed with correlation coefficient p. The corresponding joint 

density function is 

where f and g are the marginal density functions of E and u, respec-

tively. This approach has been proposed in Lee [1980J to construct 

(2.6) 

censored regression models,when the marginal distributions are given, 

for the binary as well as polychotomous discrete choice cases. For 

the purpose of testing normality, our maintained hypothesis is that 

the marginal distribution of E is standard normal, the marginal distri­

bution of u is the general Pearson distribution as in (2.5) and the 

joint density of £ and u is the one in (2.6). This basic model is of 

interest since it does contain the bivariate normal distribution as a 

special case; the marginal distribution of u can have various shapes 

and the model is tractible. The maintained hypothesis that the choice 
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equation is a probit model deserves some comments. The distributional 

assumption in the choice model can apparently be tested based only on 

the observed dichotomous indicators Ii. A flexible distribution for 

testing the probit model can be chosen as the general Pearson distribu­

tion. Such test will be derived briefly in Appendix B. With only 

complications in notations, one can also derive, as a straightforward 

extension, a joint test of normality for both E and u in our framework. 

In addition to the notational simplicity, there is no loss of 

generalitytouse the probit choice model as a maintained hypothesis. 

If an alternative probability choice model generated by a distribution 

function F(E) rather than the probit model is found out to be the 

appropriate one to use, this choice model can be incorporated into our 

basic model as a maintained hypothesis with z,y and E in th~ p~obit 

model replaced by the transformed values J l (zi Y) and J l (8); see Lee [1980J. 

Heteroscedasticity in the disturbances ui can be incorporated 
2 2 into our basic model. Suppose that Gi = E(u i ) is a function of exogenous 

variables vector wi of dimension m. Without loss of generality, we 
2 assume further that Gi = al + wiu2 is a linear function of wi. When 

a2 = 0, the disturbances ui are homoscedastic. There are several 

different ways that heteroscedasticity can be incorporated in our basic 

model. One of the approach that is relatively simple is to assume 

that cl and c2 are constants for all i in the density function g(u) 

in (2.5) but cOi = al + wia2 is a function of wi. This specification 

is justified since the variance of ui under the general Pearson distri­

bution is E(U~) = cOi/(l - 3c2). This parameterization has been used in 



9 

Sera and Jarque [1980] in their testing of normality and heteroscedastic 

regression residuals in the standard linear model. 

3. SPECIFICATION TESTS FOR THE CENSORED REGRESSION MODELS 

There are several hypotheses that are of interest in this model. 

The basic model specified in the previous section is our universe model 

and will be denoted as Model Mu. The following list of hypotheses and 

the corresponding models will be considered in this and the subsequent 

sections. 

The marginal distributiorrs of u.1s are normal, 
1 

N(O,a~), with a~ = a l + z.a2. 
1 1 1 

HNH : The disturbances ui are normally distributed N(0,a2) 

and are homoscedastic. 

H1N : The disturbances ui are normally distributed N(O,a~) 

and are independent with all Ej . 

HINH : The disturbances ui are homoscedastic, normally 

distributed N(0,a2), and are independent with all E .• 
J 

The corresponding models will be denoted as MN, MNH , MIN' and MINH. In 

the models MIN and MINH' since the choice equation is independent with 

the regression equation, there is no selection bias in the dependent 

variable of the regress~on equation and the values of Yl are only ran­

domly missing. The model MINH is the most restrictive one. The other 

t\'JO hypotheses HN and HNH specify normal distribution, and normal and 
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homoscedastic disturbances in the censored regression model. There are, 

of course, other combinations of hypotheses that are of interest but, 

because it is complicated to set up the tests, they will not be 

considered here. The following diagram indicates the obvious relation­

ships of the models in a lattice structure. The lower level models in 

the tree are special cases for the upper ones. 

Diagram 1: Relationships among the models 

To test the hypotheses, we will consider the Lagrangean multi­

plier test approach developed in Aitchison and Silvey [1958J, and Silvey 

[1959J. The Lagrangian multiplier statistic is identical to the 

efficient score statistic in Rao [1973J. Its applications in econo­

metrics have been considered in Breusch and Pagan [1979, 1980J and 

Engle [1978J, among others. This approach is attractive for our models 

since the computation of the maximum likelihood estimates for the basic 

model Mu will be very complicated. The log likelihood function for the 

basic model is 
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L = I~ l{(l-I.)Q,n(l-¢(Z,Y))+I.q(y. -X.S)+I.Q,n¢l(z.y 
u 1 = 1 1 1 1 1 1 I' 1 

(3.1) 

where 

(3.2) 

and 

(3.3) 

The vector of parameters in the log likelihood function L is e' = 
u 

(p,S',Y' ,al ,a2,c l ,c2). To derive the Lagrangean multiplier test for a 

specific hypothesis in our list, we need to derive the first-order 

derivatives of L and then evaluate them at the restricted parameters u 

under the specific hypothesis. Let 

denote the first-order derivative of L with respect to e., evaluated 
u 1 

under the hypothesis H. To simplify the notations, let ¢(.) denote the 
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standard normal density function and cr~ = al + wia2. Furthermore, define 

a 9xl vector V(i)1 = (vl(i), ... ,vg(i)) as 

v2(i) = I.u. + pcr.~(z.y) , , " 

2 2 2 v3(i) = I.u. - cr.(~(z.y) - p z.y~(z.y)) 
" " " 

. 4 4 2 2 v5(,) = I.u. - cr.[3~(z.y) - p (6 - 3p " , , 
2 2 + P (z.y) )z.y~(z.y)J , , , 

~r(z.y_pu. /a.) / r,:~ 
v (i) = I. U, , - , L7: -p - I 2 ~ ( z . y ) 6'1r ) r:-?l l-p , cI>~ziY-PUi 10 ; vl-p] 

( 
2J 1/2 2 2 2 2 - 1-p (l-p+p(z.y))o.~(z.y) , " 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

,-
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3¢~Z.y - pu. 
= I.u. LJ 1 1 

1 1 n 
<PL\.ZiY - PU i 

( 
2) 1/2 2 2 2 3 

- P 1 - p [3 (1 - p ) + P ( Z • Y ) ] 0". Z • yep (z . y ) 
1 1 1 1 

(3.12) 

It can be easily shown under HN that all the components of v(i) are 

random variables with zero mean,2i.e., EH (v(i)) = O. It is straight­
N 

forward to show that 

'dL 
u 

(3.13) 

(3.14) 

(3.15) 

(3.16) 
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(3.17) 

(3.18) 

(3.19) 

The above expressions are derived by evaluating (aLu)/(ae) at c1 = c2 = 

O. These derivations can be written in more compact notations. Define 

a matrix X(i) consisting of weights of v(i) in the equations (3.13)-

(3.19) and zero in the proper positions. We have 

= L~=lX(i)v(i) 
ae H 1 

N 

(3.20) 

Under HN, the information matrix is 
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EH = _u _u = I~=lX(i)$"2(i)X(i)1 [
aL aL J 

N ae ael 1 
(3.21) 

where $"2(i) = EHN(v(i)V(i)I) isa9x9 covariance matrix of v(i). The test 

of the hypothesis HN is based on the gradient vector in (3.20) and the 

information matrix (3.21). Partition the matrix $"2(i) into a block 

matrix as 

n( i) = 

where $"21 (i) is the 5 x 5 covariance matrix of the first five components 

of v(i), $"23(i) is the 4x4 covariance matrix of the last four components . 
of v(i) and $"22(i) is the cross covariance of those components. $"21 (i) 

and $"22(i) can be derived analytically by some recursive formulae for 

EH (I.u~), !L = 1, ... ,8 and 
N 1 1 

!L = 1, ... ,7. Since, under HN, u. = cr.pE;' + v· where v. is N(O,(l 
1 1 1 1 1 

is independent with s., EHN(I.u~) can be derived in terms 
1 1 1 

and EHN(v i ) from the binomial expansion, 

(3.22) 



where 

c9. == 9.1 
r r1(9.-r)1 

The expectation of IiEi under HN is 

EH (I.E.) = - ~(Zl'Y) 
N 1 1 

16 

(3.23) 

see, Johnson and Kotz [1972J, and the expectations of I.E~, r ~ 2, can 
1 1 

be derived from the following recursive formulae, 

r-l zi Y ( )JZi
Y 

r-2 ) = - E ~ ( E) _00 + r - 1 _00 E ~ (E dE 

r ~ 2 (3.24) 

The moments of the normal variable vi are well known; 

for even r, 

= 0 for odd r 

(3.25) 

Under HN, the joint density of (u i , Ii = 1) is 
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l/J(u,.,l) = _1 <t>[U;]q,[Z.y - pu./a. )/1 1 _ p~ a. a. , " , , 

and therefore 

.Q,¢Gz;y - 11 - p~ pu. 
EH 

1 I. u. 

P~ N ' 'q,[(z;y - pU i 11 -

(3.26) 

where Es(u.Q,) denotes the .Q,th moment of u around zero with respect to 

the normal density function with mean aiPz;y and variance a~(1 _ p2). 

Ef(u.Q,) can also be evaluated by recursive formula, 

for even .Q, 

I .Q, ( r.Q, r r ( J r (.Q,-rJ - 1 - 1) Ca. p z. y E u ,for odd .Q, r= r , , s (3.27) 
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for ~ = 1, 2, .... The analytical expressions for the submatrix 

n3(i), however, are difficult to be derived but can be estimated by the 

sample moments S(i) 

S( i) = * 

* * 

Given that the samples are random, it is clear from equations (3.20) 

and (3.21) that the asymptotic properties of the test with n3(i) being 

estimated by S(i) will be the same. 

Let Ie be the identity matrix with the same dimension kl + k2 

+ m + 4 as the parameter vector e l = (p, 81
, yl, a l , a~, cl ' c2). Let 

I N be the submatrix of Ie consisting of the last two columns of Ie. The 

Langrangean multiplier test for HN is 

(I~=lV(i)'X'(i)JJNJ~(I~=lX(i)n(i)X(i),)-lJNJ~(I~=lX(i)V(i)) 
(3.28) 

evaluated at the constrained maximum likelihood estimates of (p, 81
, 

yl, a l , a~) in the model MN. The statistic (3.28) is asymptotically 

Chi-square distributed with 2 degrees of freedom. Asymptotic Chi-square 

test statistic can also be derived for any consistent estimates instead 

of maximum likelihood estimates as described in Breusch and Pagan [1980J 
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which has been called the pseudo Lagrangean multiplier test. The 

pseudo Lagrangean multiplier test is of interest for our model since 

consistent two-stage estimates are available in Amemiya [1973J, Heckman 

[1976J and Lee [1979J, among others, for thehomoscedastic disturbance 

case. The formulation for the pseudo Lagrangean multiplier is also 

based on the gradient vector (3.20) and the details are referred to the 

article of Breusch and Pagan [1980J. 

Similar Lagrangean multiplier tests can also be derived for the 

more restrictive hypotheses HNH , HIH and HINH · Let JNH be the submatrix 

of Ie consisting of the last m + 2 columns corresponding to the sub­

vector (a~, cl 'c2) of e. The Lagrangean multiplier test for HNH is 

(I~=lV(i)'X(i)'JJNHJNH(I~=lX(i) n (i)X(i),)-lJNHJNH(I~=lX(i)V(i)J 
(3.29) 

evaluated at the constrained MLE of (p, Sl, yl, al ) in the model MNH . 

This statistic is asymptotically chi-square distributed with m + 2 degrees 

of freedom. 

4. TESTS FOR SELECTION BIAS, HOMOSCEDASTICITY AND NORMALITY 

Selection bias is present in the regression equation (2.1) if 

and only if the disturbances ui and Ei are correlated. The testing of 

no selection bias in our model is to test that the correlation coefficient 

p equals zero. It is computationally involved to set up a marginal 

Lagrangean multiplier test for testing p in our basic model since the 

gradient vector of the corresponding likelihood function involves 
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complicated indefinite integrals. It is of interest to consider the 

joint test of selection bias, normality and homoscedasticity. 

Under the hypothesis HINH , the first order derivatives in (3.13) 

- (3.19) can be greatly simplified. To simplify notations, let ~i and ~i 

denote the normal density and probability functions evaluated at zi Y. 

~Je have 

-I· ----I.u. - N [ ~iJ 1 
1 = 1 1 1 

a p HINH ~i v'al 

aL u 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 
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It is clear from the above expressions that the Lagrangean multiplier 

test for HINH will utilize the information in the first four moments 

( ) ~ of Iiu i and Ii - ~ziY' Under HINH , the information matrix of ae 

is a diagonal block matrix; 

where 

E u u [dL aL] 
HINH -;-; W = 

~. 
1 

Dl 

0 

__ 1_ cp.x! 
r- 1 1 

val 

2 
N 

cp. 
O = \._ 1 I 

2 L 1 z.z. 
1- ~.(1-~.) 11 

1 1 

0 

D2 

03 

1 - -cp.x. 
r- 1 1 

val 

_1. ~.x!x. 
a 1 1 1 1 

(4.8) 

(4.9) 

(4.10) 
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, , 
a 3 

::-z- :-2w. 
2a, 2a 1 2a, , 
1 I 1 I a _3_ w! 

-:2 wi' ?wiwi 2al 
1 

N 
2al a l 

03 = Li=l4>i (4.11) 

a a 2 a 
3a.l 

3 3 a 6 -\'/. 

2al 
1 

2al 

It is straightforward to derive the inverse matrices of °1,°2 and 03' 

To write the Lagrangean multiplier statistics in the matrix notation~, 

denote 0q, = Oiag [q,i] and 04> = Oiag [4>i] as two N x N diagonal matrices 

with elements q,i and 4>i' respectively. Let Q,N = (1, ... ,1) be a N x 1 

vector consisting of unity, WI = [w" w2' ... , wN] and XI = [x" x2' 
... ,xN] be the two matrices of exogenous variables. Furthermore, let 

2 t.O = (Il - 4>1' ... , IN - 4>N), t., = (Ilu l , ... , INuN), t.2 = (I,u l - a,4>l' 

... , INu~ - a l 4>N)' t.3 = (Ilui, ... , INu~) and t.4 = (Ilui - 3ai4>" .. , 
4 2 

INu N - 3al 4>N). The Lagrangean multiplier statistic SINH for testing 

the hypothesis HINH is the sum of three components, 

(4.12) 

where 
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(4.13) 

- W'D.~N(~ND.~N)-l~ND.~-lW' [~l '2 -'0] 
(4.14) 

+ }4 [ali '4 -3'0] '~N[~ND.ZNr\[alf '4 -3'0] 
(4.15) 

which are evaluated at the MLE of B, y and a l in the model MINH' The 

restricted MLE of Band 0
2 in the model MINH are 

'" [N ]-IN S = \. lI.x!x. \. lI.x!y. L,= , " L,=", 

and 
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The MLE of y in MINH is the probit MLE. 

Each component in the Lagrangean multiplier test statistic SINH 

is a statistic which can provide some interesting interpretations. As 

shown in the appendix, each component statistic is a conditional Lagran-

gean multiplier test statistic for one hypothesis conditional on the 

others. The component SIINH is a Lagrangean multiplier test statistic 

for testing the independence of the choice equation (2.2) and the regres­

sion equation (2.1), in the model MNH . Thus it is a test statistic for the 

non-existence of selection bias conditional on the assumptions that the 

disturbances in the regression equation (2.1) is homoscedastic and nomi-

nally distributed. On the other hand, the statistic SHIIN is a condi­

tional Lagrangean multiplier test statistic for testing homoscedasticity 

conditional on the disturbances ui being normally distributed and no 

selection bias. The statistic SNIIH is a conditional Lagrangean multi­

plier test statistic for testing normality conditional on homoscedasticity 

and no selection bias. These three conditional statistics are apparently 

orthogonal to each other in our basic model under the joint hypothesis 

HINH . All the statistics are asymptotically chi-square distributed. 

The degrees of freedom of SIINH' SNIIH and SHIIN are, respectively, one, 

two and m where m is the dimension of the vector wi' Consequently, the 

test statistic SINH is asymptotically chi-square distributed with m + 3 

degrees of freedom. As the joint test statistic is a sum of three 

conditional test statistics, we can access the proportional contribution 
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of each conditional test statistic to the overall statistic in the 

joint test of selection bias, homoscedasticity and normality hypotheses. 

There are other interesting relationships of these statistics 

with some significance tests in some regression equations. Consider 

the following equation derived from (2.1) under the model MNH . 

I.y. = I.x·S + I.u., 
1 1 1 1 1 1 

i = 1, ... ,N (4.16) 

As contrary to equation (2.1), all the values of the dependent variables 

in (4.16) 

E(I.u.) = 
1 1 

are observable. 3 Since Ii 
1/2 

-pal <Pi' It implies that 

and ui are correlated, we have 

I.y. = I.x·S - a <p(z.y) + 1;. 
1 1 1 1 us 1 1 

(4.17) 

h 1/2. h . f d d I () were a = pal 1S t e covarlance 0 s. an u. an 1;. = .u. + a <p z.y . us 1 1 1 1 1 us 1 

The residuals I;i have zero mean by construction. Let y be the probit MLE 

of y. Substituting y into the equation (4.17), it becomes 

I.y. = I.x·S - a <p(z.y) + ~. 
1 1 1 1 us 1 1 

(4.18) 

where ~. = s. - a (<p(z.y) - ¢(z.y)) is the modified residual in the 
1 1 us 1 1 

equation. Since aus = pa~/2 where a l is the variance of ui ' aus is zero 

if and only if p = O. An approach to test the absence of selection bias 

is to test a = 0 in equation (4.18). It should be noted that ordinary us 
least squares approach does not provide consistent estimates of r and a us 

in the estimation of the regression equation (4.18) since the regressor 

Iix i and the disturbance si are correlated. 4 A consistent approach is 

to use an instrumental variable (I.V.) approach to estimate this equation. 



26 

A useful instrumental variable for Iix i is ~(ziY)xi. Under the hypothe­

sis, HI1NH : P = 0, conditional on normality and homoscedasticity, ~; equals 

~i and is heteroscedastic disturbance with variance al~(ziY). An 

appropriate estimation approach is thus a weighted IV approach .. To 

simpl ify notations, 1 et ¢i = <P(ziY) and ¢i = ~(ZiY). i'/e have 

~~=l 
A 

r 
A 

S ~.x! ~.x! 
1 1 1 

I~=l ~ 
1 1 

= (Ii\ ~i) IiYi A - ~i A ~. A 

au€: IV <p. 1 <p. 1 1 

I~ lI.x!x. IN A I -1 I~ lI.x!y. 1 = 1 1 1 i=l<Pixi 1= 1 1 1 

= (4.19) 
A "2 A 

N <Pi N <Pi N <Pi 
I· l-I.x. Ii = 1-:::- I· l-I.y· 1= A 1 1 1 = A 1 1 

~. ~, ~. 1 1 1 

It can be easily shown under some regular conditions as in Lee et al. 

[1980J that the IV estimator is asymptotically normal with the asymp-

totic variance, 

- I~ l~·x!x. IN I 
-1 

S . 1 <p. x. 
1 = 1 1 1 1 = 1 1 

var = a (4.20) 
1 2 -

IN N <Pi a u€: i=l<Pi xi I i=l-
IV ~. 1 

under the hypothesis HIIN~. A test of this hypothesis is to test the 

significance ofauE different from zero \-'Jith the IV estimator au€: and 

" 
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its associated asymptotic distribution. From equation (4.19), we 

have 

where 

a = us [ A][ ) [ ~ N cfJ i N I -
1 N A I -

1 
\. 1-I.X. \. 1I .X.X.J \. l"'·x. L,= A " L,= , " L,=~" 1l i 

s = (I~ 1I.x~x.J-1(I~ 1I .x .y .) ,= " , ,=, , , 

and the statistic 

\~ ,6'X'[\~ ,s.x!x.]-' L,= " 1 L,= 1 1 1 

N ~. , 1 A 

\'. ,-( I . y. - I. x . Q) L,= A , 1 "iJ 
<p. 

1 

(4.21) 

(4.22) 

where a1 = I~=lIi(Yi - xiB)2~I~=lIi' is asymptotically chi-s~uare 
distributed with one degree of freedom. It is obvious that this statis­

tic is exactly the same as the conditional statistic SIiNH evaluated at 

the MLE of (S. y, a,) in the model MINH. 

The above analysis proved that the conditional Lagrangean 

multiplier test for selection bias is exactly the same as the test of 
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significance ofaue: in equation (4.18). Equation (4.18) is different 

from the following equation for which the two-stage estimation in 

Hechman [1976] and Lee [1979] was developed, 

CPi y. = x· B - a - + s,· , , ue: <P. , (4.23) 

where E(sil1i = 1) = O. The test of significance of aue: from the modi­

fied equation, 

'" 
CPi -

Y. = x·B - a -- + r 
1 1 ue: '" "'i <P. , 

(4.24) 

is also equivalent to the above conditional Lagrangean multiplier test 

for selection bias .. .§! This can be easily shown as follows. vlithout loss 

of generality, let us assume that the first Nl«N) observations Yi are 

the non-censored observations of Yli' The familiar two-stage estimates 

of B and a are ue: 

'" x! -1 x!y. 
S 1 1 , 

Nl 
[Xi - !;] Nl 

(4.25) = I I '" A 

i =1 cpo i =1 cpo 
1 1 - -yo 

A A A , 

a T 
<p. <Pi UE 1 

and it fo 11 ows 
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~ ,,2 [ ,,2 1 r ] Nl <p. Nl <p. Nl -1 
(a )T = - I ,,~ - I ~ x. I x!x. 

UE i=l <p. i=l $. 1 I i=l 1 1 
11' 

[ 

"~-l " Nl <p. Nl <p. 
. I .f x! I .f (y. - x. s) 

i=l <p. 1 i=l <p. 1 1 
1 1 

(4.26) 

where 

" [fill 1]-1 Nl I S = I xix.· I x.y. 
i=l 1 i=l 1 1 

is the OLS estimate of S with the non-censored observations Yi' This 

" estimate S is also the MLE in the model MINH' since 

I 1 x~x. I 1 x~y. = I r.x~x. I· lI.x!y. [ 
N ]-1 N [ N ]-1 N 
i=l 1 1 i=l 1 1 i=l 1 1 1 1= 1 1 1 

Under the hypothesis HrINH , the disturbances si are homoscedastic and 

the asymptotic variance of (a )T is 
UE 

which is asymptotically equivalent 

a{LN 
h2 

N r" . , 1 
L 1>.X. h 

1=1 ,1> • i=l 1 1 

1 

for the censored sampling since the 

[
Nl 1]-1 N1 ;Pi J-l I x.x. I -- X. 
'1 11 '1~ 1 1= 1= ~. 

1 

to 

r~=l 
-1 N h h 

¢.x~x. L rjl.x~ 
1 1 1 ;=1 1 1 

'-

(4.27) 

-1 

sample in (4.24) has probabil ity 

~i being included in the analysis and Nl is random. 
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It follows that a chi-square statistic for the test of significance of 

r " ~ Nl cpo 
. I -!-(y.-x.s) 

i=l <P. 1 1 
1 

(4.28) 

is asymptotically equivalent to the Lagrangean multiplier statistic 

SIINH in (4.22). 

The conditional Lagrangean multiplier statistic SHIIN can also 

be interpreted as a test of significance forCi.2 = 0 in the following 

regression equation 

"'2 + I.w ·Ci.2 + S. i 1 , ... , N (4.29) I. u. = Ci. l I. = 
1 1 1 1 1 1 

where ui 
" the t1LE res i dua 1 in the model MINH and var( si) = y. - xi Sis 1 

2 
= 2Ci.l <P i · The equation can be estimated by the I.V approach. The 

appropriate instrumental variables are ~i and ¢iwi for Ii and Iiwi , 

respectively. Since the disturbances si are heteroscedastic, we have 

the following weighted IV estimator: 

~. ~$i ] [I; 'iwi J 

-1 

~~.] Ci., 
N N 1 

= I. < I ' _1 I ,,2 .u· . All - 1 =1 ,=1 ~i ¢iwi Ci.2 IV 1 <P. \'/ • , , 

~I. I.w. J -1 "'2 I . u. 
N 

, . ~ ~ 
1 , 

N ' , 
= L L (4. 30 ) 

i =1 I.w!w. i=l "'2 I. u .\'/! , , , , , , , 1 
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which, in turn, is exactly the OLS estimator of Ct1 and Ct2 from equation 

(4.29). The asymptotic covariance matrix of this estimator is 

N N -1 
I ¢. I ¢iwi 1 

Ct1 i=l i=l 

var = 2 2Ct1 
Ct2 IV N N 

I q,.w~ I q,.w~w. 

i=l 1 1 i =1 111 

Since 

where 

'" [ N ]-1 N ",2 Ct1 = I I. I I.u. 
i=l 1 i=l 1 1 

the following asymptotic chi-square statistic is a statistic for the test 

of significance for Ct2 = 0 

-.l2 IN (I.u~ - I.alh'J.~N ¢ .... /~W. - IN ¢,w~[IN ¢.]-l 
2& i = 1 1 1 1 1 i = 1 1 1 1 i = 1 1 1 i = 1 1 

1 

N 
. I 

i = 1 

'-1 
¢.w.1 
1~ 

N -"2 '" I (I . u. - I. Ct 1 )'tl . 
i=l 1 1 1 1 

(4. 31 ) 
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Obviously, this statistic is exactly the conditional Lagrangean multi­

plier statistic SH!IN for the testing of heteroscedasticity. 

So far in our analysis of the test of selection bias, we have 

implicitly assumed that the Lagrangean multiplier A corresponding to 
p 

the constraint p = 0, evaluated at the constrained r'1LE under the hypothe-

sis HINH , is not identically zero. If it were zero, the Lagrangean 

multiplier test statistic would have no power for the testing of this 

hypothesis. This case does happen for the component SI!NH -when G
UE 

is not estimable in equation (4.18). One of the cases is that zi con­

tains only the constant term and the exogenous variable xi contains a 

constant term. 6 For this example, by the orthogonality of the least 
N "-

squares residual vector with the vectors of regressors, Li=l Iiu i 
= 0 where u. = I.Y· - I.x·S, and it is obvious that the first-order 

1 1 1 1 1 

derivative 

evaluated at the MLE Sand &1 of the model MINH' and also (dLNH)/(dP)IHliNH 

in Appendix A, are always zero for any sample size. Hence the Lagrangean 

multiplier tests for testing the hypothesis HINH or HI!NH do not have 

power and should not be used. This case provides probably the first 

example to confirm the conjecture of Silvey [1959, p. 399]. In the 

model MNH , the parameter P is identifiable since the conditional odd 

moments of the uncensored disturbances conditional on I = 1 will not be 

zero if P ~ O. The likelihood ratio test for p = 0 in the model MNH is 
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applicable. Hence, for this case, the Lagrangean multiplier test is not 

equivalent, for the large samples to the likelihood ratio test. This 

difference occurs since the inference of the likelihood ratio test is 

based upon the levels of the likelihood and the Lagrangean multiplier test 
A 

is based upon the first derivatives of the likelihood. At the point S, 
A 

al and p = 0, the likelihood value is a stationary value in the loglikeli-

hood function LNH of the model MNH . 

In the test of the hypothesis HINH , the Lagrangean multiplier 

statistic SINH is decomposed into these orthogonal conditional Lagrangean 

multiplier statistics. For the test of the less restrictive hypothesis 

HIN in Mu which allows heteroscedastic disturbances, the Lagrangean 

multiplier test statistic SIN will also be decomposed into two compon­

ents SIIN and SNII where SIIN is the Lagrangean multiplier test statistic 

for testing the hypothesis p = 0 conditional on normality, and SNII is 

the Lagrangean multiplier test statistic for testing normality condi­

tional on p = O. Let ~ = diag Cal + wia2] be a N x N diagonal matrix 

with element a l + wia2 in its ith diagonal position. Let t~1 = (Ilu~ 
2 4 2 - 3(al + w

l
a2) <P l , ... , INuN - 3(al + wNa2) <PN). The Lagrangean mul-

tiplier statistic for the testing of the hypothesis HIN is 

(4. 32) 

where 
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(4. 33) 

and 

(4. 34 ) 

with 

The statistic SIN is evaluated at the MLE of the model MIN and is 

asymptotically chi-square distributed with three degrees of freedom. 

5. CONCLUSION 

In this article, we have derived some Lagrangean multiplier tests 

for the normal distributional and homoscedastic disturbances assumptions 
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in the censored regression model. We assume that the distribution of 

the disturbances is a member of the Pearson family. The Pearson family 

of distributions is attractive since it contains distributions with 

various shapes and the normal distirbution as a special case. He have 

also considered the joint test of the absence of selection bias, homo­

scedasticity and normality assumptions. The Lagrangean multiplier 

statistic for testing such joint hypotheses is the sum of three con­

ditional Lagrangean multiplier statistics. Each of them is a test of 

one hypothesis conditional on the other two hypotheses. They can also 

be interpreted as tests of significance of coefficients in some regres­

sion equations. Those tests are derived from some instrumental variables 

estimators. It has been shown that the test of significance based on 

the two-stage estimator in Heckman [1976J is also a condition~l 

Lagrangean multiplier test for selection bias in the censored regression 

model. We have also pointed out that, for some very unusual cases, e.g., 

the choice equation does not have explanatory variables or the choice 

probabilities are constant for all individuals, the conditional La­

grangean multiplier tests for selectivity bias have no power and are 

not equivalent, for large samples, to the likelihood ratio tests. This 

provides, probably, the first set of examples to confirm to the conjec­

ture in Silvey [1959, p. 399J that there may be cases for which the maxi­

mum likelihood ratio principle is superior to the Lagrangean multiplier 

principle. 
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APPENDIX A: CONDITIONAL LAGRANGEAN MULTIPLIER TESTS 
FOR SELECTIVITY BIAS, HOMOSCEDASTICITY 
AND NORMALITY 

In this appendix, we will derive the conditional Lagrangean 

multiplier test statistics for each hypothesis conditional on the other 

two hypotheses being true. 

Conditional Lagrangean Multiplier Test for Selection Bias: 

First let us consider the test of the hypothesis HI!NH: P = 0 

in the model MNH where the disturbances in equation (2.1) are homoscedas­

tic and are normally distributed. The loglikelihood function for the 

model MNH is 

l:~'l {(1- li)tn(l - o(ziY)) - 2~l li(Yi - X;S)2 

~ 

- ~ litn(2rr~l)+I;tn~~Z;Y- ~(Y;-XiS)l/ll-pj} 
(A.l) 

The first-order derivatives are 

r 
()LNH = \,N 1 

L - 1. {y. - x.l3)x! 
as; = 1 0.1 1 1 1 1 



aL NH N 
-=L 

3y ;=1 

aLNH N 
-=I 

ap ;=1 

37 

¢( z; y ) Z '. + 1 1 . -(1-1.)---
1 1 _ <I>(z,'Y) , I 2' 

1 - p 

¢~ZiY -~ (Yi -XiSl]/1 1 - PJ 

Ii .~ZiY- ~ :Yi -XiSl]/ll-PJ 
[
PZ.y __ 1_ (y. -X.S)] 

1 r- 1 1 
va, 

aLNH N, 2 1 
-", - = I -2 I. (y. - x.S) - - I. + 1. 
aa1 ;=, 2a, 1 1 1 2a, 1 1 

¢~z.y -_P (y. - x.B)]/!' -p1 . 1 r-- 1 1 
va, 
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Let ~i = ~(ziY) and ~i = ~(ziY)' Eva'uated at p = 0, the first-order 

derivatives are reduced to 

aLNH N, -- =I -x!I.u. . a., 1 1 1 
as HIINH 1=' 

aLNH = IN ~i 
ay HIINH i='~i('-~i) 

z!(I. -~.) 
1 1 1 

aLNH N { , , [, 2 l}' - =I --2-(I·-~·)+-2--I.u.-~. 
a H . =, a., 1 1 a., a., 1 1 1 a., I I NH 1 

and the information matrix is 



E [dLNH dLNH] = 

HIINH de de' 

- L 

N ¢~ 
I 1 

; = 1 CP; 

N 
_l_¢.x~ 

; =1 ;a: 1 1 
0.1 

0 

0 

N 1 - L -¢.x. 
;=l;a.- 1 1 

1 

N 
_1 <p.x~x. L 

;=1 0.1 1 1 1 

0 

0 

39 

o o 

() 0 

N ¢? 
I 1 z!z. 0 
; =1 CP. (1 - CP. ) 1 1 

1 1 

1 L 
N 

0 <P. 
2a.i ;=1 1 

where e' = (p, Sf, y', 0.1), It follows that the conditional Lagrangean 

multiplier test statistic for p = 0 is 

1 I D 0- 1 f£ 1020- 19-a;- /;, ¢ cP £N LN ¢ cP N- tND¢X(X'D.X)-lX'D¢t~-l£ND¢D;lSl 

(A.2) 

evaluated at the restricted MLE in the model MINH' where the matrices are 

the same ones as defined in the main text. The statistic (A.2) is 

exactly equal to the statistic 5IINH in (4.13). 
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Conditional Lagrangean ~1ultip1ier Test for Homoscedasticity: 

The loglike1ihood function for the model MIN where the distur­

bances ui are normally distributed and are independent with E; is 

+ I.,Q,n<p(z.y)} 
1 1 

(A.3) 

Taking the first-order derivatives of LIN and then evaluating them at 

the hypothes is HH I IN: 0.2 = 0, we have 

ClL 1N N 
_1 x~I.u. = L 

ClS HH I IN i=l 0.1 111 

ClL IN N <p. 
= L 1 z!(I. -<P.) <p.(1-<p.) 1 1 1 Cly HH I IN i=1 1 1 

ClL1N N {- f- (I. -•. ) + f- [_1 I.u
2 

- •. J} = L 
Cl0.1 HH I IN i =1 a' 1 1 0.1 a, 1 1 1 

ClL IN N {-f-W!(I.- •. ) + 1 I [_1 I.U2- •. J} = I -w 
Cl0.2 HH I IN i=1 a, 1 1 1 20., 0.1 1 1 1 
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and the corresponding information matrix ;s 

IN _1 <li.x!x. a a a 
i=1 a1 1 1 1 

N ¢? 
a I 1 z!z. a a 

; =1 <li. ( 1 - <li . ) 1 1 
1 1 

, I N , I N 
0 0 <li. ifJ.v,. 

2a~ ; =1 1 2a~ i = 1 
1 1 

1 N 
-' I 

N 
0 0 -2 I <li .'1,1 ifJ.w! "I'. 

2a l 
;=1 1 2a~ ; =1 

1 1 1 

It follows that the Lagrangean multiplier test for a 2 = a is 

(A. 4) 

which is exactly the statistic SHIIN in (4.14). 

Conditional Lagrangean ~1u1t;plier Test for Normality: 

The loglikelihood function for the model MIH , wehre the distur­

bances ui are homoscedastic and u; and €; are independent, is 



42 

(A.5) 

where 

q (u) = 1 2 du 

f 
c - u 

0.1 - c1 u + c 2u 

The first-order derivatives of LIH evaluated at the hypothesis HNIIH: 

c1 = c2 = a are 

aL IH N 1 =I -x~I.u. 
as HNIIH i=lo.l 111 

N 
= I 

i=l {_1 [_1 I.U?-<p o]--' (I. _<po)} 
1 1 1 1 1 

~, 0.1 ~, . 

aL IN N 
- =I 
ac, HNIIH i=l {-' Iou 0 - -L2 IOU~} 

1 1 3 1 1 a, a, 



43 

and the corresponding information matrix is 

_1 IN 
1>.x~x. 0 0 0 0 

cq i =1 111 

IN ¢~ 
0 

1 
Z!Z. 0 0 0 

i =1 1>.(1-1>.) 1 1 
1 1 

1 I 
N 

_3 I 
N 

0 0 1>. 0 
20.~ i=l 

1 20.1 i=l 

_2 I N 
0 0 0 1>. 

30., i = 1 1 

_3 I N N 
0 0 1>. 0 

6 I 
20.1 i = 1 1 i=l 

It follows that the Lagrangean multiplier test statistic for cl = 0 and c2 

= 0 is 

(A.6) 

evaluated at the restricted MLE in the model MINH' This statistic is 

exactly the statistic SNIIH in (4.15). 

1>. 
1 

1>. 
1 
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APPENDIX B: LAGRANGEAN r·1UL TIPLIER TESTS FOR PROBIT r~ODEL 

Lagrangean Multiplier tests can also be derived for testing the 

normality and homoscedasticity assumptions in the probit 

model· \~e will assume that the true distribution is a member of the 

Pearson-type distribution. 

Probit Model 

Consider the choice equation Y*1' = z.y - e:., i = 1, ... ,N in 
1 1 

(2.2). Since only dichotomous indicators are observable, we adopt the 

"' normalization al = 1 for convenience. With this normalization, the 

general Pearson distribution of e: allowing heteroscedasticity is 

(B. 1 ) 

Let F(zy; l+wa, cl ' c
2

) = e:f(e:)de: denote the probability that I = 1. 

The loglikelihood function is 

N { LO = I 1..Q,n F(z.y; l+w.a, cl ' c2) + (I-I.).Q,n [1-
i=l 1 1 1 1 

(B. 2) 

For the cases that all exogenous variables are discrete, chi-square 

goodness of fitness for testing normality can be derived from the 
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contingency table. Thus the above approach based on the general Pearson 

density function is of interest only for the cases that some of the 

regressors of zi are continuous variables. The joint test for normal­

ity and homoscedasticity is to test the hypothesis HNH : c1 = c2 = 0 and 

a = O. Denote ¢; = ¢(zi Y) and ¢i = ¢(zi Y)' Define a vector X(i) as 

X(i) = 

z! 
1 

- -2
1 

(z.y)w! 
1 1 

1 2 - 3' [(ziY) - 1] 

1 2 - -4 (z.y)[3 + (z.y) ] 
1 1 

The first-order derivatives evaluated at the hypothesis HNH of the like­

lihood LD are 

where 81 = (y', ai, c1' c2) is the parameter vector. The information 

matrix under HNH is 

(B.3) 

(B.4) 
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Let Ie be an identity matrix of dimension k2 + m + 2 and J NH be a sub­

matrix of Ie consisting of the columns corresponding to the subvector 

(a I, cl' c2). A Lagrangean multi pl i er test for the hypothes i s HNH is 

(B.5) 

evaluated at the probit MLE of T. The degree of freedom of this asymp-

totic chi-square statistic is the dimension of w plus two, namely, 

m+ 2. 
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FOOTNOTES 

* 1 appreciate having financial support from the National Science 
Foundation under Grant SES-8006481 to the University of Minnesota. 
I have greatly benefited from the conversations with Dr. K. R. 
Sawyer and R. J. Olsen. Any errors are of my own. 

1. The general solution of the differential equation (2.3) is 

2. 

3. 

4. 

5. 

6. 

tng(u)=I a+u 2 du + c 
bO + bl u + b2u 

where c is a constant. Since 

r~ g(u)du = 1 
-00 

e-c equals the denominator in (2.4). 

These have been derived according to the formulae in (3.22) and 
(3.26). 

This is so because IiYi is equal to zero when Yli is censored. 

It can be easily shown thatE~!'m(Iil;i) = (cI>(zi Y) - 1) aUE:<p(ziY)' 

I am indebted to Randall Olsen for this observation. 

tlore",general cases correspond to the situations that the variable 
cI>(ZiY)~f a~d <P(ziY) are linearly dependent. These cases will not 
occur 1 ~lther Xi do not contain dummy variable or z. contains 
some contlnuous variables. 1 
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