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QSAR is based on the idea that the structure of a molecule is the principal determinant of its
physicochemical, toxicological, and biomedicinal properties [2-4]. Various types of calculated
parameters, viz., topological [5-7], substructural [8, 9], geometrical [10], and quantum chemical
parameters [11-16], have been used in the development of QSARs. Linear free energy related (LFER) and
linear solvation energy related (LSER) parameters, as well as physicochemical properties such as the
various types of partition coefficients, have been used in QSARs pertaining to drug discovery and
environmental toxicology [2, 17].. The problem with the use of LFER and LSER parameters and
experimental physicochemical properties in QSARs for toxicity estimation is that such properties are not
available for many chemicals. Another problem with the use of QSARSs is that these models usually work
most effectively for sets of molecules which are ‘congeneric,” i.e., belong to a narrow class either by
structural analogy or having the same biochemical mechanism of action. The United States
Environmental Protection Agency (USEPA) currently has over 300 class-specific QSARs for various
subsets of the TSCA Inventory [18]. But these models cover only a small fraction of the 81,000
substances in the Inventory.

Often it is difficult to unambiguously classify a molecule into a particular structural class. This
happens when a molecule possesses a complex structure, e.g., contains many functional groups. In such
circumstances, one practical alternative for hazard assessment of a chemical is to select a subset of
chemicals that are structurally banalogous to the candidate chemical and use the properties of these
selected analogs in assessing the hazard posed by the chemical of interest. This can be done either
intuitively, based on the subjective experience of the risk assessor, or it can be carried out using
computational methods that are fast and objective. The intuitive selection of chemical analogs is generally
based on a set of rules or unspoken notions developed through the practitioner’s experience of structural
attributes that have been found to be associated with some kind of activity or toxicity. On the other hand,
the evaluation of a large number of chemicals through the use of their selected analogs necessitates the
use of methods where the descriptors used in analog selection are rapidly computed directly from the
molecular structure in an unambiguous manner.

Our research group has been involved in the development of QMSA methods based on computed
theoretical molecular descriptors for the past two decades. These methods have used topological indices,
atom pairs, and physicochemical properties in the creation of structure spaces and the selection of
analogs. Specifically, we have used two major approaches to quantifying molecular similarity. The first
method uses Euclidean distance (ED) within an n-dimensional space. For these studies we have used
smaller sets of topological indices selected through methods such as variable clustering (VC) or principal
component analysis (PCA). In using VC to select a set of indices we have taken the one TI most

correlated with each cluster, while in using PCA for index selection we have taken the one TI most
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correlated with each principal component (PC) having an eigenvalue greater than or equal to zero [19-22].
Additionally, the clusters from VC method and the PCs from PCA can be used as new descriptors within
a ED space. In this way we avoid some of the issues of intercorrelation between the individual TIs by
creating completely orthogonal (PCs) [22-34] or nearly orthogonal (VCs) [19-21] descriptors derived
from the TIs. ED has also been used in the construction of physicochenﬁcal property-based similarity
spaces [32, 34, 35]. The second method employs a Tanimoto-type association coefficient to compare the
atom pairs within two molecules as a measure of their sinﬁlarii:y/dissimilarity [19-22, 24-27, 29, 31, 32,
34, 36, 37]. We have carried out comparative studies on the relative utility of experimental property-based
and molecular descriptor-based similarity spaces in the selection of analogs [25, 32] and the estimation of
properties of chemicals from their selected analogs in these spaces [32, 34, 35]. The theoretical spaces
have been found to behave in a manner analogous to those derived from experimental properties in some
limited number of cases. The advantage of theoretical structure spaces is that they can be used for any
arbitrary database of chemicals including libraries comprised of molecules that have never been
synthesized.

In our earlier QMSA studies, we represented a molecule by a set of n calculated descriptors, viz,
topological indices and atom pairs. A chemical is then is represented as an object in the n-dimensional
vector space. The pair-wise similarity/ dissimilarity of molecule is then quantified using some kind of
distance function or association coefficient. These approaches have yielded reasonable results in the
selection of analogs and prediction of properties of chemicals from their selected neighbors using the &-
nearest neighbor (KNN) approach. In many of these approaches it is possible that the elements of the
vector (the descriptors) are mutually correlated to some extent so that we are using redundant information.
One approach to correct this problem has been to extract a set of orthogonal or minimally correlated
variables derived from the set of original predictors using techniques such as principal component
analysis or variable clustering. Such variables are orthogonal, or nearly so, but have no intrinsic
relationship with the property that we are interested in estimating using the particular QMSA method.
Such similarity spaces may be termed “arbitrary* similarity spaces. One may use the broadest category of |
descriptors in creating such spaces and the descriptors may be related to the property only by chance or
intuitive association. On the other hand, our major interest in the selection of analogs is the prediction of
properties.

In this paper we have developed a method for the design of similarity spaces from molecular
descriptors which are “tailored” to a particular property. We have created such tailored spaces for two sets
of molecules: a) a group of 213 compounds for which we are interested in estimating logP (octanol\water
partition coefficient) and b) a collection of ninety-five aromatic and heteroaromatic amines for which the

interest was to predict Ames’ mutagenicity. In this paper we have presented the utility of our newly
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developed tailored QMSA method vis-a-vis arbitrary QMSA methods in the similarity—baéed estimation

of logP and mutagenicity.

MATERIALS AND METHODS

LogP Database

The logP set consists of 213 diverse compounds used in several earlier studies [33, 38]. Measured values
of logP were obtained from CLOGP [39], as this set is a subset of the STARLIST chemical database. In
this study, as in the earlier studies, we have used only chemicals where HB; was equal to zero (HB; is a
measure of the hydrogen bonding potential of a chemical). Therefore, none of the chemicals have
available hydrogen bonding centers, creating a more homogeneous group of chemicals and a more
densely packed similarity space. Also, the chemicals were selected such that theirvlogP values fall within
the range of —2 to 5.5, since actual measurements for logP beyond this range have been shown to be
problematic [40]. It should be noted that six compounds included in the earliest study have been excluded
from this study. All six of ‘these compounds were excluded because they consist of only two non-
hydrogen atoms and the triplet indices cannot be calculated for molecules with fewer than three non-
hydrogen atoms. The chemicals used in this study and their logP values from CLOGP are reported in
Table 2.

Mutagenicity Database

The mutagenicity data set, a set of 95 aromatic and heteroaromatic amines, was previously collected from
the literature by Debnath et al. [41], and has been used to study mutagenic potency in a number of our
earlier étudies [13, 20, 21, 42, 43]. The mutagenic activities of these corhpounds in S typhimurium TA98
+ S9 microsomal preparation are expressed as the mutation rate, In(R), in natural logarithm
(revertants/nmol). Table 3 lists the compounds included in this study and their experimentally measured

mutation rates.

Calculation of Molecular Descriptors

The first set of 102 TIs used in this study include the Wiener number [44], molecular connectivity indices
as calculated by Randi¢ [45] and Kier and Hall [5, 46), frequency of path lengths of varying size,
information theoretic indices defined on distance matrices of graphs using the methods of Bonchev and

Trinajsti¢ [47] as well as those of Raychaudhury et al. [48], parameters defined on the neighborhood
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TABLE II List of the 213 STARLIST chemicals included in this study and their experimental and estimated values
for logP

Estimated log?
LogP PC TI/PC TI/RR
ID# Compound name (exp.) (k=3) (k=8) k=2)
1 1,4-dimethylnaphthalene 437 4.35 4.41 4.32
2 cyclopropane 1.72 2.75 2.57 1.61
3 3,4-dimethylchlorobenzene 3.82 3.65 3.50 3.60
4  2,2-diphenyl-1,1,1-trichloroethane 4.87 5.13 3.85 5.45
5 2,6-dimethylnaphthalene 431 4.38 441 4.42
6 hexafluoroethane 2.00 3.06 2.26 3.10
7 l-iodoheptane 4.70 4.38 3.17 4.47
8 allylbromide 1.79 2.14 2.85 2.50
9 1,5-dimethylnaphthalene 4.38 4.34 441 432
10  1,8-dimethylnaphthalene 4.26 4.38 4.42 4.38
11 1,2,3-trichlorobenzene 4.05 4.39 4.13 4.09
12 2-ethylthiophene 2.87 2.50 2.62 291
14 y-phenylpropylfluoride 2.95 3.59 3.35 3.69
15 iodobenzene 3.25 3.55 3.28 2.93
16 1-methylpentachlorocyclohexane 4.04 3.73 3.14 3.63
18 2,3’-pcb 5.02 5.19 5.08 5.13
19 cyclopentane : 3.00 2.81 - 275 2.15
20 ethylchloride 143 1.88 2.04 1.33
21  2-phenylthiophene 3.74 292 2.57 3.87
22 trichlorofluoromethane 2.53 1.89 2.40 2.80
23 fluoroform 0.64 1.13 1.37 0.92
24  dimethyldisulfide 1.77 2.11 2.35 2.03
25 propane 2.36 2.36 225 1.67
26 hexamethylbenzene 5.11 422 3.98 4.79
27 butanethiol 2.28 2.40 2.40 3.07
28 diethylsulfide 1.95 2.68 2.44 2.03
29 cyclohexane 344 266 - 3.50 2.60
30 diphenyldisulfide 441 4.46 4.84 412
31 m-fluorobenzylchloride ‘ . 2.77 3.02 342 2.63
32 1-chloropropane 2.04 241 2.05 1.85
33 2,4-dichlorobenzylchloride 3.82 3.77 3.29 3.25
34 m-chlorotoluene 3.28 3.66 3.59 3.38
35 butane 2.89 3.09 2.35 2.10
36 1,2,3-trimethylbenzene 3.66 4.02 3.78 3.60
37 1,1-difluoroethylene 1.24 0.82 2.70 2.17
38 1-chlorobutane 264 232 2.31 2.29
39  2,3-dibromothiophene 3.53 2.64 3.08 3.23
40 pentafluorethylbenzene 3.36 2.61 2.82 3.85
41 1,2,4,5-tetrabromobenzene 5.13 3.98 3.49 4.87
42 o-dichlorobenzene 3.38 3.50 341 351
43 1,2,34-tetrachlorobenzene 4.64 471 426 4.87
44  tribromoethene 3.20 3.06 3.60 2.79
45 pentane 3.39 3.13 2.37 2.52
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TABLE II (Continued)
Estimated logP
LogP PC TI/PC TI/RR
ID# Compound name (exp.) (k=13) (k= 8) (k=2)
46 isobutane 2.76 2.88 3.18 2.24
47 mirex 5.28 4.52 4.78 5.15
48 1,3-dichlorobenzene 3.60 342 3.38 3.45
49  1,2-dimethylnaphthalene 4.31 4.24 441 4.40
50 2-ethylnaphthalene 4.38 4.06 4.34 4.36
51 cycloheptatriene : 2.63 2.66 2.88 2.50
52 3-chlorobiphenyi 4.58 4.70 4.82 4.50
53  3-ethylthiophene 2.82 251 263 293
54 1,3,5-tribromobenzene 4.51 4.19 3.56 4.09
55 PB-phenylethylchloride 2.95 2.86 3.40 3.46
56 acenaphthene ) 3.92 391 3.92 4.32
57 m-dibromobenzene ' 3.75 3.18 3.66 3.72
58 dichlorodifluoromethane 2.16 2.01 2.47 2.20
59 toluene 2.73 3.16 3.36 2.68
60 anthracene 4.45 4.28 4.03 4.36
61 hexachlorocyclopentadiene 5.04 478 4.32 4.87
62  3-phenyl-1-chloropropane 3.55 -3.39 3.50 3.39
63 bibenzyl 4.79 449 - 397 4.96
64 1-chloroheptane 4.15 3.50 3.23 2.86
65 2,4-dichlorotoluene 4. 424 3.66 347 422
66 1,1-dichloroethane 1.79 2.00 2.09 1.94
67 (B)-benzothiophene o312 3.49 2.85 3.05
68 2-bromothiophene : 2.75 2.90 2.72 2.58
69 chlorodifluoromethane 1.08 0.98 1.31 1.15
70 pentachlorobenzene 517 4.54 4.62 4.80
71 9,10-dihydroanthracene 425 4.64 4.07 4.46
72 1,3-(bis-chloromethyl)benzene 2.72 2.93 3.43 3.39
73 chlorobenzene 2.84 3.08 3.26 2.63
74 1,2 4-trichlorobenzene 4.02 471 414 410
75 2,2’,6-pcb 548 5.30 5.16 5.39
76 2-butyne 146 3.17 2.60 2.20
77 azulene 3.20 3.33 3.82 3.16
78 trifluoromethylthiobenzene 3.57 3.09 334 4.06
79 2,5-pcb 5.16 5.15 5.07 4,96
80 1,2,3-trichlorocyclohexene(34) 2.84 3.56 3.06 2.77
81 Dbiphenyl 4.09 4.02 4.18 4.35
82 p-xylene 3.15 3.25 3,58 3.27
84 thiophenol 2.52 291 2.88 2.79
85 bromotrifluoromethane 1.86 2.11 241 2.35
86 9-methylanthracene 5.07 437 425 495
87 trichloroethylene 242 2.05 1.89 229
88 1,4-dimethyltetrachlorocyclohexane 4.40 3.61 3.02 4.01
89 propylene : 1.77 2.37 242 1.91
90 cyclohexene 2.86 2.64 2.62 296
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TABLE II (Continued)
Estimated logP
LogP PC TI/PC TI/RR

ID# Compound name (exp.) (k=13) (k=28) (k=2)

91 methylthiobenzene 2.74 3.30 3.38 3.06

93  y-phenylpropyliodide 3.90 3.89 3.51 3.99

94 2,3.4°-pcb 5.42 5.24 5.17 5.39

95 fluoropentachlorocyclohexane 3.19 3.77 3.34 3.66

96 1,2,3,5-tetrachlorobenzene 4.92 4.62 4.23 473

97 2,2’-pch 4.90 5.19 5.24 5.05

98 1-butene 2.40 2.62 3.10 2.18

99  1,3-dimethylnaphthalene 4.42 4.20 4.40 4.38
100 1,7-dimethylnaphthalene 4.44 4,37 4.40 4.37
101  1-methylnaphthalene 3.87 4.18 4.40 3.80
102 2,6-pcb ' 493 © 518 5.23 5.03
103 oa-bromotoluene 2.92 3.28 3.59 3.56
104  2,2’,3’-trichlorobiphenyl 5.31 5.31 519 5.48
105 hexafluorobenzene 2.22 3.00 4.48 3.47
106  3-bromothiophene 2.62 2.94 2.73 2.65
107 1,2,3,5-tetramethylbenzene 4.17 411 4.09 4.06
108 halothane 2.30 2.33 2.58 2.36
109 24,6-pcb 5.47 5.17 5.17 5.40
110  1,1-dichloroethylene 2.13 1.89 311 2.55
111  o-dibromobenzene 3.64 4.02 3.67 3.77
112 1,2,4,5-tetramethylbenzene - 4.00 3.56 4.11 4.14
113 1-hexene 3.39 3.65 3.83 3.61
114 neopentane 3.11 3.02 3.23 2.51
115 chloroform 197 175 1.43 1.67
116, 1-fluorobutane ) 2.58 2.34 2.32 2.32
117 pyrene 4.88 4.66 4.12 5.28
118 1,1-dichloro-2,2-diphenylethane 4.51 4.84 3.52 5.15
119 isobutylene 2.34 2.14 3.16 2.45
120 diphenylmethane 4.14 4.56 4.00 4.60
121 isopropylbenzene 3.66 3.48 347 3.63
122 naphthalene 3.30 4.33 3.81 3.11
123 1-heptene 3.99 4.37 3.88 3.48
124  2,2-dimethylbutane 3.82 3.69 3.29 3.63
125 1-fluoropentane 2.33 3.12 2.53 2.85
126  o-xylene 3.12 3.34 3.53 3.31
127 ethylbenzene 3.15 3.37 3.44 3.16
128 trichloromethylthiobenzene 3.78 421 442 4.81
129 thiophene 1.81 2.40 2.5 2.74
130 bromochloromethane 1.41 1.48 1.44 1.34
131 1,2-dichlorotetrafluoroethane 2.82 2.55 2.35 2.69
132 2-chlorobiphenyl 4.38 4.76 4.97 4.60
133 2,4’-dichlorobiphenyl . 5.10 5.17 498 5.09
134 1,3,5-trichlorobenzene 4.15 . 3.91 4.12 4,04
135 1I-octene 4.57 4.18 3.81 4.53
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TABLE II (Continued)
Estimated logP
LogP PC TI/PC TI/RR
ID# Compound name (exp.) k=13) k=8) k=2)
137 phenylethylsulfide 3.20 3.40 3.52 3.26
138  1-ethyl-2-methylbenzene 3.53 3.75 3.53 3.54
139 propylbenzene 3.72 3.69 3.42 345
140  indane ' 3.18 3.67 3.55 3.02
141  2-chloropropane 1.90 2.17 2.37 1.92
142 phenylazide 2.59 2.90 3.51 3.48
143 2,4-dibromotetrachlorocyclohexane 3.98 3.75 3.46 422
- 144 tetrachloroethylene 340 4.00 4.07 3.84
145 1-nonene 5.15 3.98 3.60 431
146  2,3-dimethyibutane 3.85 3.01 3.09 3.61
147  dichlorofluoromethane 1.55 1.27 1.48 1.73
148 1,1,2,2-tetrachloroethane 2.39 1.97 2.14 2.32
149 1,2 4-trimethylbenzene 3.78 3.79 3.76 3.54
150 fluorobenzene - 227 2.99 3.33 2.68
151 butylbenzene 4.26 3.04 3.33 3.81
152  ethylbromide - 1.61 1.69 2.06 1.79
153 tetrafluoromethane ‘ 1.18 1.89 2.28 1.91
154 p-cymene 4.10 3.83 3.44 - 4.06
155 p-chlorotoluene 3.33 3.80 345 3.40
156 ° 1-bromopropane 2.10 2.72 286 234
157 bromocyclohexane ‘ 3.20 3.00 3.55 3.04
158 2-methylthiophene 2.33 2.68 2.69 2.44
159 diphenylsulfide 4.45 421 471 4.10
160 1,2,4,5-tetrachlorobenzene _ 4.82 410 424 478
161 1,1,1-trichloroethane ' 2.49 2.82 2.66 2.68
162  p-dichlorobenzene 3.52 4,12 3.39 3.47
163 1-bromobutane 2.75 3.09 3.16 2.84
164 p-chlorobiphenyl 4.61 4.62 4.82 448
165 cyclopropylbenzene 0327 2.98 3.40 3.05
166 2,6-dichlorotoluene 429 3.80 3.34 - 4,15
167 allene 145 2.03 2.59 2.07
168  B-phenylethylbromide , 3.09 345 3.23 3.69
169 1,3-butadiene 1.99 2.61 2.45 1.93
170  2-chlorothiophene 2.54 2.57 2.66 2.34
171 1-bromopentane 3.37 3.64 321 3.40
172 y-phenylpropylbromide 3.72 3.42 3.15 4.08
173 1,3-cyclohexadiene 2.47 2.70 2.67 2.58
174 pentamethylbenzene 4.56 3.98 4.04 5.11
175 p-dibromobenzene ‘ 3.79 3.97 3.65 3.70.
176 1,4-pentadiene 248 259 270 2.84
178 1,1-difluoroethane 0.75 1.09 1.71 1.32
179 1-bromohexane 3.80 4.21 3.39 3.89
180 m-xylene 3.20 331 - 357 3.14
181 dibenzothiophene : 438 3.74 2.93 428
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TABLE II (Continued)
Estimated logP
LogP PC TI/PC TI/RR

ID# Compound name (exp.) (k=13) (k= 8) (k=2)

182 ethyliodide 2.00 1.71 2.68 1.59
183 trifluoromethylbenzene 3.01 3.13 3.26 4.11
184  2.3,6-trimethylnaphthalene 4.73 4.39 4.36 4.48
185 difluoromethane 0.20 1.03 1.27 1.34
186 1,2,4-trifluorobenzene 2.52 2.68 3.45 3.13
187 bromobenzene 2.99 344 3.58 2.85
188 hexachloro-1,3-butadiene 4.78 440 444 5.00
189  vinylbromide 1.57 1.60 2.38 1.99
190 o-chlorotoluene 342 3.78 3.57 3.33
191 o-chlorotoluene 2.30 3.29 3.14 2.86
192 1,4-cyclohexadiene 2.30 2.76 2.69 2.67
193  1-bromoheptane | 436 4.02 3.39 "4.64
194  styrene 2.95 3.04 2.82 3.16
195 chlorotrifluoromethane 1.65 2.18 2.32 2.01
196 (dimethyl)phenylphosphine 2.57 3.35 3.36 420
197 cycloocta-1,5-diene 3.16 2.54 2.72 3.24
198 tetrachlorocyclohexane 2.82 4.14 2.85 2.78
199 1-bromooctane 4.89 3.84 3.50 4.53
200 2-methylnaphthalene 3.86 422 4.40 3.81
201  3-methylthiophene 2.34 2.67 2.69 2.44
202 methylenechloride 1.25 1.44 1.39 1.42
203 hexachlorobenzene 531 433 428 5.14
204 indene 2.92 3.49 2.76 3.15
205 tert-butylbenzene 4,11 3.85 341 4.05
206 1,2-dichloroethane 1.48 2.00 1.49 1.76
207 1,3,5-trimethylbenzene 3.42 3.42 3.81 3.72
208 phenanthrene 4.46 4.27 4.03 4.35
209 benzene 213 . 332 2.88 2.39
210 3,3,3-trifluoropropylbenzene 3.31 3.18 3.53 4.48
211 o-(2,2,2-trichloroethyl)styrene 4.56 396 | 359 4.92
212 2,3-dimethylnaphthalene 440 4.35 440 443
213 1,3-dichloropropane : 2.00 2.05 2.02 2.50
214 1,2,3 4-tetramethylbenzene . 4.11 413 4.10 4.09
215 stilbene-t 4.81 4.34 3.57 4.95
216 fluorene 4.18 3.83 3.90 4.38
217 2-fluoro-3-bromotetrachlorocyclohexane 3.28 3.74 3.37 3.62
218 allylbenzene . 3.23 3.05 3.02 3.16
219 carbontetrachloride 2.83 2.71 3.27 2.51

10
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TABLE III Observed and estimated mutagenic potency [Ln(revertants/nmol)} for ninety-five aromatic and
heteroaromatic amines

Estimated Ln(R)
Ln(R)( PC TI/PC TI/RR

ID#  Compound exp.) (k=4) (k=4) (k=3)

1 2-bromo-7-aminofluorene 2.62 2.09 0.17 0.59
2 2-methoxy-5-methylaniline (p-cresidine) -2.05 -2.11 -1.54 -2.35
3 S-aminoquinoline -2.00 -1.89 -1.74 -2.32
4 4-ethoxyaniline (p-phenetidine) -2.30 -1.95 -1.48 -2.34
5 1l-aminonaphthalene -0.60 1.93 1.93 -1.03
6 4-aminofluorene 1.13 2.70 2.01 1.08
7 2-aminoanthracene 2.62 2.60 2.07 2.47
8 7-aminofuoranthene 2.88 3.34 2.95 3.46
9 8-aminoquinoline -1.14 -2.10 -1.96 -2.60
10 1,7-diaminophenazine 0.75 0.45 0.44 1.14
11 - 2-aminonaphthalene -0.67 0.10 -1.98 -1.00
12 4-aminopyrene 3.16 1.83 2.13 2.97
13 3-amino-3'-nitrobiphenyl -0.55 0.78 -0.38 -0.94
14 2,4,5-trimethylaniline -1.32 -1.81 -1.81 -1.74
15 3-aminofluorene 0.89 1.33 1.35 1.16
16 3,3"-dichlorobenzidine 0.81 -0.49 -0.14 0.30
17 2,4-dimethylaniline (2,4-xylidine) 222 -1.59 -1.59 -1.73
18 2,7-diaminofluorene 048 0.96 0.47 0.35
19 3-aminofluoranthene 3.31 2.09 2.09 292
20 2-aminofluorene 1.93 1.07 1.09 0.82
21 2-amino-4'-nitrobiphenyl -0.62 0.22 0.22 -0.79
22 4-aminobiphenyl -0.14 -0.33 -0.55 -0.27
23 3-methoxy-4-methylaniline (o-cresidine) -1.96 -1.95 -1.65 -2.38
24 2-aminocarbazole 0.60 1.00 1.42 1.19
25 2-amino-5-nitrophenol -2.52 -1.45 -1.54 -2.44
26 2,2'-diaminobiphenyl -1.52 0.62 0.86 -0.89
27 2-hydroxy-7-aminofluorene 041 1.04 0.52 1.32
28 I-aminophenanthrene 2.38 1.96 0.98 3.07
29 2,5-dimethylaniline (2,5-xylidine) -2.40 -1.54 -1.54 -1.34
30 4-amino-2'-nitrobiphenyl -0.92 -0.12 -0.24 -0.94
31 2-amino-4-methylphenol -2.10 -2.40 -2.30 -2.58
32 2-aminophenazine 0.55 1.56 -1.74 1.26
33 4-aminophenylsulfide 0.31 0.12 0.32 0.15
34 ° 2,4-dinitroaniline -2.00 -0.61 -1.62 -1.49
35 2,4-diaminoisopropylbenzene -3.00 -1.94 -1.30 -2.41
36 2 4-difluoroaniline -2.70 -1.71 -2.31 -2.70
37 4,4'-methylenedianiline -1.60 -0.37 -0.65 -1.53
38 3,3"-dimethylbenzidine 0.0t -1.42 -1.55 1.45
39 2-aminofluoranthene 3.23 3.25 2.90 3.34
40 2-amino-3'-nitrobiphenyl -0.89 -0.13 0.36 -0.92
41 1-aminofluoranthene 3.35 3.22 2.84 3.30
42 4 ,4'-ethylenebis (aniline) -2.15 -0.69 -1.05 -1.35
43 4-chloroaniline -2.52 -2.29 -2.41 -3.01

11




S.C.BASAK, B.D. GUTE, D. MILLS ARBITRARY VERSUS TAILORED SIMILARITY SPACES
and D.M. HAWKINS

TABLE III (Continued)
Estimated Ln(R)
Ln(R)( PC TI/PC TI/RR
ID#  Compound exp.)  (k=4) (k=4) (k=3)
44 2-aminophenanthrene 2.46 2.64 2.11 2.52
45 4-fluoroaniline -3.32 -2.21 -2.21 -2.74
46 9-aminophenanthrene 2.98 2.51 2.07 2.47
47 3,3"-diaminobiphenyl -1.30 -0.60 -0.73 -0.79
48 2-aminopyrene 3.50 1.78 2.84 2.82
49 2,6-dichloro-1,4-phenylenediamine -0.69 -2.06 -1.23 -1.33
50 2-amino-7-acetamidofluorene 1.18 0.83 -0.69 1.26
51 2,8-diaminophenazine 1.12 1.19 1.09 0.24
52 6-aminoquinoline ' -2.67 -1.72 -1.43 -2.09
+53 4-methoxy-2-methylaniline (m-Cresidine) -3.00 -1.87 -1.30 -2.04
54 3-amino-2"-nitrobiphenyl - -1.30 -0.03 -0.09 -0.79
55 2,4'-diamino-biphenyl -0.92 -0.87 -0.82 -0.30
56 1,6-diaminophenazine 020  0.96 1.14 0.55
57 4-aminophenyldisulfide -1.03 -0.71 -0.75 -1.63
58 2-bromo-4,6-dinitroaniline -0.54 -1.23 -0.84 -2.09
59 2,4-diamino-n-butylbenzene -2.70 -1.32 -1.46 -2.68
60 4-aminophenylether -1.14 -0.14 -0.73 -1.59
61 2-aminobiphenyl -1.49 0.90 251 0.15
62 1,9-diaminophenazine 0.04 1.32 0.60 0.60
63 1-aminofluorene : 043 2.88 2.19 1.32
64 8-aminofluoranthene 3.80 3.11 2.76 3.15
65 2-chloroaniline ‘ : -3.00 -1.58 -2.29 -1.90
66 2-amino-aaa-trifluorotoluene -0.80  -0.45 185 235
67 2-amino-1-nitronaphthalene -1.17 0.29 -0.85 -1.33
68 3-amino-4'-nitrobiphenyl 0.69 0.06 ~ -0.03 - 0.47
69 4-bromoaniline -2.70 -1.56 -1.28 -2.95
70 2-amino-4-chlorophenol -3.00 -2.07 -1.05 -2.34
71 3,3-dimethoxybenzidine 0.15 -0.98 , -0.37 1.40
72 4-cyclohexylaniline -1.24 -1.04 -0.66 -0.61
73 4-phenoxyaniline 0.38 -0.23 -2.12 -0.44
74 4,4"-methylenebis (o-ethylaniline) -0.99 -1.59 -0.78 -0.55
75 2-amino-7-nitrofluorene 3.00 0.82 -0.12 0.96
76 Benzidine -0.39 -0.79 -0.95 -091
77 1-amino-4-nitronaphthalene -1.77 -0.39 -1.34 -1.12
78 4-amino-3'-nitrobiphenyl 1.02 -0.02 -0.12 0.36
79 4-amino-4'-nitrobiphenyl - 104 -0.18 -0.12 -0.24
80 l-aminophenazine -0.01 2.03 -1.60 0.70
81 4,4'-methylenebis (o-fluoroaniline) 0.23 -0.75 -0.47 0.28
82 4-chloro-2-nitroaniline -2.22 -1.60 -1.52 -2.54
83 3-aminoquinoline ' ) -3.14 -1.60 -1.46 -1.94
84 3-aminocarbazole -0.48 1.03 -1.17 -0.62
85  4-chloro-1,2-phenylenediamine -0.49 -1.75 -1.48 -1.97
86 3-aminophenanthrene 3.77 2.31 1.87 2.09
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TABLE HI (Continued)
Estimated Ln(R)

Ln(R)( PC TI/PC TI/RR
ID#  Compound exp.) (k=4) (k=4) (k=3)
87 3,4'-diaminobiphenyl 0.20 -0.12 -0.88 -0.68
88 l-aminoanthracene 1.18 2.96 243 2.95
89 1-aminocarbazole -1.04 1.17 -1.03 -0.43
90 9-aminoanthracene 0.87 2.86 2.60 2.26
91 4-aminocarbazole -1.42 1.27 -0.94 -0.31
92 6-aminochrysene 1.83 2.34 2.99 2.67
93 1-aminopyrene 1.43 2.37 3.35 3.30
94 4-4'-methylenebis (o-isopropyl-aniline) -1.77 -1.40 -0.59 0.39
95 2,7-diaminophenazine 3.97 0.34 0.47 0.13

complexity of vertices defined by Basak and co-workers for hydrogen-filled molecular graphs [49-51],
and Balaban's J indices [52-54]. Ninety-eight of the TIs were calculated using POLLY 2.3 [55], while the
remaining four J indices were calculated using other in-house software. More information on the set of
topological indices calculated by POLLY has been reported in earlier studies [22, 30, 56]. One hundred
additional indices, the real-number local vertex invariants (LOVIs) [33, 57, 58], were added to this set of
topological indi(;es. The triplet indices, developed by Balaban and coworkers [57] result from a matrix, a
main diagonal column vector, and a free term column vector, converting the matrix into a system:of linear
equations whose solutions are the local vertex invariants. The notation used to represent the vectors and
matrices is as follows:

A = Adjacency matrix

V = Vertex degree

S = Distance sum

N = Total number of vertices in the graph

Z = Atomic number

D = Distance matrix

1 = Unity matrix. 4
After the system of N linear equations is solved, the local vertex invariants, x;, ‘are assembled into a triplet
descriptor based on one of the following operations:
Summation, X;x;
Summation of squares, ix;
Summation of square roots, Z;x;"*
Sum of inverse square root of cross-product over edges i, Zij(xix;)”

Product, N(Zxy)*™
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TABLE IV Symbols and definitions of topological indices

Topostructural Indices

i Information index for the magnitudes of distances between all possible pairs of vertices of a
graph
iy Mean information index for the magnitude of distance
\" Wiener index = half-sum of the off-diagonal elements of the distance matrix of a graph
s Degree complexity
HY Graph vertex complexity
30 Graph distance complexity
T Information content of the distance matrix partitioned by frequency of occurrences of distance h
M, A Zagreb group parameter = sum of square of degree over all vertices
M, A Zagreb group parameter = sum of cross-product of degrees over all neighboring (connected)
vertices
by Path connectivity index of order h = 0-6
e Cluster connectivity index of order h = 3-6
By Chain connectivity index of order h = 3-6
"xpc Path-cluster connectivity index of order h = 4-6
P Number of paths of length h = 0-10
J Balaban's J index based on distance
Nrings Number of rings in a graph
Ncirc Number of circuits in a graph
DN’s, Triplet index from distance matrix, square of graph order (# of non-H atoms), and distance sum;
operation y = 1-5
DN21y Triplet index from distance matrix, square of graph order, and number 1; operation y = 1-5
ASly Triplet index from adjacency matrix, distance sum, and number 1;
operationy = 1-5
DS1, Triplet index from distance matrix, distance sum, and number 1;
operationy = 1-5 ' '
ASN, Triplet index from adjacency matrix, distance sum, and graph order; operation y = 1-5
DSNy Triplet index from distance matrix, distance sum, and graph order;
operationy = 1-5
DNZNy Triplet index from distance matrix, square of graph order, and graph order; operation y = 1-5
ANS, Triplet index from adjacency matrix, graph order, and distance sum; operation y = 1-5
AN1, Triplet index from adjacency matrix, graph order, and number 1;
operationy = 1-5 :
ANN, Triplet index from adjacency matrix, graph order, and graph order again; operation y = 1-5
ASV, Triplet index from adjacency matrix, distance sum, and vertex degree; operation y = 1-5,
DSV, Triplet index from distance matrix, distance sum, and vertex degree; operation y = 1-5
ANV, Triplet index from adjacency matrix, graph order, and vertex degree; operation y = 1-5
Topochemical Indices
Tors Information content or complexity of the hydrogen-suppressed graph at its maximum
neighborhood of vertices :
0] Order of neighborhood when IC, reaches its maximum value for the hydrogen-filled graph
Oors Order of neighborhood when IC, reaches its maximum value for the hydrogen-suppressed graph
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TABLE IV (Continued)

IC, Mean information content or complexity of a graph based on the r™ (r = 0-6) order neighborhood
of vertices in a hydrogen-filled graph :

SIC, Structural information content for r™ (r = 0-6) order neighborhood of vertices in a hydrogen-
filled graph '

CIC, Complementary information content for ™ (r = 0-6) order neighborhood of vertices in a
hydrogen-filled graph

hxb Bond path connectivity index of order h = 0-6

PR Bond cluster connectivity index of order h = 3-6

v Bond chain connectivity index of order h = 3-6

Bybe Bond path-cluster connectivity index of order h = 4-6

By Valence path connectivity index of order h = 0-6

Byt Valence cluster connectivity index of order h = 3-6

By Valence chain connectivity index of order h = 3-6

Byde Valence path-cluster connectivity index of order h = 4-6

1B . Balaban's J index based on bond types

X Balaban's J index based on relative electronegativities

A Balaban's J index based on relative covalent radii

AZV, Triplet index from adj abency matrix, atomic number, and vertex degree; operation y = 1-5

AZS, Triplet index from adjacency matrix, atomic number, and distance sum; operation y = 1-5

ASZ, Triplet index from adjacency matrix, distance sum, and atomic number; operation y = 1-5

AZN, Triplet index from adjacency matrix, atomic number, and graph order; operation y = 1-5

ANZ, Triplet index from adjacency matrix, graph order, and atomic number; operation y = 1-5

DSz, Triplet index from distance matrix, distance sum, and atomic number; operation y = 1-5

DN’Z, Triplet index from distance matrix, square of graph order, and atomic number; operation y = 1-5

Nvx Number of non-hydrogen atoms in a molecule

Nelem Number of elements in a molecule

Fw Molecular weight

Byv Valence path connectivity index of order h = 7-10

hXéh Valence chain connectivity index of order h = 7-10

Si Shannon information index

Totop Total Topological Index t

Suml Sum of the intrinsic state values I

Sumdell Sum of delta-I values

Tets2 Total topological state index based on electrotopological state indices

Phia Flexibility index (kp1* kp2/nvx)

ICD Bonchev-Trinajstic mean information index

2 Bonchev-Trinajstic information index

Wp Wiener p

Pf Platt f

Wt Total Wiener number

Knotp Difference of chi-cluster-3 and path/cluster-4

Knotpv Valence difference of chi-cluster-3 and path/cluster-4

Nclass Number of classes of topologically (symmetry) equivalent graph vertices

NumHBd Number of hydrogen bond donors

NumHBa Number of hydrogen bond acceptors
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TABLE IV (Continued)
SHCsats E-State of C sp® bonded to other saturated C atoms
SHCsatu E-State of C sp® bonded to unsaturated C atoms
Shvin E-State of C atoms in the vinyl group, =CH-
Shtvin E-State of C atoms in the terminal vinyl group, =CH,
Shavin E-State of C atoms in the vinyl group, =CH-, bonded to an aromatic C
Sharom E-State of C sp® which are part of an aromatic system
SHHBd Hydrogen bond donor index, sum of Hydrogen E-State values for -OH, =NH,

-NH2, -NH-, -SH, and #CH
SHwHBd Weak hydrogen bond donor index, sum of C-H Hydrogen E-State values for hydrogen atoms on
a C to which a F and/or Cl are also bonded

SHHBa Hydrogen bond acceptor index, sum of the E-State values for -OH, =NH,
-NH2, -NH-, >N-, -O-, -S-, along with —F and —Cl
Qv General Polarity descriptor
- NHBint, Count of potential internal hydrogen bonders (y = 2-10)
SHBint, E-State descriptors of potential internal hydrogen bond strength (y =2-10)

Electrotopological State index values for atoms types:
SHsOH, SHANH, SHsSH, SHsNH?2, SHssNH, SHtCH, Shother, SHCHnX, Hmax Gmax,
Hmin, Gmin, Hmaxpos, Hminneg, SsLi, SssBe, Sssss,Bem, SssBH ,SsssB, SssssBm,
SsCH3, SACH2, SssCH2, StCH, SdsCH, SaaCH, SsssCH, SddC,StsC, SdssC, SaasC, _
SaaaC, SssssC, SsNH3p, SsNH2, SssNH2p, SANH, SssNH, SaaNH, StN, SsssNHp, SdsN,
SaaN, SsssN, SddsN, SaasN, SssssNp, SsOH, SdO, SssO, SaaO, SsF, SsSiH3, SssSiH2,
SsssSiH, SssssSi, SsPH2, SssPH, SsssP, SdsssP, SsssssP, SsSH, SdS, SssS, SaaS, SdssS,
SddssS, SssssssS, SsCl, SsGeH3, SssGeH2, SsssGeH, SssssGe, SsAsH2, SssAsH, SsssAs,
SdsssAs, SsssssAs, SsSeH, SdSe, SssSe, SaaSe, SdssSe, SddssSe, SsBr, SsSnH3, SssSnH2,
SsssSnH, SssssSn, SsI, SsPbH3, SssPbH2, SsssPbH, SssssPb '

kp0 . Kappa zero
kpl-kp3 Kappa simple indices
kal-ka3 Kappa alpha indices

The triplet indices were calculated using in-house software. Finally, Molconn-Z v3.50 [59] was used to
calculate an additional 167 topological and electrotopological indices. This brought the total number of
indices used in this study to 369. These sets of topological indices have recently been analyzed in detail to
provide an overview of their utility [31, 60]. Table 4 presents a comprehensive list of the topological

indices included in this study.

Data Reduction
Initially, almost all of the TIs were transformed by the natural logarithm of the index plus one. Some TIs

may be several orders of magnitude greater than others, so the scaling is conducted to minimize the effect
of scale. However, minimal values for some of the Molconn-Z parameters were much less than zero.
These indices were logarithmically scaled on a case by case basis. This was done using the natural

logarithm of the index plus x, where x was an integer large enough to make the minimal value of the
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index greater than zero. Next, correlation analysis was conducted on the indices. In all cases of a perfect

correlation between several indices, only one of the indices was retained within the descriptor set.

Statistical Analysis (PCA and Ridge Regression)

Principal component analysis (PCA) was used on the transformed indices to minimize the intercorrelation
of indices. The PCA was conducted using the SAS procedure PRINCOMP [61]. Only PCs with
eigenvalues greater than or equal to one have been retained for this study. A more detailed explanation of
this approach has been provided in a previous study by Basak et al [23]. These PCs were subsequently
used as independent variables (in place of the TIs) to determine similarity scores in the Euclidean distance
method described below. After the PCA, a correlation analysis was conducted on the PCs to determine
which TIs were most highly correlated with each of the PCs. This not only allows us to select a small set
of TIs for the creation of similarity spaces instead of using the PCs, but it can also provide some incite
into the general nature of the principal components, i.e., what aspects of molecular structure are explained
by the PCs [22, 62, 63].

Additionally, ridge regression (RR) [64], a method wherein the entire set of descriptors is retained as
opposed to subset regression was conducted on the sets of indices retained after the data reduction step.
This regression method is useful in cases where the descriptors are highly multicollinear and where the
number of descriptors is substantially larger than the number of observations [65]. Conceptually, RR can
be thought of as recasting the regression as one using the principal components of the predictor variables
as new predictors. It differs in that in principal component regression the leading components are
retained and used just as in ordinary least squares regression while the trailing components are dropped.
RR retains all components, but downweights each of them in accordance with the component’s
eigenvalue and the ‘ridging constant’ .

The ridge parameter k controls the amount of smoothing in ridge regression. If & is large, then all
regression coefficients are ‘shrunk’ towards zero. Smaller & values shrink the directions of small
eigenvalue substantially, but the directions with large eigenvalue less so. A suitable value for k needs to
" be found when performing ridge regression. In the current study, the k value was chosen to minimize the
prediction sum of squares (PRESS), a crofss-validation measure. As in jack-knifing, each compound in
turn is temporarily omitted from the data set and the RR fitted to the remaining compounds. The resulting
model is used to predict the compound that was held back. PRESS is the sum of squares of the differences
between the actual values and these holdout predictions. The cross-validated R is defined in terms of

PRESS and provides an honest measure of the predictive power of the modeling approach.
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Quantification of Molecular Similarity

Intermolecular similarity was measured using Euclidean distance (ED) within an n-dimensional space

derived from TIs or PCs. The ED between two molecules, i and j , is defined as:

n %
co-[$jo.-o.1] -

k=1

where 1 equals the number of dimensions utilized, whether those dimensions are derived from TIs or PCs.

Dy and Dy are the data values of the k™ dimension for molecules i and J» respectively.

Property Estimation

Property estimation was carried out using the k-nearest neighbor (KNN) method. For each compound, a
number of similar chemicals (k = 1-10, 15, 20, 25) are selected and the property of interest is estimated
based on the values of these nearest neighbors. For instance, in estimating the logP of the probe
compound, the mean logP for the k-nearest neighbors was used as the estimate. KNN estimation was
.carried out for all chemicals in both of the data sets, resulting in a full cross-validation. Thus the

correlation coefficients reported are the cross-validated correlation coefficients.
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FIGURE 1 Pattern of correlation for the three similarity methods on the STARLIST set.
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FIGURE 2 Pattern of standard error for the three similarity methods on the STARLIST set.

RESULTS AND DISCUSSION

The principal objective of this paper was to determine whether similarity spaces tailored to a specific
property could be more useful in the prediction of that property from selected aﬁalogs, as compared to
spaces which are constructed from orthogonal, or a minimally correlated subset of, descriptors derived
from an arbitrary collection of indices. To this end, we used three spaces, viz., a principal component
space, a topological index space based on the indices most highly correlated with each PC, and a
topological index space baséd on the weighting of the indices as determined through ridge regression
analysis.

For the STARLIST logP set, consisting of a group of 213 diverse structures, we selected analogs
using three distinct sirnilérity methods. These methods all began using the set of 252 calculated molecular
descriptors (TIs) remaining after data reduction. PCA resulted in the selection of the first twenty-four
principal components, all of which had eigenvalues greater than or equal to one (see Table 5). Also
indicated on Table 5 are the two TIs most correlated with each of the PCs. Next, RR was carried out on
the set of 252 TIs. Model coefficients were extracted and used to rank the TIs froxﬂ most to least
influential based on the absolute value of the regression coefficient. In this manner, a set of twenty-four
topological indices were selected for creation of the “tailored” similarity space (see Table 6). Finally,
three Euclidean distance-based similarity spaces were constructed based on: 1) twenty-four PCs derived

from the set of 252 calculated TIs, b) twenty-four TIs, each one being the most correlated with one of the
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first twenty-four PCs, and c) the set of the twenty-four TIs having the most significant contribution (t
value) in modeling logP using the RR method. To compare the methods, the k-nearest neighbors (k = 1-
10, 15, 20, 25) for each chemical were chosen using each of the QMSA methods and the arithmetic mean
of the logP values for the selected analogs was taken as the estimated logP of the compound under
investigation. It is clear from the results (see Figures 1 & 2) that the tailored similarity space based on the

indices selected by the RR method gives a much better estimate of logP as compared to the two non-

tailored methods.

TABLE V Summary of the first twenty-four principal components derived from a set of 252 topological indices
calculated for a set of 213 STARLIST chemicals
Proportion of Cumulative

Variance Variance  First Most Correlated Second Most
PC Eigenvalue Explained Explained TI Correlated T
1 121.74 0.483 0.483 DN’N; 0.993 Py 0.993
2 25.31 0.100 0.583 SssssC 0748 b 0.719
3 17.23 0.068 0.651 IC, 0.849  CIC, -0.822
4 14.37 0.057 0.708 I 0.667  xVe, 0.598
5 11.29 0.045 0.753 Phia 0875  Ka 0.745
6 738 0.029 0.782 * 0532 O 0.494
7 6.55 0.026 0.808 Gmin 0552  SsF -0.533
8 4.69 - 0.019 0.827 SHwHBd -0.590 SHCHnX -0.585
9 4.03 0.016 0.843 SsCH; 0.681 Qv 0.391
10 322 0.013 0.856 NumHBd -0.589  SsSH -0.589
11 2.98 0.012 0.868 .  SHsSH 0.724  SsSH 0.723
12 2.60 0.010 0.878 Shvin 0.543  SdsCH 0.542
13 2.50 0.010 0.888 O 0390 1O, -0.379
14 2.14 0.008 0.896 o en 0672  ‘xg 0.660
15 1.91 0.008 0.904 pv ey 0382 Oy, -0.380
16 1.81 0.007 0.911 ven 0.545  fwe -0.390
17 1.67 0.007 0.918 SsBr 0375  SsCl -0.355
18 1.49 0.006 0.924 en 0569 By 0.509
19 1.42 0.006 0.930 Ssl -0.298  SdssC 0.283
20 1.23 0.005 0.935 Saa$ 0.340  SaasC -0.355
21 1.15 0.005 0.940 SHCsatu -0.394  SddC 0.265
22 1.11 0.004 0.944 SdssC 0.583  SsssP -0.372
23 1.08 0.004 0.948 StsC -0.521 SsI 0.489
24 1.02 0.004 0.952 SsssP -0.598 SssNH,P 0.568
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TABLE VI Twenty-four TIs selected by PCA and RR for the 213 STARLIST chemicals. Bold typeféce has been
used to highlight the indices common to both sets of TIs

PC TIs from PCA TIs from RR (t-value)
1 DN’N; ka, (12.41)

2 SssssC W (11.95)

3 IC, 0¥ (11.62)

4 J Py (11.32)

5 Phia ANN; (11.31)
6 * DN?S; (11.12)
7 Gmin SHwHBd (-10.87)
8 SHwHBd ANS; (10.66)
9 SsCH;, ANN; (10.55)
10 NumHBd AN1; (10.47)
11 SHsSH ANN; (10.39)
12 Shvin Oy (10.14)

13 Oy DN?14 (9.92)
14 e SHCHnX (-9.92)
15 e % (9.65)

16 e ASl, (9.32)
17 SsBr DN’S, (9.16)
18 Sxch DN’N, (9.09)
19 SsI DN®N; (9.00)
20 SaaS DN’S;5 (8.89)
21 SHCsatu SssS (-8.74)
22 SdssC ANN, (8.33)
23 StsC SaasC (8.16)
24 SsssP SsssP (-8.14)

An analogous situation is found with the set of ninety-five aromatic and heteroaromatic amines. 267
indices were retained after data reduction for this data set. PCA resulted in twenty principal components
with eigenvalues greater than or equal to one (see Table 7). As with the STARLIST logP set, Table 7 also
indicates the two TIs most correlated with each of the principal components. Table 8 lists the TIs selected
from the RR analysis. As before, the number of TIs selected by RR (twenty) was selected to match the
~ number of PCs with eigenvalues greater than or equal to one for creation of the “tailored” similarity
space. Finally, the three Euclidean distance-based similarity spaces were constructed based on: 1) twenty
PCs derived from the set of 267 calculated TIs, b) the twenty TIs most correlated with the first twenty
PCs, and c) the set of the twenty TIs having the most significant contribution (t value) in modeling
mutagenicity using the RR method. Here, the similarity method based on indices chosen by thé RR
method also gives a better estimate of mutagenicity as compared to the methods based either on the PCs
or indices most correlated with the first twenty PCs with eigenvalues greater than or equal to one.

(Figures 3 & 4).
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FIGURE 3 Pattern of correlation for the three similarity methods on the set of ninety-five aromatic and
heteroaromatic amines.
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FIGURE 4 Pattern of standard error for the three similarity methods on the set of ninety-five aromatic and
heteroaromatic amines.
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TABLE VII Summary of the first twenty principal components derived from a set of 267 TIs calculated for a set of
95 aromatic and heteroaromatic amines
Proportion of Cumulative

Variance Variance  First Most Correlated Second Most

PC Eigenvalue Explained Explained TI Correlated TI

1 141.47 0.532 0.532 AZV, 0994 AZV, 0.993
2 34.28 0.129 0.661 ASN, 0.887 ka, -0.879
3 17.04 0.064 0.725 Sumdell 0.799 SHHBa 0.746
4 10.41 0.039 0.764 Knotpv -0.539 9V 0.528
5 8.69 0.033 0.797 Phia 0.560 Nvx © -0.556
6 8.34 0.031 0.828 Hmin -0.666 1C, 0.645
7 6.06 0.023 0.851 ANZ, 0.497 SsCH, -0.476
8 4.95 0.019 0.869 SHHBd 0.602 NumHBd 0.553
9 3.85 0.015 0.884 e -0.649 SsF -0.638
10 3.11 0.012 0.896 ShsOH 0487 SsOH 0.487
11 2.76 0.010 0.906 SaaN 0379 IC, 0.340
12 2.34 0.009 0915 SHssNH -0.374 SaalNH -0.332
13 2.10 0.008 0.923 SsOH -0.408 ShsOH -0.408
14 1.82 0.007 0.929 NHBintg 0.480 SssNH 0.398
15 1.79 0.007 0.936 SsBr 0427 SssS -0.384
16 1.64 0.006 0.942 SssNH 0.510 NHBintg -0.389
17 1.56 0.006 0.948 SssO "-0.633 NHBint, 0.487
18 1.38 0.005 0.953 NHBintg 0.385 SssS 0.367
19 121 0.005 10.958 SdsCH -0.582  SssS 0.391
20 1.12 0.004 0.962 NHBintg 0.342 NHBint; -0.336

A comparison of the list of the twenty-four TIs most correlated with thé twenty-four PCs and the
twenty-four most important TIs necessary for the correlation of LogP for the STARLIST set of 213
chemicals (Table 6) shows that they have only three TIs, viz., DN®N;, SHwHBJ, and SsssP, in common.
This shows that the set of minimally correlated TIs selected by the PCA pfocess and the group of twenty-
four TIs selected by the RR method are quite different. It is interesting to note that the group of twenty
TIs chosen by the PCA procedure and those selected by the RR method for the data set of ninety-ﬁve
aromatic amines have no TIs in common (Table 8). '

It is interesting to note that for both types of QMSA methods, tailored and non-tailored, the value of k
= 3-8 gives the best estimate of the properties, viz., logP and mutagenicity. This is in line with our earlier
observation with various QMSA methods pertaining to different properties and diverse databases [19-37,
62]. It should also be noted that vériable clustering was considered as a means of selecting indices or
creating nearly orthogonal descriptors for the construction of ED spaces. However, this notion was
discarded when we first attempted to cluster the sets of 250+ descriptors. Unfortunately the
implementation of variable clustering that we attempted to use required constant monitoring and had not
finished clustering the variables even after two hours had elapsed. By comparison, the PCA took only a

few seconds and produced a new set of descriptors that were completely orthogonal.
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TABLE VIII Twenty topological indices selected by PCA and RR for the ninety-five aromatic and heteroaromatic
amines. There are no common TIs between the two descriptor sets

PC TIs from PCA TIs from RR t value
1 AZV; ‘ P, 5.18
2 ASN, M, 4.82
3 Sumdell M, 4.72
4 Knotpv NHBinty 4.39
5 Phia IC, -4.20
6 Hmin SIC, -4.17
7 ANZ, AZNy 3.97
8 SHHBd SIC, -3.88
9 e Ps 3.86
10 ShsOH P 3.84
11 SaaN IC, -3.77
12 SHssNH by 3.74
13 SsOH Oxpc 3.65
14 NHBintg Tors 3.62
15 SsBr SaaNH -3.55
16 SssNH CIC, 352
17 SssO - ANS, 3.49
18 SssS AZV, 3.42
19 SdsCH - CIGs 3.36
20 NHBint, 1Cs 3.19

In conclusion, we have reported for the first time in this paper that one can construct appropriately
tailored similarity spaces using adequately selected molecular descriptors: Such tailored spaces perform
better in property/toxicity estimation than spaces constructed from an arbitrary collection of descriptors.
We hope the idea of tailored similarity space will find application in analog selection, property/ toxicity
estimation as well as in the property-specific clustering of databases for predictive toxicology research

and drug design.
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Abstract
Motivation. In the past, molecular similarity spaces have been developed from arbitrary sets of molecular

properties or theoretical descriptors and the results of property estimation based on these methods have always
been inferior to SAR and QSAR models. Tailored QMSA methods attempt to create similarity spaces specific
for a property of interest, rather than being purely arbitrary spaces characterizing the general aspects of all
chemicals within the space or intuitively selected structure spaces whose elements are chosen subjectively. To
this end, we have created three similarity spaces, two tailored and one non—tailored, for a set of 166 chemicals
for which we have both log P and normal boiling point (BP) data. The tailored spaces were each tailored to one
of the properties, while the other similarity space was developed using standard QMSA methods.

Method. Ridge regression was used to determine which of the available molecular descriptors were most useful
in modeling each of the available properties. Fifteen topological descriptors were selected for use as dimensions
within each the tailored similarity spaces. The same number of principal components were developed using
principal component analysis for the arbitrary similarity space.

Results. The log P tailored similarity space was superior to both the arbitrary structure space and the BP tailored
space for the estimation of log P. Also, the BP tailored similarity space was superior to the arbitrary structure
space for the estimation of BP, Interestingly, the space tailored to model log P performed as well at modeling BP
as did the BP tailored space. This unexpected result is explained by the degree of overlap between the indices
used in both of the tailored spaces and in the presence of connectivity indices related to BP in the log P model.

Conclusions. The tailored similarity method presents a promising approach to creating property specific
similarity spaces derived from structural descriptors based on the results of this study and from a previous study.
Further work is necessary to determine to true utility of this method with large, diverse data sets.

Keywords, Quantitative molecular similarity analysis (QMSA); tailored QMSA; arbltrary QMSA; topological
indices; lipophilicity; normal boiling point.

Abbreviations and notations

ASTER, Assessment Tools for the Evaluation of Risk QMSA, quantitative molecular similarity analysis
BP, normal boiling point QSAR, quantitative structure—activity relationship
ED, Euclidean distance R, regression coefficient
JP-8, jet propeliant formulation #8 RR, Ridge regression
KNN, K-nearest neighbor s.e., standard error
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PCs, principal components USEPA, United States Environmental Protection Agency

PCA, principal components analysis
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1 INTRODUCTION

Quantitative molecular similarity analysis (QMSA) is an important computational tool both for
the hazard assessment of environmental pollutants and pharmaceutical drug design. In the area of
the hazard estimation of chemicals, QMSA methods are routinely used to assess the potential
hazard of a chemical based on the toxicity profiles of analogous chemicals when little or no
experimental toxicity data and toxicologically relevant property data are available for the chemical
of interest [1-4]. This course of action is generally followed when the structure of the chemical is
complex enough that it cannot be unambiguously classified into a particular structural category. If it
could be categorized into a specific chemical class, class—specific quantitative structure—activity
relationship (QSAR) models would instead be used for hazard assessment. In the area of drug
discovery, QMSA techniques are useful for determining whether interesting lead compounds have
structural analogs with similar .pharmacological and toxicological profiles. The other side of
similarity is dissimilarity. Dissimilarity—based clustering of large libraries of real or in silico (virtual
libraries) of chemicals has been successfully used [5] and suggested [6] as possible methods in the

management of combinatorial explosions in various drug design scenarios.

QMSA methods are based on the basic assumption that similar molecular structures usually have
similar properties [7]. Two chemicals, X1 and X2, are said to be similar if they resemble each other
with respect to some user—defined set of properties or structural attributes, or both. Substructural
descriptors [8—17], experimental properties [12,17-19], and theoretical structural invariants [6,7,11—
17,19-32] have been widely used in the formulation of QMSA methods and ranking of chemical

databases via such techniques.

Our research group has been involved in the development of novel QMSA techniques and their
applications in analog selection and the k—nearest neighbor (KNN) based estimation of properties,
as well as the use of similarity spaces in the clustering of chemical databases. Our experience has
shown that increasing the intrinsic dimensionality of similarity spaces by the progtressive use of
more diverse and mutually uncorrelated (or minimally correlated) indices leads to better analog
selection as is evident from both a visual inspection of their structures and the predictive power of
the selected analogs in property estimation for query chemicals using the KNN method.

The stepwise use of increasingly higher dimensional structure spaces, derived from collections of
progressively more diverse and comprehensive indices, suffers from the fact that elements of the
enhanced spaces do not have any intrinsic relationship to the property of interest that we are
attempting to estimate from the chosen analogs. Rather, these spaces are simply a reflection of the
chemical diversity within the selected data set. If there is an improvement in the usefulness of
analogs selected, that is only by chance, not by design. This is why we have developed the idea of
tailored QMSA methods where the structure space is constructed from parameters that are strongly
associated with the property of interest [32]. The advantage of such directed spaces over blind or
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arbitrary spaces is that analogs selected by the former will be relevant with respect to the property

to which they are tailored.

In a previous study, we reported for the first time the development of structure spaces tailored
towards two properties, viz., log P (octanol/water) and Ames mutagenicity, based on calculated
topological indices. We also showed that the analogs selected from the tailored similarity spaces
gave much better results in KNN—based estimation for both of the properties studied, as compared
to our previous results using arbitrary similarity spaces. In the current study, we have used a set of
166 chemicals which represent a subset of the known constituents of jet propellant #8 (JP-38), a jet
fuel currently in use by the United States Armed Forces. This set of chemicals was of interest for
this study since we have data for two physicochemical properties, log P and normal boiling point,
for this set of chemicals. Three similarity spaces have been constructed for this study. Two of the
similarity spaces are tailored spaces, one tailored towards log P and the other towards normal
boiling point (hereafter simply referred to as BP). The third similarity space is a standard, arbitrary
similarity space developed from the set of available molecular descriptors.

2 MATERIALS AND METHODS

Physicochemical property data used in this study represent property values éxtracted from the
ASTER [33] system of the USEPA. These data are predominantly calculated values, rather than
experimental values, reflecting the difficulty of obtaining simple physicochemical experimental

data for common compounds.

2.1 Chemical Data

The set of chemicals used in this study represents a subset of the known constituents of JP—8
identified through GC/MS [34], a set of 166 hydrocarbons. This subset consisted of all of the
chemicals in the full set of 228 chemicals for which log P and normal boiling point (BP) were both
available from the ASTER database. However, even for the reduced set of 166 chemicals, most of
the data values available from ASTER were calculated, not experimental values. This set of
chemicals and the data obtained from ASTER are reported in Table 1.

2.2 Calculation of Molecular Descriptors

The topological indices (TIs) used in this study were calculated using three main software
programs: POLLY 2.3 [35], MolConn—Z 3.50 [36], and Triplet [37]. Included in the suite of more
than 220 indices in this study are: Wiener number [38], molecular connectivity indices as calculated
by Randi¢ [39] and Kier and Hall [40], frequency of path lengths of varying size, information
theoretic indices defined on distance matrices of graphs using the methods of ‘Bonchév and
Trinajsti¢ [41] as well as those of Raychaudhury er al. [42], parameters defined on the

376

Bi1oCHEM Press http://www.biochempress.com




Tailored Similarity Spaces for the Prediction of Physicochemical Properties
Internet Electronic Journal of Molecular Design 2002, 1, 374-387

neighborhood complexity of vertices in hydrogen—filled molecular graphs [43—45], Balaban’s J
indices [46—48], local orthogonal vertex invariants [37], kappa shape descriptors [49,50], and the
electrotopological indices of Kier and Hall [51]. More information on the topological indices
calculated by POLLY has been reported in earlier studies [15,20,27,31].

Table 1. Chemicals and Their Physicochemical Property Data for the 166 Identified Components of JP-8

No Name logP  BP No Name logP  BP
1 ISTD (d10-anthracene) 449 300 50 3,3—dimethylheptane 52 137
2 2,23-trimethylbutane 4.01 81 51 2,4-dimethyl-3—ethylpentane 5.07 137
3 2,3,3-trimethyl-1-butene 3.46 78 52 2,3,4-trimethylhexane 5.07 139
4  3,3-dimethylpentane 4.14 86 53  2,2,3,3—tetramethylpentane 494 140
5 Benzene 2.14 80 54  23,3,4—-tetramethylpentane 494 142
6  2-methylhexane 427 90 55 2,3-dimethylheptane 52 141
7  3—ethylpentane 427 935 56 3,4-dimethylheptane 52 141
8 t+1,3—dimethylcyclopentane 3.83 91 57 4-ethylheptane 533 141
9 Iso-—octane 454 99 58 Ethylbenzene 332 136
10 1-heptene 385 94 59 4-methyloctane 533 141
11  3-heptene 3.85 927 60 m—xylene 344 139
12 n-heptane 44 98 61 3-methyloctane 533 143
13 2,2-dimethylhexane 4,67 106 62 c-1,2,3-trimethylcyclohexane 491 144
14 1,1,3—trimethylcyclopentane 435 105 63 3,3-diethylpentane 52 146
15 2,3,3-trimethyl-1,4—pentadiene 345 125 64 1,2,4-trimethylcyclohexane 491 142
16  2,44-trimethyl-2-pentene 399 105 65 c,ct-1,3,5-trimethylcyclohexane 491 144
17 2,5-dimethylhexane 4.67 109 66 1-nonene 491 147
18 2,4-dimethylhexane 467 110 67 o—xylene 344 144
19. 3,3—dimethylhexane 467 112 68 4-nonene 491 145
20 4-methylcyclohexene 333 103 69 n-nonane i 5.46 151
21  c,tc-1,2,3~trimethylcyclopentane  4.35 123 70 ¢, t-1,2,3-trimethylcyclohexane 491 144
22 2,3,4-trimethylpentane 454 114 71 3,3,5-trimethylheptane 5.59 156
23 2,3,3-trimethylpentane 454 115 72 l-ethyl-1-methylcyclohexane 492 144
24 -3,4,4-trimethyl-2-pentene 399 119 73 1,3,5,5-tetramethyl-1,3—cyclohexadiene 4.52 173
25 1,1,3,3—tetramethylcyclopentane 487 114 74  t-1,1,3,5-tetramethylcyclohexane 543 166
26 2-methylheptane 48 118 75 Isopropylcyclohexane 4.8 155
27 4-methylheptane 4.8 118 76 3,5-dimethyloctane 5.72 160
28 Toluene 279 111 77 Isopropylbenzene 372 152
29 3,4-dimethylhexane 4.67 118 78  2,7-dimethyloctane 5.72 160
30 2,2,4,4-tetramethylpentane 494 122 79 n-propylcyclohexane 493 157
31 3-methylheptane 48 119 80 2,6-dimethyloctane 572 155
32 3-cthylhexane 4.8 119 81 3,4—dicthylhexane 572 162
33 +-1,1,3,4tetramethylcyclopentane 4.87 144 82 3,6-dimethyloctane 572 160
34 2-ethyl-l1-hexene 425 120 83  3-ethyl-2-methylheptane 572 166
35 2,2, 4-trimethylhexane 5.07 127 84 3,4,5-trimethylheptane 5.59 164
36 I-ethyl-l1-methylcyclopentane 436 122 85 Propylbenzene 3.85 159
37 n-octane 493 126 86 2,3—dimethyloctane 572 164
38 2,44-trimethylhexane 507 131 87 4-ethyloctane 5.85 168
39 24-dimethylheptane 52 134 88 S5-methylnonane 585 165
40  2,2,3-trimethylhexane 5.07 134 89  4-methylnonane 5.85 165
41 4,4-dimethylheptane 52 135 90 l-ethyl-3-methylbenzene 3.97 161
42 3,3,5-trimethylcyclohexene 437 145 91 l-ethyl-4-methylbenzene 3.97 162
43 2,2,5,5-tetramethylhexane © 546 137 92 3-—ethyloctane 5.85 168
44 2,6-dimethylheptane 52 135 93 1,3,5-trimethylbenzene 4.09 165
45 c¢,c,c—1,3,5-trimethylcyclohexane  4.91 144 94  3-methylnonane 5.85 167
46 Propylcyclopentane 437 131 95  1-isopropyl-4-methylcyclohexane 532 169
47 1,3,5-trimethylcyclohexane 491 144 96 l-ethyl-2-methylbenzene 397 165
48 3,5,5-trimethylcyclohexene 437 145 97  2,2,4,6,6-pentamethylheptane 6.39 205
49  Ethylcyclohexane 4.4 132 98  tbutylbenzene 412" 169
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Table 1. (Continued)

No Name logP BP No Name logP BP
99  1,2,4-trimethylbenzene 4.09 169 133 1,2-dimethyl-3—ethylbenzene 4.62 194
100 n—decane 598 174 134 1,2,4,5-tetramethylbenzene 474 197
101 Isobutylbenzene 425 173 135 (2-methylbutyl-)-benzene 478 205
102 sec-butylbenzene 425 174 136 1,2,3,5~tetramethylbenzene 4,74 198
103 3,7, 7-trimethylbicyclo(4.1.0)-3-heptene  4.12 170 137 (3—methylbutyl-)-benzene 478 199
104  1-isopropyl-3-methylbenzene 437 175 138  1,2-diisopropylbenzene 53 204
105 1,2,3-trimethylbenzene 4.09 176 139  1,2,3,4-tetramethylbenzene 4,74 205
106 1-ethyl-2,5-dimethylbenzene 4,62 187 140  n-pentylbenzene 491 205
107 Dicyclopentadiene 344 175 141 1,4-diisopropylbenzene 53 203
108 Butylcyclohexane 546 181 142  1-t-butyl-3,5-dimethylbenzene  5.42 204
109 Indane (2,3-dihydro—1H-indene) 346 176 143 Naphthalene 332 218
110 1-isopropyl-2-methylbenzene 437 178 144 1-dodecene 65 213
111  1,3—diethylbenzene 45 181 145. 1,3,5-triethylbenzene 5.68 215
112 1-propyl-4-methylbenzene 45 183 146 n-hexylbenzene 544 226
113 1,4-diethylbenzene 45 183 147 (1, l—dlethylpropyl—)—benzene 571 243
114 Butylbenzene » 438 183 148 2-methylnaphthalene 3.97 241
115  l-ethyl-3,5-dimethylbenzene 4,62 184 149 1-methylnaphthalenc 3.97 245
116 4-methyldecane 6.38 185 150 Cyclohexylbenzene 491 235
117 1,2—diethylbenzene 45 183 151 1-t-butyl-3,4,5-trimethylbenzene 6.07 243
118 2-methyldecane 638 185 152 1,1,6-trimethyltetralin 5.7 247
119 Neopentylbenzene 4.65 186 153 n-heptylbenzene 597 245
120 I-propyl-2-methylbenzene 4.5 185 154 1,1-biphenyl 4.03 254
121  3-methyldecane 6.38 185 155 2-ethylnaphthalene 449 258
122 1-isopropyl-4-methylbenzene 437 177 156 1l-ethylnaphthalene 449 259
123 l-ethyl-2,4—dimethylbenzene 462 188 157 2,6-dimethylnaphthalene T 461 262
124 (1,2-dimethylpropyl-)-benzene 465 188 158 2,3—dimethylnaphthalene 4.61 268
125  l-ethyl-3,4—dimethylbenzene 4.62 190 159 1,4-dimethylnaphthalene 4.61 268
126 1-t-butyl-3-methylbenzene 477 189 160 1,5-dimethylnaphthalene 4.61 265
127 (1-ethylpropyl-)-benzene 478 191 161 1,2—dimethylnaphthalene 4.61 266
128 1-undecene 597 193 162 n-octylbenzene 6.49 262
129 2-ethyl-1,3—dimethylbenzene 4,62 190 163 1,8—dimethylnaphthalene 4.61 270
130 n-undecane 6.51 196 164 Fluorene 423 293
131 I—ethyl-3—isopropylbenzene 49 192 165 2 5—dlmethylheptanc 52 136
132 sec—pentylbenzene 478 193 166 p-xylene 344 138
2.2.1 Data reduction

Initially, the TIs were transformed by the natural logarithm of the index plus one. Since the
magnitude of some TIs is several orders greater than that of others, re—scaling is conducted to
minimize the effect of scale. However, minimal values for some of the Molconn—Z parameters were
much less than zero. These indices were logarithmically scaled on a case—by—case basis using the
natural logarithm of the index plus x, where x was an integer large enough to make the minimal
value of the index greater than zero. Next, correlation analysis was conducted on the indices. In all
cases of a perfect éorrelation between several indices, only one of the indices was retained within
the descriptor set. Additionally, a number of indices encoding features not present in the data set

(having zero values for all compounds) were discarded.
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2.2.2 Statistical analysis software

Two statistical software packages were used for the construction of similarity spaces used in this
study. For the development of the arbitrary similarity space, SAS [52] was used to conduct a
principal component analysis (PCA) on the transformed indices to minimize the intercorrelation of
indices. This was done using the SAS procedure PRINCOMP. For the tailored spaces, an in—house
ridge regression (RR) [53] program was used to select a small set of descriptors for the development

of each of the spaces.

2.2.3 Construction of arbitrary similarity spaces

A traditional (arbitrary) molecular similarity space was constructed for the set of 166 JP—8
constituents using the principal components created using the SAS PRINCOMP procedure. Only
PCs with eigenvalues greater than or equal to one have been retained for this study. A more detailed
explanation of this approach has been provided in a previous study by Basak ef al. [20]. These PCs
were subsequently used as independent variables (in place of the TIs) to determine similarity scores
in the Euclidean distance method described lateér. After the PCA, a correlation analysis was
conducted on the PCs to determine which TIs were most highly correlated with each of the PCs.
This allows for the creation of similarity spaces based on a small set of TIs (as has been done
previously), and also provides some insight into the general nature of the principal components, i.e.,
which aspects of molecular structure are explained by each of the PCs [6,54,55].

2.2.4 Construction of tailored similarity spaées

Two tailored similarity spaces were constructed for use in this study. One of the spaces was
tailored specifically to log P and the other for BP. As was mentioned earlier, the RR method was
used in the development of these spaces. RR is a method wherein modeling is conducted using the
. entire set of descriptors retained after the data reduction step as opposed to subset regression. This
regression method is useful in cases where the descriptors are highly multicollinear and where the
number of descriptors is subStantially larger than the number of observations [56]. Conceptually,
RR can be thought of as recasting the regression as one using the principal components of the
predictor variables as new predictors. It differs in that in principal component regression the leading
components are retained and used just as in ordinary least squares regression while the trailing
components are dropped. RR retains all components, but weights each of them in accordance with
the component’s eigenvalue and the ‘ridging constant’ k. More details on the RR method can be

found in some of our previous papers [32,57-58].

One of the by—products of the RR is a ranking of the contribution of the indices. The absolute
values of this ranking score were used to select the descriptors for use in the development of
tailored similarity spaces. Separate RR studies were conducted for log P and BP, resulting in a

selection of optimal descriptors for use in constructing the tailored similarity spaces.
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Table 2. Summary of the First Fifteen Principal Components Derived from a set of 222 Topological Indices Calculated

for a Set of 166 JP—8 Constituents
PC Eigenvalue Proportion of Explained  Cumulative Explained  First Most Correlated Second Most Correlated

Variance Variance T1 TI
1 93.38 0.421 0.421 DN?N, 0.99349 DN214 0.99136
2 45.84 0.206 0.627 Phia -0.97965 ASN, 0.96310
3 26.24 0.118 0.745 sz 0.84243 zx" 0.83715
4 12.74 0.057 0.802 1G5 0.74736 IC,4 0.73754
5 9.32 0.042 0.844 B —0.64153 “xb 0.61874
6 631 0.029 0.873 ”’x 0.55023 9XV 0.54724
7 4.75 0.021 0.894 SdsCH 0.53646 Shvin 0.52438
8 3.97 0.018 0.912 SXbc 0.49541 SXVC 0.49167
9 2.66 0.012 0.924 3XCh —0.50749  Gpax 0.48248
10 2.36 0.011 0.935 9XVCh -0.64096 9XCh -0.60901
11 1.91 0.009 0.944 B 0.35572 8)CCh 0.28873
12 1.68 0.008 0.952 Shvin -0.39971 SdsCH -0.39780
13 1.38 0.006 0.958 Oogrs 0.36812 0 0.31193
14 1.15 0.005 0.963 va 0.40648 SdsCH 0.26160
15 1.07 0.005 0.968 fx" 031114 6x" 0.30726

Table 3. Fifieen TIs Selected by RR for the 166 JP—8 Chemicals.
Indices Common to both RR Sets are Indicated in Bold

PC TIs from RR for log P TIs from RR for BP
_ (t-value) (t-value)
1 O (16.47) ANN; (16.77)
2 Oy (16.42) ANN; (16.10)
3  Fw (14.77) AN1; (15.81)
4 AZS, (14.22) ANN, (15.51)
5 W (14.03) w (15.30)
6  ANS; (14.00) P, (15.07)
7 AZS; (13.31) ANS; (14.74)
8  ANS, (12.19) " (14.58)
9 Y% L7 DN*1, (14.10)
10 ka (11.42) AZS; (13.93)
11 M (1131 AZN, (13.88)
12 ANN; (11.31) AZN; (13.13)
13 DN, (11.29) AZN, (12.81)
14 ANNs (11.14) Fw (12.65)
15 Qy (11.08) DN®N, (12.46)

2.3 Quantification of Intermolecular Similarity

Once the similarity spaces were constructed, it was possible to calculate similarity scores based
on the intermolecular distances within the arbitrary and tailored molecular similarity spaces.
Intermolecular similarity was measured using Euclidean distance (ED) within an n—dimensional
space derived from TIs or PCs. The ED between two molecules, i and j, is defined as:

i 1/2
ED;{ =[;(Dik —Djk)z:l . 6y

where 7 is equal to the number dimensions (descriptors) used to define the similarity space, whether
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those dimensions are derived from TIs or PCs. Dy and Dy are the data values of the K" dimension

for molecules i and j, respectively.

Once distances between all molecules within the molecular similarity space have been
calculated, these distance “scores” can then be used for analog selection or in KNN-based property
estimation. This type of quantifiable analog selection can be a powerful tool for finding chemicals
that are similar to a chemical of interest, replacing the need for subjective assessment of molecular
similarity. More often than not, we are interested in predicting a property of interest. In this case,
KNN-based similarity offers an alternative to standard linear regression approaches that works well

for large, diverse data sets.

KNN-based property estimation is carried out by selecting the k—nearest neighbors for each
compound and using the average of the neighbor’s properties as an estimate of the property of our
chemical of interest. A number of similar chemicals (k¢ = 1-10, 15, 20, 25) are selected and the
property of interest is estimated based on the values of these nearest neighbors. For instance, in
estimating the log P of the probe compound, the mean log P for the k—nearest neighbors was used
as the estimate. KNN estimation was carried out for all chemicals in all three of the similarity
spaces, resulting in a full cross—validation. Thus the correlation coefficients reported are the cross—

validated correlation coefficients.

3 RESULTS AND DISCUSSION

The principal objective of this paper was to illustrate the utility of tailoring similarity spaces to a
specific property as opposed to the standard method of constructing similarity spaces that are
property independent. To this end, we used three spaces, viz., an arbitrary .principal compbnent
space that would be used for the KNN-based estimation of both log P and BP, a topological index
space based on the RR weighting of the indices for log P, and a topological index space based on
the RR weighting of the indices for BP. ' ‘

From the initial set of 369 topological indices, 222 were retained for inclusion in the PCA and
RR procedures after data reduction. From this set of 222 indices, 15 PCs were extracted with
eigenvalues greater than or equal to one, resulting in the construction of a 15—dimensional arbitrary
similarity space. Table 2 presents a summary of the two TIs most-highly correlated with each of the
15 PCs. For the sake of consistency, it was determined that we would then use the fifteen TIs with
the highest rankings from the RR procedure. Table 3 presents the Tls selected for use in developing
the similarity spaces tailored for log P and BP.

The t-values, indicated in Table 3, are model coefficients extracted from the RR procedure and
used to rank the TIs from most to least influential based on the absolute value of the regression
coefficient. On close examination of tables 2 and 3 we find that-none of the TIs selected by RR are
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well represented in the PCs. Only one of the indices chosen for the tailored BP model, DN*14,
shows up as the second most-correlated TI in PC;. Otherwise, the tailored sets have little in
common with the TIs selected by RR. Further analysis shows that, of the five TIs most correlated
with each of the fifteen PCs, DN*1y4, is still the only TI shared in common between the arbitrary
similarity space and either of the tailored spaces. A much higher degree of overlap exists between
the two tailored sets. These sets share a total of seven of the fifteen TIs in common (indicated in
bold face in Table 3).

Interestingly, beyond' the seven shared indices, each of the tailored sets show a marked
difference in the types of indices selected. The set developed for modeling log P is skewed towards
zero—order chi indices, while the BP set shows a strong tendency towards the AZN triplets. While
there is significant overlap between the two tailored sets of descriptors, it is encouraging to see that
they show distinct differences as well. It is also encouraging to see the low—degree of overlap
between the indices prevalent in the arbitrary set versus those present in the tailored sets. The
arbitrary set should be a general characterization of the structural diversity within the data set and
while this is useful for property estimation, there is no intrinsic link to any particular property. The
tailored sets are geared towards the prediction of a specific property and, as such, should be geared
more strongly towards defining the property of interest than simply characterizing the structural

diversity of the structure space.
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Figure 1. Plot of regression coefficient, R, for KNN-based estimation of log P in
arbitrary and tailored similarity spaces at varying levels of X (k= 1-10, 15, 20 and 25).

Three Euclidean distance—based molecular similarity spaces were constructed from the PCs and
TIs indicated in Tables 2 and 3: (a) an arbitrary molecular structure space using the fifteen PCs
indicated in Table 2, (b) a space tailored for log P estimation based on the fifteen TIs presented in
the second column of Table 3, and (c) a space tailored for BP estimation based on the TIs presented
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in the third column of Table 3.
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Figure 2. Plot of standard error, s.e., for KNN-based estimation of log P in arbitrary
and tailored similarity spaces at varying levels of K (k= 1-10, 15, 20 and 25).
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Figure 3. Plot of regression coefficient, R, for KNN-based estimation of BP in arbitrary
and tailored similarity spaces at varying levels of K (k= 1-10, 15, 20 and 25).

Finally, KNN-based property estimation was carried out on the three similarity spaces. First we
examined the ability of each of the three spaces to estimate log P. In part this was done to verify
that the tailored spaces are indeed fitted to the property of interest rather than simply another
nonspecific structure space. The results of this analysis are depicted in Figures 1 and 2. Figure 1
presents the correlation coefficients for log P estimation in each of the similarity spaces for K = 1—
10, 15, 20 and 25. Likewise, Figure 2 presents the standard error of log P estimation for each of the
similarity spaces. As can be seen from these figures, the space tailored to log P definitely out—
performs both of the other spaces for the purposes of estimating log P. As might be expected, the
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arbitrary structure space outperforms the BP tailored space in estimating log P except for when
using the one and two nearest neighbors. So, for the purposes of log P prediction, our tailored

similarity space meets our expectations in its performance versus the performance of other spaces.

The examination of these structure spaces for the estimation of BP was carried out in a manner
identical to that for the estimation of log P. Each of the three similarity spaces was used in KNN—
based estimation of BP for the complete set of 166 chemicals. These results are summarized in
Figures 3 and 4. Figure 3 presents the correlation coefficients for BP estimation in each of the
similarity spaces for K= 1-10, 15, 20 and 25. Likewise, Figure 4 presents the standard error of BP
estimation for each of the similarity spaces. As can be seen from these figures, the space tailored to
BP definitely out—performs the arbitrary structure space, though, somewhat surprisingly, the space
tailored to log P performs about as well as the BP tailored space. The BP tailored space just slightly
outperforms the log P tailored space through K = 1-6. However, at higher values of X, the log P
space actually outperforms the BP tailored space for the estimation of BP. While this is interesting,
not too much weight should be given to the model’s performance at higher values for K. As was
shown in a recent study [30], loss of data variance is a real concern at the higher values of K. Thus
we ideally want a model that has a high correlation, R, and low standard error, s.e., using a minimal
number of neighbors. Taking this into consideraﬁon, the two tailored similarity spaces are still
essentially identical with regards to the prediction of BP for this particular set of 166 JP-8

components,

28
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H -- 4« PC mathod
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s.e. 20

18

14 -

12
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Figure 4. Plot of standard error, s.e., for KNN-based estimation of BP in arbitrary
and tailored similarity spaces at varying levels of K (k= 1-10, 15, 20 and 25).

It should be noted that while none of the molecular connectivity indices (chi indices) were
selected by the RR method for modeling BP, they have been shown to be related to the modeling of
normal boiling point in a number of studies [60—62]. Bearing this mind, we should not be terribly
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surprised by the performance of the log P tailored space in the estimation of BP. After all, seven of
“the fifteen indices were shared in common between the two tailored sets, and then if we consider the
chi indices as also related to BP, we now see that ten of the fifteen parameters in the log P set are

also important for the prediction of BP.

4 CONCLUSIONS

As can be seen from the results presented in this study, tailored similarity spaces show definite
promise in the development of property—specific similarity spaces, as opposed to standard
structure—based similarity spaces. Further studies are needed to verify the general utility of this
approach, specifically we need to examine the utility of spaces constructed from smaller “training
sets” of chemicals when applied to large, diverse data sets. If these methods can be applied
successfully to increase the predictive power of similarity measures for large, diverse data sets, this

will become a powerful tool for both risk assessment and pharmaceutical design.
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PREDICTING BLOOD:AIR PARTITION COEFFICIENT OF STRUCTURALLY
DIVERSE CHEMICALS USING THEORETICAL MOLECULAR DESCRIPTORS

S. C. BASAK,*' D. M. HAWKINS® and D. MILLS®

“ Natural Resources Research Institute, University of Minnesota,
5013 Miller Trunk Highway, Duluth, Minnesota 55811, USA
bSchool of Statistics, University of Minnesota,
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Quantitative structure-property relationship (QSPR) models for the estimation of rat blood:air partition coefficient
were developed using ridge regression (RR), principal components regression (PCR), and partial least squares
(PLS). A set of 24 compounds was analyzed, including 14 haloalkanes, 7 aromatic hydrocarbons, and 3 alkanes.
Four classes of mathematical structural descriptors, viz., topostructural indices (TSI), topochemical indices (TCIL),
geometrical/shape indices (3DI), and quantum chemical indices (QCI), were used in the development of hierarchical
and single-class models. The models developed using RR were superior to those developed using either PCR or

PLS. The results indicate that the easily calculated TC descriptors give the best model.

Keywords: Blood:air partition coefficient; PBPK modeling; Mathematical molecular descriptors; Hierarchical

QSPR; Ridge regression

INTRODUCTION

Partition coefficients of volatile organic chemicals are routinely used in the assessment of their hazard. In
particular, partition coefficients are used in estimating uptake, distribution, metabolism and elimination of
chemicals as well as the potential risk posed by such chemicals to human health as a result of exposure to
them [1]. Therefore, there is an interest in estimating realistic blood:air and tissue:air partition coefficient

(P) values of chemicals to which we are frequently exposed.
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Gargas et al. [1] determined various liquid:air and tissue:air partition coefficients for 0.9% saline,
olive oil, blood, liver, muscle and fat tissue. Then they used regression models to predict the partition
coefficient in one pair of media from the data for another pair. For example, human blood:air partition
coefficient was estimated from the corresponding rat blood:air value; P for blood:air, liver:air, and
muscle:air pairs were estimated from the P values of olive oil:air for various subsets of volatile organic
chemicals (VOCs).

The blood:air partition coefficient (P, blood:air) is an important factor in determining the pulmonary
uptake of VOCs through the inhalation route. P is routinely used in building physiologically based
pharmacokinetic (PBPK) models for exposure assessment. Solubility of VOCs in blood is determined by
two major factors: a) composition including the content of neutral lipid, phospholipid and water, and b)
the extent of binding of these chemicals to specific blood components such as plasma proteins,
hemoglobin, etc. Such physicochemical considerations have been used to develop physicochemically
based estimation ﬁlethods for blood:air P values of chemicals [2].

Methods for the estimation of P described above are essentially property-property correlations, which
depend on the availability of relevant experimental and tissue composition data. In practical situations of
hazard assessment of chemicals, the majority of them have very little or no available physicochemical
data [3]. A viable alternative in such cases is the use of theoretical molecular descriptors, which can be
calculated directly from molecular structure for the estimation of P. Quantitative structure-
property/activity/ toxicity relationships (QSPRs/ QSARs/QSTRs) based on such descriptors have been
found to be .useful in the estimation of diverse properties including boiling point [4-11], vapor pressure
[12-17], octanol/water partition coefficient [7, 18], mutagenicity [19-23], aquatic toxicity [24-32],
complement inhibitory activity [33], penetration through the blood-brain barrier [34], skin penetration
[35], and toxic modes of action [36], to name just a few. In a recent paper, we found that computed
molecular descriptors correlate well with blood:air partition coefficient of a congeneric set of 13
chlorocarbons [37]. In this paper, we have extended our study to estimate the blood:air P values for a

large and structurally more diverse set of VOCs.
METHODS

Database

In a 1996 study, Poulin and Krishnan presented a table containing experimental blood:air partition
coefficients for a set of 27 compounds including alkanes, haloalkanes, and aromatic hydrocarbons [2];
with the experimental values having been obtained from an earlier study performed by Gargas et al.using

a modified version of the vial-equilibration technique [1]. Three of the 27 compounds were not included
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in the present study, as it was not possible to calculate all descriptors for one of these compounds, and
two of the compounds were cis/trans isomers which are not distinguishable in terms of their descriptors.
The 24 compounds used in the current study, along with their experimental blood:air partition coefficient

values, are provided in Table L.

TABLE I Experimental rat blood:air partition coefficients (P, blood:air) for the set of 24 compounds

Chemicals Experimental P*
Alkanes
n-Hexane 229+0.11
Cyclohexane 1.39 + 0.09
n-Heptane 4.75+£0.15
Haloalkanes
Dichloromethane 194+ 0.8
Chloroform 20.8 £0.1
Carbon tetrachloride 4,52 +0.35
Bromochloromethane 41.5+0.9
1,1-Dichloroethane 11.2+0.1
1,2-Dichloroethane 304+1.2
1,1,1-Trichloroethane 576+ 0.5
1,1,2-Trichloroethane. 580=+1.1
1,1,1,2-Tetrachloroethane 417+1.0
1,1,2,2,-Tetrachloroethane 142+ 6
Pentachloroethane 104 £3
1,2-Dichloropropane 18.7+0.5
Trichloroethylene 21914
Tetrachloroethylene 189+ 1.1
Aromatic hydrocarbons :
Benzene : 17.8+0.3
Chlorobenzene 594+1.0
Toluene 180+1.0
Styrene 40.2 +£3.7
o0-Xylene 443x2.0
m-Xylene 46.0+ 1.5
p-Xylene 41.3+35

* Values represent means + standard error,

Calculation of Molecular Descriptors

A complete list of the 378 mathematical molecular descriptors calculated for use in the current study is
provided in Table II. These parameters are partitioned into classes that are ordered hierarchically based on
their level of complexity. At the lowest level of the hierarchy are the topostructural indices (TSI) which
encode information strictly about the adjacency and topological distances of atoms in molecular
structures. The topochemical indices (TCI) are more complex, encoding information not only about the
topology but also chemical properties of the molecular structures. The geometrical indices (3DI) are more

complex still, encoding information about the shape and 3-dimensional aspects of the structure. Finally,
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the quantum chemical indices (QCI) are at the upper end of the hierarchy, encoding electronic
information. The software programs used for the calculation of these descriptors include POLLY [38],
Triplet [39, 40], Molconn-Z [41], Sybyl [42], and MOPAC [43]. Together, POLLY and Triplet calculate a
large number of topological, i.e. topostructural and topochemical, descriptors. Molconn-Z provides
additional topological descriptors as well as a small set of molecular shape indices. Sybyl and MOPAC

calculate relatively small sets of 3-dimensional and quantum chemical descriptors, respectively.

TABLE I Descriptors calculated for use in the current study, along with brief descriptions and hierarchical
classification

Topostructural (TS)
I‘g’ Inforhmation index for the magnitudes of distances between all possible pairs of vertices of a
a

I_‘g' I%rllegn information index for the magnitude of distance

W Wiener index = half-sum of the off-diagonal elements of the distance matrix of a graph

i Degree complexity '

HY Graph vertex complexity

HP Graph distance complexity

ic lIlnformation content of the distance matrix partitioned by frequency of occurrences of distance
M; A Zagreb group parameter = sum of square of degree over all vertices

M, A Zagreb group parameter = sum of cross-product of degrees over all neighboring (connected)

vertices ‘

By Path connectivity index of order h = 0-10

Byc Cluster connectivity index of order h = 3-6

Bypc Path-cluster connectivity index of order h = 4-6

Bych Chain connectivity index of order h = 3-10

Py Number of paths of length h = 0-10

J Balaban’s J index based on topological distance

nrings Number of rings in a graph

ncirc Number of circuits in a graph .

DNZSy Triplet index of distance matrix, square of graph order (# of non-H atoms), and distance sum;

operationy = 1-5

: DN21y Triplet index of distance matrix, square of graph order, and number 1; operation y = 1-5
ASl, Triplet index of adjacency matrix, distance sum, and number 1; operation y = 1-5

DS1, Triplet index of distance matrix, distance sum, and number 1; operation y = 1-5

ASN, Triplet index of adjacency matrix, distance sum, and graph order; operation y = 1-5

DSN, Triplet index of distance matrix, distance sum, and graph order; operation y = 1-5

DNZNy Triplet index of distance matrix, square of graph order, and graph order; operation y = 1-5
ANS, Triplet index of adjacency matrix, graph order, and distance sum; operation y = 1-5

ANI1, Triplet index of adjacency matrix, graph order, and number 1; operation y = 1-5

ANNy Triplet index of adjacency matrix, graph order, and graph order again; operation y = 1-5
ASV, Triplet index of adjacency matrix, distance sum, and vertex degree; operation y = 1-5

DSV, Triplet index of distance matrix, distance sum, and vertex degree; operation y = 1-5

ANV, Triplet index of adjacency matrix, graph order, and vertex degree; operation y = 1-5
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Topochemical (TC)
O Order of neighborhood when IC, reaches its maximum value for the hydrogen-filled graph
Oorb Order of neighborhood when IC, reaches its maximum value for the hydrogen-suppressed
graph
Lo Information content or complexity of the hydrogen-suppressed graph at its maximum
neighborhood of vertices
IC, Mean information content or complexity of a graph based on the ™ (r = 0-6) order
neighborhood of vertices in a hydrogen-filled graph .
SIC, Structural information content for 1 (r = 0-6) order neighborhood of vertices in a hydrogen-
filled graph
CIC, Complementary information content for " (r = 0-6) order neighborhood of vertices in a
hydrogen-filled graph
Byb : Bond path connectivity index of order h = 0-6
e Bond cluster connectivity index of order h = 3-6
hx(‘;h Bond chain connectivity index of order h = 3- 6
o - Bond path-cluster connectivity index of order h = 4-6
Byr¥ Valence path connectivity index of order h = 0-10
hxé Valence cluster connectivity index of order h = 3-6
“x(‘;h Valence chain connectivity index of order h = 3-10
hx;,'C Valence path-cluster connectivity index of order h = 4-6
h o Balaban’s J index based on bond types
>* Balaban’s J index based on relative electronegativities
A Balaban’s J index based on relative covalent radii
AZV, Triplet index of adjacency matrix, atomic number, and vertex degree; operation y = 1-5
AZS, Triplet index of adjacency matrix, atomic number, and distance sum; operation y = 1-5
ASZ, Triplet index of adjacency matrix, distance sum, and atomic number; operation y = 1-5
AZN, Triplet index of adjacency matrix, atomic number, and graph order; operation y = 1-5
ANZ, Triplet index of adjacency matrix, graph order, and atomic number; operation y = 1-5
DSZ, Triplet index of distance matrix, distance sum, and atomic number; operation y = 1-5
DNZZy Triplet index of distance matrix, square of graph order, and atomic number; operation y = 1-5
nvx Number of non-hydrogen atoms in a molecule
nelem Number of elements in a molecule
fw Molecular weight
By Valence path connectivity index of order h = 7-10
" Valence chain connectivity index of order h = 7-10
si Shannon information index
totop Total Topological Index t
suml " Sum of the intrinsic state values I
sumdell Sum of delta-1.values
tets2 Total topological state index based on electrotopological state indices
phia Flexibility index (kpl* kp2/nvx)
IdCbar Bonchev-Trinajsti¢ information index
IdC Bonchev-Trinajsti¢ information index
Wp Wienerp
Pf Plattf
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Wt Total Wiener number

knotp Difference of chi-cluster-3 and path/cluster-4

knotpv Valence difference of chi-cluster-3 and path/cluster-4

nclass Number of classes of topologically (symmetry) equivalent graph vertices

numHBd Number of hydrogen bond donors

numwHBd Number of weak hydrogen bond donors

numHBa Number of hydrogen bond acceptors

SHCsats E-State of C sp bonded to other saturated C atoms

SHCsatu E-State of C sp® bonded to unsaturated C atoms

SHvin E-State of C atoms in the vinyl group, =CH-

SHtvin E-State of C atoms in the terminal vinyl group, =CH,

SHavin E-State of C atoms in the vinyl group, =CH-, bonded to an aromatic C

SHarom E-State of C sp® which are part of an aromatic system

SHHBd Hydrogen bond donor index, sum of Hydrogen E-State values for -OH, =NH, -NH2, -NH-,
-SH, and #CH

SHwHBd Weak hydrogen bond donor index, sum of C-H Hydrogen E-State values for hydrogen atoms
~on a C to-which a F and/or Cl are also bonded

SHHBa Hydrogen bond acceptor index, sum of the E-State values for ~OH, =NH,
-NH2, -NH-, >N-, -O-, -S-, along with —F and —Cl

Qv General Polarity descriptor

NHBint, Count of potential internal hydrogen bonders (y = 2-10)

SHBint, E-State descriptors of potential internal hydrogen bond strength (y =2-10)

Electrotopological State index values for atoms types:

SHsOH, SHdNH, SHsSH, SHsNH2, SHssNH, SHtCH, SHother, SHCHnX, Hmax Gmax,
Hmin, Gmin, Hmaxpos, Hminneg, SsLi, SssBe, Sssss,Bem, SssBH ,SsssB, SssssBm, SsCH3,
SdCH2, SssCH2, StCH, SdsCH, SaaCH, SsssCH, SddC,StsC, SdssC, SaasC, SaaaC, SssssC,
SsNH3p, SsNH2, SssNH2p, SANH, SssNH, SaaNH, StN, SsssNHp, SdsN, SaaN, SsssN,
SddsN, SaasN, SssssNp, SsOH, SdO, SssO, Saa0, SsF, SsSiH3, SssSiH2, SsssSiH, SssssSi,
SsPH2, SssPH, SsssP, SdsssP, SsssssP, SsSH, SdS, SssS, SaaS, SdssS, SddssS, SssssssS, SsCl,
SsGeH3, SssGeH2, SsssGeH, SssssGe, SsAsH2, SssAsH, SsssAs, SdsssAs, SsssssAs, SsSeH,
SdSe, SssSe, SaaSe, SdssSe, SddssSe, SsBr, SsSnH3, SssSnH2, SsssSnH, SssssSn, Ssl,
SsPbH3, SssPbH2, SsssPbH, SssssPb

Geometrical / Shape (3D)

kpO Kappa zero :
kpl-kp3 Kappa simple indices .
- kal-ka3 Kappa alpha indices

Vw Van der Waals volume

PWy 3D Wiener number based on the hydrogen-filled geometric distance matrix

Pw 3D Wiener number based on the hydrogen-suppressed geometric distance matrix
Quantum Chemical (QC)

Enomo Energy of the highest dccupied molecular orbital

Enomo.1 Energy of the second highest occupied molecular orbital

Erumo Energy of the lowest unoccupied molecular orbital

Erumon Energy of the second lowest unoccupied molecular orbital

AHf Heat of formation

7 . Dipole moment
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Statistical Analysis
Prior to performing regression analysis, the number of independent variables was reduced as follows: (1)
descriptors that had a value of 0 for all 24 compounds were eliminated, (2) descriptors which could not be
calculated for all 24 compounds were eliminated, (3) perfectly correlated descriptors were eliminated. In
the latter case, the CORR procedure of the SAS statistical package [44] was used to identify pairs of
perfectly correlated descriptors, and only one of each of the correlated pairs was retained for use in the
subsequent analysis. At this point, 219 descriptors remained. The independent variables were scaled by
the natural logarithm prior to analysis, as their ranges differed in some cases by several orders of
magnitude. A small constant was added prior to the transformation in order to allow for log scaling of
descriptors with values less than or equal to Zero. Likewise, the values of the dependent variable differed
by more than one order of magnitude and therefore were also log scaled.

Three forms of regreésion analyses were used to analyze the data, namely, ridge regression (RR) [45],
principal component regression (PCR) [46], and partial least squares (PLS) [47], all of which are ﬁlethods
wherein the entire set of descriptors is utilized in modeling as opposed to subset regression. These
regression methods are also useful in cases where the number of descriptors is substantially larger than
the number of observations [45]. Hierarchical models and single-class models were developed utilizing
the TSI, TCI, 3DI, and QCI in order to illuminate the roles played by the various classes of descriptors.
Statistical parameters reported include the following: 1) the ridging constant, k, which controls the
amount of smoothing in ridge regression, 2) cross-validated R?, which is obtained by temporarily
removing éach compound in turn from the data set and fitting the regression to the remaining n-1

compounds, and 3) the PRESS statistic, which is an accurate measure of model predictability.

TABLE III Summary statistics for ridge (RR), principal components (PCR), and partial least squares (PLS)
regression models, n = 24,

RR PCR PLS

Model Type R.. k PRESS R, PRESS R ., PRESS
TS 02975 11.44 21.391 02166  23.854 -0.1100  33.797
TS+TC 0.6878 522 9.5059 0.6104  11.863 0.4480  16.809
TS+TC+3D 0.6758 6.88 9.8708 0.6090  11.905 04168  17.759
TS+TC+3D+QC  0.7095 2.95 8.8467 0.6331 11172 04812  15.795
TS 02975 11.44 21.391 02166  23.854 -0.1100  33.797
TC 07732 0.1E-02  6.9065 0.6905  9.4246 0.5345  14.175
3D 0.0812 0.522 27.976 -0.1567 35219 -0.4600 44.456
QCc - 02612 6.96 22.495 -1.1381 '65.103 0.0472  29.013
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TABLE IV Summary statistics for topological ridge regression models, n = 23
RR
Model Type R, k PRESS
TS 0.458 10.04 12.372
TC 0.888 0.112E-02 2.565
TS+TC 0.885 0.888 2.6343
TABLE V Fitted ridge regression for the TC model, n = 23.
Descriptor Coeff. s.e t i Descriptor Coeff. s.e t |t
SHarom 0.094 0.016 5.870 5.870 Y -0.116 0.108 -1.080 1.080
Wt 0.033  0.006 5.760 5.760 Gmin 0.048 0.045 1.080 1.080
totop 0.042 0.008 5.600 5.600 AZN,3 0.025 0.024 1070 1.070
SaaCH 0070  0.013 5550 5.550 SIC, -0.222 0211 -1.050 1.050
SaPcu 5411 1.007 5380 5.380 SIC, -0446 - 0429 -1.040 1.040
AZV, 0.085 0.020 4380 4.380 IdC 0.017 0.017 1.020 1.020
SsCH3 -0.165  0.044 -3.770 3.770 SIC, 0.231 0230 1010 1.010
*¥'c -0.124  0.034 -3.670 3.670 S%'sc 0.276 0275 1.000 1.000
numwHBd 0281  0.078 3.590 3.590 e 0.164 0.166 0990 0.990
3y’ -0.141  0.042 -3340 3.340 A -0.366 0.373 -0980 0.980
AZV, - 0.097 0031 3.160 3.160 e 0.133 0.146 0910 0910
3 0213  0.072 2980 2.980 * -0.128 0.149 -0.850 0.850
DN,Z, 0.041 0.014 2910 2910 Hmax 0.193 0.228 -.0.850 0.850
SHwHBd 0253 0.091 2780 2.780 CIC, 0.188 0238  0.790 0.790
ASZ, 0.031 0.013 2410 2410 CIC, 0.132 0.168 0.790  0.790
3P 0.188  0.081 2320 2320 SssssC 0.047 0.063 0750 0.750
IC, 0.809 0354 2290 2.290 AZN; 0.020 0.028 0.710 0.710
nelem 0.662 0298 2220 2220 CIC, 0.079 0.124  0.630 0.630
Qv -0421  0.199 -2,110 2110 SHother 0.020 0.033 0.610 0.610
fw 0.181  0.087 2.070 2.070 SHvin -0.136 0.225 -0.610 0.610
Oyb -0.158  0.077 -2.060 2060 = AZS, .0.010 0.017 0.590 0.590
AZN, 0.814 0397 2.050 2.050 IC, -0.056 0.118 -0480 0.480
ANZ, 0.017 0.008 2.020 2.020 AZS, -0.011 0.027 -0410 0410
SsBr 0356 0177 2.020 2.020 O -0.032 0.079 -0400 0.400
2yb -0.182  0.092 -1990 1990 AZN, 0.013 0.033 0400 0400
AZV; 0.058 0.030 1960 1.960 CIC, 0.031 0.083 0.370 0.370
SssCH2 -0.169  0.087 -1950 1950 Oorty -0.089 0253 -0.350 0.350
W 0277 0.143 1940 1.940 AZN; 0.009 0.026 0.340 0.340
sumdell 0.116  0.060 1920 1.920 IdCbar 0.085 0250 0.340 0.340
byr¥ 1.907 1.006  1.890 1.890 tets2 0.024 0.080 0.290 0.290
SHCHnX 0357 0.189 1.890 1.890 Hmin 0.086 0.307 0.280 0.280
Gmax 0367 0200 1.840 1.840 0] -0.030 0.112 -0270 0.270
IC, 0515 0283  1.820 .1.820 Syb -0.128 0.551 -0230 0.230
o -0234  0.130 -1.810 1.810 DN,Z, -0.041 0.182 -0.230 0.230
byb 1.844 1032 1790 1790 SIC, 0.070  0.334 0210 0210
DN,Z, 0055 0032 1700 1.700 Sy¥ -0.114 0544 -0210 0210
. SHHBA 0028 0017 1700 1.700 SdssC 0.280 1.335 0210 0.210
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TABLE V (Continued)
knotp -0.248  0.154 -1.610 1.610 Lo 0.030  0.170 0.180 0.180
b 0217 0143 -1.520 1.520 CIC, -0.013  0.071 -0.180 0.180
AZV, 0.155 0102 1520 1520 IC, -0.017  0.108 -0.160 0.160
SV 0243 0166 1470 1.470 ¥ 0.038 0270 0.140 0.140
SaasC 0.113 0080 1420 1.420 SdsCH -0.020  0.152 -0.130 0.130
DSZ, 0.052 0038 1380 1380 Ay 0.031 0264 0.120 0.120
phia -0.106  0.078 -1.360 1.360 AZV, 0020  0.164 0.120 0.120
DN,Z, 0.030  0.023 1350 1350 lyb 0012 0104 0.110 0.110
SACH2 0203 0151 1350 1.350 SHCsatu 0.019 0212 0.090 0.090
SsssCH 0389 0291 -1.340 1.340 AZS; 0.002 0020 0.080 0.080
S o 0398 0302 1320 1.320 I1C, 0.006  0.080 0.070 0.070
ANZ, 0.051 0039 1320 1320 ASZ, 0.001  0.022 0.050 0.050
SIC, <0313 0240 -1300 1.300 AZS, 0.003 0063 0.040 0.040
Sybe 0.300 0230 1300 1.300 AZS; 0.001  0.022 0.030 0.030
S%c 0425 0327 1300 1300 % -0.336  10.007 -0.030 0.030
knotpv -0.168  0.134 -1250 1.250 SHCsats 0.003  0.085 0.030 0.030
DN,Zs -0.182  0.146 -1240 1.240 DSZ; 0.001  0.035 0.020 0.020
suml 0.097 0.078 1240 1240 nclass -0.002  0.127 -0.010 0.010
SyPoc 0432 0373 1160 1.160 CONSTANT  -3.275
numHBa 0020 0018 1110 1110
6
Q
® 5
o
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Figure 1 Experimental vs predicted log P (blood:air) using the TC model, n = 23.
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TABLE VI Experimental and predicted log P (blood:air) using the TC model, n = 23
Experimental Predicted
Chemicals log P log P Residual
Alkanes
n-Hexane 0.82911 0.82855 -0.00056
n-Heptane 1.55812 1.55814 2E-05
Haloalkanes
Dichloromethane 2.96563 2.96527 -0.00036
Chloroform 3.03587 3.03495 -0.00092
Carbon tetrachloride 1.50834 1.50851 0.00017
Bromochloromethane 3.72546 3.72569 0.00023
1,1-Dichloroethane 2.41493 2.41591 0.00098
1,2-Dichloroethane 3.4137 3.41444 0.00074
1,1,1-Trichloroethane 1.75148 1.75094 -0.00054
1,1,2-Trichloroethane 3.8954 4.06044 0.16504
1,1,1,2-Tetrachloroethane 3.8954 3.7305 -0.1649
1,1,2,2,-Tetrachloroethane 495521 4.95583 0.00062
Pentachloroethane 4.6445 4.64439 -0.00011
1,2-Dichloropropane 2.92902 2.92852 -0.0005
Trichloroethylene 3.08672 3.08649 -0.00023
Tetrachloroethylene 2.93929 2.93916 -0.00013
Aromatic hydrocarbons
Benzene 2.87916 2.8792 4E-05
Chlorobenzene 4.084 4.08429 0.00029
Toluene 2.89058 2.89037 -0.00021
Styrene 3.69372 3.69387 0.00015
o-Xylene 3.79113 3.79098 -0.00015
m-Xylene 3.82812 3.82864 0.00052
p-Xylene 3.72109 3.72086 -0.00023

RESULTS

Summary statistics for the models developed in this study based on the set of 24 structurally diverse

compounds are provided in Table IIl. Overall, models developed using RR were superior to those

developed using PCR or PLS. Therefore, the subsequent discussion will focus on RR results. Examining

the hierarchically developed models, a significant increase in model quality is obtained upon the addition
* of TCI to the TSI set. The addition of 3DI and QCI yields little or no improvement in model quality. Of

the single-class models, the TC is significantly better than any other descriptor class in modeling

blood:air partition coefficient.

~ Further investigation showed that one compound in the set of 24, viz., cyclohexane, was an influential

outlier. This is not altogether unexpected, as cyclohexane is the only cyclic non-aromatic compound in

10
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the data set. The omission of cyclohexane led to significant model improvement. Table IV provides
summary results utilizing the data set with cyclohexane removed. Although cyclohexane was an outlier
for all but one of the models developed in this study, i.e. the QC model, Table IV includes models
developed with topological indices only.

Table V provides the fitted ridge regression for the TC model developed using the data set with
cyclohexane omitted and includes the coefficient, standard error, and ¢ value for each of the descriptors in
the model. The ¢ value is obtained by dividing the coefficient by the standard error. A large |7 value
indicates that the associated descriptor is important in the model; however, the reverse is not necessarily
so. A plot of the experimental vs predicted log P (blood:air) using the TC model is shown in Figure 1.
The values of the log-scaled experimental and predicted log P values plotted in Figure 1 are provided in

Table VL

DISCUSSION

The goal of this study was to investigate the utility of four classes of calculated molecular descriptors,
viz., topostructural indices, topochemical indices, 3-D descriptors, and quantum chemical indices, in
estimating blood:air P values of a set of structurally diverse VOCs comprising alkanes, various
haloalkanes and aromatics. In an earlier paper, Basak et al. [37] reported QSPRs for a congeneric subset
of this set of compounds, viz., 13 chlorocarbons. A summary of the regression results from that study is
provided in Table VII. Again, we find that the TC model obtained by ridge regression is superior to all
other models developed. The TC model for the subset of chlorocarbons is nearly as good as the TC model
developed for the set of 23 diverse compounds in terms of the cross-validated R? and the PRESS statistic.
In many previous studies, we have found that either TSI or TSI+TCI provide acceptable QSAR models
for both congeneric and diverse data sets [13, 21, 23, 31, 37, 48].

TABLE VII Summary statistics for ridge (RR), principal components (PCR), and partial least squares (PLS)
regression models for the subset of 13 chlorocarbons.

RR PCR PLS

Model Type R?., k PRESS R*.,  PRESS R’.,  PRESS
TS 0452 9212 6.60 41300 2771 0252  8.89
TS+TC 0.886 0.10E-02 137 0.790 2.53 0.807  2.33
TS+TC+3D 0876  0.721 1.50 0.806 234 0.808 231
TS+TC+3D+QC  0.883  0.43E-01  1.40 0.819 2.18 0.821 2.16
TS 0452 9212 6.60 -1.300  27.71 0262  8.89
TC 0916 0.10E-02  1.02 0.843 1.89 0.848 1.83

3D 0.480 © 0.71E-01  6.27 -0.124  15.54 0205  14.52

QC 0.095  0.323 10.91 0250  15.06 -1.446  29.46
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TABLE VIII Ten model descriptors with highest |t| values for the diverse data set and the chlorocarbon subset.

Diverse data set (n = 23) Chlorocarbons (n = 13)

Descriptor Coeff. s.e t || Descriptor Coeff. s.e t 7|

SHarom 0.094  0.016 5.870 5.870 AZV; 0.130  0.022 6010 6.0l
Wt 0.033  0.006 5.760 5.760 NoCl 0027 0005 4990  4.99
totop 0.042  0.008 5.600 5.600 numHBa 0.080  0.021 3910 391
SaaCH 0.070  0.013 5.550 5.550 SsssCH 0280  0.080 -3510 351
S 5411 1007 5380 5.380 SHHBa 0.061 0.018 3.340 334
AZV; 0.085 0.020 4.380 4.380 e -0.062 0019 -3300 330
SsCH3 -0.165 0044 -3.770 3.770 SsCH3 -0.124 0038 -3280 3.8
A -0.124 0034 -3.670 3.670 e 0073 0.023 -3.170 3.7
numwHBd 0.281  0.078 3.590 3.590 AZS, -0.268  0.090 -2970 297
Sabe -0.141  0.042 -3.340 3.340 SHother <0349  0.118 -2960 296

It was of interest to examine which descriptors in the TC model developed in the current study had -
the greatest |t| values, and thus held the greatest importance in the model. Comparing these with the
important TC descriptbrs in the previous study involving only chlorocarbons (Table 'VIII) tells us
something about which descriptors are important for the different sets of compounds. In doing so, we find
that some descriptors are important for both data sets, including AZV;, 3x"c and SsCH3. The hydrogen
bond acceptor descriptors which were important in the chlorocarbon model, i.e. numHBa and SHHBa,
have been replaced by the hydrogen donor index, numwHBd. Other descriptors important in the current
" model which were not important in the chlorocarbon model include totop, Wt, and SHarom, the latter of
which is an E-state descriptor associated with aromatic systems. It is well known that QSPR models work
best with homogeneous data sets, which represent some structural or mechanistic class. On the other
hand, Basak et al. argiled that a collection of diverse rﬁolecular descriptors should be able to predict
properties of structurally diverse sets [26]. A comparison of QSPRs of the set of 23 diverse compounds
and the congeneric set of 13 chlorocarbons (Table IV and Table VII) supports this notion. Further studies
with different properties of various congeneric and structurally diverse sets and properties are needed to

test the validity of this hypothesis.
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Three linear regression methods were used to develop models for the prediction of rat tissue:air partition coefficient
(P). In general, ridge regression (RR) was found to be superior to principal component regression (PCR) and partial
least squares (PLS). A set of 46 diverse low molecular-weight volatile chemicals was used to model fat:air, liver:air,
and muscle:air partition coefficients for male Fischer 344 rats. Comparisons were made between models developed
using descriptors based solely on molecular structure and those developed using experimental properties, including
saline:air and olive oil:air partition coefficients, as independent variables, indicating that the structure—property'
correlations are comparable to the property-property correlations. Multiple structure-based models were developed
utilizing various classes of structural descriptors based on level of complexity, i.e., topostructural (TS),
topochemical (TC), 3-dimensional (3D), aﬁd calculated octanol:water partition coefficient. In most cases, the
structure-based models developed using only the TC descriptors were found to be superior to those developed using
other structural descriptor classes. Haloalkane subgroups were modeled separately for comparative purposes, and
although models based on the congeneric compounds were superior, the models developed on the complete sets of
diverse compounds were acceptable. Comparisons were also made with respect to the types of descriptors important

for partitioning across the various media.
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Hierarchical QSAR (HiQSAR)

t Corresponding Author. e-mail: sbasak @nrri.umn.edu




S.C. BASAK, D. MILLS, D.M. HAWKINS, AND PREDICTION OF PARTITION COEFFICIENTS
H.A. EL-MASRI

INTRODUCTION

Blood:air and tissue:air partition coefficients of volatile organic chemicals (VOCs) are important for their
hazard assessment and estimation of bioavailability of such chemicals at the various tissues. Such
properties are routinely used in the physiologically based pharmacokinetic (PBPK) models pertaining to
risk assessment of chemicals and also extrapolation of toxicity of a chemical from one species to another.

Gargas et al.[1] determined blood:air and tissue:air partition coefficients for various tissues including
fat, muscle and liver. While experimental determination of blood:fat, blood:liver, and blood:musle
partition coefficients could be complicated and time consuming, these quantities can be computed as the
ratio of blood:air and the various tissue:air partition coefficients. Such blood:tissue partition coefficients
can be convenient input variables in PBPK models for hazard estimation.

In the practical hazard assessment of chemicals by regulatory agencies such as the United States
Environmental Protection Agency (USEPA), Agency for Toxic Substances and Disease Registry-
(ATSDR), one must carry out rapid toxicity estimation of many chemicals. The Toxic Substances Control
Act (TSCA) Inventory currently has over 75,000 chemicals [2]; the list of high production volume (HPV)
chemicals contains over 2,800 substances [3]; and the 2001 Comprehensive Environmental Response,
Compensation, and Liability Act (CERCLA) priority list [4] contains 275 substaﬁces, many of which are |
VOCs, that are most commonly found at facilities on the National Priorities List (NPL) and have been
determined to pose the most significant threat to human health based on toxicity and potential exposure at
the NPL sites. Experimental determination of the various blood:tissue partition coefficients of all these
chemicals for hazard assessment and PBPK modeling could be a daunting task. The list would become
considerably larger if we also include the probable metabolites of the VOCs under study. A viable
alternative to this quagmire is the computation of these properties from molecular descriptors that can be
computed directly from chemical structure without any further input of experimental data.

In one of our earlier studies, Basak et al.[5] used computed structural parameters to develop
successful predictive models for the estimation of blood:air partition coefficient of VOCs. Calculated
descriptors have also been used by us in the estimation of lipophilicity [6-9], vapor pressure [10, 11],
boiling point [12, 13], toxicity including mutagenicity [14-17], and toxic modes of actions of various
congeneric and structurally diverse groups of chemicals[18]. In this paper, we have used calculated
structural descriptors to formulate models for the estimation of fat:air, liver:air and muscle:air partition

coefficients for a set of 46 structurally diverse VOCs.
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METHODS

Database

Liquid:air and tissue:air partition coefficients were experimentally determined by Gargas et al. [1] using a
modified version of the gas-phase vial equilibrium technique [19] and tissue homogenates prepared in
0.9% saline solution [20] for a set of low molecular-weight volatile chemicals. Table I includes
experimentally determined male Fischer 344 rat tissue:air partition coefficients, including fat, liver, and
muscle tissues, for a set of 46 chemicals including 26 haloalkanes, 2 nitroalkanes, 6 haloalkenes, 9
aromatics, and 3 additional compounds. Saline:air and olive oil:air partition coefficients, determined by
Gargas et al., are also listed in Table I. All experimental values were obtained at 37 °C.

It should be noted that the data used in the current study represent a subset of that reported by Gargas
et al. [1]. Two cis/trans isomers were eliminated because they are indistinguishable in terms of their
calculated molecular descriptors based on SMILES input. Methyl chloride was also removed from the
data set as it is not possible to calculate our entire set of theoretic descriptors on two-atom compounds. In
addition, three compounds were reported without discrete values for 0.9% saline:air P, all of which were
aliphatic hydrocarbons. Preliminary studies indicated that the remaining three aliphatic hydrocarbons

were outliers thus the decision was made to eliminate those, as well.

TABLE I Experimental liquid:air, calculated logPow, and experimental rat tissue:air partition coefficient data®

0.9%
No. Chemical saline:air Olive oil:air  LogPoy Fat:air Liver:air Muscle:air
Haloalkanes :
1 Dichloromethane 5.96 £0.71 131+7 1.16 120+ 6 142+12 792+ 1.77
2 Chloroform 3.38£0.09 402 +12 1.86 203+5 21.1£15 139+1.9
3 Carbon tetrachloride 0.35+£0.03 374111 3 359+ 11 142+1.0 4.57+0.59
4 Difluoromethane 1314005 4.76%0.75 0.56 1431031 275+039 1441025
5 Fluorochloromethane $3.0840.07 223+14 0.68 154+1.0 3444027 246%0.52
6 Bromochloromethane 8.65+0.28 36119 1.45 325+3 29.2+0.5 11.1+1.8
- 7 Dibromomethane 144 +0.4 957439 1.95 792114 68.1+1.4 405£2.0
8 Chlorodibromomethane 7344042 26831152 1.77 1917 £ 165 126 £7.1 55.6+£0.7
9 Chloroethane 1.09 £0.06 38.9+3.1 1.47 38.6+0.7 3.61+£032 322%0.68
10  1,1-Dichloroethane 2.45+0.04 1867 1.86 164+ 4 10.8+0.5 5.12+048
11  1,2-Dichloroethane 114 £0.1 3668 1.6 344 %5 357+1.6 234+1.4
12 1,1,1-Trichloroethane 0.75+£0.07 295+22 2.26 263+12 8.6+0.6 3.15+£0.33
13 1,1,2-Trichloroethane 13.3+£0.3 1776 £ 26 2.08 1438 + 58 73.1+0.8 22.9+0.8
14 1,1,1,2-Tetrachloroethane  3.53 +0.23 2686 £ 51 2.64 2148 + 82 88.2+1.8 39.5+2.5
15 1,1,2,2-Tetrachloroethane 234120 6358 +402 2.51 3767 £93 196 12 101+10
16  Pentachlorocthane 232+035 6689471 3.07 4118 £209 260+ 11 724 +2.9
17  Hexachloroethane 0.66+0.21 5015+318 424 3321+193 369£17.5 75+0.9
18 1,2-Dibromoethane 17.3+0.8 1267 £91 2,13 1219 £ 50 119t4 45.6+3.3
19  1-Bromo-2-chloroethane 8.91 £0.56 569 +23 1.73 959 +39 42.8+33 254%3.1
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20 1,1,1-Trifluoro-2- 042+0.04 240125 1.7 212406  1.84+0.14 1.23+0.14
chloroethane ‘
21 1,1,1-Trifluoro-2-bromo-  0.50 +0.05 198 +4 2.44 182+5 7621120 4.46+0.29
2-chloroethane
22 1-Chloropropane 1.04 £0.01 105+2 1.95 118+2 5.18+0.38  2.08£0.66
23 2-Chloropropane 0.82£0.09  69.9+3.5 1.81 68.4+2.0 315+024 2044048
24 1,2-Dichloropropane 2.75+0.11 428 30 2.18 499 + 30 248124 120+ 1.1
25 n-Propyl bromide 1.44 £0.12 272+ 8 2.13 236+6 8.17+0.62 4214032
26 Isopropyl bromide 1.08 £0.04 1645 1.63 158+5 4411034  4.12+035
Nitroalkanes
27  1-Nitropropane 127+4 1062 +21 0.8 506 + 33 153+17 289 +6.1
28  2-Nitropropane 983+5.4 640 16 0.61 155+ 4 624+1.4 29.1+3.3
Haloalkenes
29  Vinyl chloride 0431004 244+37 1.37 200+07 1604017  2.10+045
30  1,1-Dichloroethylene 0354006 643+34 2.03 686121  442+030 2.05+0.31
31 Trichloroethylene 0.83+£0.30 553+ 46 2.36 554 +21 272134 10.1+2.7
32 Tetrachloroethylene 0.79+0.06 21344159 3.47 1638 +91 70.3+£9.0 20.0+2.5
33 Vinyl bromide 044+0.06 560%1.5 1.61 492413 3334038  226+0.13
34  Allyl chloride 2.750.10 465+ 5 2.04 10142 389145 110402
Aromatics
35 Benzene 2.81+0.07 2188 +41 2.64 499 + 12 17.0+13 103 +£0.9
36 Chlorobenzene 1.75 £0.13 1056 £ 38 2.66 1277 £ 43 86.1£3.0 340+£3.9
37 Toluene 1.41+£047 3548 +269 3.01 1021 £ 11 83.6+5.8 27.7+4.0
38  Styrene 1.97+£0.28 14706 + 665 3.73 3476 +73 139+ 7 46.7+3.9
39  m-Methlystyrene 2114030 13942 + 567 3.75 119514692 327423 182 £ 10
40 p-Methylstyrene 2.65+0.08 35344208 3.15 112814£972 324117 183+8
41 o-Xylene 1.9240.12 3245+ 116 321 1877 £132 108 47 '51.5+6.7
42  m-Xylene 1.77£0.07  3319+96 32 1859 + 93 90.9 +4.4 419457
_ 43 p-Xylene 114104 55.6+1.4 1.13 1748 + 65 90.0+4.3 38.4+4.1
Other ’
44 Diethyl ether 0.56+£0.04  789+9.1 245 477+39  6.82+054 528+0.54
45 Isofluforane 2.06 % 0.01 1095 1.99 98.1+4.6 4.07+020 1601034
46  Isoprene 0214002 8.81+0.15 2.6 720+24  3.12+087 2041027

* Values represent mean  standard error.

Molecular Descriptors

Theoretical molecular descriptors may be divided into hierarchical classes based upon level of complexity

and demand for computational resources for their calculation. Topostructural (T'S) descriptors, which

encode information strictly on the adjacency and connectedness of atoms within a molecule, are the

simplest of the hierarchical classes. Topochemical (TC) descriptors encode information related to both

molecular topology and the chemical nature atoms and bonds within a molecule, such as atomic valence

and bond type. The 3-dimensional or shape descriptors (3D) are still more complex, encoding information

about the 3-dimensional aspects of molecular structure. The topostructural and topochemical descriptors

are collectively referred to as topological descriptors. With the hierarchical QSAR (HiQSAR) method,

multiple models are developed, each time including an additional class of descriptors which are more
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complex and computationally demanding. Comparing the statistical parameters of the hierarchically
developed models, we are able to see the relative contribution of each descriptor class.

Descriptors used in the present study were derived from molecular structure using software packages
including POLLY [21], Triplet [22, 23], and Molconn-Z [24]. From POLLY and associated software
developed by the authors, a set of 102 topological descriptors is available, including a large group of
connectivity indices [25;28], path-length descriptors {25], Balaban’s J indices [29-31], and information
theoretic {32, 33] and neighborhood complexity indices [33]. The Triplet program calculates a set of 100
topological parameters which are derived from a matrix, a main diagonal column vector, and a free term
column vector, converting the matrix into a system of linear equations whose solutions are the local

vertex invariants. These local vertex invariants are then used in the following mathematical operations in

order to obtain the triplet descriptors:

Summation, Ex;

Summation of squares, Eix;*

Summation of square roots, Eixim

Sum of inverse square root of cross-product over edges ij, Ejj(xix;)
Product, N(Ex)"™

-1/2

SRR

We have also included 167 descriptors from Molconn-Z, including an extended set of connectivity
indices, electrotopological indices [34, 35] and hydrogen bonding descriptors, as well as a small set of
molecular shape descriptors.

H-Bond, a software program developed by Basak [36], was used to calculate HB;, a measure of
hydrogen bonding potential. n-octanol:water partition coefficients were calculated by the LogP program
[37] and are included in Table 1.

A brief description of the set of theoretical molecular descriptors used in the current study is provided
in Table II. For the sake of brevity, the calculated values for these descriptors are not provided, though

they may be obtained from the authors upon request.

Statistical Analysis

Independent and dependent variables were scaled by the natural logarithm, as their respective ranges
differed by several orders of magnitude. The CORR procedure of the SAS statistical package [38] was
used to identify perfectly correlated descriptors, i.e. 7 = 1.0. In each case, only one descriptor of a
perfectly correlated pair was retained for use in the subsequent analysis. Any descriptor that either had a

value of zero for all compounds in the data set or could not be calculated for all compounds in the data set

was removed.
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TABLE II Symbols, definitions and classification of calculated molecular descriptors

Topostructural (TS)

1‘1’;’ Information index for the magnitudes of distances between all possible pairs of vertices of a
graph

ITI\)/ Mean information index for the magnitude of distance

w Wiener index = half-sum of the off-diagonal elements of the distance matrix of a graph

I Degree complexity

HY Graph vertex complexity

2 Graph distance complexity

IC information content of the distance matrix partitioned by frequency of occurrences of distance

M; A Zagreb group parameter = sum of square of degree over all vertices

M, A Zagreb group parameter = sum of cross-product of degfees over all neighboring (connected)
vertices

by Path connectivity index of order h = 0-10

Bye Cluster connectivity index of order h = 3-6

Byoc Path-cluster connectivity index of order h = 4-6

Bk Chain connectivity index of order h = 3-10

Py Number of paths of length h = 0-10

J Balaban’s J index based on topological distance

nrings Number of rings in a graph

ncire Number of circuits in a graph

DNZSy Triplet index of distance matrix, square of graph order (# of non-H atoms), and distan_cg sum;
operationy = 1-5

DN21y Triplet index of distance matrix, square of graph order, and number 1; operation y = 1-5

AS1, Triplet index of adjacency matrix, distance sum, and number 1; operation y = 1-5

DS1, Triplet index of distance matrix, distance sum, and number 1; operation y = 1-5

ASN, Triplet index of adjacency matrix, diétance sum, and graph order; operation y = 1-5

DSN, Triplet index of distance matrix, distance sum, and graph order; operation y = 1-5

DN2Ny Triplet index of distance matrix, square of graph order, and graph order; operation y = 1-5

ANS, Triplet index of adjacency matrix, graph order, and distance sum; operation y = 1-5

ANI, Triplet index of adjacency matrix, graph order, and number 1; operation y = 1-5

ANN, Triplet index of adjacency matrix, graph order, and graph order again; operation y = 1-5

ASV, Triplet index of adjacency matrix, distance sum, and vertex degree; operation y = 1-5

. DSV, Triplet index of distance matrix, distance sum, and vertex degree; operation y = 1-5
ANV, Triplet index of adjacency matrix, graph order, and vertex degree; operation y = 1-5
Topochemical (TC)

(0] Order of neighborhood when IC; reaches its maximum value for the hydrogen-filled graph

Ou Order of neighborhood when IC;, reaches its maximum value for the hydrogen-suppressed
graph ' ‘ '

Tow Information content or complexity of the hydrogen-suppressed graph at its maximum
neighborhood of vertices

IC, Mean information content or complexity of a graph based on the r* (r = 0-6) order
neighborhood of vertices in a hydrogen-filled graph

SIC, Structural information content for r (r = 0-6) order neighborhood of vertices in a hydrogen-
filled graph
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TABLE II (Continued)
CIC, Complementary information content for 1™ (r = 0-6) order neighborhood of vertices in a
hydrogen-filled graph
iy b Bond péth connectivity index of order h = 0-6
th Bond cluster connectivity index of order h = 3-6
" Bond chain connectivity index of order h = 3- 6
b bc Bond path-cluster connectivity index of order h = 4-6
Byr¥ Valence path connectivity index of order h=0-10
hxé Valence cluster connectivity index of order h = 3-6
"Xéh Valence chain connectivity index of order h = 3-10
"X;C Valence path-cluster connectivity index of order h = 4-6
A Balaban’s J index based on bond types
>* Balaban’s J index based on relative electronegativities
A Balaban’s J index based on relative covalent radii
HB,; Hydrogen bonding parameter
AZV, Triplet index of adjacency matrix, atomic number, and vertex degree; operation y = 1-5
AZS, Triplet index of adjacency matrix, atomic number, and distance sum; operation y = 1-5
ASZ, Triplet index of adjacency matrix, distance sum, and atomic number; operation y = 1-5
AZN, . Triplet index of adjacency matrix, atomic number, and graph order; operation y = 1-5
ANZ, “Triplet index of adjacency matrix, graph order, and atomic number; operation y = 1-5
DSZ, Triplet index of distance matrix, distance sum, and atomic number; operationy = 1-5 _
DNZZy Triplet index of distance matrix, square of graph order, and atomic number; opefation y=1-5
nvx Number of non-hydrogen atoms in a molecule -
nelem Number of elements in a molecule
fw Molecular weight
si Shannon information index
totop - Total Topological Index t
suml Sum of the intrinsic state values I
sumdell Sum of delta-I values )
tets2 . Total topological state index based on electrotopological state indices
phia Flexibility index (kp1* kp2/nvx)
IdCbar Bonchev-Trinajsti¢ information index
IdC Bonchev-Trinajsti¢ information index
Wp Wienerp
" Pf Plattf
Wt Total Wiener number
knotp Difference of chi-cluster-3 and path/cluster-4
knotpv Valence difference of chi-cluster-3 and path/cluster-4
nclass Number of classes of topologically (symmetry) equivalent graph vertices

numHBd Number of hydrogen bond donors

numwHBd  Number of weak hydrogen bond donors

numHBa Number of hydrogen bond acceptors

SHCsats E-State of C sp® bonded to other saturated C atoms
SHCsatu E-State of C sp° bonded to unsaturated C atoms
SHvin E-State of C atoms in the vinyl group, =CH-

SHtvin E-State of C atoms in the terminal vinyl group, =CH,
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TABLE II (Continued)
SHavin E-State of C atoms in the vinyl group, =CH-, bonded to an aromatic C
SHarom E-State of C sp” which are part of an aromatic system

SHHBd Hydrogen bond donor index, sum of Hydrogen E-State values for -OH, =NH,
-NH2, -NH-, -SH, and #CH

SHwHBd Weak hydrogen bond donor index, sum of C-H Hydrogen E-State values for hydrogen atoms
on a C to which a F and/or Cl are also bonded

SHHBa Hydrogen bond acceptor index, sum of the E-State values for ~-OH, =NH, -NH2, -NH-, >N-,
-0-, -S-, along with —F and —Cl

Qv General Polarity descriptor

NHBint, Count of potential internal hydrogen bonders (y = 2-10)

SHBint, E-State descriptors of potential internal hydrogen bond strength (y =2-10)
Electrotopological State index values for atoms types:
SHsOH, SHdNH, SHsSH, SHsNH2, SHssNH, SHtCH, SHother, SHCHnX, Hmax Gmax,
Hmin, Gmin, Hmaxpos, Hminneg, SsLi, SssBe, Sssss,Bem, SssBH, SsssB, SssssBm, SsCH3,
SdCH2, SssCH2, StCH, SdsCH, SaaCH, SsssCH, SddC,StsC, SdssC, SaasC, SaaaC, SssssC,
SsNH3p, SsNH2, SssNH2p, SdNH, SssNH, SaaNH, StN, SsssNHp, SdsN, SaaN, SsssN,
SddsN, SaasN, SssssNp, SsOH, SdO, SssO, SaaO, SsF, SsSiH3, SssSiH2, SsssSiH, SssssSi,
SsPH2, SssPH, SsssP, SdsssP, SsssssP, SsSH, SdS, SssS, SaaS, SdssS, SddssS, SssssssS, SsCl,
SsGeH3, SssGeH2, SsssGeH, SssssGe, SsAsH2, SssAsH, SsssAs, SdsssAs, SsssssAs, SsSeH,
SdSe, SssSe, SaaSe, SdssSe, SddssSe, SsBr, SsSnH3, SssSnH2, SsssSnH, SssssSn, SsI,
SsPbH3, SssPbH2, SsssPbH, SssssPb

Geometrical / Shape (3D)

kpO Kappa zero
kp1-kp3 Kappa simple indices
kal-ka3 Kappa alpha indices

Models were developed using ridge regression (RR) [39], principal components regression (PCR)
[40], and partial least squares (PLS) regression [41-43] methodologies, utilizing molecular descriptors in
a hierarchical fashion. In addition, each class of descriptors was used independently to obtain single-class
models. RR, PCR, and PLS are useful in cases wherein the number of descriptors is much greater than the
number of observations, as well as in cases where the independent variables are highly intercorrelated. In
addition, these regression methods make use of all independent variables as opposed to subset regression
wherein it is possible that important parameters may be eliminated from the study. Statistical parameters
reported include the cross-validated R” value, which is obtained by removing each compound in turn from
the data set and fitting the regression to the remaining n-1 compounds, and the PRESS statistic which is a
reliable measure of model predictability. In addition, the ¢ values (coefficient estimate/std. err) can be
examined in order to identify significant descriptors. Although a descriptor with a large | ¢ | indicates that

the associated descriptor is important in the model, it should be cautioned that the reverse is not

necessarily true.
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Honest assessment of the quality of a prediction model is seldom straightforward, but is particularly
challenging in a situation such as this where the number of independent variables far exceeds the number
of observations [44, 45]. In these cases, conventional regression measures such as R? are useless. The
measure we use is the cross-validation (or jack-knife) sum of squares. For this measure, each compound
in turn is omitted from the data set, and the coefficients of the regression model (RR, PLS or PCR)
computed using the remaining n-1 cases. These coefficients are used to predict the hold-out case. The
overall quality of the fit is measured by the prediction sum of squares PRESS - the sum of squares of the
difference between the actual observed activity and that predicted from the regression. A cross-validation
R” can be defined by:

Rczv —1- PRESS
SSTotal

Unlike R, this Rczv does not increase if irrelevant predictors are added to the model; rather it tends to

. . . 2 . . . .
decrease. And where R? is necessarily non-negative, R, may be negative. This non-uncommon situation

is an indication that the model fitted is poor — worse, in fact, than making predictions by ignoring the

predictors and using the mean activity as the prediction in all circumstances.
Rfv mimics the results of applying the final regression to predicting a future case; large values can be

interpreted unequivocally and without regard to either the number of cases or predictors as indicating that
the fitted regression will accurately predict the activity of future compounds of the same chemical type as
those used to calibrate the regressioﬁ.

In an attempt to gain further insight into the types of descriptors that are important in the partitioning
of chemicals across the various tissues, variable clustering was performed using the VARCLUS
procedure of the SAS statistical package [38]. This procedure divides the set of descriptors into disjoint
clusters such that each cluster is essentially uni-dimensionél. Interpretation of the descriptors, in terms of
what aspects of chemical structure they represent, may be aided by examining other descriptors that fall

within the same cluster.

RESULTS

Studies were done on the complete set of 46 diverse compounds as well as the structurally homogeneous
subset of 26 haloalkanes for the prediction of rat fat:air, liver:air, and muscle:air partition coefficients, the
results of which are provided in Tables III-V, respectively. It was of interest to compare our models
developed with theoretical structural descriptors to models developed with experimental properties used

by Gargas et al. [1] as independent variables, namely, 1ogPqjive oitair a0d 10gPggtine:air. The results of these
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property-property correlations are also included in Tables III-V. It is important to note that the statistical
results reported for the property-property correlations were not taken directly from the Gargas study.
Rather, property data were taken from the Gargas study for the same sets of compounds utilized in the
current study, and linear models were developed by our team using the SAS statistical package [38]. In
general, the RR methodology outperformed either PCR or PLS, and either the TC or the TS+TC models
were superior to those developed using other descriptor classes. It is not surprising that, for each type of
partition coefficient, the model developed for the set of 26 haloalkanes is superior to the model developed
for the more diverse set of 46 compounds. However, models developed for the larger, more diverse set are

reasonable.

TABLE III Summary statistics of predictive models for rat fat:air partition coefficient based on experimental
properties and theoretical structural descriptors

A. 46 DIVERSE CHEMICALS

" Independent RR PCR PLS LR
Variables R*., PRESS R?.,  PRESS R?,,  PRESS R’.,  PRESS
Structural descriptors
TS 0.325 106 0.239 119 0.328 106
TS+TC 0.947 8.35 0.701 46.8 0.886 17.8
TS+TC+3D 0.943 9.00 0.710 45.5 0.888 17.6
TS+TC+3D+logP 0.941 9.23 0.708 459 0.892 17.0
TS 0.325 106 0.239 119 0.328 106
TC 0.939 9.49 0.565 68.2 0.843 24.7
iD 0.253 117 0.015 154 -0.023 160
Properties
108P give oftair 0927 115
10gPolive oitiair + 10gPsai 0932  10.6
B. 26 HALOALKANES ‘
Independent RR PCR PLS LR
Variables R’., PRESS R’.,  PRESS R’,,  PRESS R®.,  PRESS
Structural descriptors v
TS 0.143 74.6 -0.432 125 -0.112 96.8
TS+TC 0.971 2.54 -0.917 7.23 0.941 5.16
TS+TC+3D 0.969 2.68 0.894 9.21 0.930 6.06
TS+TC+3D+logP 0.969 2.74 0.898 8.91 0.930 6.09
TS 0.143 74.6 -0.432 125 -0.112 96.8
TC 0.972 2.46 0.952 4.19 0.945 4.81
3D 0.926 6.41 0.918 7.14 0.927 6.38
Properties
1Og}?olive oil:air 0.960 3.48
logPom,e oit:air + 108Psani 0.958 3.69

‘10
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TABLE IV Summary statistics of predictive models for rat liver:air partition coefficient based on experimental
properties and theoretical structural descriptors.

A. 46 DIVERSE CHEMICALS

Independent RR PCR PLS LR
Variables R’.,.  PRESS R?,,  PRESS R®.,  PRESS R’..  PRESS
Structural descriptors
TS 0.226 88.6 -0.058 121 0.242 86.8
TS+TC 0917 9.48 0.250 85.9 0.678 36.9
TS+TC+3D 0.916 9.56 0.259 84.9 0.746 29.1
TS+TC+3D+logP 0.920 9.20 0.243 86.7 0.743 29.4
TS 0.226 88.6 -0.058 121 0.242 86.8
TC 0.942 6.62 0.064 107 0.678 36.8
3D 0.165 95.6 0.055 108 0.035 110
Properties
logPive oit:air + 10gPsai 0.894  12.1
B. 26 HALOALKANES
Independent RR PCR PLS LR
_ Variables R®.,  PRESS R’.,  PRESS R®.,  PRESS R*.,  PRESS
Structural descriptors
TS 0.029 57.8 -0.845 110 -0.262 75.2
TS+TC 0.954 2.76 0.884 6.93 0.837 9.69
TS+TC+3D 0.950 2.95 0.870 7.74 0.779 13.1
TS+TC+3D+logP 0.957 2.54 0.871 7.70 0.813 11.1
TS 0.029 57.8 -0.845 110 -0.262 752
TC 0.964 2.16 0.896 6.17 0.837 9.70
3D 0.826 10.4 0.808 11.4 0.803 11.7
Properties
0.851 8.89

lOgP olive oil:air + IOgP saline;air

Ridge regression models developed using the TC or TS+TC theoretical descriptors were comparable

or superior to models déveloped using experimental properties, i.e. 10gPosive oit:air a0d/0r 10gPgatine:air (Tables
III-V). For example, the cross-validated R? and PRESS statistic for the rat muscle:air partition coefficient

are 0.863 and 12.2, respectively, for the TC model, based on the set of 46 diverse compounds and

developed using theoretical descriptors; while the same statistical measures are 0.891 and 9.70,

respectively for the model based on experimental 10gPtive oit:air a0d 10gPsatine.ir (Table V). When the same

study is done on the set of 26 haloalkanes, the cross-validated R? and PRESS are 0.906 and 4.30,

respectively, for the TC model using theoretical descriptors; while the same statistical measures are 0.876

and 5.67 for the model based on experimental logPoive oitair and 10gPsatine:air (Table V). As would be

expected, the PRESS statistic increases as the structurally different chemicals are added to the haloalkane

subsets.
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Tables VI-VIII provide ridge regression coefficients, standard errors, and cluster membership for the
top 20 descriptors based on | ¢ | values for the TC rat fat:air, liver:air, and muscle:air models, respectively,
based on the set of 46 diverse chemicals. Examining only the 20 descriptors with highest | # | values,
descriptors from clusters 10 and 20 are present in both the muscle:air and liver:air models and are absent
from the fat:air model. Cluster 10 is composed of descriptors representing polarity and hydrogen bonding
and includes E-state descriptors for O and N atom types as well as a hydrogen bonding parameter. The
descriptors from cluster 20 that are important here include Balaban’s J indices, 18 3% and JV. Descriptors.
from clusters 14 and 18 are present in all studies, the former including low-order valence connectivity

indices and molecular weight, and the latter including descriptors of cyclicity and aromaticity.

TABLE V Summary statistics of predictive models for rat muscle:air partition coefficient based on experimental
properties and theoretical structural descriptors

A. 46 DIVERSE CHEMICALS

Independent RR PCR PLS LR
Variables R?*,,  PRESS R’., PRESS R?’.,  PRESS R®.,  PRESS
Structural descriptors
TS 0.203 70.8 0.004 88.7 0.169 73.8
TS+TC 0.849 134 0.222 69.0 0.624 334
TS+TC+3D 0.855 12.9 0.232 68.2 0.589 364
TS+TC+3D+logP 0.855 12,9 0.216 69.6 0.599 35.6
TS 0.203 70.8 0.004 88.7 0.169 73.8
TC 0.863 12.2 -0.010 89.7 0.576 37.6
3D 0.089 80.9 -0.061 94.2 -0.079 95.8 -
Properties
lOgPolive oil:air + IOgP i 0.891 9.70

B. 26 HALOALKANES

Independent RR PCR PLS LR
Variables R’,., PRESS R’., PRESS R?,,  PRESS R?,, PRESS
Structural descriptors - ‘
TS -0.014 465 . -1.265 104 -0.248 572
TS+TC 0.902 4.49 0.855 6.65 0.870 5.98
TS+TC+3D 0.900 4.60 0.855 6.64 0.826 7.96
TS+TC+3D+logP 0.899 4.63 0.855 6.64 0.826 7.99
TS -0.014 46.5 -1.265 104 -0.248 572
TC 0.906 4.30 0.871 591 0.848 6.98
3D 0.820 8.27 0.792 9.56 0.800 9.18
Properties

IOgPolivc oikair + logPsaline:air 0.876 5.67
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DISCUSSION

The objective of the study reported in this paper was two-fold: a) estimation of fat:air, muscle:air, and
liver:air partition coefficients of VOCs from their chemical structure and b) a comparative analysis of
structure-based and property based descriptors in the estimation of tissue:air partition coefficients.

To this end, we developed HIQSAR models for a set of 46 diverse chemicals as well as a subset of 26
halocarbons for all three tissue:air partition coefficients. A perusal of the regression models presented in
Table III shows that for the fat:air partition coefficient, either the TC indices or the combination of
TS&TC indices gave the best predictive models. The ridgé regression method resulted in superior models
compared to PLS and PCR techniques, in line with our earlier observations [5, 17, 46-48] It is interesting
to note that attempts to estimate fat:air partition coefficients of the VOCs by property-property correlation
using either olive oil:air or the combination of olive oil:air and saline:air partition coefficients resulted in
models of comparable quality.

Models developed with the congeneric set of 26 haloalkanes for tissue:air partition coefficient show a
similar trend. There is improvement in model quality for fhis smaller subset as compared to the total set of
46 VOCs. Here again either the TC or the TS plus TC indices gave the best result; these models also
outperformed the property-property correlation models based on either olive oil:air partition coefficient or
a combination of olive oil:air and saline:air partition coefficients.

Data depicted in Tables IV and V, dealing with regression models of liver:air and muscle:air partition
coefficients, respectively, show the same trend as observed for the fat:air partition coefficient, viz., in the
HiQSAR scheme, either the TC or TS+TC models perfofmed the best; structure-based descriptors and
experimental olive oil:air and saline:air partition coefficients resulted in QSARs of comparable quality;
there was some improvement in the predictive models for the subset of 26 haloalkanes vis-a-vis the
diverse set of 46 chemicals.

It is interesting to note the profile of molecular descriptors which play important role in the prediction
of the three tissue:air partition coefficients. The RR routine provides as output the ¢ values of the
individual indices which can be used to order the TIs according to their relative importance in estimating
the property under investigation. The 20 TIs in the TC models with highest | ¢ | values are given in Tables
VI-VIII for fat:air, liver:air, and muscle:air partition coefficients, respectively. A perusal of the data in
Tabel VI for fat:air partition coefficient shows that the connectivity and triplet indices dominate the set of
parameters. On the other hand, hydrogen-bonding parameters such as HB; do not appear in the list of
most important twenty indices. This makes sense in view of the fact that fatty tissues contain more

hydrophobic materials such as triglycerides through which lipophilic chemicals will cross by passive

13




S.C. BASAK, D. MILLS, D.M. HAWKINS, AND PREDICTION OF PARTITION COEFFICIENTS
H.A. EL-MASRI .

transport mechanism, and this will be governed mainly by general shape, size, branching, etc, associate

with the molecular architecture.

TABLE VI Cluster membership, ridge regression coefficient, and standard error for each of the top 20 descriptors,
ranked by | ¢}, in the topochemical rat fat:air partition coefficient model, n = 46

Cluster # Descriptor RR coeff s.e. t

14 ¥ 1.223 0.073 16.66
14 O ¥ 0.816 0.054 15.05
14 AZV, 0.421 0.029 14.44
6 AZV, 0.227 0.025 8.97
14 AZN, 1.377 0.161 8.54
6 AZV; 0.172 0.021 8.14
14 2 0.528 0.066 7.98
13 SsF -0.200 0.027 1.32
6 AZSs 0.073 0.010 6.95
18 SaaCH 0.090 0.013 6.77
18 S 7.925 1.186 - 6.68
6 AZS; 0.086 0.013  6.65
18 SHarom 0.121 0.018 6.65
13 Gmin 0.432 0.066 6.59
1 lyb 10.407 0.063 6.5
17 ANZ; 0.202 0.033 6.22
6 T Wt 0.063 0.010 6.09
10 SdO 0.157 0.027 5.76
14 fw 0.381 0.068 5.6
18 phia 0.447 0.080 5.58

A perusal of the TIs most important for the QSARs for muscle:air and liver:air partition coefficients
(Tables VII and VIII) shows that parameters such as HB;, SdO and SddsN play an important role in
predicting the property. The liver and muscle tissues, particularly their membranous components (which
play a dbminant role in the partitioning and uptake of chemicals) will contain higher amounts of polar
lipids such as phospholipids, gangliosides, sulfolipids, etc. as compared to the fatty tissues. This may be
the reason why parameters encoding information about hydrogen bonding and polarity assume dominant
roles in the partitioning of chemicals between muscle/liver:air as opposed to fat:air.
Independent variables belonging to clusters 14 and 18 are important in modeling all of the tissue:air

partition coefficients. These two clusters contain the following parameters:

Cluster #14: %", 'x", 2", AZV,, AZN,, fw, kal
Cluster #18: %Ycs, ®X'cne nrings, ncirc, phia, SHother, SaaCH, Sharom
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TABLE VII Cluster membership, ridge regression coefficient, and standard error for each of the top 20 descriptors,
ranked by | ¢ |, in the topochemical rat liver:air partition coefficient model, n = 46

Cluster # Descriptor RR coeff s.e ¢

10 SdO 0.381 0.004 90.29
20 1B -1.628 0.022 -75.08
20 A -1.620 0.022 -73.83
14 fw 1.372 0.022 63.6
20 X -1.683 0.031 -54.93
10 HB, 0.456 0.009 53.35
18 SV 19.137 0.432 44.26
18 SHarom 0.309 0.007 43.3
10 SddsN 2341 0.055 -42.72
12 SdsCH 0.615 0.015 42.42
6 AZN, -0.149 0.004 -41.07
11 AZS, -0.843 0.021 -39.22
16 : nelem -1.999 0.051 -39.21
17 ASZ, -0.146 0.004 ©-39.13
6 totop -0.174 0.004 -39.06
18 SaaCH 0.224 0.006 38.39
6 AZN; -0.129 0.004 -35.05
7 A 0.707 ©0.020 : 35.01
14 Zy¥ 0.499 . 0.015 33.94
14 AZV, 0.501 0.015 33.5

Clusters 14 and 18 have descriptors which enéode information regarding general stfuctu‘ral features;
cluster 14 (e.g., %", '%", %", fw) quantifying molecular size, and cluster 18 (e.g., *Xcn, "cn, nrings, ncirc,
SHarom) containing information about cyclicity. It is important to note that 9 of the 46 éompounds (Table
I) analyzed in this paper are cyclic/aromatic, and cluster 18 represents information about molecular
cyclicity/aromaticity. Therefore, it is clear that molecular features such as general shape and size, as well
as special structural attributes of the particular set chosen (e.g., cyclicity) have dominant roles in
determining the partitioning of the chemicals between air and nonpolar fatty tissue.

The picture is, however, quite different in the cases of liver:air and muscle:air partition coefficients.
Whereas parameters belonging to clusters 14 and 18 play a less important but essential role, the dominant
role is played by parameters belonging to clusters 10 and 20. The latter two clusters contain the following

independent variables:

Cluster #10: SddsN, SdO, HB;
Cluster #20: My, My, °%, *y, °x", P, 1%, I¥, ¥, AZV,, DN’S,, AS13, ASN;, ASN3, ASNs, DSN;, ANVy,
AN1,, AN1,, ANN,, ANN,, Pf
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TABLE VIII Cluster membership, ridge regression coefficient, and standard error for each of the top 20 descriptors,
ranked by | 7|, in the topochemical rat muscle:air partition coefficient model, n = 46

Cluster # Descriptor RR coeff s.e t

10 Sdo 0.294 0.046 6.34
10 SddsN -2.320 0.382 -6.07
10 HB, 0.375 0.069 5.41
14 Iy¥ 0.961 0.191 5.02
20 A -0.920 0.192 -4.79
2 SHCsatu 1.380 0.323 427
18 SHarom 0.156 0.037 4.24
20 B -0.908 0.221 -4.1
14 fw 0.640 0.163 3.94
18 SaaCH 0.108 0.027 3.94
18 S 9.052 2.387 3.79
20 * -0.980 0.262 -3.74
14 : AZV, 0.224 0.061 3.65
14 _ ¥ 0.563 0.165 3.41
9 IC, -0.611 0.182 -3.35
21 S e -0.714 0.216 _ -3.31
4 SIC, -1.581 0.501 3.16
16 IC, 1.403 0.473 2.97
7 ‘ o e 0.487 0.164 2.97
16 SIC, 1.010 0.346 2.92

Whereas cluster 10 contains HB;, an explicit hydrogen-bonding parameter, as well as descriptors
encoding information about nitrogen and oxygen atoms which are strong hydrogen bond acceptors,
cluster 20 contains indices which are either TS parameters encoding molecular size or TC indices which
quantify information both about size/shape and polarity of molecular structure. It is tempting to speculate
that partitioning of chemicals between air and more polar tissues, viz., muscle and liver, are governed by:
a) general size and shape, b) strength of hydrogen bonding, and c) dipolarity /polarizability. Such a
conclusion is supported by Kamlet et al. [49] and our earlier studies on the prediction of l_ogPoctam,:wm,
from molecular descriptors [9,.50, 51]. v A

. In conclusion, results reported in this paper show that HiQSAR based on theoretical moleculaf
descriptors can be useful in the estimation of tissue:air partition coefficiénts of VOCs. The theoretically
based models are comparable or superior to those developed using experimental properties including
olive oil:air and/or saline:air partition coefficients. The dominant parameters neéded to develop the
QSARs lead to some interpretation of the different biological situations involved in the partitioning of

chemicals in the different types-of tissues.
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Three regression methods, namely ridge regression (RR), partial least squares (PLS), and principal components
regression (PCR), were used to develop models for the prediction of rat blood:air partition coefficient for
increasingly diverse data sets. Initially, modeling was performed for a set of 13 chlorocarbons. To this set, 10
additional hydrophobic compounds were added, including aromatic and non-aromatic hydrocarbons. A set of 16
hydrophilic compounds was also modeled. Finally, all 39 compounds were combined into one data set for which
comprehensive models were developed. A large set of diverse, theoretical molecular descriptors, including
topostructural (TS), topochemical (TC), and geometrical or 3-dimensional (3D) indices were used both
hierarchically and independently in model development. In most cases, RR outperformed PLS and PCR, and the

models developed using TC indices were superior to those developed using other combinations of descriptors.

1. INTRODUCTION

The quality of modern life is dependent upon the use of a multitude of man-made and natural
chemicals. Collectively, we are exposed to thousands of these chemicals from their routine use as well as
accidental spill to the environment. Risk assessment (RA) of chemicals is an important activity pertinent
to sustainable human and ecological health. Important aspects of RA are: a) hazard identification, b)
dose-response assessment, c) exposure assessment, and d) risk characterization L

Health risk assessment of human exposure to environmental chemicals is usually based on
experimental findings performed on test animals for single chemicals. Current assessment methods
include two issues that are constantly debated in the scientific community. First, the use of these findings

to estimate health risks to humans is routinely done by the use of default uncertainty factors, the purpose
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. which is to extrapolate between experimental settings and real life situations among differvent doses,
animal species and exposure scenarios. The acceptance of these uncertainty factors by the scientific
community reflects the lack of understanding of physiological, and biochemical mechanisms underlying
the toxicity of environmental chemicals. Secondly, in most cases, risks are only estimated for exposures
to single chemicals in the environment. This also is an oversimplification of real world situations where
people are exposed to multiple chemicals concurrently. Biologically based computational models can
-address both issues by linking tissue levels, pharmacokinetically, or mechanisms of actions,
~ pharmacodynamically, with exposure levels. This linkage provides a numerical procedure which can be
used to investigate the role of physiological (e.g., body weight, cardiac output), or biochemical factors
(such as metabolism, or protein binding etc.) in determining risk estimates among different species, and
exposure scenarios. Whenever possible, mechanisms of interactions, such as metabolic inhibitions or
competition for protein binding sites, can also be introduced into the models to address the effect of
combined chemicals exposure to human health.

Pharmacokinetics (PK) involves the study of the rates of absorption, distribution, excretion, and
biotransformation of chemicals and their metabolites. PK models can be used to reconstruct extensive
data sets based on a small number of kinetic parameters®. These models can be used to generate
hypotheses, predict the results of new experiments, and integrate studies on kinetics, disposition and
metabolism in various animal species’. In physiologically based pharmacokinetic (PBPK) models,
compartments correspond more closely to actual anatomical structures, defined with respect to their
volumes, blood flows, chemical binding (partitioning) characteristics, and the ability to metabolize or
excrete the compounds of interest. Because the kinetic parameters of these models reflect tissue blood
flows, and partitioning and other biochemical constants, these models are more readily scaled from one
animal species to another’. Quantitative applications of PBPK models in risk assessment date from the
development of a number of such models for methylene chloride in the mid 1980s’. The use of PBPK
models in toxicology research and chemical risk assessment situations today is primarily related to their
ability to make more accurate predictions of target tissue dose for different exposure situations in
different animal species, including humans. Such models constitute an important tool in improving the
degree of accuracy of human health risk assessment for toxic substances in the environment®, One of the
disadvantages of PBPK modeling is its heavy reliance on often experimentally determined parameters.
However, advances in computational and mathematical chemistry can provide a methodology which in |
many cases is used to estimate model parameters such as tissue:air partition coefficients

Tissue-air partition coefficient values of volatile organic chemicals (VOCs) are used to estimate the
uptake, distribution, metabolism, and elimination as well as potential hazard of xenobiotics to humans’.

Gargas et al.” experimentally determined various liquid solvent:air and tissue:air partition coefficients (P)
g p y q
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for .9% saline, olive oil, blood, liver, muscle, and fat tissue. Subsequently, they studied the relationship
among the various partition coefficients using regression models. For example, P values for blood:air,
liver:air and muscle:air pairs were found to be strongly corrrelated with P values for olive oil:air for
various subsets of volatile organic chemicals (VOCs).

The blood:air partition coefficient (P, blood:air) is an important determinant of the pulmonary uptake
of VOCs via the inhalation route. Solubility of VOCs in blood is primarily determined by two factors: a)
tissue composition including the content of neutral lipid, phospholipid, and water, and b) the degree of
binding of these chemicals to specific components of blood, e.g., hemoglobin, plasma proteins, etc. Such
physiological considerations have been utilized by Poulin and Krishnan® to estimate blood:air P values of
different subsets of chemicals.

Attempts have been made by various authors to estimate PBPK parameters of chemicals from their
physicochemical and calculated properties. de Jongh et al.” estimated tissue: blood partition coefficients
of a diverse set of chemicals from their octanol:water (P, octanol:water) partition coefficient. Poulin and
Krishnan®, on the other hand, attempted to estimate tissue:air P values for hydrophobic and hydrophilic
classes of chemicals separately. To this end, they developed an algorithm based the ratio of blood
solubility to air solubility (saturable vapor concentration). '

The estimation of various tissue:blood P values from other experimental properties (e.g. olive oil:water
by Gargas et al.” or calculated octanol:water P value by de Jongh et al.’) are examples of property-
property correlations where one property is used to estimate another property of interest. The basic
paradigm of quantitative structure-activity relationship is that any property of a molecule can be estimated
from the pertinent aspects of molecular structure which constitute the molecular and submolecular basis

of that property'. Following that paradigm, attempts have been made to predict various properties, e.g.,

15, 24-26 27,28 s e 2823
mutagenicity,”**’

boiling point,"*"” vapor pressure,'** logP (octanol:water), carcinogenicity,
blood-brain barrier transport,®® and skin penetration of chemicals®. Theoretical descriptors have been
used to predict the so-called modes of actions (MOAs) of chemicals from their calculated theoretical
descriptors.® So, it is reasonable to attempt td estimate tissue:air P values of chemicals from their
structure. Such an effort is also supported by the fact that calculated octanol:water P is primarily a
structural parameter being calculated from fragment values of the molecule with some empirical
corrections for structural peculiarities not accounted for by the fragmental constant® *!, The finding of de
Jongh ét al.” that tissue:air P can be estimated from octanol:water P values is also an impetus for
attempting to estimate blood:air P values directly from structural parameters.

In our previous studies, we first found a successful correlation between theoretical structural invariants
and blood:air P values for a congeneric set of chlorocarbons **. Subsequently, we added a few non-

chlorocarbon hydrophobic chemicals to the set of chlorocarbons and found a satisfactory relationship
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setween the P values of the combined set and the calculated descriptors. A comparison of thé models for
the two data sets demonstrated that the best model for the combined set included parameters that reflected A
the structural diversity of the data set. This supports the belief that a diverse range of descriptors is
required in order to model a diverse data set™. In this paper, we have attempted to predict P (blood:air)

values of a larger set of chemicals comprised of hydrophobic and hydrophilic molecules using a set of

purely calculated molecular descriptors.

2. METHODS

2.1 Database. Rat blood:air partition coefficient data for set of 41 compounds was obtained from the
literature” **** by Poulin and Krishnan®, who divided the data into two subsets: a relatively hydrophobic
set consisting of alkanes, haloalkanes, and aromatic hydrocarbons, and a set of relatively hydrophilic
compounds made up of ketones, alcohols, acetate esters, and one ether. Four compounds included in the
data set analyzed by Poulin and Krishnan are not included here, two of which were cis/trans isomers and
therefore have identical values for theoretical descriptors based on SMILES input, and two for which it

was not possible to calculate the entire set of descriptors used in the current study. The experimental

blood:air partition coefficients are provided in Table 1.

2.2 Mol;:cular Descriptors. The calculated molecular descriptors can be categorized into hierarchical
groups based on level of complexity. At the lowest end of the hierarchy are the topostructural (TS)
descriptors which encode information strictly on the adjacency and connectedness of atoms within a
molecule. The topochemical (TC) descriptors also take into account the chemical nature of a molecule
including bond type. The 3-dimensional or shape (3D) déscriptors are even more complex, éncoding
information about the 3-dimensional aspects of a molecule. The topostructural and topochemical
descriptors are known collectively as topological descriptors.

All descriptors used in the present study were derived strictly from molecular structure using software
packages including POLLY,* Triplet,*”*® and Molconn-Z.* From POLLY, we obtain a set of

50-52 .

topological descriptors, including a large group of connectivity indices,’*? information theoretic®> **

and

neighborhood complexity indices.® The Triplet descriptors also constitute a large group of topological
parameters. They are derived from a matrix, a main diagonal column vector, and a free term column
vector, converting the matrix into a system of linear equations whose solutions are the local vertex
invariants. These local vertex invariants are then used various mathematical operations in order to obtain

the friplet descriptors. Molconn-Z provides additional topological descriptors, including an extended set
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of connectivity indices, electrotopological indices,”*® hydrogen bonding descriptors, as well as a small
number of molecular shape descriptors. |

For the analysis of one of the data sets analyzed in this study, namely the set of chlorocarbons, three
additional 3-dimensional descriptors were obtained from Sybyl.”” These descriptors were not available
for use at the time that the remaining data sets were analyzed. Also unique to the chlorocarbon analysis
was a descriptor representing the number of chloride atoms.

A brief description of the complete set of molecular descriptors used in the current study is provided in

Table 2.

2.3 Statistical Analysis. Prior to performing regression analysis, the descriptors were scaled by the
natural logarithm as their scales differed by several orders of magnitude. The values of the dependent
variable differed by more than one order of magnitude and therefore were also log scaled. The original
set of independent variables was reduced by eliminating: a) descriptors which had a value of 0 for the
entire set of compounds, b) descriptors which could not be calculated for all compounds in the data set,
and c) all but one of a given set of perfectly correlated descriptors, i.e. r = 1.0, as determined by the

CORR procedure of the SAS statistical package.*® This procedure was performed independently for each

of the following analyses:

1. A set of 13 chlorocarbons (a subset of the N = 24 hydrophobic data set)
2. A set of 24 hydrophobic compounds

3. A set of 17 hydrophilic compounds

4. A set of 41 hydrophobic + hydrophilic compounds

Ridge regression (RR),” principal components regression (PCR)®, and partial least squares (PLS)
regression®"®® models were developed using molecular descriptors in a hierarchical fashion. In addition,
each class of descriptors was used independently to obtain single-class models. Each of these regression
methods is useful in studies wherein the number of descriptors is much greater than the number of
observations, as well as in cases where the independent variables are highly intercorrelated; and they
make use of all independent variables as opposed to subset regression wherein it is possible that important
parameters may be eliminated. Statistical parameters reported include the cross-validated R? value, which
is obtained by removing each compound in turn from the data set and fitting the regression to the
remaining n-1 compounds, and the PRESS statistic which is a reliable measure of model predictability.

In addition, the ¢ values can be examined in order to identify significant descriptors. Although a descriptor
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with a large | ¢ | indicates that the associated descriptor is important in the model, it should be cautioned

that the reverse is not necessarily so.

3. RESULTS

A summary of the regression results for the various data sets analyzed in the present study are
provided in Tables 3-6. The three statistical methods, viz., PCR, PLS and RR, were used for model
development. Three classes of calculated descriptors, viz., topostructural (TS) indices, topochemical
(TC) indices, and geometrical or 3-dimensional (3D) molecular descriptors, were used either alone or in
various combinations for model building (Tables 3-6). Of the three statistical techniques, the RR method
generally gave superior R%., and PRESS values as compared to those derived by PCR or PLS methods.
In addition, models derived either from TC descriptors alone or TS+TC descriptors were superior to those
involving other combinations of descriptor classes. In some of our earlier studies involving the
development of QSARs using TS, TC, 3D and quantum chemical (QC) indices, we found that the TS+TC
combination explained most of the variance in the data and the addition of 3D or QC indices made only
marginal or no improvement in the model quality. '® 2335376466 A reasonable model] with a cross-
validated R? value 0.866 and a PRESS of 1.61 was obtained for the set of 13 chlorocarbons*, which may
not be surprising in light of the homogenous nature of the data set (Table 3). When additional
hydrophobic compounds are added to this set, we find that cyclohexane is an influential outlier.
Cyclohexane is the only cyclic non-aromatic in the data set. With this compound removed, a cross-
validated R? of 0.873 is obtained with a PRESS of 2.90 (Table 4). The set of hydrophilic compounds is
also well modeled, with a cross-validated R? of 0.964 and a PRESS of 0.92. In this analysis, diethyl ether
was found to be an outlier, which is not surprising since this compound is the only ether in the set (Table
5). A significant finding is the fact that when the data set is further diversified by combining the
hydrophobic and hydrophilic compounds, an acceptable model is obtained, with a cross-validated R* of
0.944 and a PRESS of 5.57. In the combined data set, we find that cyclohexane and bromochloromethane
are influential outliers (Table 6).

For each of the four data sets analyzed, the descriptors in the TC ridge regression model were ordered
according to their respective | ¢ | values. Approximately, the top 10% of the descriptors, based on | £ |
values, are listed in Tables 7-10 for the four sets of chemicals for which models are developed in Tables
3-6, viz., chlorocarbons, hydrophobic chemicals, hydrophilic chemicals, and the union of all three sets,

along with the descriptor coefficient, standard error, and ¢ value.
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Table 11 provides the predicted logP (blood:air) values and residuals for the TC ridge regression
model developed for the combined set of hydrophobic and hydrophilic descriptors. The predicted values
and residuals obtained by the solubility algorithm of Poulin and Krishnan® are included for comparative

purposes. A scatterplot of the experimental vs the predicted values given in Table 11 is shown in Figure

L.

4. DISCUSSION

The question we wanted to investigate in this study was three fold: a) Can we use theoretical structural
descriptors instead of experimental physicochemical data to predict properties relevant to PBPK
modelling, b) Is it possible to predict relevant properties of not only congeneric sets, but also structurally
diverse collections of molecules, and c) Can we interpret the resulting QSAR models for the congeneric
vis-a-vis diverse sets in order to understand the basis of the roles of various types of descriptors in the
predictive models?

Regarding the first point above, it is clear from results presented in Tables 3-6 that either the
topochemical indices alone or the combination of TS+TC indices gave reasonable regression equations
for chlorocarbons, hydrophobics (chlorocarbons plus hydrocarbons), hydrophilics, aﬁd finally, a
combined set of hydrophobic and hydrophilic compounds. There were some outliers which influenced
the results for the smaller subsets as well as the final combined set. Such compounds, namely diethyl
ether, cyclohexane and bromochloromethane, are but lone examples of their respective structural classes,
which is probably the reason why the models could not account for them. It is interesting to note that of
the three methods of modeling attempted, viz., PCR, PLS and RR, the ridge regression method gave the
best predictive models in most cases. In an earlier paper,” we showed with four different sets of
physicochemical and toxicological properties that RR is superior to multiple linear regression (MLR) or
PLS in the development of QSAR models.

There is some degradation of the PRESS statistic, an important measure of model quality, when we
compare the class-specific models (Tables 4 & 5) with those derived from the combined set (Table 6)
using the RR method. However, the difference between the measure for the combined set and the sum of
those for the individual sets is not as large as one might expect, and the combined model is a reasonable
one. This may be due to the large number of descriptors utilized, capable of characterizing many
different structural features. Table 11 gives results of the relative effectiveness of our current approach,
using the TC model developed with the ridge regression method for the combined set of hydrophobic and

hydrophilic compounds, vis-a-vis a physicochemically-based approach derived by Poulin and Krishnan®
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from mechanistic considerations in the prediction of blood:air partition coefficients of the VOCs analyzed
in this paper.

It is instructive to look at the most important descriptors (in terms of | # | values in the RR models) for
the various subsets of chemicals. Some important indices for the subset of chlorocarbons are: the triplet
indices AZV3 and AZS,, NoCl (the number of chlorine atoms), E-state indices encoding information
about the electronic states of atoms (SHCsats and SsssCH), and both first and third order connectivity
indices, the latter of which represents third order cluster subgraphs occurring frequently in the hydrogen-
suppressed graphs of the halocarbons.

The addition of the aromatic and nonaromatic hydrocarbons to the set of chlorocarbons results in an
interesting change. It is clear from Table 8 that parameters such as SHarom (E-state aromatic indices)
and sixth order cyclic connectivity index® have become important in the regression equation. This is
clearly a shift towards aromaticity and cyclicity, which are inherent structural features of the subset of
compounds added to the group of chlorocarbons.

The predictors important for the hydrophilic subset (Table 9) show the importance of hydrogen

bonding (SHHBd, numHBd) parameters, as well as indices related to atomic heterogeneity and symmetry,

1-69

viz., nclass, SHCsatu, and molecular weight (representing molecular size). Kamlet et al.”” showed in their

research with linear solvated energy related studies that molecular size, dipolarity, and hydrogen bonding
are three important determinants of properties iﬁcluding water solubility, partition coefficients, etc.

Finally, in the RR model developed from the mixed set of chlorocarbons, aromatics and hydrophilics,
we find that the following factors are important: a) Molecular size, encoded by zero order connectivity
index (°x"),” b) Hydrogen bonding represented by numHBd, SHHBd, SHHBa,, and HB,, and ¢) Polarity
(Qv). Results derived from the combined set clearly vindicate the proposition of Kamlet et al.”’ that
molecular size, dipolarity/polarizability, hydrogen bond donor acidity, and hydrogen bond acceptor
basicity are the major determining factors for partitioning properties such as hydrophobicity. The
importance of structural factors such as %" and van der Waals’ volume (encoding molecular size), IC,,
CICI, CIC,, and CIC; (representing atomic neighborhood heterogeneity), and HB; (representing hydrogen
bonding) in predicting octanol-water partition coefficient (log P, octanol-water) was also evident in our
previous studies of smaller subsets of 219", 139 and 382 compounds’ "', as well as larger diverse log P
sets of 4,111 and 4,000 chemicals.?*

In conclusion, results presented in this paper show that data relevant to toxicological and PBPK
modeling of VOCs can be more accurately predicted using RR method and calculated molecular
descriptors than by using the mechanistic approaches based on physicochemical and biological
considerations. The wide spectrum of molecular descriptors considered in this paper afforded us the

ability to model not only the particular structural types but also the combined set of different structural
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- usses of chemicals without significant degradation in the model quality as compared to class-specific
QSARs. Inspection of the parameters that play important roles in class-specific QSARs as well as the
corresponding models for the combined set showed that parameters assuming important roles in the
different predictive models reflect the nature and diversity of the chemicals under consideration. Further
studies on the comparative QSARs of congeneric vis-a-vis structurally diverse sets using theoretical

structural indices are needed to validate the utility of the approach outlined in this paper.
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Table 1. Experimental rat blood:air partition coefficients (P, blood:air)

Chemicals Experimental P*
Alkanes®
1. n-Hexane . 229+0.11
2. Cyclohexane 1.39+£0.09
3. mn-Heptane 475+ 0.15
Haloalkanes®
4. Dichloromethane 19.4+£0.8
5. Chloroform 20.8+0.1
6. Carbon tetrachloride 4,52 4:0.35
7. Bromochloromethane 415+ 0.9
8. 1,1-Dichloroethane 11.2+£0.1
9. 1,2-Dichloroethane 304412
10. 1,1,1-Trichloroethane 5.76+0.5
11. 1,1,2-Trichloroethane i 58.0+1.1
12. 1,1,1,2-Tetrachloroethane 417+ 1.0
13. 1,1,2,2,-Tetrachloroethane 142 +6
14. Pentachloroethane 104 +3
15. 1,2-Dichloropropane 18.74+ 0.5
16. Trichloroethylene 219+ 14
17. Tetrachloroethylene 189+ 1.1
Aromatic hydrocarbons®
18. Benzene 17.8+0.3
19. Chlorobenzene 594+ 1.0
20. Toluene 18.0+1.0
21. Styrene 402437
22, 0-Xylene 443+£2.0
23. m-Xylene 46.0+ 1.5
24, p-Xylene 413+£35
Ketones®
25. Dimethyl ketone 208 +4
26. Methyl ethyl ketone 191+ 2
27. Methyl propy! ketone 127+ 3 .
28. Methyl isobutyl ketone 79+ 6
29. Methyl pentyl ketone 225+ 30
Alcohols®
30. Ethyl alcohol 2140 + 80
31. n-Propyl alcohol 1340+ 24
32. Isopropyl alcohol 1290 + 21
33. n-Butyl alcohol 1160+ 17
34. n-Pentyl alcohol 829+ 25
Acetate esters®
35. Methyl acetate ester 100+ 2
36. Ethyl acetate ester 81.7+2.1
37. n-Propyl acetate ester 762 +2.1
38. Isopropyl acetate ester 351+ 1.3
39. n-Butyl acetate ester 894+ 2.5
40. Isopentyl acetate ester 64.7+£2.0
Ether®
41. Diethyl ether 122+ 04

* Values represent means = standard error.
b Relatively hydrophobic compounds®
¢ Relatively hydrophilic compounds®
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Table 2. Symbols, definitions and classification of calculated molecular descriptors

Topostructural (TS)
I‘g Information index for the magnitudes of distances between all possible pairs of vertices of a
graph
I‘g Mean information index for the magnitude of distance
w Wiener index = half-sum of the off-diagonal elements of the distance matrix of a graph
g Degree complexity
HY Graph vertex complexity
HP Graph distance complexity
IC Information content of the distance matrix partitioned by frequency of occurrences of distance
h
M, A Zagreb group parameter = sum of square of degree over all vertices
M, A Zagreb group parameter = sum of cross-product of degrees over all nelghbormg (connected)
vertices
by Path connectivity index of order h = 0-10
Byc Cluster connectivity index of order h = 3-6
Byc Path-cluster connectivity index of order h = 4-6
By ch Chain connectivity index of order h = 3-10
Py Number of paths of length h = 0-10
J Balaban’s J index based on topological distance
nrings Number of rings in a graph
neirc Number of circuits in a graph
DN28y Triplet index from distance matrix, square of graph order (# of non-H atoms), and distance
sum; operation y = 1-5
DN21y Triplet index from distance matrix, square of graph order, and number 1; operation y = 1-5
AS1, Triplet index from adjacency matrix, distance sum, and number 1;
operationy = 1-5
DS, Triplet index from distance matrix, distance sum, and number 1;
operation y = 1-5
ASN, Triplet index from adjacency matrix, distance sum, and graph order; operation y = 1-5
DSN, Triplet index from distance matrix, distance sum, and graph order;
operationy = 1-5
DN2Ny Triplet index from distance matrix, square of graph order, and graph order; operation y = 1-5
ANS, Triplet index from adjacency matrix, graph order, and distance sum; operation'y = 1-5
AN1, Triplet index from adjacency matrix, graph order, and number 1;
" operation y = 1-5
.ANN, Triplet index from adjacency matrix, graph order, and graph order again; operation y = 1-5
ASV, Triplet index from adjacency matrix, distance sum, and vertex degree; operation'y = 1-5
DSV, Triplet index from distance matrix, distance sum, and vertex degree; operationy = 1-5
ANV, Triplet index from adjacency matrix, graph order, and vertex degree; operation y = 1-5
Topochemical (TC)
NoCl Number of chlorine atoms
HB, Hydrogen bonding parameter
O Order of neighborhood when IC, reaches its maximum value for the hydrogen-filled graph
Oom Order of neighborhood when IC, reaches its maximum value for the hydrogen-suppressed
graph
Iow Information content or complexity of the hydrogen-suppressed graph at its maximum
neighborhood of vertices
IC, Mean information content or complexity of a graph based on the ™ (r = 0-6) order
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neighborhood of vertices in a hydrogen-filled graph

Structural information content for r' (r = 0-6) order neighborhood of vertices in a hydrogen-
filled graph

Complementary information content for M= 0-6) order neighborhood of vertices in a
hydrogen-filled graph

Bond path connectivity index of order h = 0-6

Bond cluster connectivity index of order h = 3-6

Bond chain connectivity index of order h = 3- 6
Bond path-cluster connectivity index of order h = 4-6

Valence path connectivity index of order h = 0-10
Valence cluster connectivity index of order h = 3-6

Valence chain connectivity index of order h = 3-10
Valence path-cluster connectivity index of order h = 4-6

Balaban’s J index based on bond types

Balaban’s J index based on relative electronegativities

Balaban’s J index based on relative covalent radii

Triplet index from adjacency matrix, atomic number, and vertex degree; operation y = 1-5
Triplet index from adjacency matrix, atomic number, and distance sum; operation y = 1-5
Triplet index from adjacency matrix, distance sum, and atomic number; operation y = 1-5
Triplet index from adjacency matrix, atomic number, and graph order; operation y = 1-5
Triplet index from adjacency matrix, graph order, and atomic number; operation y = 1-5
Triplet index from distancé matrix, distance sum, and atomic number; operation y = 1-5
Triplet index from distance matrix, square of graph order, and atomic number; operation y = 1-
5

Number of non-hydrogen atoms in a molecule

Number of elements in a molecule

Molecular weight

Valence path connectivity index of order h = 7-10

Valence chain connectivity index of order h = 7-10

Shannon information index

Total Topological Index t

Sum of the intrinsic state values I

Sum of delta-I values

Total topological state index based on electrotopological state indices
Flexibility index (kp1* kp2/nvx)

Bonchev-Trinajsti0 information index

Bonchev-Trinajstill information index

Wienerp

Plattf

Total Wiener number

Difference of chi-cluster-3 and path/cluster-4

Valence difference of chi-cluster-3 and path/cluster-4

Number of classes of topologically (symmetry) equivalent graph vertices
Number of hydrogen bond donors

Number of weak hydrogen bond donors

Number of hydrogen bond acceptors

E-State of C sp° bonded to other saturated C atoms

E-State of C sp® bonded to unsaturated C atoms

E-State of C atoms in the vinyl group, =CH-

E-State of C atoms in the terminal vinyl group, =CH,

E-State of C atoms in the vinyl group, =CH-, bonded to an aromatic C
E-State of C sp” which are part of an aromatic system

Hydrogen bond donor index, sum of Hydrogen E-State values for —OH, =NH,
-NH2, -NH-, -SH, and #CH

\
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Weak hydrogen bond donor index, sum of C-H Hydrogen E-State values for hydrogen atoms

SHwHBd
on a C to which a F and/or C] are also bonded

SHHBa Hydrogen bond acceptor index, sum of the E-State values for —-OH, =NH,
-NH2, -NH-, >N-, -0-, -S-, along with —F and —Cl

Qv General Polarity descriptor

NHBint, Count of potential internal hydrogen bonders (y = 2-10)

SHBint, E-State descriptors of potential internal hydrogen bond strength (y =2-10)
Electrotopological State index values for atoms types:
SHsOH, SHdNH, SHsSH, SHsNH2, SHssNH, SHtCH, SHother, SHCHnX, Hmax Gmax,
Hmin, Gmin, Hmaxpos, Hminneg, SsLi, SssBe, Sssss,Bem, SssBH, SsssB, SssssBm, SsCH3,
SdCH2, SssCH2, StCH, SdsCH, SaaCH, SsssCH, SddC,StsC, SdssC, SaasC, SaaaC, SssssC,
SsNH3p, SsNH2, SssNH2p, SdANH, SssNH, SaaNH, StN, SsssNHp, SdsN, SaaN, SsssN,
SddsN, SaasN, SssssNp, SsOH, SdO, SssO, SaaO, SsF, SsSiH3, SssSiH2, SsssSiH, SssssSi,
SsPH2, SssPH, SsssP, SdsssP, SsssssP, SsSH, SdS, SssS, SaaS, SdssS, SddssS, SssssssS, SsCl,
SsGeH3, SssGeH2, SsssGeH, SssssGe, SsAsH2, SssAsH, SsssAs, SdsssAs, SsssssAs, SsSeH,
SdSe, SssSe, SaaSe, SdssSe, SddssSe, SsBr, SsSnH3, SssSnH2, SsssSnH, SssssSn, Ss,
SsPbH3, SssPbH2, SsssPbH, SssssPb

Geometrical / Shape (3D)°

kp0 Kappa zero

kpl-kp3 Kappa simple indices

kal-ka3 Kappa alpha indices

Vw Van der Waals volume

PWy 3D Wiener number based on the hydrogen-filled geometric distance matrix

Pw 3D Wiener number based on the hydrogen-suppressed geometric distance matrix

*Vy, 0 Wi, and W used in chlorocarbon analysis only. These descriptors were unavailable for subsequent analyses.

Table 3. Summary of regression results for the set of chlorocarbons®

RR PCR PLS

Model Type R%.. PRESS R”,, PRESS ~_R*’,,  PRESS
TS 0.436 6.79 -0.259 152 -0.172 9.97
TS+TC 0.835 1.99 0.716 3.42 0.697 3.65
TS+TC+3D 0.827 2.08 0.762 2.87 0.726 3.31
TS 0.436 6.79 -0.259 15.2 -0.172 9.97
TC 0.866 1.61 ©0.732 3.23 0.800 241
3D 0.584 5.01 0.444 6.70 0.179 9.88

® Subset of hydrophobic compounds (N = 13)

Table 4. Summary of regression results for the set of hydrophobic compounds *

RR PCR PLS

Model Type R®,,  PRESS R, PRESS R®.,  PRESS
TS 0.424 12.7 0.403 13.6 0.393 13.8
TS+TC 0.873 2.90 0.768 528 0.749 572
TS+TC+3D 0.870 2.98 0.768 5.30 0.717 6.45
TS 0.424 12.7 0.403 13.6 0.393 13.8
TC 0.856 3.30 0.757 5.54 0.708 6.68
3D 0.264 16.8 0239 17.4 -0.268 28.9

* Cyclohexane removed from data set (N = 23)
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Table 5. Summary of regression results for the set of hydrophilic compounds®

RR PCR PLS
Model Type R%,, PRESS R*., PRESS R” .. PRESS
TS 0.543 11.8 -0.355 35.0 0.168 21.5
TS+TC 0.948 1.34 0.922 2.02 0.913 2.25
TS+TC+3D 0.945 1.42 0.917 2.15 0.906 2.43
TS 0.543 11.8 -0.355 35.0 0.168 21.5
TC 0.964 0.92 0.924 1.95 0.919 2.10
3D 0.743 6.64 -0.747 452 -0.562 40.4
? Diethyl ether removed from data set (N = 16)
Table 6. Summary of regression results for the set of hydrophobic + hydrophilic compounds®
RR PCR PLS
Model Type RZ,, PRESS R*.. PRESS R*.,  PRESS
TS -0.053 105 -0.210 120 -0.228 122
TS+TC 0.938 6.11 0.358 63.8 0.941 5.82
TS+TC+3D 0.939 6.06 0.349 64.6 0.943 5.69
TS -0.053 105 -0.210 120 -0.228 122
TC 0.944 5.57 0.396 60.0 0.942 5.80
3D 0.066 92.7 -0.020 101 0.013 98.0
* Cyclohexane and bromochloromethane removed from data set (N = 39).
Table 7. Most significant ~10% of TC model parameters based on | #| value for the chlorocarbon
data set"

Descriptor Descriptor type Coeff. s.e. t | £
AZV, Triplet 0.12127  0.01249 9.71 9.71
NoCl No. Cl atoms ,0.03012  0.00359 8.39 8.39
numHBa H-bond acceptor 0.11561  0.01487 7.78 7.78
SHCsats Atom type E-state 0.25081  0.03253 7.71 7.71
o 1** order bond path connectivity 0.29577  0.03846  7.69 7.69
AZS, Triplet -0.30389  0.03962  -7.67 7.67
W 1 order valence path connectivity 030732  0.04019  7.65 7.65
phia Flexibility 0.43651  0.05868 7.44 7.44
SHHBa H-bond acceptor 0.09488  0.01280 741 7.41
SsssCH Atom type E-state -0.30596  0.04188  -7.31 7.31
A 3" order bond cluster connectivity -0.08884  0.01237  -7.18 7.18
idCbar Information 027432 0.03828 7.17 7.17

# Subset of hydrophobic compounds (N = 13)
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Table 8. Most significant ~10% of TC model parameters based on | ¢| value for the hydrophobic daté set”

Descriptor Descriptor type Coeff. s.e. t [£]
wt Total Wiener number 0.03421  0.00316 10.84 10.84
AZV; Triplet 0.08093  0.00857 945 945
SaaCH Atom type E-state 0.06459  0.00714 9.05 9.05
SHarom E-state, aromatic system 0.08534  0.00958 8.90 8.90
by Ven 6" order valence cyclic connectivity 5.01933  0.59190 8.48 8.48
totop Total topological index 0.03811  0.00464 8.21 8.21
AZV, Triplet 0.09593  0.01175 8.17 8.17
Qv Polarity -0.48399  0.06541 -7.40 7.40
AZN, Triplet 0.92923  0.12848 7.23 7.23
Y 3" order valence path connectivity 0.23300  0.03329 7.00 7.00
SsCH3 Atom type E-state -0.19602  0.03003 -6.53 6.53
numwHBd Hydrogen bond donor 0.23978  0.03677 6.52 6.52

# Cyclohexane removed from data set (N = 23)

Table 9. Most significant ~10% of TC model parameters based on | #| value for the hydrophilic data set®

Descriptor Descriptor type Coeff. s.c. t [2]
totop Total topological index -0.094 0.003 -30.47 3047
Suml Sum of intrinsic state values -0.152 0.006 -24.44 24.44
ANZ, Triplet -0.117 0.005 -23.80 23.80
NumHBd Hydrogen bond donor 0.238 0.012 20.30 20.30
SHHBd Hydrogen bond donor 0.139 0.007 20.11 20.11
Hmax Atom type E-state 0.228 0.011 20.07 20.07
SdO Atom type E-state -0.068 0.004 -18.76 18.76
SHCsatu E-state, sp’ bonded to unsaturated C -0.252 0.019 -13.10 13.10
DN’Z, Triplet -0.017  0.001  -12.31 12.31
AZV, Triplet -0.050 0.004 -11.67 11.67
Fw Molecular weight -0.041 =~ 0.004 -11.34 11.34
nclass No. classes of topologically equivalent -0.079 0.007 -10.53 10.53

graph vertices

* Diethyl ether removed from data set (N = 16)

Table 10. Most significant ~10% of TC model parameters based on | ¢ | value for the hydrophobic + hydrophilic
data set *

Descriptor Descriptor type Coeff. s.e. t | 2]
numHBd Hydrogen bond donor 1.09032 0.04716  23.12 23.12
SHHBd Hydrogen bond donor 0.63524  0.02806  22.64 22.64
SsOH Atom type E-state 0.34518 0.01661  20.78 20.78
Hmax Atom type E-state 0.71396  0.05969  11.96 11.96
HB, Hydrogen bonding 0.33321 0.02804  11.88 11.88
suml Sum of intrinsic state values 0.56713  0.05096  11.13 11.13
Qv General polarity -1.50364 0.13949  -10.78 10.78
Gmax Atom type E-state 0.42754  0.04274  10.00 10.00
Oy Zero order valence connectivity -0.38320 0.03854  -9.94 9.94
sumDELI Sum of delta-I values 0.30960  0.03158 9.80 9.80
SHHBa Hydrogen bond acceptor 0.09410 0.01089 8.64 8.64
ASZ, _ Triplet -0.12561  0.01498  -8.39 8.39

* Cyclohexane and bromochloromethane removed from data set (N = 39)
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Table 11. Log scaled experimental and predicted rat blood:air partition coefficients (P, blood:air), as well as
residuals, for the current study and the solubility algorithm derived by Poulin and Krishnan®

Current study® Solubility algorithm
Chemicals Exp. logP*  Pred. logP Residual Pred. log P°  Residual
Alkanes
1. n-Hexane 0.828 0.999 -0.170 -1.204 2.032
2. Cyclohexane 0.329 - - -0.511 0.840
3. n-Heptane 1.558 1.518 0.040 -0.105 - 1.663
Haloalkanes
4. Dichloromethane 2.965 2.983 -0.018 1.609 1.356
5. Chloroform 3.035 3.136 -0.101 1.386 1.649
6. Carbon tetrachloride 1.508 1.513 -0.005 0.000 1.508
7. Bromochloromethane 3.726 -- -- 2.079 1.647
8. 1,1-Dichloroethane 2416 2.528 -0.112 0.693 1.723
9. 1,2-Dichloroethane 3414 3.390 0.024 2.303 1.111
10. 1,1,1-Trichloroethane 1.751 1.799 -0.048 0.000 1.751
11. 1,1,2-Trichloroethane 4.060 3.749 0.312 2.708 1.352
12. 1,1,1,2-Tetrachloroethane 3.730 3.692 0.038 2.079 1.651
13, 1,1,2,2,-Tetrachloroethane 4,956 4.935 0.021 3.466 1.490
14. Pentachloroethane 4.644 4.640 0.005 2.708 1.936
15. 1,2-Dichloropropane 2.928 3.076 -0.147 1.099 1.829
16. Trichloroethylene 3.086 3.179 -0.092 0.693 2.393
17. Tetrachloroethylene 2.939 2918 0.021 1.609 1.330
Aromatic hydrocarbons
18. Benzene 2.879 2.837 0.042 1.099 1.780
19. Chlorobenzene 4.084 4.120 -0.036 1.946 2.138
20. Toluene 2.890 3.088 - -0.198 1.386 1.504
21. Styrene 3.694 3.655 0.039 2.079 1.615
22. 0-Xylene 3.791 3.815 -0.024 2.197 1.594
23. m-Xylene 3.829 3.672 0.157 2.079 1.750
24. p-Xylene 3.721 3.698 0.023 2.079 1.642
Ketones
25. Dimethyl ketone 5337 5233 0.104 5215 0.123
26. Methyl ethyl ketone 5252 5.269 -0.016 5.170 0.082
27. Methyl propyl ketone 4.844 4.856 -0.012 4.575 0.269
28. Methy! isobutyl ketone 4.369 4372 -0.002 3.989 0.380
29. Methyl pentyl ketone 5.416 5.300 0.117 5.193 0.223
Alcohols
30. Ethyl alcohol 7.669 7.585 0.084 7.493 0.175
31. n-Propyl alcohol 7.200 7.334 -0.134 7.348 -0.148
32. Isopropyl alcohol 7.162 6.993 0.169 7.138 0.024
33. n-Butyl alcohol 7.056 6.965 0.091 6.909 0.147
34. n-Pentyl alcohol 6.720 6.725 -0.005 6.812 -0.092
Acetate esters
35. Methyl acetate ester 4.605 4.691 -0.085 4.511 0.094
36. Ethyl acetate ester 4.403 4.255 0.148 4.094 0.309
37. n-Propyl acetate ester 4.333 4.230 0.103 3.807 0.527
38. Isopropyl acetate ester - 3.558 3.743 -0.185 3.367 0.191
39. n-Butyl acetate ester 4,493 4.486 0.007 3.434 1.059
40. Isopentyl acetate ester 4.170 4.271 -0.101 3.219 0.951
Ether
41. Diethyl ether 2.501 2.557 -0.055 2.303 0.199

* Values represent log of mean PC
® TC model developed on combined hydrophobic and hydrophilic compounds using ridge regression

¢ Values have been log scaled for ease of comparison
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Figure 1. Scatterplot of the experimental vs predicted log P (blood:air) values using the TC model developed with

the ridge regression method for the combined set of hydrophobic and hydrophilic compounds (N = 39).
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PREDICTION OF HUMAN BLOOD:AIR PARTITION COEFFICIENT: A COMPARISON OF
STRUCTURE-BASED AND PROPERTY-BASED METHODS

S. C.BASAK,* D. MILLS,” D. M. HAWKINS,” and H. A. EL-MASRI®

¢ Natural Resources Research Institute, University of Minnesota Duluth
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“ Computational Toxicology Laboratory, Division of Toxicology Agency for Toxic Substances and Disease Registry
(ATSDR), Executive Park Building 4, 1600 Clifton Road, E-29, Atlanta, GA 30333, USA

In recent years, there has been increased interest in the development and use of quantitative structure
activity/property relationship (QSAR/QSPR) models. For the most part, this is due to the fact that experimental data
is sparse and obtaining such data is costly, while theoretical structural descriptors can be obtained quickly and
inexpensively. In this study, three linear regression methods, viz. principal component regression (PCR), partial least
squares (PLS), and ridge regression (RR), were used to develop QSPR models for the estimation of human blood:air
partition coefficient (10gPpo0a4ir) for a group of 31 diverse low-molecular weight volatile chemicals from their
computed molecular descriptors. In general, RR was found to be superior to PCR or PLS. Comparisons were made
between models developed using parameters based solely on molecular structure and linear regression (LR) models
developed using experimental properties, including saline:air partition coefficient (102Pjine.qir) and olive oil:air
partition coefficient (10gPjive oit:sir), @S independent variables, indicating that the structure-property correlations are
comparable to the property-property correlations. The best models, however, were those which used rat logPpiooq:qir
as the independent variable. Haloalkane subgroups were modeled separately for comparative purposes, and although
models based on the congeneric compounds were superior, the models developed on the complete set of diverse
compounds were of acceptable quality. The structural descriptors were placed into one of three classes based on
level of complexity: Topostructural (TS), topochemical (TC), or 3-dimensional / geometrical (3D). Modeling was
performed using the structural descriptor classes both in a hierarchical fashion and separately. The results indicate

that the highest quality structure-based models, in terms of descriptor classes, were those derived using TC or

TS+TC descriptors.

Key Words: Blood:air partition coefficient; PBPK model; theoretical molecular descriptors; ridge regression;

quantitative structure-property relationship (QSPR) model.
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1. INTRODUCTION

Modern lifestyle worldwide is based on the use of a large number of chemicals. Natural and synthetic
chemicals are used as drugs, pesticides, herbicides, components of diagnostic tools, ingredients and
solvents in industrial processes, to name just a few. The Toxic Substances Control Act (TSCA) Inventory
maintained by the United States Environmental Protection Agency (USEPA) currently has over 81,000
entries and the list is growing every year.) Many of these chemicals are used for various purposes and
have the potential to be released in the environment. Therefore, it is natural that we need to carry out risk
assessment of the TSCA chemicals, particularly for those that are used frequently and in large quantities.
Volatile organic chemicals (VOCs) constitute a class of chemicals that are frequently used in various
industrial processes. Therefore, there is an interest to predict the potential adverse effects of these
chemicals on human and environmental health. The overall risk of a chemical is determined primarily by
its intrinsic toxicity (hazard) and exposure potential.

The blood:air partition coefficient of VOCs is an important determinant of pulmonary uptake of such
chemicals from inhaled air. Such parameters are routinely used in building physiologically-based
pharmacokinetic (PBPK) models for exposure assessment of such chemicals. Solubility of VOCs in blood
is determined by its composition including the content of neutral lipid, phospholipid, and water, as well as
the extent of binding of these chemicals to specific components such as plasma proteins and
hemoglobin.® Such physicochemical considerations can be used to come up with physicochemically-
based methods for the estimation of partition coefficient values of chemicals. The other possibility is the
use of molecular descriptors to estimate partition coefficient of chemicals directly from their structure.
Such quantitative structure-activity/property relationship (QSAR/QSPR) methods derived using
theoretical descriptors are based on the idea that observable physicochemical and biological properties of
chemicals are determined by their molecular structure. In particular, QSPRs have been found to be useful
in the estimation of physicochemical properties such as octanol:water partition coefficient of various
groups of chemicals,® ¥ as well as the degree of transport through the blood-brain barrier® and skin,® of
various congeneric and diverse sets.

While some quantitative models use experimental data per se as independent variables, it is important
to note that experimental data does not exist for the majority of compounds, and obtaining such data is
costly in terms of time and monetary resources. Computational modeling involving algorithmically
calculated parameters based solely on molecular structure is an inexpensive alternative. In this paper, we
have attempted to develop QSPR models to estimate human blood:air partition coefficients for a set of 31

VOCs using molecular descriptors which can be computed directly from molecular structure.
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2. METHODS

2.1 Database. Liquid:air partition coefficients were experimentally determined by Gargas et al.” using a
modified version of the gas-phase vial equilibrium technique® for a set of low molecular-weight volatile
chemicals. Table I includes experimentally determined human and male Fischer 344 rat blood:air partition
coefficient data for a set of 31 chemicals including 18 haloalkanes, 2 nitroalkanes, 2 aliphatic
hydrocarbons, 4 haloalkenes, and 5 aromatics compounds. The human blood:air partition coefficient
values were determined on blood pretreated with diethyl maleate to inhibit an observed glutathione
transferase reaction. Experimental saline:air and olive oil:air partition coefficients, determined by Gargas
et al., are also listed in Table I. All experimental values were obtained at 37 °C.

It should be noted that the data used in the current study are a subset of that reported by Gargas et al.”
Two cis/trans isomers were eliminated because they are indistinguishable in terms of their calculated
molecular descriptors based on SMILES input. Methyl chlorid;: was also removed from the data set as it
is not possible to calculate our entire set of theoretic descriptors on two-atom compounds. In addition,

two compounds were reported without discrete values for 0.9% saline:air partition coefficient and thus

were not included in this study.

2.2 Theoretical Molecular Descriptors. Theoretical molecular descriptors may be divided into
hierarchical classes based upon level of complexity. Topostructural (TS) descriptors, which encode
information strictly on the adjacency and connectedness of atoms within a molecule, make up the simplest
of the hierarchical classes. Topochemical (TC) descriptors encode information related to the chemical
nature of a molecule including bond type. The 3-dimensional or shape descriptors (3D) are still more

~ complex, encoding information about the 3-dimensional aspects of a molecule. Calculated 10gP,octanot:water
descriptors® were included at the final stage of hierarchical model development. The topostructural and
topochemical descriptors are collectively referred to as topological descriptors.

Descriptors used in the present study were derived from molecular structure using software packages
including POLLY,® Triplet,":'® and Molconn-Z.%* From POLLY, a set of topological descriptors is
available, including a large group of connectivity indices,*” path-length descriptors,*® and information
theoretic"® 1 and neighborhood complexity indices."” The Triplet descriptors also constitute a large
group of topological parameters. They are derived from a matrix, a main diagonal column vector, and a
free term column vector, converting the matrix into a system of linear equations whose solutions are the

local vertex invariants. These local vertex invariants are then used in the following mathematical

operations in order to obtain the triplet descriptors:
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1. Summation, Eix;

Summation of squares, Ex;’

Summation of square roots, E,-x;m‘

Sum of inverse square root of cross-product over edges ij, Ey(xix;) 12

Product, N(Eixi)"N

AP SR

Molconn-Z provides additional topological descriptors, including an extended set of connectivity indices,
electrotopological indices,** 2" and hydrogen bonding descriptors, as well as a small set of molecular
shape descriptors.

H-Bond, a software program developed by Basak,*? was used to calculate HB,, a measure of
hydrogen bonding potential. Balaban’s J indices were also calculated by software developed by the

authors 2329

LogP,, octanol:water Values were calculated by the LogP program(g) and are included in Table I. Table II
provides a brief description of all other theoretical molecular descriptors used in the current study, though

the calculated values for these descriptors are not included for the sake of brevity.

2.3 Statistical Analysis. Independent and dependent variables were scaled by the natural logarithm, as
their respective ranges differed by several orders of magnitude. The CORR procedure of the SAS
statistical packagé(26) was used to identify perfectly correlated descriptors, i.e. r = 1.0. In each case, only
one descriptor of a perfectly correlated pair was retained for use in the subsequent analysis. Any
descriptor that either had a value of zero for all compounds in the data set or could not be calculated for
all compounds in the data set was removed.

The structure-property models were developed using ridge regression (RR),#" principal componenté
'régression (PCR),?® and partial least squares (PLS) regression®! methodologies, utilizing molecular
descriptors in a hierarchical fashion. In addition, each class of descriptors was used independently to
obtain single-class models. RR, PCR, and PLS are useful in cases wherein the number of descriptors is
much greater than the number of observations, as well as in cases where the independent variables are '
highly intercorrelated. In addition, these regression methods make use of all independent variables as
opposed to subset regression wherein it is possible that important parameters may be eliminated from the
study. Linear regression (LR) was used to obtain the property-property models, which involve 1-2
independent variables. Statistical parameters reported include the cross-validated R?value and the PRESS

statistic which are reliable measures of model predictability. In addition, the ¢ values can be examined in
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or/ ¢ to identify significant descriptors. Although a descriptor with a large | ¢ | indicates that the

,sociated descriptor is important in the model, it should be cautioned that the reverse is not necessarily
true.

Honest assessment of the quality of a prediction model is seldom straightforward, but is particularly
challenging in a situation such as this where the number of independent variables far exceeds the number
of observations.®>3¥ In these cases, conventional regression measures such as R? are useless. The
measure we use is the cross-validation (or jack-knife) sum of squares. For this measure, each compound
in turn is omitted from the data set, and the coefficients of the regression model (RR, PLS or PCR)
computed using the remaining n-1 cases. These coefficients are used to predict the hold-out case. The
overall quality of the fit is measured by the prediction sum of squares PRESS — the sum of squares of the

difference between the actual observed activity and that predicted from the regression. A cross-validation

R? can be defined by
R 02v o1 PRESS
SSTotal

Unlike R?, this Rfv does not increase if irrelevant predictors are added to the model; rather it tends to

decrease. And where R? is necessarily non-negative, Rczv may be negative. This non-uncommon
situation is an indication that the model fitted is poor —worse, in fact, than making predictions by
ignoring the predictors and using the mean activity as the prediction in all circumstances.

Rfv mimics the results of applying the final regression to predicting a future case; large values can be
interpreted unequivocally and without regard to either the number of cases or predictors as indicating that
the fitted regression will accurately predict the activity of future compounds of the same chemical type as

those used to calibrate the regression.

3. RESULTS AND DISCUSSION

Table III provides results of studies done on the complete set of 31 diverse compounds as well as the
subset of 18 haloalkanes for the prediction of human logPyod.4ir- Examining the models developed using
structural descriptors, we find that the RR methodology is generally superior to both PCR and PLS. This
is supported by our earlier studies with various congeneric and diverse sets of chemicals.®**® The model
developed using TC descriptors as independent variables was superior to those developed with other

structural descriptor classes in the analysis of the 31 diverse compounds, while the TS+TC model was

superior in the analysis of the 18 haloalkanes.
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The results of QSPRs reported in this paper show that structure-property correlations are bomparable
or superior to property-property correlations involving experimental saline:air and olive oil:air partition
coefficients in the prediction of human blood:air partition coefficient. For the set of 31 diverse chemicals,
a cross-validated R* of 0.874 and a PRESS of 7.79 is obtained for the TC model, while the property-
property model utilizing l0gPsine:air and 108Pjive:oit air Yields a cross-validated R? of 0.889 with a PRESS of
6.19 (Table III). For the set of 18 haloalkanes, the TS+TC models yields a cross-validated R* of 0.897
with a PRESS of 3.02, while the property-property model utilizing 10gPujine:air and 108Plive-oi1 air yields a
cross-validated R” of 0.846 with a PRESS of 4.50. However, property-property models in which rat
10gPyo0d:air is used to predict human logPpigoq.air are superior to those in which either 10gPyjine-air and
10gP slive:oil air OF Structural parameters are used as predictors; with a cross-validated R? 0f 0.963 and PRESS
of 2.25 for the full set of 31 compounds, and a cross-validated R* of 0.961 and PRESS of 1.16 for the
subset of 18 haloalkanes.

It is clear from the results presented in Table III that experimental rat blood:air partition coefficient is
the best predictor of human blood:air partition coefficient. Acquiring these data, however, is time
consuming and requires laboratory testing resources along with the sacrifice of animals. Experimental
determination of rat blood:air partition coefficient of hundreds or thousands of candidate chemicals would

be a daunting task. The theoretical descriptor-based models, on the other hand, can provide reasonable

"

estimates very quickly and at a low cost.
Ridge regression coefficients and standard errors for the top 10 descriptors based on | t | values for the

human 10gPye04:2ir TC model based on the set of 31 diverse chemicals are provided in Table IV. The
indices most important for the prediction of human logPpiooq.ir include: a) molecular weight (ftw),
quantifying molecular size, b) triplet indices (AZVy), encoding information about the nature of atoms, c)
electrotopological state indices (SdO, SddSN, SSBr), which are numerical descriptors of the electronic
states of atoms, d) valence and bonding connectivity indices ( lxb, "), which quantify structural
information regarding molecular size and shape, and e) a hydrogen bonding parameter (HB,). The
important role of molecular factors such as size, electronic interactions, and hydrogen bonding in

detérmining partition coefficients of chemicals is evident from our earlier studies®>? and those of Kamlet
et al.®®

It is important to reiterate that model predictability is best judged, not with a fitted model, but with a
cross-validated model wherein each of the compounds, in turn, is omitted from the data set and its value
then determined by the coefficients of the remaining n-1 compounds. In this way, we have an accurate, if
not conservative, indication of how well the model will predict property values of new compounds which
are similar to those used to create the model. Figure 1 illustrates the relationship between the fitted and

experimental human logPyeo4.qir Values using the TC model for the set of 31 diverse compounds. All
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st ustical values reported in this paper, however, are based on cross-validated results. Accordingly,
-igure 2 illustrates the relationship between the cross-validated predicted and experimental human
logPyo0d:air Values using the TC model for the set of 31 diverse compounds.

In conclusion, the models based on rat logPysedair are superior to any of the structure-based models. It
is important to note, however, that experimental data are not currently available for the majority of
compounds; and obtaining this data is costly in terms of time and monetary resources. In contrast, we are
able to obtain reasonably good models using structural descriptors that can be calculated very quickly and
inexpensively for both existing and unsynthesized chemicals. Modeling based on structural descriptors

also promotes an understanding of the theoretical basis of properties and reduces the need for animal

research, an area to which a growing aversion exists in our society.
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Table L. Experimental liquid:air partition coefficients® and calculated 10gP, sctanctwarer

Experimental Calculated
Rat Human

No. Chemical P(0.9%saline:air)  P(olive oil:air)  P(blood:air) P(blood:air) LogP (r-octanol:water)
Haloalkanes
1 Dichloromethane 5.96+0.71 1317 194+£0.8 894 +0.13 1.16
2 Chloroform 3.38+0.09 402+ 12 20.8+£0.1 6.85+£0.51 1.86
3 Carbon tetrachloride 0.35+0.03 37411 452+£035 2.73+0.23 3
4 Chlorodibromomethane 7.341£0.42 2683 + 152 116 £ 4 527+12 1.77
5 Chloroethane 1.09 £ 0.06 389+3.1 4.08+0.39 2.69+0.20 1.47
6 1,1-Dichloroethane 2.45+0.04 186+ 7 112+0.1 4.94+0.24 1.86
7 1,2-Dichloroethane 114+0.1 366+8 304+1.2 19.5+£0.7 1.6
8 1,1,1-Trichloroethane 0.75 £ 0.07 295+22 5.76 £ 0.50 2.53+0.13 2.26
9 1,1,2-Trichloroethane ; 133+0.3 1776 £ 26 580+ 1.1 357+04 2.08
10 1,1,1,2-Tetrachloroethane 3.53+£0.23 2686 = 51 41.7+£1.0 302113 2.64
11 1,1,2,2-Tetrachloroethane 234+2.0 6358 £ 402 142+ 6 116+ 6 2.51
12 Hexachloroethane 0.66+0.21 5015 +£318 62.7+2.1 524+14 4.24
13 1-Bromo-2-chloroethane 8.91+£0.56 569 +£23 527435 292+2.1 173
14 1-Chloropropane 1.04 £0.01 1052 5.21+0.06 2.85+0.06 1.95
15  2-Chloropropane 0.82 £0.09 69.9+3.5 3.10+£0.17 1.39+£0.29 1.81
16 1,2-Dichloropropane 2.75+£0.11 428+ 30 18.7+£0.5 8.75+0.50 2.18
17 n-Propyl bromide 144 +£0.12 272+ 8 11.7+0.4 7.08 +0.40 2.13
18  Isopropyl bromide ‘ 1.08 £0.04 1645 5.95+£0.14 2.57+0.15 1.63
19 1-Nitropropane 127+4 1062 +21 223+ 10 1876 0.8
20  2-Nitropropane 983+54 640+ 16 183+£12 154+ 17 0.61
21 n-Heptane 0.18+0.10 405£3 475+0.15 8.19+0.10 4.31
22 JP-10 (tricyclo[5.2.1.0 >%]-decane) 0.21 +£0.07 12970 + 420 62+4 52.5+3.7 3.75
23 Vinyl chloride 0.43 £0.04 244 +£3.7 1.68 £0.18 1.16 £ 0.08 1.37
24 Trichloroethylene 0.83 £0.30 553+46 219+14 8.11+0.17 2.36
25  Tetrachloroethylene 0.79 % 0.06 2134 + 159 18.9+1.1 103%1.1 3.47
26  Vinyl bromide 0.44 £0.06 56015 4.05£0.16 227+0.16 1.61
27  Benzene 2.75+0.10 465+5 17.8+0.3 8.19£0.10 2.04
28  Chlorobenzene 2.81+0.07 2188 +41 594+1.0 30.0+03 2.64
29  o-Xylene : 2.65+0.08 3534 £208 443+£2.0 349+ 1.7 3.15
30  m-Xylene 1.92+£0.12 3245+116 460+ 1.5 325+1.6 3.21
31  p-Xylene 1.77+£0.07" 3319+ 96 41335 44719 3.20

? Values represent mean $y standard error
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Table II. Symbols, definitions and classification of calculated molecular descriptors

Topostructural (TS)

I‘g Information index for the magnitudes of distances between all possible pairs of vertices of a
graph

IV[‘)' Mean information index for the magnitude of distance

w Wiener index = half-sum of the off-diagonal elements of the distance matrix of a graph

i Degree complexity

HY Graph vertex complexity

HP Graph distance complexity

IC Information content of the distance matrix partitioned by frequency of occurrences of distance
h .

M, A Zagreb group parameter = sum of square of degree over all vertices

M, A Zagreb group parameter = sum of cross-product of degrees over all neighboring (connected)
vertices

by Path connectivity index of order h = 0-10

by Cluster connectivity index of order h = 3-6

hXPC Path-cluster connectivity index of order h =4-6

by ek Chain connectivity index of order h = 3-10

Py Number of paths of length h = 0-10

J Balaban’s J index based on topological distance

nrings Number of rings in a graph

ncirc Number of circuits in a graph

DN?s, Triplet index from distance matrix, square of graph order (# of non-H atoms), and distance
sum; operationy = 1-5

DN’1, Triplet index from distance matrix, square of graph order, and number 1; operation y = 1-5

AS1, Triplet index from adjacency matrix, distance sum, and number 1;
operationy = 1-5

DSl Triplet index from distance matrix, distance sum, and number 1;
operationy = 1-5

ASNy Triplet index from adjacency matrix, distance sum, and graph order; operation y = 1-5

DSNy Triplet index from distance matrix, distance sum, and graph order;
operationy = 1-5

DN°N, Triplet index from distance matrix, square of graph order, and graph order; operation y = 1-5

ANS, Triplet index from adjacency matrix, graph order, and distance sum; operation y = 1-5

AN1, Triplet index from adjacency matrix, graph order, and number 1;
operation y = 1-5

" ANN, Triplet index from adjacency matrix, graph order, and graph order again; operation y = 1-5

ASV, Triplet index from adjacency matrix, distance sum, and vertex degree; operation y = 1-5

DSV, Triplet index from distance matrix, distance sum, and vertex degree; operation y = 1-5

ANV, Triplet index from adjacency matrix, graph order, and vertex degree; operation y = 1-5

Topochemical (TC)

0 Order of neighborhood when IC, reaches its maximum value for the hydrogen-filled graph

Ourp Order of neighborhood when IC, reaches its maximum value for the hydrogen-suppressed
graph

Lo Information content or complexity of the hydrogen-suppressed graph at its maximum
neighborhood of vertices

IC, Mean information content or complexity of a graph based on the 1™ (r = 0-6) order
neighborhood of vertices in a liydrogen-filled graph

SIC, Structural information content for r™ (r = 0-6) order neighborhood of vertices in a hydrogen-

10
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filled graph

Complementary information content for r'™ (r = 0-6) order neighborhood of vertices in a
hydrogen-filled graph

Bond path connectivity index of order h = 0-6

Bond cluster connectivity index of order h = 3-6

Bond chain connectivity index of order h'=3-6
Bond path-cluster connectivity index of order h = 4-6

Valence path connectivity index of order h = 0-10
Valence cluster connectivity index of order h = 3-6

Valence chain connectivity index of order h = 3-10
Valence path-cluster connectivity index of order h = 4-6

Balaban’s J index based on bond types

Balaban’s J index based on relative electronegativities

Balaban’s J index based on relative covalent radii

Hydrogen bonding parameter

Triplet index from adjacency matrix, atomic number, and vertex degree; operation y = 1-5
Triplet index from adjacency matrix, atomic number, and distance sum; operation y = 1-5
Triplet index from adjacency matrix, distance sum, and atomic number; operation y = 1-5
Triplet index from adjacency matrix, atomic number, and graph order; operationy = 1-5
Triplet index from adjacency matrix, graph order, and atomic number; operation y = 1-5
Triplet index from distance matrix, distance sum, and atomic number; operation y = 1-5
Triplet index from distance matrix, square of graph order, and atomic number; operation y = 1-
5

Number of non-hydrogen atoms in a molecule

Number of elements in a molecule

Molecular weight

Shannon information index

Total Topological Index t

Sum of the intrinsic state values I

Sum of delta-I values

Total topological state index based on electrotopological state indices

Flexibility index (kp1* kp2/nvx)

Bonchev-Trinajstil] information index

Bonchev-Trinajstil] information index

Wienerp

Plattf

Total Wiener number

Difference of chi-cluster-3 and path/cluster-4

Valence difference of chi-cluster-3 and path/cluster-4

Number of classes of topologically (symmetry) equivalent graph vertices

Number of hydrogen bond donors

Number of weak hydrogen bond donors

Number of hydrogen bond acceptors

E-State of C sp’ bonded to other saturated C atoms

E-State of C sp® bonded to unsaturated C atoms

E-State of C atoms in the vinyl group, =CH-

E-State of C atoms in the terminal vinyl group, =CH,

E-State of C atoms in the vinyl group, =CH-, bonded to an aromatic C

E-State of C sp” which are part of an aromatic system

Hydrogen bond donor index, sum of Hydrogen E-State values for -OH, =NH,

-NH2, -NH-, -SH, and #CH

Weak hydrogen bond donor index, sum of C-H Hydrogen E-State values for hydrogen atoms
on a C to which a F and/or Cl are also bonded

Hydrogen bond acceptor index, sum of the E-State values for -OH, =NH,
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-NH2, -NH-, >N-, -O-, -S-, along with —F and —Cl

Qv General Polarity descriptor

NHBint, Count of potential internal hydrogen bonders (y = 2-10)

SHBint, E-State descriptors of potential internal hydrogen bond strength (y =2-10)
Electrotopological State index values for atoms types:
SHsOH, SHdNH, SHsSH, SHsNH2, SHssNH, SHtCH, SHother, SHCHnX, Hmax Gmax,
Hmin, Gmin, Hmaxpos, Hminneg, SsLi, SssBe, Sssss,Bem, SssBH, SsssB, SssssBm, SsCH3,
SdCH2, SssCH2, StCH, SdsCH, SaaCH, SsssCH, SddC,StsC, SdssC, SaasC, SaaaC, SssssC,
SsNH3p, SsNH2, SssNH2p, SANH, SssNH, SaaNH, StN, SsssNHp, SdsN, SaaN, SsssN,
SddsN, SaasN, SssssNp, SsOH, SdO, SssO, SaaO, SsF, SsSiH3, SssSiH2, SsssSiH, SssssSi,
SsPH2, SssPH, SsssP, SdsssP, SsssssP, SsSH, SdS, SssS, SaaS, SdssS, SddssS, SssssssS, SsCl,
SsGeH3, SssGeH2, SsssGeH, SssssGe, SsAsH2, SssAsH, SsssAs, SdsssAs, SsssssAs, SsSeH,
SdSe, SssSe, SaaSe, SdssSe, SddssSe, SsBr, SsSnH3, SssSnH2, SsssSnH, SssssSn, Ssl,
SsPbH3, SssPbH2, SsssPbH, SssssPb

Geometrical / Shape (3D)

kp0 Kappa zero

kp1-kp3 Kappa simple indices

kal-ka3 Kappa alpha indices
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Table ITI. Summary statistics of predictive models for human logPyoq.qir based on experimental properties and
theoretical structural descriptors.

A. 31 DIVERSE CHEMICALS

RR PCR PLS LR
Independent R*>., PRESS R%*,, PRESS R?’,,  PRESS R*., PRESS
Variables
Structural descriptors
TS 0.257 45.8 -0.451 89.4 0.052 58.4
TS+TC 0.846 9.48 0.165 514 0.677 19.9
TS+TC+3D 0.827 10.6 0.140 53.0 0.620 234
TS+TC+3D+logP? 0.835 102 0.112 54.7 0.652 214
TS 0.257 45.8 -0.451 894 0.052 584
TC 0.874 7.79 0.403 36.8 0.709 17.9
3D 0.147 52.6 -0.013 62.4 -0.256 77.4
Properties
LOgPolive oil:air LOgPsaline:air 0.899 6.19
Rat IOnglcod:a'u- 0.963 2.25
B. 18 HALOALKANES
: RR PCR PLS LR
Independent R?.,  PRESS R*., PRESS R®,,  PRESS R*., PRESS
Variables
Structural descriptors
TS 0.252 22.0 -1.53 74.3 -0.815 532
TS+TC 0.897 3.02 0.825 5.14 0.678 945
TS+TC+3D 0.892 3.16 0.856 4.22 0.702 8.74
TS+TC+3D+HogP? 0.892 3.18 0.856 4.23 ‘ 0.704 8.69
TS 0.252 22.0 -1.53 74.3 -0.815 53.2
TC 0.891 321 0.853 4.32 0.616 11.3
3D 0.753 7.24 0.593 11.9 0.562 12,9
Properties
LOgP olive oil:air T LOgPsaline:air 0.846 4.50
0.961 1.16

Rat logPytood:air

Calculated 10gP,..octanol:water; Values included in Table I.
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Table IV. Ridge regression coefficient and standard error for each of the top 10 descriptors, ranked by | t|, in the
topochemical model for the prediction of human logPyjodzair, 1 = 31.

Descriptor RR coeff s.e. t
SdO 0.227 0.021 10.690
HB,; » 0.340 0.032 10.660
SddsN -1.694 0.159 -10.640
AZV; 0.130 0.016 8.000
Iy 0.345 0.052 6.670
AZV, 0224 0.034 6.580
AZV, 0.133 0.024 5.640
SsBr 0.238 0.044 5.390
fw 0.287 0.054 5310
o 0.139 0.028 5.060
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FIGURE CAPTIONS

Figure 1. Experimental vs fitted human logPplood:air using the topochemical (TC) ridge regression

(RR) model for the set.of 31 diverse compounds

Figure 2. Experimental vs cross-validated predicted human logPpied:air Using the topochemical

(TC) ridge regression (RR) model for the set of 31 diverse compounds
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Figure 1.

Experimental LogP biood:air
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Figure 2.

Experimental LogPsiood:air
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Cross-validated Predicted LogPi00d:air
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