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Abstract

Distribution system state estimation (DSSE) is a core task for monitoring and control

of distribution networks. Widely used Gauss-Newton approaches are not suitable for

real-time estimation, often require many iterations to obtain reasonable results, and

sometimes fail to converge. Learning-based approaches hold the promise for accurate

real-time estimation. This dissertation presents the first data-driven approach to ‘learn

to initialize’ – that is, map the available measurements to a point in the neighborhood

of the true latent states (network voltages), which is used to initialize Gauss-Newton.

In addition, a novel learning model is also presented that utilizes the electrical network

structure. The proposed neural network architecture reduces the number of coefficients

needed to parameterize the mapping from the measurements to the network state by

exploiting the separability of the estimation problem. The proposed approach is the

first that leverages electrical laws and grid topology to design the neural network for

DSSE. It is shown that the proposed approaches yield superior performance in terms of

stability, accuracy, and runtime, compared to conventional optimization-based solvers.

The second part of the dissertation focuses on the AC Optimal Power Flow (OPF)

problem for multi-phase systems. Particular emphasis is given to systems with large-

scale integration of renewables, where adjustments of real and reactive output power

from renewable sources of energy are necessary in order to enforce voltage regulation.

The AC OPF problem is known to be nonconvex (and, in fact, NP-hard). Convex

relaxation techniques have been recently explored to solve the OPF task with reduced

computational burden; however, sufficient conditions for tightness of these relaxations

are only available for restricted classes of system topologies and problem setups. Identi-

fying feasible power-flow solutions remains hard in more general problem formulations,

especially in unbalanced multi-phase systems with renewables. To identify feasible and

optimal AC OPF solutions in challenging scenarios where existing methods may fail,

this dissertation leverages the Feasible Point Pursuit - Successive Convex Approxima-

tion algorithm a powerful approach for general nonconvex quadratically constrained

quadratic programs. The merits of the approach are illustrated using several multi-

phase distribution networks with renewables.
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Chapter 1

Introduction

The North American power grid has been hailed as the most important engineering

achievement of the 20th century [108]. However, over the course of the past decades, it

has become evident that significant aspects of the operational capabilities of the power

grid, encompassing power generation, transmission, distribution and consumption, will

have to be overhauled in order to meet new challenges imposed by the 21st century

demands. The smart grid paradigm leverages recent breakthroughs in sensing and signal

processing, machine learning, computational optimization, and control of dynamical

systems to enable an unprecedented leap in our ability to monitor, control, optimize,

and learn from power grid operations.

The sheer size and complexity of such an interconnected network poses multiple chal-

lenges in realizing the smart grid vision: i) low-latency communication networks enable

meters installed across the grid to continuously generate and transmit measurements

at voluminous aggregate rates, demanding accurate, real-time processing in order to fa-

cilitate real-time network management; ii) centralized approaches to system operations

are increasingly rendered impractical by the scale of interconnections, complexity issues

beyond the capabilities of a single control center, confidentiality concerns amongst re-

gional operators and susceptibility to failure/cyberattacks – thus underscoring the need

for developing decentralized approaches; and iii) grid operators need to account for the

increasingly higher penetration of renewable energy sources (RESs), the ever improving

cost effectiveness of installing energy storage (ES) units, and the changing electricity

demand patterns.

1
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Figure 1.1: Main components of smart grid.1

Typically, a smart grid consists of electric power generators, smart meters, and

various controllable energy devices; see Fig. 1.1 for an illustration. Smart meters are

currently being installed on buildings that enable two-way communication between the

utility and end customers. Owing to the complexity of the smart grid, heterogeneity

of its components, and the high volume of meter readings to be processed, machine

learning and mathematical optimization techniques are well motivated for enhancing

the operation and performance of the electric distribution networks.

1.1 Context and Motivation

Due to the nonlinear nature of the equations governing the power flow in electrical

grids, numerous approximation approaches have been proposed to tackle the associated

monitoring and control tasks. Commonly used solvers include the Gauss-Seidel and

Newton-Raphson iterative algorithms [3, 31, 67, 74, 75]. These iterative approaches seek

improved approximation to the solutions of the nonlinear optimization problems, featur-

ing quadratic convergence whenever the initial point lands within a small neighborhood

of the optimal solution. As convergence of these algorithms hinges on the initial point,

they may diverge if the initialization is not reliable.

Recently, convex relaxation approaches have attracted great attention [5, 23, 47, 51,

56,71,72,121,123] due to their ability to identify globally optimal solutions under certain

conditions. Among those, semidefinite relaxation (SDR) was shown to be able to find

1Image courtesy of SmartCitiesWorld.net [89].

SmartCitiesWorld.net


3

the global optimal solution of many control problems. SDR relies on matrix-lifting and

rank relaxation to convexify the feasible set of the problem [5, 23, 56, 63, 65, 117]; the

resulting relaxed problem can be solved in polynomial time. Optimality of the SDR

solution can always be tested a posteriori by checking the rank of the SDR solution

matrix; but it is very useful to know a priori in which cases SDR will yield an optimal

solution for the original nonconvex problem. These are the cases when SDR yields a

solution that is rank-one, or can be easily transformed to rank-one. In those cases, SDR

is not a relaxation after all; we say that SDR is tight. Tightness of SDR relaxation was

proved for a number of network setups under restrictive conditions. However, in most

practical scenarios, the relaxation is not tight, and hence, does not provide optimal (and

sometimes not even feasible) solutions. The other main drawback is complexity is still

O(n6.5) due to variable lifting from vector to matrix.

The key novelty of this thesis is to pioneer machine learning and nonconvex opti-

mization approaches tailored for large-scale power system monitoring and control tasks.

In this context, a critical observation is that the nonconvex approaches outperform their

convex counterparts when initialized judiciously. In addition, the robustness of control

strategies relies mainly on precise characterization of the uncertainty in the forecasted

generation and consumption quantities. Machine learning approaches can cope with un-

certainty, and are therefore expected to play an important role in enable robust power

system operations and control. The central goal is to put forth algorithmic foundations

and performance analyses for optimally handling energy systems monitoring and control

tasks.

This thesis establishes novel approaches for distribution systems state estimation and

resource management benefiting from recent advances in mathematical optimization and

machine learning research.

1.1.1 Distribution System State Estimation

Distribution system state estimation (DSSE) is an important task for monitoring and

control of distribution networks. DSSE takes as input a set of measurements of physical

quantities in the network and provides an estimate of the system state, i.e., nodal volt-

ages. Due to the rapid introduction of volatile renewable energy sources and controllable
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Figure 1.2: SCADA measurement system.

loads, modern distribution grids are challenged by unusual fluctuations in the opera-

tional conditions. Therefore, accurate real-time monitoring of distribution networks be-

comes increasingly pivotal in order to ensure reliable and optimal operation of the grid.

This is possible, under certain conditions, because the different quantities in the net-

work are related by physical laws (e.g., Kirchoff’s voltage, current, power conservation

laws). Supervisory control and data acquisition (SCADA) systems monitor and control

plants (such as a power plant) and other complex systems that are spread out over large

geographic areas. SCADA systems periodically collect several types of measurements at

some buses and lines of the grid. Fig. 1.2 illustrates various types of measurements that

can be acquired by the SCADA systems. These measurements include the electrical

power flow and injections and voltage and current magnitudes. The need for adaptive

monitoring is further amplified in future distribution networks, where volatile smart

grid components such as renewable energy sources, demand-response scheduling, and

smart meter infrastructure challenge situational awareness and control. The nonlinear

relationship between the measured quantities and the state variables complicates any

DSSE approach. In addition, owing to higher penetration of renewable energy sources,

and the introduction of demand-response and other efficiency- and agility-improving

measures, the grid will become more responsive and hence more volatile – necessitating

equally swift and robust DSSE routines.

Traditional SE solvers are based on the weighted least-squares (WLS) criterion, and

the Gauss-Newton algorithm which is used as the workhorse for solving the associated

nonconvex problem. Largely depending on the initialization, this gradient-type iterative

solver often converges to uninteresting points, or even diverges. This is particularly

problematic when system states vary significantly between measurements, or, when bad

data are present. On the other hand, when the initialization is relatively close to the

optimal solution, the method enjoys quadratic convergence.
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Many alternative approaches have been proposed for solving the SE task by ex-

ploiting hidden convexity in certain cases, which motivates relaxing the more general

problem to a convex one [5, 23, 40, 123]. However, convex relaxations for PSSE do not

perform as desired in challenging scenarios, in particular when the measured data size

is relatively small, or when the available data do not include the voltage magnitude at

all buses [122]. The latter is often the case in practice.

Building upon the recently proposed feasible point pursuit (FPP) algorithm for tack-

ling nonconvex QCQPs [68] and its application to the optimal power flow problem [111],

we have recently proposed an FPP-based framework for solving the PSSE problem. The

key point is to put the nonlinear WLS formulation into a QCQP form. Then, the non-

convex QCQP is tackled using the FPP approach. The method was shown to be very

effective in terms of finding better estimates for the voltage profile than the relaxation

methods and the plain-vanilla Gauss-Newton method. However, the FPP approach

solves a second order cone program in each iteration, which is a heavy computational

burden for highly dynamic systems.

1.1.2 Optimal Power Flow for Multi-Phase Distribution Networks

The OPF problem aims at minimizing an appropriate operational cost while respecting

the network’s physical and engineering constraints. The AC-OPF problem is a predom-

inant task in optimizing the performance of energy grids. However, due to the quadratic

nature of the power flow equations, the OPF problem is known to be nonconvex and

NP-hard in general [56,58].

Several approaches have been proposed to tackle its non-convex nature, such as DC-

OPF [2, 19, 92, 93], which is a linear program obtained via a linearization of the power

flow equations. However, the solution of DC-OPF is not guaranteed to be even feasible

for the original problem. For the actual non-linear problem, (i.e., AC-OPF), a slew

of methods ranging from classical Newton-Raphson (NR), to Lagrangian relaxation,

genetic algorithms and interior point methods, have been proposed. Unfortunately,

these methods do not provide optimality or feasibility guarantees except in certain

cases, and are quite sensitive to the initial guess. In a series of pioneering papers,

necessary and sufficient conditions were provided for guaranteeing the tightness of SDR

in solving AC-OPF to globally optimality [5, 56], which is satisfied by certain networks
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under restrictive assumptions [56, 57, 90, 117]. The inexactness of SDR for a general

network was demonstrated in [59] using a simple 3-bus network. In cases where SDR

is not tight, it is not easy to recover a physically meaningful solution from the solution

matrix; only a lower bound on the optimal cost is provided. An approach to recover

an OPF solution from the SDR solution was pursued in [63], but it lacks guarantees.

Moment-based relaxations which generalize SDR using the Lassarre Hierarchy have also

been proposed for OPF [70, 72, 73] in cases where standard SDR fails. The downside

of this approach is the high complexity incurred in solving a sequence of very large-

scale semidefinite programming (SDP) problems. Decentralized OPF approaches for

balanced transmission networks based on augmented Lagrangian schemes have been

proposed in [6, 44, 50, 77], while distributed SDR-based approaches for balanced and

unbalanced distribution networks have been adopted in [55] and [23] respectively. To

summarize, NR methods do not exhibit reliable performance for AC-OPF in general

and are lacking even basic convergence guarantees. Meanwhile, the potential of SDR in

attaining globally optimal solutions appears limited.

1.2 Thesis Outline and Contributions

In Chapter 2, the distribution system state estimation problem is introduced and its

mathematical formulation is presented. First, the electrical distribution network rep-

resentation is put forth. Then, the WLS formulation of the problem is introduced. In

addition, the chapter presents the types and synthesizing functions of measurements

usually available in distribution systems which can be utilized while solving the DSSE

problem. The mathematical definitions and formulations introduced in Chapter 2 are

essential for the DSSE solvers presented in Chapter 3 and Chapter 4.

Chapter 3 presents a data-driven machine learning-assisted optimization approach

for the DSSE problem. Since the Gauss-Newton solver is known to be very sensitive

to initializations, it is therefore natural to ask if there is a smart way of initializing

Gauss-Newton that will avoid such pitfalls. This chapter present a framework that

utilizes historical or simulated data in order to learn to initialize the Gauss-Newton

solver. As the requirement for the machine learning model is relaxed by mapping the

measurement to a state just in the neighborhood of the underlying system state, the
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complexity requirements of the neural network are reduced accordingly. We analyze the

required complexity of a shallow neural network that is required to approximate the

SE mapping with certain accuracy. Also, the massive reduction in the neural network

complexity reduces the required number of training samples.

Key to our approach is a judicious design of the cost function used to train the

shallow neural network which matches the task of the machine learning model. The

performance of the developed machine learning-assisted optimization approach is as-

sessed using the IEEE-37 distribution feeder. We show that the proposed training

approach helps by providing better initial estimates to the Gauss-Newton solver. In

addition, the presented framework provides superior performance results in terms of es-

timation accuracy, computational complexity, and stability of the Gauss-Newton solver.

The results of this chapter have been presented in [114].

In Chapter 4, a physics-aware neural network model is introduced to tackle the DSSE

problem. It is shown that the huge discrepancy in the accuracy of different measuring

technologies in distribution networks enables effective separability in the DSSE problem.

A novel graph-based neural network is introduced which utilizes the knowledge of the

distribution system. Therefore, the proposed neural network is termed ‘Physics-Aware

Neural Network ’ (PAWNN). This design reduces the number of trainable coefficients

of the mapping between the measurements to the state of the system significantly. In

addition to preventing overfitting, this physics-aware design reduces the training time

and size of training data needed.

Additionally, a novel method for placing µPMUs in distribution grids is presented

in Chapter 4. This algorithm builds on the separability of the SE mapping that results

from installing µPMUs. Therefore, the complexity of the resulting machine learning

depends on the installation pattern of µPMUs. The numerical results suggest that the

greedy algorithm achieves near optimal solution at a linear cost. Superior performance

in terms of accuracy and running time of state estimation using the PAWNN is also

presented. The material of Chapter 4 has been reported in [115].

Chapter 5 focuses on the AC OPF problem for multi-phase systems featuring renew-

able energy sources. First, the power flow model is presented for general multi-phase

systems. Then, an extension that accounts for delta-connected loads is presented. The

AC OPF problem is formulated in both settings where the output of the renewable
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energy sources is controllable. Similar to various AC OPF renditions, the resultant

problem is a nonconvex quadratically-constrained quadratic program. However, the so-

called Feasible Point Pursuit - Successive Convex Approximation (FPP-SCA) algorithm,

pioneered in our group, is leveraged to obtain a feasible and locally-optimal solution.

The main idea behind FPP-SCA is to allow a controllable amount of constraint vi-

olations to enable the algorithm to make progress toward feasibility in its initial stages.

The overall approach is neither restriction nor relaxation, but rather judicious approx-

imation of the OPF problem in each iteration, the solution of which is subsequently

used as the approximation point for the next iteration. Upon finding a feasible volt-

age profile, successive convex approximation of the feasible set is used to find a KKT

point of the OPF problem. In addition, a modified version of the FPP-SCA approach

is shown to be able to identify problematic constraints in infeasible AC OPF instances.

Simulations of the approach on several distribution and transmission networks show the

efficacy of the proposed approach in identifying feasible optimal solutions. The material

of Chapter 5 has been reported in [111,112].

1.3 Notational Conventions

The following notational conventions will be adopted throughout the subsequent chap-

ters. Upper (lower) boldface letters will be used for matrices (column vectors); (·)T

denotes transposition; (·)H denotes complex-conjugate transposition; Tr(·) denotes the

matrix trace; (·)† denotes the matrix MoorePenrose inverse; vec(·) denote the column-

wise matrix vectorization; 1m×n the m× n matrix of all ones; 0m×n the m× n matrix

of all zeros; In the n × n identity matrix; ‖‖F the matrix Frobenius norm; Re{·} the

real part; and Im{·} the imaginary part.



Chapter 2

Distribution System State

Estimation Problem

State estimation (SE) techniques are used to monitor power grid operations in real-time.

Accurately monitoring the network operating point is critical for many control and au-

tomation tasks, such as Volt/VAr optimization, feeder reconfiguration and restoration.

SE uses measured quantities like nodal voltages, injections, and line flows, together with

physical laws in order to obtain an estimate of the system state variables, i.e., bus volt-

age magnitudes and angles [49,102] across the network. SE techniques have also proven

to be useful in network ‘forensics’, such as spotting bad measurements and identifying

gross modelling errors [61].

Unlike transmission networks where measurement units are placed at almost all

network nodes, the SE task in distribution systems is particularly challenging due to

the scarcity of real-time measurements. This is usually compensated by the use of so-

called pseudo-measurements. Obtained through short-term load and renewable energy

forecasting techniques, these pseudo-measurements play a vital rule in enabling dis-

tribution system state estimation (DSSE) [30, 39, 66]. Several DSSE solvers based on

weighted least squares (WLS) transmission system state estimation methods have been

proposed [8,48,60,88,99]. A three-phase nodal voltage formulation was used to develop a

WLS-based DSSE solver in [8,60]. Recently, the authors of [29] used Wirtinger calculus

to devise a new approach for WLS state estimation in the complex domain. In order to

9
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reduce the computational complexity and storage requirements, the branch-based WLS

model was proposed in [9,103]. However, such gains can be only obtained when the tar-

get power system features only wye-connected loads that are solidly grounded. It is also

recognized that incorporating phasor measurements in DSSE improves the observability

and the estimation accuracy [80,125]. Therefore, the DSSE approaches developed in this

thesis consider the case where classical (quadratic) and phasor (linear) measurements

are available, as well as pseudo-measurements provided through short term forecasting

algorithms.

WLS DSSE is a non-convex problem that may have multiple local minima, and

working with a limited number of measurements empirically aggravates the situation,

as it may introduce multiple local minima as well. Furthermore, Gauss-Newton type

algorithms may need many iterations, or even fail to converge. In this chapter, we

present the formulation of the distribution system state estimation (DSSE) problem.

Also, we present the available types of measurements avaiable in distribution systems.

2.1 Network Representation

Consider a multi-phase distribution network consisting of N + 1 nodes and L edges

represented by a graph G := (N ,L), whose set of multi-phase nodes (buses) is indexed

by N := {0, 1, . . . , N}, and L ⊆ N × N represents the lines in the network. Let the

node 0 be the substation that connects the system to the transmission grid. The set of

phases at bus n and line (l,m) are denoted by ϕn and ϕlm, respectively. Let the voltage

at the n-th bus for phase φ be denoted by vn,φ. Then, define vn := [vn,φ]φ∈ϕn to collect

the voltage phasors at the phases of bus n. In addition, let the vector v concatenate

the vectors vn for all n ∈ N . Lines (l,m) ∈ L are modeled as π-equivalent circuit,

where phase impedance and shunt admittance are denoted by Zlm ∈ C|ϕlm|×|ϕlm| and

Y̌lm ∈ C|ϕlm|×|ϕlm|, respectively.

2.2 Problem Formulation

The DSSE task amounts to recovering the voltage phasors of buses given measurements

related to real-time physical quantities, and the available pseudo-measurements. Actual
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measurements are acquired by smart meters, PMUs, and µPMUs that are placed at some

locations in the distribution network. The measured quantities are usually noisy and

adhere to

z̃` = h̃`(v) + ξ`, 1 ≤ ` ≤ Lm (2.1)

where ξ` accounts for the zero-mean measurement noise with known variance σ̃2
` . The

functions h̃`(v) are dependent on the type of the measurement, and can be either linear

or quadratic relationships. In the next section, the specific form of h̃`(v) will be dis-

cussed. In addition, load and generation forecasting methods are employed to obtain

pseudo-measurements that can help with identifying the network state. The forecasted

quantities are modeled as

ž` = ȟ`(v) + ζ`, 1 ≤ ` ≤ Ls (2.2)

where ζ` represents the zero-mean forecast error which has a variance of σ̌2
` . Since ž`’s

represent power-related quantities, they are usually modeled as quadratic functions of

the state variable v. While the value of the measurement noise variance σ̃2
` depends

on the accuracy of the measuring equipment, the variance of the forecast error can be

determined using historical forecast data.

Let z be a vector of length L = Lm + Ls containing the measurements and pseudo-

measurements, and h(v) the equation relating the measurements to the state vector v,

which will be specified in the next section. Adopting a weighted least-squares formula-

tion, the problem can be cast as follows

min
v

J(v) =

Lm∑
`=1

w̃`
(
z̃` − h̃`(v)

)2
+

Ls∑
`=1

w̌`
(
ž` − ȟ`(v)

)2
= (z− h(v))TW(z− h(v)) (2.3)

where the values of w̃` and w̌` are inversely proportional to σ2
` and σ̌2

` , respectively. The

optimization problem (2.3) is non-convex due to the nonlinearity of the measurement

mappings h(v) inside the squares.
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2.3 Available Measurements for DSSE

As indicated in the previous subsection, only few real-time measurements are usually

available in distribution networks, relative to the obtainable measurements in transmis-

sion systems. Therefore, pseudo-measurements are used to alleviate the issue of solving

an underdetermined problem. There are always different latencies for different sources

of measurements which bring up the issue of time skewness. Many approaches have

been proposed in the literature to tackle the issue [120]. In this work, assume that

the issue is resolved using one of the solutions in the literature, and hence, the mea-

surements are assumed to be synchronized. First, the measurements function h̃(v) will

be introduced for all types of available measurements. Then, the construction of the

pseudo-measurements mappings ȟ(v) will be explained.

The measurement functions consist of:

• phasor measurements which represent the complex nodal voltages vn, or current flows

ilm. The corresponding measurement function is linear in the state variable v. These

measurements are usually obtained by the PMUs and µPMUs. Each measurement of

this type is handled as two measurements, i.e., the real and imaginary parts of the

complex quantities are handled as two measurements. For the nodal voltages, the real

and imaginary parts are given as follows

<{vn,φ} =
1

2
eTn,φ (vn + vn), (2.4)

={vn,φ} =
1

2j
eTn,φ (vn − vn) (2.5)

where eφ is the φ-th canonical basis in R|ϕn|. In addition, the current flow measurements

can be modeled as

<{ilm,φ} =
1

2
eTlm,φ

(
Ylm(vl − vm) + Ylm(vl − vm)

)
(2.6)

={ilm,φ} =
1

2j
eTlm,φ

(
Ylm(vl − vm)−Ylm(vl − vm)

)
(2.7)

where Ylm is the inverse of Zlm, and elm,φ is the φ-th canonical basis in R|ϕlm|.
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• real-valued measurements which encompass voltage magnitudes |vn,φ|, current magni-

tudes |ilm,φ|, and real and reactive power flow measurements plm,φ, qlm,φ. These mea-

surements are obtained by SCADA systems, Distribution Automation, Intelligent Elec-

tronic Devices, and PMUs. The real-valued measurements are nonlinearly related to

the state variable v. The measured voltage magnitude square, and active and reactive

power flows can be represented as quadratic functions of the state variable v, see [23].

The current magnitude squared can be written as follows

|ilm,φ|2 = (vl − vm)HyHlm,φylm,φ(vl − vm) (2.8)

where ylm,φ is the φ-th row of the admittance matrix Ylm. Therefore, all the real-valued

measurements can be written as quadratic measurements of the state variable v.

The available real-time measurements are usually insufficient to ‘pin down’ the net-

work state, as we have discussed. In this case, the system is said to be unobservable.

Hence, pseudo-measurements that augment the real-time measurements are crucial in

DSSE as they help achieve network observability. Pseudo-measurements are obtained

through load and generation forecast procedures that aim at estimating the energy con-

sumption or generation utilizing historical data and location-based information. They

are considered less accurate than real-time measurements, and hence, assigned low

weights in the WLS formulation. The functions governing the mapping from the state

variable to the forecasted load and renewable energy source injections can be formulated

as quadratic functions [23,111].

Therefore, any measurement synthesizing function h`(v) can be written in the fol-

lowing form

h`(v) = vTD`v + cT` v + c`
Tv (2.9)

where D` is a Hermitian matrix, which is usually of rank-1 [100]. This renders J(v) a

fourth order function of the state variable, which is very challenging to optimize.

The Gauss-Newton algorithm linearizes the first order optimality conditions to iter-

atively update the state variables until convergence. The algorithm is known to perform

well in practice given that the algorithm is initialized from a point in the vicinity of the

true network state, albeit lacking provable convergence result in theory. Several variants

of the algorithm have been proposed in the literature using polar [8], rectangular [78]
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and complex [29] representations of the state variables. All these algorithms work to

a certain extent, but failure cases are also often observed. Again, stable convergence

performance is only observed when the initialization is close enough to the optimal solu-

tion of (2.3). This is not entirely surprising—given the non-convex nature of the DSSE

problem.



Chapter 3

Machine Learning-Assisted

Optimization Approach for DSSE

The weighted least-squares formulation of DSSE (2.3) is highly nonconvex. Therefore,

any local algorithm can converge to one of many local minima. Gauss-Newton type

algorithms behave very differently when using different initializations—the algorithms

may need many iterations, or even fail to converge. It is therefore natural to ask if there

is a smart way of initializing Gauss-Newton that will avoid these pitfalls?

In this chapter, we propose a novel learning architecture for the DSSE task. Our idea

is as follows. A wealth of historical data is often available for a given distribution system.

This data is usually stored and utilized in various other network management tasks, such

as load and injection forecasting. Even without detailed recording of the network state,

we can reuse this data to simulate network operations off-line. We can then think of

network states and measurements as (output,input) training pairs, which can be used

to train a neural network (NN) to ‘learn’ a function that maps measurements to states.

After the mapping function is learned, estimating the states associated with a fresh

set of measurements only requires very simple operations—passing the measuremnts

through the learned NN. This would greatly improve the efficiency of DSSE, bringing

real-time state estimation within reach. Accurate and cheap DSSE using an NN may

sound too good to be true, and in some sense (in its raw form) it is; but there is also

silver lining, as we will see.

15
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Known as universal function approximators, neural networks have made a remark-

able comeback in recent years, outperforming far more complicated (and disciplined)

methods in several research fields; see [42, 45, 54, 97] for examples. One nice feature of

neural networks and other machine learning approaches is that they alleviate the com-

putational burden at the operation stage—by shifting computationally intensive ‘hard

work’ to the off-line training stage.

However, accurately learning the end-to-end mapping from the available measure-

ments to the exact network state is very challenging in our context—the accuracy

achieved by convergent Gauss-Newton iterates (under good initializations) is hard to

obtain using learning approaches. The mapping itself is very complex, necessitating

a wide and/or deep NN that is hard to train with reasonable amounts of data. In

addition, training a deep NN (DNN) is computationally cumbersome requiring signifi-

cant computing resources. Also, DNN slows down real-time estimation, as passing the

input through its layers is a sequential process that cannot be parallelized. To circum-

vent these obstacles, we instead propose to train a shallow neural network to ‘learn to

initialize’—that is, map the available measurements to a point in the neighborhood of

the true latent states, which is then used to initialize Gauss-Newton; see Fig. 3.1 for an

illustration. When the Gauss-Newton solver is initialized at a point in the vicinity of the

optimal solution, it enjoys quadratic convergence [34]; otherwise, divergence is possible.

We show that such a hybrid machine learning / optimization approach yields superior

performance compared to conventional optimization-only approaches, in terms of sta-

bility, accuracy, and runtime efficiency. We demonstrate these benefits using convincing

experiments with the benchmark IEEE-37 distribution feeder with several renewable

energy sources installed and several types of phasor and conventional measurements,

as well as pseudo-measurements. The key to success is appropriate design of the NN

training cost function for the ‘neighborhood-finding’ NN. As we will see, the proposed

cost function serves our purpose much better than using a generic cost function for

conventional NN training. In addition, owing to the special design of the training cost

function, the experiments corroborate the resiliency of the proposed approach in case

of modest network reconfiguration events.
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Figure 3.1: The proposed learning-based DSSE

3.1 Machine Learning Approaches for DSSE

Machine learning approaches are not entirely new in the power systems / smart grid

area. For instance, an online learning algorithm was used in [79] to shape residential

energy demand and reduce operational costs. In [32], a multi-armed bandit online

learning technique was employed to forecast the power injection of renewable energy

sources. An early example of using NNs in estimation problems appeared in [4] as part

of damage-adaptive intelligent flight control. Closer to our present context, [66] proposed

the use of an artificial neural network that takes the measured power flows as input and

aims to estimate the bus injections, which are later used as pseudo-measurements in the

state estimation. In contrast to our approach where the NN is used to approximate the

network state given the conventional measurements as well as the pseudo-measurements,

the authors of [66] designed an artificial NN to generate pseudo-measurements from

the available power flow measurements. In addition, artificial neural networks have

been used for the prediction step in dynamic state estimation [84], and for forecasting-

aided state estimation [21, 35] where the state of the network is estimated from the

previous sequence of states, without using conventional measurements to anchor the

solution. This is better suited for transmissions systems, which are more predictable

relative to distribution systems with time-varying loads. As the installation of renewable

energy sources in the distribution grid surges, the huge volatility brought by these



18

energy sources [87] induces rapid changes in network state, and thus the previously

estimated state is often bad initialization for the next instance of DSSE. To the best

of our knowledge, machine learning approaches have not yet been applied to the core

DSSE optimization task, which is the focus of our work.

3.2 Proposed Approach: Learning-aided DSSE Optimiza-

tion

Assume that there exists a mapping F(·) such that

F(z) = v;

i.e., F(·) maps the (noiseless) measurements to the ground-truth states. An example of

such mapping is an optimization algorithm that can optimally solve the DSSE problem

in the noiseless case, assuming that the solution is unique. The algorithm takes z as

input and outputs v. In reality the actual (and the virtual) measurements will be noisy,

so we can only aim for

F(z) ≈ v;

which is also what optimization-based DSSE aims for in the noisy case.

Inspired by the recent successes of machine learning, it is intriguing to ask whether

it is possible to learn mapping F(·) from historical data. If the answer is affirmative

and the learned F̂(·) is easy to evaluate, then the DSSE problem could be solvable in a

very efficient way online, after the mapping F̂(·) is learned offline.

In machine learning, neural networks are known as universal function approximators.

In principle, a three-layer (input, hidden, output) NN can approximate any continuous

multivariate function down to prescribed accuracy, if there are no constraints on the

number of neurons [20]. This motivates us to consider employing an NN for approxi-

mating F(z) in the DSSE problem. An NN with vector input z, vector output g, and

one hidden layer comprising T neurons synthesizes a function of the folowing form

gT (z) =

T∑
t=1

αtσ(wT
t z + βt), (3.1)



19

where wt represents the linear combination of the inputs in z that is fed to the tth

neuron (i.e., the unit represented by σ(wT
t z+βt)), βt the corresponding scalar bias, and

the vectors αt’s combine the outputs of the neurons in the hidden layer to produce the

vector output of the NN. The parameters (αt,wt, βt)
T
t=1 can be learned by minimizing

the training cost function

min
{αt,wt,βt}Tt=1

∑
j

‖vj − gT (zj)‖22, (3.2)

where the pair (zj ,vj) is a training sample of measurements and the corresponding

underlying voltages to be estimated, in our context.

The above training cost function ideally seeks an NN that works perfectly—at least

over the training set. This approach is similar in spirit to the one in [96], which

considered a problem in wireless resource allocation with the objective of ‘learning to

optimize’—meaning, training an NN to learn the exact end-to-end input-output map-

ping of an optimization algorithm. Our experience has been that, for DSSE, such an

approach works to some extent, but its performance is not ideal. Trying to learn the

end-to-end DSSE mapping appears to be too ambitious, requiring very large T or a

deep NN, and very high training sample complexity. To circumvent these obstacles, we

instead propose to train a shallow neural network, as above, to ‘learn to initialize’—that

is, map the available measurements to a point in the neighborhood of the true latent

state, which is then used to initialize Gauss-Newton as depicted in Fig. 3.2.

More specifically, we propose using the following cost function for training the NN:

min
{wt,βt,αt}Tt=1

∑
j

max{‖vj − gT (zj)‖22 − ε2, 0} (3.3)

where the cost function indicates that the NN parameters are tuned with the relaxed

goal that gT (zj) lies in the ball of radius ε around vj . Fig. 3.3 illustrates the effect of

changing the value of ε on the empirical loss function. The high-level idea is as follows:

instead of enforcing minimization of
∑

j ‖vj − gT (zj)‖22, we seek a ‘lazy’ solution such

that ‖vj − gT (zj)‖22 ≤ ε for as many j as possible—in other words, it is enough to get

to the right neighborhood. As we will show, this ‘lowering of the bar’ can significantly

reduce the complexity of the NN (measured by the number of neurons) that is needed
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Figure 3.2: Learning-based state estimator structure

to learn such an approximate mapping, and with it also the number of training samples

required for learning. These complexity benefits are obtained while still reproducing a

point that is close enough to serve as a good initialization for Gauss-Newton, ensuring

stable and rapid convergence. To back up this intuition, we have the following result.

Proposition 1. Let σ(·) be any continuous sigmoidal function, and let gT (z) : RL →
RK be in the form

gT (z) =
T∑
t=1

αtσ(wT
t z + βt).

Then, for approximating a continuous mapping F : RL → RK , the complexity for a

shallow network to solve Problem (3.3) exactly (i.e., with zero cost) for a finite number

of bounded training samples
(
zj ,vj = F(zj)

)
is at least in the order of

T = O
(( ε√

K

)−L
r

)
.

where r is the number of continuous derivatives of F(·).

The proof of this proposition is relegated to Appendix A. Note that the boundedness
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assumption on the inputs is a proper assumption since these quantities represent volt-

ages and powers. The implication here is very interesting, as controlling ε can drastically

reduce the required T (and, along with it, sample complexity) while still ensuring an

accurate enough prediction to enable rapid convergence of the ensuing Gauss-Newton

stage. Furthermore, keeping the network shallow and T moderate makes the actual on-

line computation (passing the input measurements through the NN to obtain the sought

initialization) simple enough for real-time operation. This way, the relative strengths

of learning-based and optimization-based methods can be effectively combined, and the

difficulties of both methods can be circumvented.

One important remark is that Proposition 1 is derived under the assumption that

F(·) is a continuous mapping that can be parametrized with L parameters, which is hard

to verify in our case. Nevertheless, we find that the theoretical result here is interesting

enough and intuitively pleasing. In a case of a simple single-phase feeder, the state

estimation mapping is indeed continuous and finitely parametrizable; see Appendix B.

More importantly, as will be seen, this corroborating theory is consistent with our

empirical results.
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Figure 3.3: The empirical loss function used for training



22

In order to tune the neural network parameters, Nt training samples have to be

used in order to minimize the cost function in (3.3). Two different ways can be utilized

in order to obtain such training data. First, historical data for load and generation

can be utilized. Note that these data are not readily available unless all the buses in

the network are equipped with measuring devices, however, such load and generation

profiles can be estimated using a state estimation algorithm. Then, the network power

flow equations can be solved to obtain the system state which is used later to synthesize

the measurements using (2.1) and (2.2). Hence, for each historical load and generation

instance, a noiseless training pair (zj ,vj) can be generated. The second way to obtain

the training data is to resort to an operating state estimation procedure. In this case, the

goal of the neural network approach is to emulate the mapping of the estimator from the

measurements space to the state space. The second approach suffers all the limitations of

the current state estimation algorithms such as inaccuracy or computational inefficiency.

In addition to providing noisy training pairs, these limitations result in a much more

time consuming way of generating training data. Therefore, the first way is adopted

for the rest of this work, and the detailed procedure is presented in the experiments

section.

Remark 1. One concern for data-driven approaches is that the mapping is learned from

historical data under a certain network topology. What if the configuration changes for

some reason (e.g., maintenance)? Is the trained mapping still useful? The answer is,

surprisingly, affirmative, thanks to the ‘lazy’ training objective—since we do not seek

exact solutions for the mapping, modest reconfiguration of the network will not destroy

the effectiveness of the trained NN for initialization, as we will see in Section V.

3.3 Experimental Results

The proposed state estimation procedure is tested on the benchmark IEEE-37 distri-

bution feeder. This network is recommended for testing state estimation algorithms by

the Test Feeder Working Group of the Distribution System Analysis Subcommittee of

the IEEE PES [86]. The feeder is known to be a highly unbalanced system that has

several delta-connected loads, which are blue-colored in Fig. 3.4.

The feeder has nodes that feature different types of connections, i.e., single-, two-,
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Figure 3.4: IEEE-37 distribution feeder. Nodes in blue are with loads, and red nodes
represent buses with DER installed. Buses with PMUs are circled, and the links where
the current magnitudes are measured have a small rhombus on them.

and three-phase connections. Additionally, distributed energy resources are assumed to

be installed at six different buses, which are colored in red in Fig. 3.4. In Table 3.1, the

types of the connections of all the loads and DERs are presented where (L) and (G)

mean load and DER, respectively.

Historical load and generation data available in [7] modulated by the values of the

loads are used to generate the training samples. Each time instance has an injection

profile which is used as an input to the linearized power flow solver in [38]. The algorithm

returns a voltage profile (network state variable) which is utilized to generate the value

of the measurements at this point of time. A total of 100, 000 loading and generation

scenarios were used to train a shallow neural network. The network has an input size

of 103, 2048 nodes in the hidden layer, and output of size 210.

The available measurements are detailed as follows.

• PMU measurements: four PMUs are installed at buses 701, 704, 709, and 734

which are circled in Fig. 3.4. It assumed that the voltage phasors of all the phases

are measured at these buses. This sums up to 12 complex measurement, i.e., 24
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Table 3.1: Loads and DER Connections.

Bus Type Connections Bus Type Connections

705 (G) a-b, b-c 728 (L) a-b, b-c, c-a

706 (G) b-c 729 (L) a-b

707 (G) b-c, c-a 730 (L) c-a

708 (G) b-c 731 (L) b-c

710 (G) a-b 732 (L) c-a

711 (G) c-a 733 (L) a-b

712 (L) c-a 734 (L) c-a

713 (L) c-a 735 (L) c-a

714 (L) a-b, b-c 736 (L) b-c

718 (L) a-b 737 (L) a-b

720 (L) c-a 738 (L) a-b

722 (L) b-c, c-a 740 (L) c-a

724 (L) b-c 741 (L) c-a

725 (L) b-c 742 (L) a-b, b-c

727 (L) c-a 744 (L) a-b

real measurements. We installed a unit at the substation, and then placed the

rest to be almost evenly distributed along the network in order to achieve better

observability.

• Current magnitude measurements: The magnitude of the current flow is measured

on all phases of the lines that are marked with a rhombus in Fig. 3.4. The number

of current magnitude measurements is 21 real measurements. We installed the

units such that the state estimation problem can be solved without unobservability

problems. We tested different installation for the current flow measuring devices

with noiseless measurements, and then chose one such that the problem is not

ill-posed.

• Pseudo-measurments: The aggregate load demand of the buses with load installed,

which are blue-colored in Fig. 4.3, are estimated using a load forecasting algorithm

using historical and situational data. Therefore, only two real quantities are ob-

tained by the state estimator that relate to the active and reactive estimated load

demand at the load buses. In addition, an energy forecast method is used to

obtain an estimated injection from the renewable energy sources located at the
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DER buses which are colored in red in Fig. 3.4. The total number of load buses in

the feeder is 23, and the number of distributed energy sources is 6. Therefore, the

state estimator obtains 58 real pseudo-measurements relating to the active and

reactive forecasted demand/injection at these buses.

The state estimator obtains noisy measurements and inexact load demands and

energy generation quantities. It is assumed that the noise in the PMU voltage measure-

ments is drawn from a Gaussian distribution with zero mean and a standard deviation of

10−3. Additionally, the noise added to current magnitudes is Gaussian distributed with

a standard deviation of 10−2. Finally, the differences between the pseudo-measurement

and the real load demand and generations are assumed to be drawn from a Gaussian

distribution with a standard deviation of 10−1. The proposed learning-based state esti-

mation approach aims at estimating the voltage phasor at all the phases of all the buses

in the network.

The shallow neural network is trained using the TensorFlow [1] software library with

90% of the data used for training while the rest is used for verification. After tuning the

network parameters, noisy measurements are generated and then passed to the state

estimator architecture in Fig. 3.2. In order to show the effect of the modified cost

function, we test the networks trained with different values of ε on 1, 000 loading and

generation scenarios. Fig. 3.5 shows the histogram of the distance between the output

of the shallow NN and the true network state. With the conventional training cost

function (ε = 0) the resulting distribution is more spread than the histogram that we

obtain through the network trained with a relaxed cost function (ε = 1).

Two performance indices (3.4)-(3.5) are introduced to quantify the quality of the

estimate as well as the performance of the proposed approach. The first index, which is

denoted by ν, represents the Frobenius norm square of the estimation error. Also, the

cost function value at the estimate is denoted by µ.

ν = ‖v̂ − vtrue‖22 (3.4)

µ =

L∑
`=1

(z` − h`(v̂))2 (3.5)

Furthermore, in order to show the effect of changing the cost function used for



26

ǫ = 0

0 0.005 0.01 0.015 0.02 0.025
0

0.2

0.4

ǫ = 1

0 0.005 0.01 0.015 0.02 0.025
0

0.2

0.4

Figure 3.5: Histogram of the distance between the shallow NN output and the true
voltage profile with (ε = 0) and (ε = 1).

training, the average cost achieved using the proposed approach is shown in Table 3.2

when different values of ε are used for training cost function. In addition, the average

number of iterations required by the Gauss-Newton iterates to converge to the optimal

estimate is also presented. Using a positive value of ε can lead to savings up 25% in

computations, which is valuable when solving the DSSE for large systems. Also, it can

be seen that choosing non-zero values for ε enhances the performance of the proposed

architecture. The estimation accuracy can be almost 5 times better using a positive ε.

As the approximation requirement is relaxed while training the shallow NN, the network

gains in generalization ability, accommodating more scenarios of loading and generation

profiles.

To assess the efficacy of the proposed approach we compare it against the complex

variable Gauss-Newton state estimator using [91] as a state-of-art Gauss-Newton solver

for a real-valued optimization problem in complex variables. The shallow NN was
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Table 3.2: The estimator performance with different values of (ε).

ε # Iterations µ

0 7.035 8.968× 10−3

1
8 6.825 5.531× 10−3

1
4 6.095 3.417× 10−3

1
2 5.675 1.822× 10−3

1√
2

5.220 5.056× 10−3

1 6.150 5.859× 10−3

2 6.415 1.365× 10−2

trained with ε = 1
2 in the next comparisons.

Table 3.3: Performance comparison of different state estimators

Method ν µ

Proposed 9.558× 10−3 1.822× 10−3

G-N 9.845× 10−2 4.861× 10−2

In Table 3.3, the average accuracy achieved in estimating the true voltage profile

using both the Gauss-Newton method and the proposed architecture is presented for

1000 scenarios. In the Gauss-Newton implementation, the complex voltages provided

by the PMUs are used to initialize the voltage phasors corresponding to these buses.

This provides a better initialization point to the Gauss-Newton algorithm which also

enhances its stability. Still, the proposed approach is able to achieve almost 10 times

better accuracy on average. In addition, the fitting error which represents the WLS cost

function is greatly enhanced using the proposed approach.

Table 3.4: Timing and convergence of different state estimators

Method Time (ms) # Divergence

Proposed 347 0

G-N 2468 28
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In order to assess the computational time of the proposed algorithm, we tried 1000

simulated cases for the NN-assisted state estimator and the Gauss-Newton (optimization-

only) state estimator. In Table 3.4, the number of divergent cases out of the 1000 trials

is presented for both approaches. While the Gauss-Newton approach failed to converge

in 28 scenarios, the proposed architecture has converged for all considered cases. In

addition, the time taken by the proposed learning approach is almost four times less

than the Gauss-Newton algorithm. This is due to the fact that only few Gauss-Newton

iterations need to be done when the proposed approach is utilized.

3.4 System Reconfiguration

In distribution systems, the network configuration may be subject to changes either for

restoration [76], i.e., to isolate a fault, or for system loss reduction [10,41]. An important

task is to identify the underlying topology of the feeder. In order to perform this task,

several approaches have been recently developed utilizing measurement data [16,26,106].

Without access to the correct network topology, accurate state estimation is untenable,

as the estimator will attempt to fit the measurements to a wrong model. In other words,

the ground truth function generating z is different from h(v), and hence, solving (2.3) is

meaningless. Therefore, in this study we only consider the case where the (new) system

topology has been adequately identified. Hence, in the latter part of the proposed

approach, the Gauss-Newton iterations utilize accurate system topology information.

In order to test the robustness of the proposed approach, we assume that switches

are available on several lines in the feeder as depicted in Fig. 3.4. Also, we add three

additional lines to the network as redundant lines that are assumed to be unenergized

under normal operating conditions [22]. Specifically, switches are assumed to be present

on the original lines (710, 735), (703, 730) and (727, 7444), and 3 additional tie lines

(742, 744), (735, 737) and (703, 741) are added to the feeder. We asses the robustness of

the proposed learning approach under the following three scenarios.

• Scenario A: a fault has occurred in line (727, 744) and the tie-switch on line

(742, 744) has been turned on;

• Scenario B: a fault has occurred in line (703, 730) and the line (703, 741) has been

energized; and
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• Scenario C: the switch on line (710, 735) has been turned off, and the switch on

line (735, 737) has been connected.

We train the NN using data that are generated from the original network topology.

We assess the performance of the proposed learning-based state estimator on Scenarios

A, B and C. Note that, although in these scenarios the neural network is trained on a

different generating model, the proposed approach still has advantageous performance

when compared with the plain Gauss-Newton approach. This can be attributed to the

specially designed cost function (3.3) that was proposed to train the NN. During the

course of our experiments, we noticed that the robust performance against topology

reconfiguration events is more pronounced when positive ε is used for training the NN.

Table 3.5 compares the performance of the proposed state estimator with (ε = 1
2)

against the plain Gauss-Newton approach under the three system reconfiguration events.

Clearly, the proposed approach still provides performance gains even under modest

topology changes. When the approach was tested under significant reconfiguration

events, our simulations showed that the initialization produced by projecting the flat

voltage profile onto the linear space defined by the PMU measurements performs better

than the neural network initialization. The training procedure is not computationally

intensive due to the simplicity of the model and the relaxed training cost function.

Therefore, in case of severe system reconfigurations that are expected to last for long

time, the shallow neural network can be retrained in the order of a few minutes to match

the underlying physical model.

Table 3.5: Performance comparison with system reconfiguration.
(Averaged over 100 runs)

Scenario Time (ms) ν µ

A
Proposed 476 3.894× 10−2 3.172× 10−2

G-N 1574 7.460× 10−2 1.147× 10−1

B
Proposed 2339 7.963× 10−2 1.051× 10−2

G-N 3696 9.207× 10−2 2.050× 10−2

C
Proposed 429 1.297× 10−2 3.150× 10−3

G-N 1568 8.527× 10−2 1.289× 10−1



Chapter 4

Physics-Aware Neural Networks

for DSSE

Exploiting valuable information from abundant real-time and historical data, data-

driven approaches hold the promise to significantly enhance monitoring accuracy and

improve the performance of distribution networks. To that end, neural network ap-

proaches have been used to estimate the bus injections from the real-time measurements

in [66]. The estimated bus injections can be used as pseudo-measurements to compen-

sate for the scarcity of real-time measurements. In addition, plain feed-forward neural

networks (NN) were proposed to estimate the network state from the measurements

in [11]. This approach reduces the complexity of the state estimation task to matrix-

vector multiplications by shifting the computational burden to an off-line training stage

utilizing historical or simulated data. It is often challenging to avoid exploding or van-

ishing gradients while training these feed-forward NNs, and thus the provided estimates

are less accurate than any optimization-based approach. A joint optimization/learning

approach was proposed in Chapter 3. Different from that technique the authors of [119]

devised a learning approach where a deep NN is constructed by unfolding an itera-

tive solver for the least-absolute-value formulation of the state estimation problem in

transmission networks [101].

All past learning models for state estimation overlook the physics of the underlying

distribution network, hence leading to over-parameterization of the mapping from the

30
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measurements to the network states. In order to utilize our knowledge of the physical

system that governs the relationship between the network states and the measurements,

we propose a novel neural network architecture exploiting the distribution network struc-

ture. We start by showing that owing to disparity in the accuracy of the measurements,

i.e., the µ-phasor-measuring unit (µPMU) measurements are far more accurate than any

other measurements in the network, the DSSE problem can be (approximately) parti-

tioned into smaller problems. Therefore, the estimation of the state (voltage) at a certain

bus in the network can be done using the measurements taken at the partition/partitions

where this bus is located. In this chapter, we formally describe the partitioning of the

DSSE problem that results from installing µPMUs in the distribution network. In ad-

dition, the quality of the partitioning resulting from a certain installation of µPMUs in

the network can be assessed using the diameter measure which is related to the size of

partitions generated. We propose a greedy algorithm for installing µPMUs in the dis-

tribution network to minimize the diameter of the resulting partitioning. Simulations

results on the IEEE-37 distribution feeder show that the proposed learning approach

achieves superior performance in terms of estimation accuracy. Also, the running time

is in the order of milliseconds which allows for real-time monitoring of the distribution

network.

The main idea of the proposed NN architecture is to zero out the weights of the

measurements taken outside a particular partition when calculating the estimate of the

network states at the buses inside that partition. To do so, the structure of the net-

work admittance matrix is embedded on the weights matrix that maps the NN iterates.

The uderlying physical model that governs the operation of the distribution network is

utilized to sparsify the learning model, and thus the proposed model is called Physics-

aware neural network (PAWNN) where the pruning is done in a deterministic manner

before training. In the proposed architecture, the output of a K-layer PAWNN that

relates to the estimated voltage at a certain bus is only a function of the measurements

taken at most K hops away from this bus. Therefore, in order to realize the mapping

from the measurements to the states, the number of layers in the PAWNN has to match

the diameter of the partitioning resulting from the µPMUs placement. In our simula-

tions, we show that the proposed greedy algorithm for µPMUs placement achieves near

optimal performance in terms of minimizing the diameter of the resulting partitioning.
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The proposed NN architecture reduces the number of the trainable parameters,

which prevents over-fitting. Also, it inherently provides robustness as any reconfigura-

tion in the network topology will only affect the state estimates in this specific directly

affected areas. For example, if the neural network has K layers, any measurement con-

tributes only to the state estimates at buses that are at most K hops away from the

location where the measurement is taken. Similarly, for the case of measurement out-

liers resulting from damaged meters or communication failures, the estimation of the

state at distant locations from the outliers measurements will not be affected.

4.1 Partitioned DSSE

This section presents the required background for the partitioning of the DSSE problem

that results from installing µPMUs that provide very accurate measurements. First, we

introduce the vertex-cut partitioning which divides the edges of the graph into disjoint

sets. Then, we show that installing µPMUs in the network results in a vertex-cut

partitioning of the DSSE problem. Throughout this section, we use vertex, node, and

bus interchangeably. Similarly, we use edge and line to refer to any connection in the

graph.

Definition 1. An articulation vertex of a connected graph is a vertex whose removal

disconnects the graph [17, §2.4].

According to the definition, all the vertices in a tree graph are articulation points

since removing any vertex disconnects the graph. Next, we define vertex-cut partitioning

which partitions the set of the edges in the graph into multiple disjoint subsets.

Definition 2. A vertex-cut partitioning refers to a partitioning of the edge set L into

K subsets Lk, such that Lk ∈ L, ∪1≤k≤K Lk = L, and Lk ∩ Lk′ = φ for k 6= k′. Any

vertex that holds an endpoint of an edge (l,m) ∈ Lk is placed in Nk.

Examples of vertex-cut partitioning are depicted in Fig. 4.1. If the original graph is

a tree, then the number of disjoint subsets of edges that result from choosing a vertex to

be cut is equal to the number of edges connected to that vertex. In Fig. 4.1(a) and (b),

we show the two graphs resulting from cutting a vertex that has two edges in the original
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(a) An articulation point with two edges
(b) Resulting vertex-cut partitioning from
Fig. 4.1a

(c) An articulation point with three edges
(d) Resulting vertex-cut partitioning from
Fig. 4.1c

Figure 4.1: Vertex-cut partitioning Examples over a tree graph

graph. When the vertex to be cut has three edges as in Fig. 4.1 (c), the number of the

resulting subgraphs is three where the cut-vertex is replicated in all the subgraphs.

For the purpose of our mathematical proof, we adopt the following assumption on

the accuracy of the PMU measurements.

Assumption 1. The PMU measurements are noiseless, i.e., the variance of the mea-

surement noise associated with the PMU measured quantities is negligible.

This assumption is not totally unrealistic as the signal to noise ratio in the PMU

measurements is in the range of 40 to 50 dB [14]. Note that, this assumption is only

used for our mathematical proof, but not assumed or invoked in any of the simulations.

Estimating the voltages (states) of all the buses in the network is usually done by

solving an optimization problem as in (2.3). Abstracting this concept, we can say that

there is a mapping F(·) such that F(z) = v̂. Suppose P ⊂ N is the set that comprises

the buses with µPMUs installed. Since the PMU measurements are noiseless, the state

estimation problem can be reduced to estimating the network voltages (states) only at

the buses without PMUs (N\P). Such mapping is denoted by Fr(z) = v̂N\P where

vN\P collects the voltages at all the nodes without PMUs. The next theorem shows the

separability of this mapping over the partitioned graph.
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Theorem 2. Suppose {Lk}Kk=1 are the disjoint partitions that result from cutting the

vertices in P. In addition, Nk denotes the set of nodes connected to the edges in Lk,

and N k = Nk\P. Then, the mapping Fr(z) = vN\P is separable over the vertex-cut

partitioning, i.e., for each set N k, the mapping Fr(·) can be written as F
(k)
r (z(k)) = v̂N k

,

where z(k) comprises all the measurements taken at the buses Nk and the edges Lk, and

v̂N k
collects the voltages at the buses in N k.

Proof. Any measurement synthesizing function h`(v) taken at a bus n is a function of

the state at the bus n and the buses connected to bus n. Similarly, for a current or

power flow measurement taken at an edge (l,m), the synthesizing function is a function

only of the state at the buses l and m. As the PMUs provide exact complex voltage

measurements at the buses P, any measurement taken at a bus n ∈ Nk on a line

(l,m) ∈ Lk depends only on the state at the buses N k. Therefore, the measurement

synthesizing function of any measurement taken outside a certain partition Lk does not

involve the states (voltages) at the nodes N k. Hence, the state estimation mapping for

v̂N k
is function only of the measurements z(k), which proves the theorem.

The aforementioned theorem provides an insight regarding the separability of the

state estimation problem in presence of PMUs. This separability is critical when a

learning model is used to estimate the state of the network from the measurements.

It is clear now that a learning model that estimates the voltage at a certain bus does

not require knowledge of all the measurements in the network. Instead, by having an

accurate measurement of the state (voltage) at a certain bus, all the measured quantities

behind this bus can be discarded. This will play an important role in reducing the

complexity of our learning model used for the task.

4.2 Graph-Pruned Neural Networks for DSSE

In this section, we present our novel learning model for DSSE. The graph-pruned neu-

ral network is composed of multiple layers whose connections reflect the distribution

network connections. Let the input of the NN be denoted by x, and the NN produces

an output y using a stacked layered architecture in which each layer realizes a linear

transformation and a point-wise nonlinearity. The vector y is partitioned into N parts
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(a) An example graph
(b) The sparsity of the
weights (c) Graph-pruned NN for the graph in Fig. 4.2a

Figure 4.2: Example graph with the corresponding graph-pruned NN

that represent features of each node in the graph, e.g., the voltage at the buses. The

intermediate output at the t-th layer of the NN is denoted by ht ∈ RNdt where dt repre-

sents the dimension of each partition in ht. Formally, the t-th layer output is computed

using the following transformation

ht+1 = σl(Wtht) (4.1)

where σt is a point-wise nonlinearity, and the matrix Wt ∈ RNdt+1×Ndt is composed

of N × N blocks of size (dt+1 × dt). The (i, j) block in the matrix Wt is zeroed out

(pruned) if the nodes i and j are not connected in G, which justifies the name of the

proposed learning model as graph-pruned NN.

Example 1. Consider the graph in Fig. 4.2a. Suppose a three-layer graph-pruned NN is

designed to estimate some features of the nodes in the graph from signals (measurements)

at the network nodes. The input vector x := [xT1 , xT2 , . . . , xT6 ]T , and output vector y is

also composed of six components yi for 1 ≤ i ≤ 6. The output of the NN can be written

as

y = σ3

(
W3 σ2

(
W2 σ1(W1x + b1) + b2

)
+ b3

)
where the structure of the weight matrices Wi is depicted in Fig. 4.2b. In addition,

let ht,i denote the i-th block of the output of the t-th layer in the NN. Fig. 4.2c shows

the dependency of the block of each layer in the NN on the block of the previous layer.

For example, h1,2 is function of x1,x2 and x3 only. Notice that since the network is
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composed of three layers, each output block yi is function of the inputs related to nodes

that are at most three hops away in the graph. That is, each output is function of all

the inputs in this case as the pairwise distance in the graph is at most three.

The graph convolutional NN (GCNN) [46, 52] learning approaches are designed to

process data defined over graphs. These models also lead to sparsification of the weight

matrices connecting the hidden layers in the neural network. In addition to being derived

from the physical model governing the operations, the proposed learning model leads

to a more general parameterization. For instance, the GCNN model proposed in [52]

is tantamount to enforcing the blocks of the weight matrices to be scaled versions of

a single matrix. For instance, if the small gray blocks in Fig. 4.2b are constrained to

be scaled versions of each other, then the proposed method becomes equivalent to the

GCNN in [52]. On the other hand, if the vertically aligned blocks in the weight matrices

of PAWNN are chosen to be scaled versions of a fixed matrix, then the learning model

of [46] emerges as a special case. For example, for the PAWNN in Fig. 2, if we constrain

the blocks (2, 1) and (6, 1) to be scaled versions of the block (1, 1) and similarly for all

other vertically aligned blocks, the model reduces to the graph NN proposed in [46].

4.2.1 Required number of layers

As established in Section 4.1, the DSSE problem can be partitioned by installing PMUs

that essentially break the dependencies of the estimated state at a certain bus on any

measurement taken outside its partition. Therefore, the graph-pruned NN has the po-

tential to realize mappings such that the estimated state at a certain bus is a function

only of the measurements taken in the same partition. In order to characterize the num-

ber of layers required to realize the DSSE mapping for a network with PMUs installed,

we introduce the following definitions.

Definition 3. The eccentricity of a vertex v in G(N ,L) is the maximum shortest path

length from v to all other vertices in N .

Definition 4. The diameter of a graph G(N ,L) is the maximum eccentricity of all the

vertices in N .

Definition 5. The diameter of a vertex-cut partitioning is the maximum diameter of
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the subgraphs Gk(Nk,Lk) for 1 ≤ k ≤ K, which is introduced by cutting the vertices in

a set P ⊆ N , and it is denoted by dia(P).

For example, the diameter of the vertex-cut partitioning in Fig. 4.1b is 2, while the

diameter of the vertex-cut partitioning in Fig. 4.1d is 3. Therefore, a two-layer graph-

pruned NN can penitentially approximate the mapping between the measurements and

the states if a PMU unit is installed at the vertex that was cut in Fig. 4.1b. However,

with the cut in Fig. 4.1d, at least three-layer graph-pruned NN is needed. Now, it is

reasonable to ask how to place available PMUs such that the diameter of the result-

ing vertex-cut partitioning is minimized. In the next subsection, we present a greedy

algorithm that provides a simple approximate solution for this problem.

4.2.2 Greedy algorithm for PMU placement

As shown in Theorem 2, the placement of µPMUs in the distribution network makes

the DSSE problem separable. In the experiments section, we will show that under

realistic setup the decoupled DSSE subproblems are almost equivalent to the original

formulation. Therefore, the µPMUs need to be placed in the feeder such that the

resulting subproblems are balanced. In other words, we tackle the problem of minimizing

the diameter of the resulting vertex-cut partitioning given a certain budget of µPMUs.

We present a greedy algorithm that provides an approximate solution of this placement

problem.

The proposed greedy algorithm tackles the problem of installing µPMUs one at a

time. It is clear that the optimal placement of a µPMU in order to reduce the diameter of

the resulting vertex-cut partitioning is to install it in the middle of the longest shortest

path in all the partitions. Therefore, our algorithm starts by finding the maximum

length shortest path in the network, and the µPMU is installed in the middle of this

path. Then, the process continues by finding the maximum length shortest path in all

the resulting subgraphs, and then placing the next µPMU along the maximum length

path in all the subgraphs. The process continues until the available budget of µPMUs

is exhausted. Algorithm 1 summarizes the main steps of the proposed approach.

In order to find maximum length shortest path in a tree a simple algorithm is used.

Let us consider a subgraph Gk(Nk,Lk). First, we choose a random starting point n ∈ Nk
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Algorithm 1: Greedy Algorithm for µPMU Placement

Input: : graph G(N ,L) and K ≥ 1 budget of µPMUs

Output: : set S ⊆ N where |S| = K

Initialization: : S = φ

repeat
[S1] Determine the maximum length shortest path in all the subgraphs Gk(Nk,Lk) resulting

from cutting the vertices in S

[S2] Place a µPMU in the middle of the longest path identified in [S1]

until |S| = K

and perform depth-first search (DFS) to find the eccentricity of n which is achieved for

the path from n to vertex n′ ∈ Nk. Now, we use DFS to find the eccentricity of node n′.

The length of the path achieving maximum shortest path length from n′ is the diameter

of Gk. Therefore, the complexity of each step is O(|N |), and the process is repeated K

times. Hence, the total complexity of Algorithm 1 is O(K|N |).

4.3 Experimental Results

In this section, the proposed graph-pruned NN is utilized to estimate the state of the

benchmark IEEE-37 distribution feeder. This network was recommended by the Test

Feeder Working Group of the Distribution System Analysis Subcommittee of the IEEE

PES for evaluating the performance of the state estimation algorithms [86]. The feeder

has several delta-connected loads and is known to be highly unbalanced. The load buses

are blue-colored in Fig. 4.3. In addition, some nodes in the feeder feature different

types of connections, i.e., single-, two-, and three-phase connections. Renewable energy

sources (RES) are installed at six different buses, which are colored in red in Fig. 4.3.

The types of the connections of all the loads and RESs are presented in Table 4.1 where

(L) and (G) mean load and RES, respectively.

We evaluate the performance of the proposed greedy algorithm for placing PMUs

in the distribution feeder. We compare the diameter of the partitioning induced by

the optimal placement of PMUs and by the partitioning resulting from our proposed

approach. For the optimal placement, we use exhaustive search in order to identify
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Figure 4.3: IEEE-37 distribution feeder. Nodes in blue are with loads, and red nodes
represent buses with DER installed.

the placement that minimizes the diameter of the resulting vertex-cut partitioning.

Table 4.2 compares the placement of PMUs using our proposed approach against the

optimal placement in terms of diameter of the resulting vertex-cut partitioning. The

results shows that the proposed approach produces optimal placement in all cases except

for 2 and 6 PMUs where the diameter is larger by only one. The set Sg denote the buses

with PMUs installed using the greedy algorithm, while So denote the optimal placement

of PMUs.

Training samples were generated using the load and renewable generation dataset

available in [7] modulated by the nominal values of the loads. The power flow solver [38]

was used to find the voltage profile (network states), and then the noisy measurements

were generated using the measurement synthesizing functions (2.1) and (2.2). The

variance of the noise added to the PMU measurements was set to be 10−6, and the

variances of the current magnitude and pseudo-measurements noise were 10−3 and 10−2,

respectively. A total of 100, 000 samples were used to train graph-pruned NNs using

the TensorFlow [1] software library with 90% of the data used for training and 10% for

validation. The neural network used consisted of 4 layers where the widths from the first
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Table 4.1: Loads and DER Connections.

Bus Type Connections Bus Type Connections

705 (G) a-b, b-c 728 (L) a-b, b-c, c-a

706 (G) b-c 729 (L) a-b

707 (G) b-c, c-a 730 (L) c-a

708 (G) b-c 731 (L) b-c

710 (G) a-b 732 (L) c-a

711 (G) c-a 733 (L) a-b

712 (L) c-a 734 (L) c-a

713 (L) c-a 735 (L) c-a

714 (L) a-b, b-c 736 (L) b-c

718 (L) a-b 737 (L) a-b

720 (L) c-a 738 (L) a-b

722 (L) b-c, c-a 740 (L) c-a

724 (L) b-c 741 (L) c-a

725 (L) b-c 742 (L) a-b, b-c

727 (L) c-a 744 (L) a-b

Table 4.2: Optimal and greedy PMU placement.

# PMUs Sg dia(Sg) So dia(So)
1 {709} 9 {709} 9

2 {702, 709} 7 {702, 708} 6

3 {702, 709, 734} 5 {702, 709, 734} 5

4
{702, 709, 720,

5
{702, 709, 720,

5
734} 734}

5
{702, 709, 720

4
{702, 709, 720,

4
, 727, 734} 727, 734}

6
{702, 709, 720,

4
{703, 708, 713,

3
727, 734, 738} 720, 733, 737}
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hidden layer to the output layer are 1680, 840, 420, 210, respectively. The estimate of

the voltages at a bus is represented using 6 outputs representing the real and imaginary

parts of the voltage phasor at each phase. The graph structure of the network is imposed

on the NN connectivity, i.e., the first 48 neurons in the first hidden layer, which represent

bus 701, are only connected to the 24 neurons representing node 702 in the second layer.

We test the proposed graph-pruned NN on two different scenarios of measurements.

In the first case (Scenario A), we employ 5 PMUs installed according to the proposed

greedy algorithm, which is optimal. In Fig. 4.3, the buses where the PMUs are installed

are circled, and the lines where the current magnitudes are measured have rhombuses

on them. The net load and renewable energy generation at all the phases of the buses

with loads or RESs installed are used as pseudo-measurements. The number of layers in

the graph-pruned NN in this scenario is 4 as the diameter of the resulting partitioning

of this placement is equal to 4. In this scenario, the total number of measurements is

103, which consist of 3 complex measurements of voltages at 5 buses with PMUs, 3

real measurement of current magnitudes installed at 7 locations in the network, and 26

complex pseudo-measurements at the buses with loads or RESs installed and without

PMUs. In the second case (Scenario B), we evaluate the performance of the proposed

graph-pruned neural network under different measurements scenario [114], where PMUs

are installed at the buses {701, 704, 709, 734}, the current magnitude measurements

are taken on the lines { 702→ 703, 702→ 713, 707→ 720, 703→ 727, 708→ 738, 737→
738, 711→ 741 }, and the forecasts for loads and renewable energy are used as pseudo-

measurements. We use a 5-layer graph pruned NN in this case to match the diameter

of the vertex-cut partitioning resulting from the PMU placement.

In order to assess the performance of the proposed approach, we define the average

estimation accuracy ν of any algorithm as follows.

ν =
1

N

N∑
i=1

‖v̂i − vtrue
i ‖22 (4.2)

where v̂i is the estimated voltage profile from the noisy measurements generated us-

ing vtrue
i . Table 4.3 shows the average performance of the proposed learning approach

and the Gauss-Newton algorithm over 1000 cases. Simple feed-forward neural networks
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Table 4.3: Performance comparison of different state estimators

Method
Scenario A Scenario B

ν Time (ms) ν Time (ms)

PAWNN 1.273× 10−3 1.146 2.598× 10−3 1.034

G-N 5.833× 10−1 866 4.161× 10−1 1076

approaches require significantly large amount of training data and computational re-

sources. In addition, they often suffer from exploding or diminishing gradients. This

results in bad estimates for the state of the network. For example, the average estima-

tion accuracy of the state using a 4-layer feed-forward NN was 2.69× 10−1 for noiseless

measurements in Scenario A. Hence, we did not include feed-forward NN in our compar-

isons. The Gauss-Newton algorithm is initialized using the flat voltage profile. Clearly,

the proposed learning method achieves superior performance in both scenarios, where

the accuracy of estimation is an order of magnitude better than state-of-the-art Gauss-

Newton approach. In addition, since the proposed learning method alleviates all the

computational burden at the estimation time by shifting it to the training time, the

running time of the proposed approach is three orders of magnitude higher than the

optimization-based approach.
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Figure 4.4: Estimation of the voltage magnitudes and angles at phase (b) of all buses
in the IEEE-37 feeder. (The absolute estimation errors are depicted in pink and light blue for
the proposed approach and the Gauss-Newton solver, respectively.)
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In order to show the quality of estimates provided by the proposed Graph-pruned

neural network, we present the estimate of the voltage magnitudes and angles at phase

(c) at all buses. Fig. 4.4 depicts the estimated voltage magnitudes and angles using

the Gauss-Newton method and the proposed Graph-pruned NN approach. Also, the

absolute estimation error of the magnitudes and angles are shown in faded colors. The

results show superior estimation performance for the proposed approach.

4.3.1 Robustness of PAWNN

As discussed earlier, the proposed approach is inherently robust against measurements

failure or attacks. That is, erroneous measurements are not propagated in the neural

network more than the number of layers. Therefore, only the estimation of voltages in

the neighborhood is affected. In order to showcase the robustness of the approach, we

tested the proposed learning model in a scenario where the measurements of the µPMU

installed at bus 734 are corrupted with Gaussian noise with a standard deviation of 10.

While the proposed approach is oblivious to the noise level of each measurement, the

weight in the weighted least squares formulation used by the Gauss-Newton approach

were adjusted to account for the huge noise variance of the measurements at bus 734.

The estimation of the voltage magnitude along all buses at phase (b) for both approaches

is depicted in Fig. 4.5. It is noticeable that the estimation of voltages around the bus

indexed 27, which is the bus index of bus 734, are the only affected estimation, while the

G-N estimate is totally corrupted by corrupting the measurements of only one measuring

unit.
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Figure 4.5: Estimation of the voltage magnitudes at phase (b) of all buses under cor-
rupted µPMU measurements at bus 734.



Chapter 5

Optimal Power Flow for

Multiphase Systems with

Renewables

The AC optimal power flow (OPF) problem is a predominant task in optimizing the

performance of power grids. The OPF problem aims at minimizing an appropriate

operational cost while respecting the network’s physical and engineering constraints.

However, due to the quadratic nature of the power flow equations, the OPF problem

is known to be nonconvex and NP-hard in general [56, 58]. Existing approaches to the

OPF problem range from classical Newton-Raphson, to Lagrangian relaxation, genetic

algorithms and interior point methods. Unfortunately, these methods do not provide

optimality or feasibility guarantees except in certain cases, and are quite sensitive to

the initial guess. While the Newton-Raphson method has been traditionally employed

to solve AC OPF problems for transmission systems, its convergence is challenged when

it is applied to multi-phase distribution networks; this is primarily due to the high

resistance-to-reactance ratio of distribution lines, which can cause the Jacobian matrix

to be ill-conditioned.

Many recent research efforts have been trying to approach the solution of OPF

problem using relaxation techniques [5, 12, 18, 33, 37, 47, 56, 64, 117, 118]. Among those,

semidefinite relaxation (SDR) was shown to be able to find the global optimal solution

45
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of the problem in many cases. SDR relies on matrix-lifting and rank relaxation to

convexify the feasible set of the OPF problem [5,23,56,63,65,117]; the resulting relaxed

problem can be solved in polynomial time. OPF-optimality of the SDR solution can

always be tested a posteriori by checking the rank of the SDR solution matrix; but it

is very useful to know a priori in which cases SDR will yield an optimal solution for

the original nonconvex OPF problem. These are the cases when SDR yields a solution

that is rank-one, or can be easily transformed to rank-one. In those cases, SDR is not a

relaxation after all; we say that SDR is tight. Tightness of SDR relaxation was proved for

a number of network setups under restrictive conditions. In [56], tightness of SDR was

shown for a network comprising only resistive loads, provided load over-satisfaction is

allowed and the dual variables are all positive. Assuming availability of sufficient phase

shifters, it was proven that SDR is exact if load over-satisfaction is allowed [90]. For

tree/radial networks, under operational constraints on voltage magnitudes, line losses,

and line flows, the SDP relaxation was shown to be tight if there are no lower limits on

the power generation [117]. This result was extended in [57] for radial networks with

lower limits only on the active power, under reasonable conditions. The inexactness

of SDR for a general network was demonstrated in [59] using a simple 3-bus network.

Unfortunately, in cases where SDR is not tight, it is not easy to recover a physically

meaningful solution from the solution matrix; only a lower bound on the optimal cost is

provided. An approach to recover an OPF solution from the SDR solution was pursued

in [63], but still there is no guaranty of recovering a physically meaningful OPF solution.

Another relaxation technique was proposed in [47] for radial networks. The method

eliminates the voltage angles by defining new variables representing the real and imag-

inary parts of the second order voltage moments, and then expresses the power flow

equation in terms of the new variables. [47] solves the problem using second order cone

programming (SOCP). Tightness of this SOCP relaxation is an open issue. Along the

same lines, a quadratic convex (QC) relaxation approach was proposed in [18] where the

network constraints are replaced by convex surrogates. Although shown to be tighter

than the SOCP relaxation, the QC relaxation also lacks proof of tightness, and can

return solutions that are infeasible for the original OPF problem.

As a generalization of SDR, moment-based relaxation has been proposed in [72] us-

ing the Lassarre Hierarchy. Empirically, the method has been demonstrated to be able
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to find the OPF solution in cases where SDR fails. The moment-based relaxation intro-

duces higher order voltage moments as new variables and defines the power flow quan-

tities in terms of these moments. On the down side, considering higher order moments

requires solving very large SDP instances which may not be computationally tractable.

Aiming to alleviate the computational burden of moment-based relaxation, [73] ex-

ploited the structure of the OPF problem to develop a more tractable solution for low

order moments. However, due to the NP-hardness of the problem, the moment order

required to approach the optimal solution may be very large. Building on the same tool,

a Laplacian-based approach has been proposed in [70], where an upper bound on the

cost function is assumed, and the cost is replaced by a function that penalizes constraint

violations.

It is also worth emphasizing that the AC OPF task is becoming increasingly impor-

tant for distribution systems with high integration of renewable energy resources (RESs),

where adjustments of the real and reactive output-powers from renewable sources are

necessary in order to enforce voltage regulation. Particularly relevant is the case of distri-

bution feeders with high penetration of photovoltaic (PV) systems, where reverse power

flows induced by PV-systems operating according to current practices may increase the

likelihood of overvoltage conditions. OPF formulations aim at minimizing the cost of

real power curtailment as well as the cost for reactive power support, while concurrently

pursuing utility-oriented objectives and ensuring voltage regulation [13, 24, 43, 95, 98].

However, in this particular setting, the overall cost function of the OPF task may not

be strictly increasing in the power injections, which implies that relaxation methods

such as SDR [23,36,83] are not guaranteed to be tight.

The main contributions of this chapter are as follows:

1. Designing an efficient algorithm that can solve the OPF problem when the relax-

ation approaches fail to find an optimal solution. Inspired by recent advances

in solving nonconvex quadratically-constrained quadratic programs (QCQP), the

OPF problem is formulated as a nonconvex QCQP. In [68], a Feasible Point Pur-

suit Successive Convex Approximation (FPP-SCA) algorithm was proposed, and

empirically shown to be very effective in solving nonconvex QCQP problems in

cases where SDR fails. The FPP-SCA algorithm replaces the nonconvex con-

straints by inner convex surrogates around a specific point to construct a convex
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restriction of the original problem. Such restriction may lead to infeasibility, even

if the original problem is feasible. The main idea behind FPP-SCA is to allow

a controllable amount of constraint violations to enable the algorithm to make

progress towards feasibility in its initial stages. Towards this end, a slack variable

is added to ensure feasibility at each step, and the cost function is augmented with

a term that penalizes the slack that reflects the constraints violations. The overall

approach is neither restriction nor relaxation, but rather judicious approximation

of the OPF problem in each iteration, the solution of which is subsequently used

as the approximation point for the next iteration. Upon finding a feasible voltage

profile, successive convex approximation of the feasible set is used to find a KKT

point of the OPF problem.

2. Fomulating the OPF for radial networks with wye- and delta connections. A power

flow model for radial multiphase systems that accommodates wye-connected and

delta-connected distributed energy resources is outlined. Then, the FPP-SCA is

utilized for find local solution of the OPF in these scenarios.

3. Identifying OPF solutions when minimizing the cost of active power curtailment

and reactive power support. The modified problem is solved to obtain an optimal

voltage profile that conforms to the power system’s operational and economic

constraints. SDR is very sensitive to the choice of the cost function (especially

when the cost function is non-increasing with the power flows in the network).

On the other hand, the proposed algorithm is shown to be an effective approach

for solving the modified OPF problem for single-phase and multi-phase system

models.

4. Performance comparison. The performance of the FPP-SCA is benchmarked

against existing convex relaxation approaches and the IPOPT solver. Results

demonstrate that the FPP-SCA algorithm is able to find solutions that are opti-

mal or near optimal, even in cases where convex relaxation approaches and the

IPOPT solver fail.

5. Identifying problematic constraints when the AC OPF problem is infeasible. The

FPP algorithm has the ability to identify problematic constraints in cases where
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the AC OPF problem is infeasible. This is a distinct feature of the proposed

method that off-the-shelf solvers such as IPOPT do not offer.

5.1 Power flow model

Consider a multi-phase network comprising N + 1 buses. The system is modeled by a

graph G := (N ,L), where N := {0, 1, 2, · · · , N} is the set of multi-phase buses (nodes)

and L ⊆ N × N represents the set of lines. Let bus 0 be the reference bus, whose

voltages are taken as a reference for the phasorial representation. The set of phases of

node k and phases of line (l,m) are denoted by ϕk and ϕlm, respectively. Let vk,φ ∈ C
and ik,φ ∈ C denote the phasor for the line-to-ground voltage and the current at node k

for phase φ, and define vk := [vk,φ]φ∈ϕk
and ik := [ik,φ]φ∈ϕk

. For notational simplicity,

the chapter hereafter focuses on three-phase systems; however, the proposed framework

is applicable to systems featuring a variety of three-, two-, and single-phase nodes and

branches.

Conventional fossil-fuel generators are assumed to be located at nodes G ⊆ N , with

P
(G)
k,φ , Q

(G)
k,φ denoting the active and reactive power generated at phase φ of bus k ∈ G.

The load connected to phase φ at bus k is denoted by P
(L)
k,φ + jQ

(L)
k,φ ∈ C. In addition,

the apparent power transferred from bus l ∈ N to the rest of the network through line

(l,m) ∈ L for phase φ is given by Slm,φ = Plm,φ + jQlm,φ.

Subset R ⊂ N collects nodes with installed renewable energy sources (RESs) such as

PV systems. Given prevailing ambient conditions, let the available active power from the

RES located at phase φ of bus k ∈ R be denoted by P
(R)
k,φ . Also, let P

(R)
k,φ and Q

(R)
k,φ denote

the injected active power and the injected/absorbed reactive power at bus k for phase

φ. It is assumed that both active and reactive output-powers are controllable [24, 95].

Accordingly, the allowed operating region of an RES can be described as follows:

Ψk,φ :=

P (R)
k,φ , Q

(R)
k,φ :

0 ≤ P (R)
k,φ ≤ P

(R)
k,φ

(P
(R)
k,φ )2 + (Q

(R)
k,φ )2 ≤ S2

k,φ

|Q(R)
k,φ | ≤ tan(θk,φ)P

(R)
k,φ

 (5.1)

where S
(R)
k,φ represents the RES-inverter capacity, and θk,φ capture minimum power

factor requirements.
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Collect voltages and currents in the vectors v := [vT0 ,v
T
1 , · · · ,vTN ]T and i := [iT0 , · · · , iTN ]T

of length 3(N + 1), respectively. Lines (l,m) ∈ L are modeled as π-equivalent cir-

cuit, where the phase impedance and shunt admittance matrices are denoted by Zlm ∈
C|ϕlm|×|ϕlm| and Ylm ∈ C|ϕlm|×ϕlm , respectively. Voltages and injected currents abide

by Ohm’s law and Kirchhoff’s law, which lead to the compact relationship i = Yv. The

network admittance matrix Y is hermitian, has dimensions 3(N + 1)× 3(N + 1), and is

constructed as follows [23,83]:

• The |ϕlm| × |ϕlm| off-diagonal block corresponding to the line (l,m) ∈ L equals

−Ylm ≡ −Z−1
lm .

• The |ϕk| × |ϕk| diagonal block corresponding to the k-th bus is given by

[Y]k,k =
∑
l∈Nk

(
1

2
Ykl + Ykl) (5.2)

where Nk := {l : (k, l) ∈ L}.

The power balance equations at node k ∈ {G ∩ R} and phase φ ∈ ϕk are given by:

P
(G)
k,φ + P

(R)
k,φ − P

(L)
k,φ = Re{vφk (iφk)∗}, (5.3)

Q
(G)
k,φ +Q

(R)
k,φ −Q

(L)
k,φ = Im{vφk (iφk)∗}. (5.4)

Notice that that the balance equation for nodes without conventional generators or

without RESs can be readily derived from (5.3)–(5.4) by setting P
(G)
k,φ = Q

(G)
k,φ = 0,

or P
(R)
k,φ = Q

(R)
k,φ = 0. Define the vectors pG,qG which collect the active and reactive

powers generated by conventional generators, and let pR,qR be the vectors of active

and reactive output-powers from RESs at all nodes for phases.

Accordingly, a prototypical formulation of the AC-OPF problem for a multi-phase
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power network with renewables is outlined next:

min
v,i,pG,qG,pR,qR

Cg(pG) + Cc(pR) + Ci(qR) (5.5a)

subject to

• ∀k ∈ N , φ ∈ ϕk

P
(G)
k,φ + P

(R)
k,φ − P

(L)
k,φ = Re{vφk (iφk)∗} (5.5b)

Q
(G)
k,φ +Q

(R)
k,φ −Q

(L)
k,φ = Im{vφk (iφk)∗} (5.5c)

P
(G)
k,φ ≤ P

(G)
k,φ ≤ P

(G)
k,φ (5.5d)

Q(G)
k,φ
≤ Q(G)

k,φ ≤ Q
(G)
k,φ (5.5e)

|vk,φ| ≤ |vk,φ| ≤ |vk,φ| (5.5f)

(P
(R)
k,φ , Q

(R)
k,φ ) ∈ Ψk,φ (5.5g)

where P
(G)
k,φ and P

(G)
k,φ are the lower and upper bound on the real power generated at

bus k for phase φ; Q
(G)
k,φ and Q

(G)
k,φ represents an upper and lower bounds on the reactive

power injected/absorbed by a conventional generation unit at node k for phase φ; and,

the constraint (5.5f) confine the range of the voltage magnitude of the network buses

within predefined limits. Notice that for buses N\G, the limits P
(G)
k,φ , P

(G)
k,φ , Q

(G)
k,φ , and

Q
(G)
k,φ are set to zero. In addition, for nodes N\R, one has P

(R)
k,φ = S

(R)
k,φ = 0. The cost

function (5.5a) is composed of three functions:

• Cost from conventional generation units:

Cg(pG) =
∑

k∈G,φ∈ϕk

bφ2,k(P
(G)
k,φ )2 + bφ1,kP

(G)
k,φ (5.6)

• Cost of curtailment from renewables:

Cc(pR) =
∑

k∈R,φ∈ϕk

cφ2,k(P
(R)
k,φ − P

(R)
k,φ )2

+ cφ1,k(P
(R)
k,φ − P

(R)
k,φ ) (5.7)
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• Cost of reactive support from renewables:

Ci(qR) =
∑

k∈R,φ∈ϕk

dφ2,k(Q
(R)
k,φ )2 + dφ1,kQ

(R)
k,φ (5.8)

Additional terms can be considered in the cost function to minimize e.g., power losses

and other operational objectives.

In order to facilitate the use of the FPP-SCA algorithm, an equivalent formulation

of (5.5) will be introduced next. To this end, define eφk := [0∑k−1
n=0 |ϕn| eφ 0∑N

n=k+1 |ϕn|],

where eφ is the φ-th standard canonical basis is R|ϕk|. Along the lines of [23], the fol-

lowing matrices are defined:

Yk,φ = 1
2(ek,φe

T
k,φY + YHek,φe

T
k,φ), (5.9)

Ỹk,φ = j
2(ek,φe

T
k,φY −YHek,φe

T
k,φ), (5.10)

Mk,φ = ek,φe
T
k,φ. (5.11)

Using (5.9) and (5.10), the right hand side of the power flow equations (5.3) and (5.4)

can be expressed as

Re{vk,φ(ik,φ)∗} = vHYk,φv, (5.12)

Im{vk,φ(ik,φ)∗} = vHỸk,φv, (5.13)

while the magnitude square of the voltage phasor at bus k and phase φ can be

written in the following form:

|vk,φ|2 = vHMk,φv . (5.14)

With these definitions, the AC OPF problem (5.5) can be re-written in the following
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equivalent form:

min
v,pR,qr,α

Cg(α) + Cc(pR) + Ci(qR) (5.15a)

subject to

• ∀k ∈ N , φ ∈ ϕk

vHYk,φv − P
(R)
k,φ + P

(L)
k,φ ≤ αk,φ (5.15b)

P
(G)
k,φ ≤ vHYk,φv − P

(R)
k,φ + P

(L)
k,φ ≤ P

(G)
k,φ (5.15c)

Q(G)
k,φ
≤ vHỸk,φv −Q

(R)
k,φ +Q

(L)
k,φ ≤ Q

(G)
k,φ (5.15d)

(|vk,φ|)2 ≤ vHMk,φv ≤ (|vk,φ|)2 (5.15e)

(P
(R)
k,φ , Q

(R)
k,φ ) ∈ Ψk,φ (5.15f)

where α is a vector that collects all αk,φ for all k ∈ G and φ ∈ ϕk, and αk,φ represents

a tight upper bound on the active power generated at node k for phase φ. Note that,

for k /∈ G, the values of P
(G)
k,φ and P

(G)
k,φ are set to zero for all φ ∈ ϕk. Similarly, for

k /∈ R, one has P
(R)
k,φ = S

(R)
k,φ = 0 for all φ ∈ ϕk. The problem (5.15) is a nonconvex

QCQP. Accordingly, the FPP-SCA algorithm will be utilized in Section 5.3 to identify

feasible solution of (5.15) in scenarios where existing convex relaxation-based methods

may fail.

5.2 Modeling Delta-Connections

In this section, we extend the proposed framework in order to accommodate delta-

connected loads as well as wye-connected loads. We show how the OPF problem with

delta-connections can be cast as a nonconvex QCQP. Therefore, out FPP-SCA approach

can be utilized to tackle the problem.

5.2.1 Flow Model for Radial Networks with Delta-Connections

Consider a radial multiphase distribution network with nodes collected in the set N =

{0, 1, . . . , n}. Let 0 represent the substation or the point of common coupling, and define

N+ := N \ {0}. Let E denote the set of lines connecting the buses. In particular, each

line connects an ordered pair (l,m) of buses, where bus l lies between bus 0 and bus
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m. We use (l,m) ∈ E and l → m interchangeably, and denote l ∼ m if either l → m or

m→ l. In addition, let R ⊆ N+ represent a set that collects the buses with RESs.

For simplicity of notation and exposition, assume that all the buses k ∈ N and

lines (l,m) ∈ E have three phases a, b, c, and define the sets Φ := {a, b, c} and

Φ∆ := {ab, bc, ca}. However, the proposed approach can be straightforwardly applied

to distribution networks that feature a mix of three-phase, two-phase, and single-phase

nodes. Let vφn denote the complex voltage phasor at bus k ∈ N and φ ∈ Φ, and let vk

be a column vector that collects the complex voltages at all the phases for node k, i.e.,

vk := [vak , v
b
k, v

c
k]. Similarly, let the vector Ilm collect the complex current that flows

in the line (l,m) ∈ E for all phases in Φ. Let yk ∈ C3×3 denote the shunt admittance at

bus k, and denote as zlm ∈ C3×3 the series impedance of line l ∼ m.

Without loss of generality, assume that every bus k ∈ N has three wye-connected net

loads (one on each phase, with grounded neutral) and three delta-connected net loads

(one across each pair of phases, ungrounded). Define the complex vector s
(L)
Y,k ∈ C3

to be a vector that collects the wye-connected loads at bus k ∈ N for all phases. In

a similar way, define s
(L)
∆,k ∈ C3 to be a complex column vector that collects the delta-

connected loads at bus k ∈ N . Notice that both wye and delta connection may be

present at the same node of the network model when different distribution transformers

with either delta and/or wye primary connections are bundled together for network

reduction purposes (e.g., when two transformers are connected through a short low-

impedance distribution line). Based on prevailing ambient conditions, let the maximum

available active powers for the wye-connected RESs at phases φ ∈ Φ of node k ∈ R
be collected in a column vector p

(R)
Y,k ∈ R3. Also, let the apparent powers injected by

these RESs be collected in a vector s
(R)
Y,k = p

(R)
Y,k + iq

(R)
Y,k. Similarly, let p

(R)
∆,k ∈ R3 and

s
(R)
∆,k ∈ C3 be the corresponding vectors for the delta-connected sources at bus k. Let

sY,k := [saY,k, s
b
Y,k, s

c
Y,k]

T = s
(L)
Y,k − s

(R)
Y,k denote the net wye-connected loads at bus k.

Also, let s∆,k := [sab∆,k, s
bc
∆,k, s

ca
∆,k]

T = s
(L)
∆,k−s

(R)
∆,k and I∆,k := [Iab∆,k, I

bc
∆,k, I

ca
∆,k]

T denote

the power consumptions and currents of delta-connected net loads at bus k, respectively.

If neither loads nor (sources) are present at a particular phase for a particular type of

connection, then the corresponding element of s
(L)
Y,k, s

(R)
Y,k, s

(L)
∆,k, or s

(R)
∆,k is set to zero.
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Voltages and line currents abide by Ohm’s Law, which yields:

vl − vm = zlmIlm, ∀l→ m. (5.16)

In addition, the power flow equations for the delta-connected loads at bus k can be

expressed as

s∆,k =


(vak − vbk)(Iab∆,k)

∗

(vbk − vck)(Ibc∆,k)
∗

(vck − vak)(Ica∆,k)
∗

 , ∀k ∈ N . (5.17)

Power balance at bus k ∈ N then implies that:

∑
i:i→k


vak(Iaik)

∗

vbk(I
b
ik)
∗

vck(I
c
ik)
∗

 =
∑
j:k→j


vak(Iakj)

∗

vbk(I
b
kj)
∗

vck(I
c
kj)
∗

+


vak(yakvk)

∗

vbk(y
b
kvk)

∗

vck(y
c
kvk)

∗

+ sY,k

+


vak(Iab∆,k − Ica∆,k)

∗

vbk(I
bc
∆,k − Iab∆,k)

∗

vck(I
ca
∆,k − Ibc∆,k)

∗

 . (5.18)

Recalling that the network is assumed to have a tree tolopogy, the left-hand-side of (5.18)

represents the power received by bus k from the rest of the network through the distribu-

tion line (i, k) ∈ E . On the other hand, the first term on the right-hand-side represents

the power transferred to the network through line (k, j) ∈ E ; the second term accounts

for the power drawn to the ground at every phase through the shunt element; the third

term represents the apparent power absorbed/generated by the wye-connected loads at

the bus; and, the last term represents delta-connected net loads. Notice that the power

flow equations (5.17) and (5.18) have quadratic terms; using these equations within an

optimization task leads to nonconvex problem formulations.

5.2.2 QCQP Formulation of OPF for Networks with Delta-Connections

To facilitate the application of the FPP-SCA algorithm to the problem at hand, the

ACOPF is presented next in a QCQP form. To this end, define the vector xlm :=

[vTl , I
T
lm]T for all l → m, and x∆,k := [vTk , I

T
∆,k]

T for all k ∈ N . Consider matrices
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Eij ∈ R6×6 and Ẽij ∈ R3×3 such that their (i, j)-th element is one (1) and all the other

elements are zero (0). Then, (5.17) can be written as:

s∆,k =


xH∆,k (E41 − E42) x∆,k

xH∆,k (E52 − E53) x∆,k

xH∆,k (E63 − E61) x∆,k

 , ∀k ∈ N . (5.19)

In (5.18), the term vak(Iakj)
∗ can be re-written as

vak(Iakj)
∗ = xHkjE41xkj .

In a similar way, the product vak(Iaik)
∗ can be expanded as shown next:

vak(Iaik)
∗ = vai (Iaik)

∗ − (vai − vak)(Iaik)
∗

= vai (Iaik)
∗ − zaikIik(Iaik)∗

= xHik

(
E41 − zaaik E44 − zabikE45 − zacikE46

)
xik

where zaik = [zaaik , z
ab
ik , z

ac
ik ] is the first row of the impedance matrix zik. Moreover, we

have that

V a
k (yakVk)

∗ = vHk

(
yaa,∗k Ẽ11 + yab,∗k Ẽ21 + yac,∗k Ẽ31

)
vk.

Additionally, for delta connected units, the term vak(Iab∆,k − Ica∆,k)
∗ can be re-written as

vak(Iab∆,k − Ica∆,k)
∗ = xH∆,k (E41 − E61) x∆,k.



57

Following similar steps, quadratic expressions of all the other elements in (5.18) can be

obtained and, consequently, (5.18) can be written as follows:

∑
i:i→k


xHik
(
E41 − zaaik E44 − zabikE45 − zacikE46

)
xki

xHik
(
E52 − zbaikE54 − zbbikE55 − zbcikE56

)
xki

xHik
(
E63 − zcaikE64 − zcbikE65 − zccikE66

)
xki



=
∑
j:k→j


xHkjE41xkj

xHkjE52xkj

xHkjE63xkj

+


xH∆,k (E41 − E61) x∆,k

xH∆,k (E52 − E42) x∆,k

xH∆,k (E63 − E53) x∆,k

 (5.20)

+sY,k +


vHk

(
yaa,∗k Ẽ11 + yab,∗k Ẽ21 + yac,∗k Ẽ31

)
vk

vHk

(
yba,∗k Ẽ12 + ybb,∗k Ẽ22 + ybc,∗k Ẽ32

)
vk

vHk

(
yca,∗k Ẽ13 + ycb,∗k Ẽ23 + ycc,∗k Ẽ33

)
vk


for all k ∈ N , while the voltage magnitude constraints admit the following equivalent

formulation:

(vφk)2 ≤ vHk Ẽφφvk ≤ (vφk)2, ∀k ∈ N+, ∀φ ∈ Φ. (5.21)

Next, let the vector xv ∈ C3(n+1) collect vk for all k ∈ N . Similarly, let x∆ ∈ C3(n+1)

be a vector that concatenates I∆,k for all k ∈ N and let xi ∈ C3n stack Ilm for all

(l,m) ∈ E . Define x̃ as

x̃ = [xTv , xTi , xT∆]T . (5.22)

and consider the stacked vector of its real and imaginary parts x := [Re(x̃)T Im(x̃)T ]T ;

notice that x is a rwal vector containing (18n + 12) elements. The quadratic func-

tions (5.19) and (5.20) can be written as functions of x. Particularly, (5.20) involves

6(n + 1) equations (involving real quantities) while 6(n + 1) equations are utilized to

describe (5.19)

The OPF problem for networks with delta- and wye-connected components can then
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be written as the following QCQP form:

min Closs(ploss) +
∑
k∈R

Ck(p
(c)
Y,k,p

(c)
∆,k) (5.23a)

over x, {s(R)
Y,k, s

(R)
∆,k}k∈R

s.t. Ax = d (5.23b)

xTBφ
∆,kx = <{sφ∆,k} ∀φ ∈ Φ∆,∀k ∈ N (5.23c)

xT B̃φ
∆,kx = ={sφ∆,k} ∀φ ∈ Φ∆,∀k ∈ N (5.23d)

xTBφ
Y,kx = <{sφY,k} ∀φ ∈ Φ, ∀k ∈ N (5.23e)

xT B̃φ
Y,kx = ={sφY,k} ∀φ ∈ Φ, ∀k ∈ N (5.23f)

(vφk)2 ≤ xTMφ
kx ≤ (vφk)2 ∀φ ∈ Φ, ∀k ∈ N+ (5.23g)

s∆,k = s
(L)
∆,k − s

(R)
∆,k ∀k ∈ N (5.23h)

sY,k = s
(L)
Y,k − s

(R)
Y,k ∀k ∈ N (5.23i)

p
(R)
Y,k ≤ p

(R)
Y,k ∀k ∈ R (5.23j)

p
(R)
∆,k ≤ p

(R)
∆,k ∀k ∈ R (5.23k)

where Bφ
∆,k, B̃φ

∆,k, Bφ
Y,k, and B̃φ

Y,k are symmetric matrices that represents the real and

imaginary parts of equation (5.19) and (5.20), respectively, and their construction is

explained in Appendix C. Notice that the values of s
(R)
∆,k for k /∈ R are set to zero, and

hence, they are not considered as optimization variables. The matrix A and the vector

d are constructed in a way to rewrite the constraints (5.16) and constant phase at the

substation in terms of x.

5.3 Feasible Point Pursuit and Successive Convex Approx-

imation Algorithm

The FPP-SCA is a two-step algorithm that involves solving convex optimization prob-

lems iteratively. In the first step, we solve an inner approximation of (5.15) around a

particular point. In order to ensure feasibility of the approximation, we add a slack

variable s to the constraints and minimize s over the approximated feasible set. We

then use the solution as an approximation point for the next step. If the slack variable



59

becomes zero, we get a feasible point. In the second step, we solve a sequence of prob-

lems which are inner approximations of (5.15) around feasible points until convergence

to a KKT point.

5.3.1 Feasible Point Pursuit

In each iteration, the non-convex feasiblity set of (5.15) is replaced by a convex inner

approximation. Each non-convex quadratic constraint is replaced by a convex restriction

around a specific point. For instance, consider the constraint (5.15c) which can be

written as two inequalities in the following form.

vHYk,φv ≤ −P
(L)
k,φ + P

(R)
k,φ + P

(G)
k,φ , (5.24a)

vH(−Yk,φ)v ≤ P (L)
k,φ − P

(R)
k,φ − P

(G)
k,φ . (5.24b)

Both constraints are non-convex as the matrices Yφ
k are indefinite. Consider (5.24a)

where the inequality can be rewritten as

vHY
(+)
k,φv + vHY

(−)
k,φv ≤ −P (L)

k,φ + P
(R)
k,φ + P

(G)
k,φ (5.25)

where Y
(+)
k,φ and Y

(−)
k,φ are the positive semidefinite and the negative semidefinite parts

of the matrix Yk,φ, respectively. For Y
(−)
k,φ , the following inequality holds.

(v − z)HY
(−)
k,φ (v − z) ≤ 0. (5.26)

Then, expanding the left hand side, the following inequality can be obtained

vHY
(−)
k,φv ≤ 2zHY

(−)
k,φv − zHY

(−)
k,φ z. (5.27)

Hence, the surrogate function for the non-convex quadratic constraint (5.25) can be

defined as

vHY
(+)
k,φv + 2zHY

(−)
k,φv ≤ −P (L)

k,φ + P
(R)
k,φ + P

(G)
k,φ + zHY

(−)
k,φ z + s (5.28)
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where the nonnegative slack variable s is added to ensure feasibility. Similarly, (5.24b)

is replaced by

− vHY
(−)
k,φv − 2zHY

(+)
k,φv ≤ P (L)

k,φ − P
(R)
k,φ − P

(G)
k,φ − zHY

(+)
k,φ z + s. (5.29)

The problem to be solved in the i-th iteration can then be written as follows, where zi

is the optimum v obtained in iteration i− 1:

min
v,pR,qR,s≥0

s (5.30a)

subject to

• ∀k ∈ N , ∀φ ∈ ϕk

vHY
(+)
k,φv + 2zHi Y

(−)
k,φv ≤

− P (L)
k,φ + P

(R)
k,φ + P

(G)
k,φ + zHi Y

(−)
k,φ zi + s (5.30b)

vH(−Y
(−)
k,φ )v − 2zHi Y

(+)
k,φv ≤

P
(L)
k,φ − P

(R)
k,φ − P

(G)
k,φ − zHi Y

(+)
k,φ zi + s (5.30c)

vHỸ
(+)
k,φv + 2zHi Ỹ

(−)
k,φv ≤

−Q(L)
k,φ +Q

(R)
k,φ +Q

(G)
k,φ + zHi Ỹ

(−)
k,φ zi + s (5.30d)

vH(−Ỹ
(−)
k,φ )v − 2zHi Ỹ

(+)
k,φv ≤

Q
(L)
k,φ −Q

(R)
k,φ −Q

(G)
k,φ
− zHi Ỹ

(+)
k,φ zi + s (5.30e)

vHMk,φv ≤ |vk,φ|2 + s (5.30f)

2zHi (−Mk,φ)v ≤ −|vk,φ|2 + zHi (−Mk,φ)zi + s (5.30g)

(P
(R)
k,φ , Q

(R)
k,φ ) ∈ Ψk,φ (5.30h)

The optimization problem (5.30) can be cast as SOCP which can be solved efficiently

in polynomial time. Each problem instance is feasible due to the positive slack variable.

This feasible point pursuit is summarized in Algorithm 2.

It is clear that the value of s is nonincreasing with i as zi(vi−1) is always feasible

while solving (5.30). Despite the fact that this method in not guaranteed to find a

feasible point, it always converges in the simulations to a voltage profile given by vf

that is feasible. Therefore, vf is used as a starting point for the second part of our
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Algorithm 2: Feasible Point Pursuit Algorithm

Initialization: set i = 0, and choose z0 to be the flat voltage profile.
repeat

vi, s← solution of (5.30).
zi+1 ← vi.
i← i+ 1.

until s < ε1 or ||vi − vi−1|| ≤ ε1
Output: vf ← vi

algorithm (SCA).

5.3.2 Successive Convex Approximation

Starting from a feasible point, the nonconvex feasible set is replaced at each iteration by

an inner convex approximation. Similar to the FPP phase, the surrogates are formulated

as convex upper bounds for the nonconvex parts of the quadratic constraints. Conse-

quently, a monotone sequence that converges to a KKT point of the original problem

(5.5) is generated. In each iteration, the following problem is solved

min
v,α,pR,qR

Cg(α) + Cc(pR) + Ci(qR) (5.31a)

subject to

(5.30b)− (5.30h) (with s removed ⇔ s set to 0)

• ∀k ∈ N , ∀φ ∈ ϕk

vHYk,φ
(+)v + 2zHi Yk,φ

(−)v ≤

− P (L)
k,φ + P

(R)
k,φ + zHi Yk,φ

(−)zi + αk,φ (5.31b)

Note that, since the starting point is feasible, we do not add s to the surrogate con-

straints, or equivalently, the value of s is set to be zero. Therefore, the generated

sequence is always feasible and the cost function is nonincreasing with the iterates.

Algorithm 3 describes the steps of the SCA phase.

Claim 3 (Convergence). From [82, Theorem 1], it can be shown that every limit point

generated using the proposed algorithms is a KKT point. Hence, the first phase converges



62

Algorithm 3: Successive Convex Approximation Algorithm

Initialization: set i = 0, and z0 = vf .
repeat

vi ← solution of (5.31).
zi+1 ← vi.
i← i+ 1.

until vi−1−vi

vi−1
< ε2

Output: vopt ← vi

to a KKT point of (5.30). In addition, if we start the second phase from a feasible

initialization, then the whole sequence generated will converge to the set containing all

the KKT points of the OPF problem (5.5).

The first part of the claim follows directly from [82]. For the second phase, if the

initialization point is feasible, then the whole generated sequence will lie in the feasibility

set. Because the feasible set is compact, i.e., closed and bounded, the whole converging

sequence will go to the set that comprises all the KKT points of (5.5). Note though

that a KKT point of (5.30) is not guaranteed to be a feasible point of (5.5) – in fact [68]

contains a counter-example – however our experience is that a feasible point is generated

with high probability, if one exists (always the case in our OPF experiments).

5.3.3 Identifying Problematic Constraints

The AC OPF problem may be infeasible under a number of operational settings, where

the demand cannot be satisfied without violating voltage and/or flow constraints. When

convex relaxation of the OPF problem is infeasible, it provides an infeasibility certifi-

cate for the original (nonconvex) problem. However, such relaxations typically cannot

provide informative feedback on the problematic constraints – something valuable to

the network operator to take corrective actions. Off-the-shelf solvers such as IPOPT

cannot identify the problematic constraints either.

The FPP-SCA method (5.30) seeks a feasible operating point in the first phase by

minimizing the slack variable. The value of the slack variable at each iteration is in fact

related to the maximum constraint violation. This method can be suitably modified

to enable network operators to identify the constraints that render the overall OPF
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infeasible. Particularly, consider associating a slack variable with each constraint, and

minimizing a cost function that is strictly increasing in the slack variables. Specifically,

consider replacing problem (5.30) with the following one:

min
v,pR,qR,s≥0

‖s‖22 (5.32a)

subject to

• ∀k ∈ N , ∀φ ∈ ϕk

vHY
(+)
k,φv + 2zHi Y

(−)
k,φv ≤

− P (L)
k,φ + P

(R)
k,φ + P

(G)
k,φ + zHi Y

(−)
k,φ zi + sPk,φ (5.32b)

vH(−Y
(−)
k,φ )v − 2zHi Y

(+)
k,φv ≤

P
(L)
k,φ − P

(R)
k,φ − P

(G)
k,φ − zHi Y

(+)
k,φ zi + s

P
k,φ (5.32c)

vHỸ
(+)
k,φv + 2zHi Ỹ

(−)
k,φv ≤

−Q(L)
k,φ +Q

(R)
k,φ +Q

(G)
k,φ + zHi Ỹ

(−)
k,φ zi + sQk,φ (5.32d)

vH(−Ỹ
(−)
k,φ )v − 2zHi Ỹ

(+)
k,φv ≤

Q
(L)
k,φ −Q

(R)
k,φ −Q

(G)
k,φ
− zHi Ỹ

(+)
k,φ zi + s

Q

k,φ (5.32e)

vHMk,φv ≤ |vk,φ|2 + sVk,φ (5.32f)

2zHi (−Mk,φ)v ≤ −|vk,φ|2 + zHi (−Mk,φ)zi + s
V
k,φ (5.32g)

(P
(R)
k,φ , Q

(R)
k,φ ) ∈ Ψk,φ (5.32h)

where s is a vector collecting all the slack variables. It is clear that, in this setting, the

individual value of each slack relates to the violation of the respective constraint.

Let vi, p
(R)
i , q

(R)
i and si denote the solution of (5.32) at the i-th iteration of the

FPP algorithm. Then, using [82], one can easily prove that the sequence generated by

solving (5.32) iteratively is convergent. When si is all zeros at the i-th iteration, the

corresponding vi is a feasible solution for the original problem. On the other hand, if

the problem is infeasible, then the slacks will converge to a non-zero vector and the

positive elements of s will provide a pointer to the constraints that cannot be satisfied.

Notice that replacing the 2-norm in the cost function (5.32a) by ‖s‖∞ yields an

optimization problem that is equivalent to (5.30).
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5.4 Test Cases and Results

To demonstrate the efficacy of the proposed algorithm, four scenarios where convex

relaxation techniques and existing solvers for nonlinear (nonconvex) programs are not

able to reveal feasible solutions will be considered. In the first case, we consider a single-

phase equivalent model for a distribution system with high PV penetration. The ability

of the proposed algorithm to minimize the curtailed power while respecting the network

operational constraints will be demonstrated. Then, the three-phase model of the same

distribution system will be presented. Finally, several transmission systems will be

used to show the ability of the FPP-SCA algorithm to solve challenging OPF problem

instances where other methods fail to find feasible voltage profiles. In addition, the

ability of the proposed algorithm to identify constraints that render the OPF problem

infeasible will be demonstrated. Finally, we will present the results of the FPP-SCA

algorithm when utilized for solving ACOPF problem for radial networks with delta-

connected loads.

The proposed algorithm and the SDR one both employ the MATLAB-based op-

timization modeling package YALMIP [62] along with the interior-point solver Se-

DuMi [94] on an Intel CPU @ 3.5 GHz (16 GB RAM) computer. For the IPOPT

solver, A Julia/JuMP1 Package for Power Network Optimization2 was adopted to solve

the single-phase OPF problems for transmission systems. We initialize our algorithm

with the flat voltage profile. In addition, we choose the values of ε1 and ε2 to be 10−11

and 10−5, respectively.

5.4.1 Results for Systems with Only Wye-Connections

Distribution systems with high PV penetration are likely to experience overvoltage

challenges. The ability to curtail active power generated by the renewables has been

shown to reliably prevent overvoltages and maintain the system operational constraints.

In the first scenario, a modified version of the IEEE 37-node test feeder, shown in Fig.

5.1, is considered. The model is constructed by considering a single-phase equivalent

feeder. Real load data measured from feeders in Anatolia, CA in August 2012 [7] are

1[Online] http://julialang.org/.
2A Julia/JuMP Package for Power Network Optimization. [Online] https://github.com/lanl-

ansi/PowerModels.jl.
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used. The PV inverters are assumed to be located at the red nodes in Fig. 5.1, and

their generation profiles are based on the real irradiance data available in [7].
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Figure 5.1: IEEE 37-node test feeder. The red nodes are the nodes with PV inverters
in the single-phase model. The nodes with PV units installed in the three-phase case
are indexed in blue.

In order to show the efficacy of the proposed algorithm, two different load and

irradiance profiles are considered. The first profile is taken at 1 : 00 PM, where the

available power from PV inverters exceeds the demand. Then, the load and irradiance

data at 7 : 00 PM in considered, where the PV inverters have very low active power. In

both cases, the values of S
(R)
k,φ are set to be 2P

(R)
k,φ , and the values of θk,φ are set such

that the minimum power factor is 0.7 for all the PV units. The limits of the voltage

magnitudes vk,φ and vk,φ are set to be 1.05 and 0.95, respectively. Additionally, the

cost function is determined by setting bφ2,k = 0.1, cφ2,k = 1, dφ2,k = 0.5, and bφ1,k = cφ1,k =

dφ1,k = 0 for all k ∈ N and φ ∈ ϕk.
Table 5.1 shows that the FPP-SCA algorithm is able to find a feasible voltage profile

in both situations, while SDR is not able to find a meaningful solution when the PV

penetration is high. The voltage profiles produced by the FPP-SCA and the SDR are

shown in Fig. 5.2 in the case of low irradiance. From the depicted voltage profile, active

power is drawn from node-1 to achieve the load demand at this moment. On the other

hand, the voltage profile given by the proposed algorithm at 1 : 00 PM is shown in

Fig. 5.3, where the excess of the active power generated by the PV is delivered to the

transmission system connected at node-1. Table 5.2 lists the amount of the available

power at each PV unit at 1 : 00 PM, as well as the curtailed active power resulted from

the FPP-SCA solution and the injected/absorbed reactive power. Note that the power
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Times
SDR FPP-SCA

Feasibility Cost Feasibility Cost

1 : 00 PM times – X 70486
7 : 00 PM X 35157 X 35183

Table 5.1: Comparison between the FPP-SCA algorithm and the SDR.

factor constraint is achieved with equality at all the PV units.

k P
(R)
k,1 (P

(R)
k,1 − P

(R)
k,1 ) Q

(R)
k,1

4 98.60 5.82 −11.46
7 98.60 5.81 −11.46
10 98.60 5.78 −11.50
13 197.20 5.71 −11.57
17 197.20 9.15 −18.53
20 197.20 9.11 −18.58
22 197.20 12.06 −22.92
23 197.20 13.02 −24.38
26 197.20 14.53 −26.72
28 98.60 18.80 −33.04
29 197.20 18.52 −33.54
30 197.20 18.39 −33.81
31 197.20 18.29 −34.02
32 98.60 18.27 −34.08
33 197.20 18.26 −34.08
34 197.20 25.11 −37.89
35 197.20 41.11 −49.40
36 345.10 25.05 −37.93

Table 5.2: PV inverters data for the single-phase system

Next, we consider the three-phase model of the IEEE 37-node feeder. The PV units

are assumed to installed at the nodes indexed in blue in Fig. 5.1. The PV penetration

profile is adopted from the data available in [7]. An instance with high PV penetration

was chosen where the SDR scheme is unable to find a feasible voltage profile. The PV

penetration data is summarized in Table 5.3, where the PV units are installed at one of

the phases at selected buses. Again, we use the same constraints on (P
(R)
k,φ , Q

(R)
k,φ ) and

the cost function from the first scenario are considered.
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Figure 5.2: The optimal voltage profile using FPP-SCA and the SDR at 7 : 00 PM.

Fig. 5.4 depicts the optimal voltage profiles for the three phases across all the buses.

It is clear that the voltage magnitude is high at the nodes with PV units which indicates

the high power injection at these buses. Table 5.3 lists the amount of curtailed power

at the PV units, as well as the reactive power injected/absorbed by the PV inverters.

Remark 2. Initializing the algorithm from the flat voltage profile in high PV penetra-

tion scenarios, the method needs about 1000 iterations in order to converge, where the

subproblem can be solved in 5 and 2 seconds on average in each iteration for the single-

and multi-phase systems, respectively. However, initializing the algorithm from the op-

timal voltage profile of close enough preceding time instance can significantly speed up

the proposed algorithm. Using this strategy of warm start, the method takes only about

6 iterations (i.e., 15-30 seconds) to converge.

The ability of the proposed algorithm to solve the OPF problem instances for trans-

mission networks is demonstrated using the test cases described in [73]. Additionally,

a modified version of a 5-bus network presented in [15] is utilized. The load and gen-

eration limits are edited to the values in Table 5.4, where the real and reactive power

quantities are given in MVA and MVAr, respectively. All the other network parameters

correspond to the original dataset. Table 5.5 presents the lower bound provided by

SDR, the cost of the solution produced by FPP-SCA, and the cost obtained by IPOPT.
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Figure 5.3: The optimal voltage profile using FPP-SCA at 1 : 00 PM.

We also compare the propose method against the moment-based relaxation [73] and the

Laplacian-based approach in Table 5.6 [70].

Remark 3. For transmission networks, there are limits on the apparent power flows on

the lines. Such constraints can be written as nonconvex quadratic ones after introducing

slack variables. This transformation is necessary to write the OPF in QCQP form. The

resulting constraints can be handled using the same way as shown before.

Consider the 14-,39-, 57-, 118-, and 300-bus systems (see e.g., [73]) and a modified

version of the 5-bus network illustrated in [15]. These networks do not have any installed

PV inverters, and hence, only traditional generation cost is considered. Even though the

IPOPT is the most reliable software for solving the OPF problem for transmission sys-

tems, the modified WB5 system represents a case where IPOPT fails; on the other hand,

FPP-SCA provides a feasible (and close to optimal) solution. In addition, no nonlinear

solver among Trusted Region Augmented Lagrangian Multipliers (TRALM [104]), Pri-

mal Dual Interior Point Method (PDIPM [104]), and the Matlab Interior Point Solver

(MIPS [124]), was able to reveal feasible solutions for all the transmission networks we

tested. The solutions obtained using our algorithm are compared with the results of

the algorithms in [73] and [70] in Table 5.6. The FPP-SCA algorithm yields solutions

that achieve generation costs very close to the SDR bound, in all the problem instances
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k φ P
(R)
k,φ (P

(R)
k,φ − P

(R)
k,φ ) Q

(R)
k,φ

7 3 97.86 1.23 0.32
10 1 97.86 0.14 −0.46
13 2 195.71 0 0.17
20 1 195.71 0.23 −0.81
22 3 195.71 2.82 0.85
26 3 195.71 3.55 1.14
28 3 97.86 4.77 1.60
29 1 195.71 0.02 −3.51
30 1 195.71 0.01 −3.87
32 3 97.86 6.76 2.31
33 3 195.71 6.64 2.28
35 2 195.71 0 4.82
36 3 342.5 4.78 1.63

Table 5.3: PV inverters data for the three-phase system.

Table 5.4: WB5 network data.

Node
Load Gen. Limit

P (L) Q(L) P
(G)

P (G) Q
(G)

Q(G)

1 0 0 350 0 300 −30
2 150 20 – – – –
3 150 20 – – – –
4 75 10 – – – –
5 0 0 450 0 300 −30
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Figure 5.4: The optimal voltage profile at the three phases.
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Figure 5.5: IEEE 5-node test feeder. Nodes with generators are depicted in red.

considered. Additionally, we compare the maximum mismatch in the nodal power injec-

tion. We can see that the maximum mismatch in the power injection of our solution is

considerably lower than the mismatch in the solutions produced by [73] and [70]. Also,

whereas the solutions given by the other algorithms violate the line flow constraints by

small values, the FPP-SCA algorithm is capable of finding solutions that do not violate

these constraints. In these other algorithms, we may need to use higher moments to

reduce the mismatch and the violation which makes the computational problem much

harder. The IPOPT solver is capable of finding solutions that are as accurate as the

FPP-SCA solution; however, IPOPT may mistakenly indicate infeasibility of the OPF

problem in cases where the problem is actually feasible.

As an illustrative example, the networks WB5 and case9mod1 are utilized next to

demonstrate the ability of the proposed algorithm to identify the constraints that render
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Test Case SDR Bound FPP Cost IPOPT Cost

WB5 1.1345× 103 1.2647× 103 –

case14Q 3.3016× 103 3.3019× 103 3.3018× 103

case14L 9.3536× 103 9.3875× 103 9.3592× 103

case39Q 1.0814× 104 1.1225× 104 1.1221× 104

case39L 4.1889× 104 4.1974× 104 4.1896× 104

case57Q 7.3472× 103 7.3541× 103 7.3518× 103

case57L 4.3914× 104 4.3998× 104 4.3982× 104

case118Q 8.1508× 104 8.1521× 104 8.1509× 104

case118L 1.3391× 105 1.3510× 105 1.3490× 105

case300 7.1957× 105 7.2016× 105 7.1973× 105

Table 5.5: Test cases and results.

Case
Maximum Injection Mismatch (MVA)
MR [73] LA [70] FPP-SCA

WB5 7.72× 10−9 3.43 9.07× 10−11

case14Q 1.08× 10−3 1.20× 10−5 5.15× 10−8

case14L 5.67× 10−2 3.77× 10−5 2.57× 10−8

case39Q 1.36× 10−1 −− 1.26× 10−4

case39L 4.60× 10−3 8.52× 10−3 2.83× 10−5

case57Q 6.49× 10−3 6.99× 10−4 2.45× 10−7

case57L 8.76× 10−4 4.42× 10−4 2.37× 10−6

case118Q 2.13× 10−1 2.98× 10−3 7.52× 10−6

case118L 4.42× 10−1 2.01× 10−3 1.02× 10−4

case300 5.14× 10−2 7.01× 10−2 7.74× 10−3

Table 5.6: Comparison between the power injection mismatch from [73] and [70] with
our method.
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the OPF infeasible. For WB5 network, the reactive demand at node 2 is increased from

20 MVAr to 70 MVAr. For this setting, the problem is infeasible. The value of the

slack variables associated with the voltage magnitude constraints are illustrated in the

upper panel of Fig. 5.6. Additionally, the slack variables associated with the loads are

illustrated in the lower panel of Fig. 5.6, where sPk and sQk are given by max{sPk , s
P
k }

and max{sQk , s
Q
k }, respectively. The slack variables suggest that the upper limit of the

voltage magnitude at node 1 is tight and the lower bound on the voltage magnitude of

node 2 is tight. This suggests that the voltage difference between node 1 and node 2

should be larger in order to allow a higher flow of reactive power from the generator at

node 1. Also, the slack variables that correspond to the load demand indicate that the

demand at node 2 can not be satisfied under the existing network constraints.
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Figure 5.6: The values of slacks of the voltage and power demand constraints for infea-
sible WB5.

A modified version of a 9-bus network [15] is used next to further demonstrate the

effectiveness of the FPP-SCA approach in identifying the problematic constraints. The

voltage upper and lower limits were modified to be 1.05 and 0.95, respectively. In

this scenario, the test case is infeasible. In Fig. 5.7, the lower panel shows the slacks

associated with the active and reactive power demand constraints. The values of these

slacks are very small (∼ 10−6), indicating that these constraints are easily satisfied. In

1Available at http://www.maths.ed.ac.uk/optenergy/LocalOpt/9busnetwork.html

http://www.maths.ed.ac.uk/optenergy/LocalOpt/9busnetwork.html
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the top panel of Fig. 5.7, however, the slack associated with the lower limit constraint on

the voltage magnitude at bus 9 is much higher, suggesting that this is the problematic

constraint. Indeed, relaxing the lower limit of the voltage magnitude at bus 9 to 0.94

makes the problem feasible. These examples represent cases where the network operator

can quickly discern the source of infeasibility from the results produced by the FPP

method.
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Figure 5.7: The values of the slacks of the voltage and power demand constraints for
infeasible case9mod. The other bars on the top panel are not visible because their
heights are ∼ 10−7.

5.4.2 Experimental Results for Radial Networks Featuring

Delta-Connections

In this subsection, the efficacy of the proposed approach is demonstrated using two radial

distribution feeders featuring both delta and wye connections. The proposed approach

is shown to be able to provide a solution that minimizes the sum of the amount of power

curtailed by the RESs and the power losses in the network while respecting the physical

constraints.

In the first experiment, the IEEE 37-node test feeder shown in Fig. 5.1 is considered.

Since this feeder features only delta-connected loads, wye connections are added as

described in Table 5.9. The cost function Closs(ploss) is defined to be the square of ploss.
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Additionally, the cost function Ck(p
(c)
Y,k,p

(c)
∆,k) is defined to be the square of the amount

of active power curtailed at bus k. The amount of power injected by every renewable

source is shown in Table 5.7, along with the amount of power available from the RESs in

Table 5.10. At the optimal solution using the FPP-SCA algorithm, the total power loss

in the network is 58.6 KW, while the total amount of curtailed power at the renewables

is 6.54 KW out of the 765.44 KW available active power at the RESs. Fig. 5.8 shows

that the voltage profiles obtained using our proposed algorithm satisfy the magnitude

constraints; i.e., the obtained operational point is indeed feasible (and optimal).
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Figure 5.8: The optimal voltage profile (in pu) using FPP-SCA for IEEE 37-node test
feeder.

Figure 5.9: IEEE 13-node test feeder.

The IEEE 13-bus distribution network shown in Fig 5.9 is utilized in the second test.

In this network, there are five shunt capacitor banks installed at different nodes that can
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provide reactive power. These capacitors are modeled as a source that can provide only

reactive power up to the capacitor’s capacity. Details about the loads and the capacitor

capacities are listed in Table 5.11. A cost function that minimizes the power losses in

the network is used. The proposed approach was able to obtain a feasible solution that

minimized the considered cost function. The injections from the capacitor along with

the amount of of power drawn from the substation are summarized in Table 5.8. The

total power loss in the network in the solution is 37.52 KW. The voltage magnitudes

at all the buses are depicted in Fig. 5.10, where it is clear that all the magnitudes lie

within the prescribed limits.
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Figure 5.10: The optimal voltage profile (in pu) using FPP-SCA for IEEE 13-node test
feeder.

For comparison purposes, it is worth emphasizing that the OpenDSS [27] software

can provide flow solutions for the considered distribution networks without distributed

energy sources, with maximum violation of the constraints in the order of 10−5; in

contrast, our algorithm is able to find feasible solutions even for cases where renewable

energy sources are present, with accuracy in the order of 10−12.
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Table 5.7: Results of the proposed approach [kVA].

Node
Power Injected

Phase a Phase b Phase c

799 701+482i 604.5+322.9i 577.85+201.44i

713 0 0 33+16.5i

718 33+16.4i 0 0

724 0 66+33i 0

729 66+32.9i 0 0

730 0 0 66+25i

732 0 0 66+33i

734 0 0 33+16.5i

737 66+33i 0 0

738 66+23i 0 0

741 0 0 33

740 0 0 66+0.5i

736 0 66+33i 0

735 0 0 108.9+19.66i

Table 5.8: Results of the proposed approach in IEEE-13 feeder [kVA].

Node
Power Injected

Phase a Phase b Phase c

650 1228.4+584.15i 967.9+555.5i 1307.4+571.4i

611 0 0 100i

675 200i 0.8i 200i
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Table 5.9: Load data for IEEE-37 distribution feeder [kVA].

Node

Loads
Delta-connected Wye-connected

ab bc ac Phase a Phase b Phase c

701 140+ 70i 140 + 70i 350 + 175i 0 0 0

702 0 0 0 0 0 0

705 0 0 0 0 0 0

712 0 0 85 + 40i 0 0 0

742 8 + 4i 85 + 40i 0 0 0 0

713 0 0 85 + 40i 0 0 0

704 0 0 0 0 0 0

714 17 + 8i 21+ 10i 0 0 0 0

718 85 + 40i 0 0 0 0 0

720 0 0 85 + 40i 0 0 0

707 0 0 0 0 0 0

724 0 42 + 21i 0 0 0 0

722 0 140 + 70i 21+ 10i 0 0 0

706 0 0 0 0 0 0

725 0 42 + 21i 0 0 0 0

703 0 0 0 0 0 0

727 0 0 42 + 21i 0 0 0

744 42 + 21i 0 0 0 0 0

729 42 + 21i 0 0 0 0 0

728 42 + 21i 42 + 21i 42 + 21i 65 + 30i 55 + 21i 42+ 21i

730 0 0 85 + 40i 0 0 0

709 0 0 0 0 0 0

731 0 85 + 40i 0 0 0 0

708 0 0 0 0 0 0

732 0 0 42 + 21i 0 0 0

733 85 + 40i 0 0 0 0 0

734 0 0 42 + 21i 0 0 0

737 140 + 70i 0 0 0 0 0

738 126 + 62i 0 0 0 0 0

711 0 0 0 0 0 0

741 0 0 42 + 21i 0 0 0

740 0 0 85 + 40i 0 0 0

710 0 0 0 0 0 0

736 0 42 + 21i 0 0 0 0

735 0 0 85 + 40i 0 0 0
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Table 5.10: RES data for IEEE-37 distribution feeder [kVA].

Node
Available power from RES
Phase a Phase b Phase c

713 0 0 33

718 33 0 0

724 0 66 0

729 66 0 0

730 0 0 66

732 0 0 66

734 0 0 33

737 66 0 0

738 66 0 0

741 0 0 33

740 0 0 66

736 0 66 0

735 0 0 115.44
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Chapter 6

Conclusions and Future Research

Directions

In this dissertation we presented machine learning and optimization approaches for

optimal resource management and state estimation in multi-phase distribution networks.

In this final chapter, we recap the main results and take-home points in the dissertation

and point out possible directions for future research.

6.1 Thesis Summary

Benefiting from recent advances in machine learning and leveraging the abundance of

historical data, a novel data-driven learning-based architecture was presented in Chap-

ter 3 for distribution system state estimation. The proposed approach designs a neu-

ral network that can accommodate several types of measurements as well as pseudo-

measurements. Historical load and energy generation data is used to train a neural

network in order to produce an approximation of the network state. Then, this es-

timate is fed to a Gauss-Newton algorithm for refinement. Our realistic experiments

suggest that the combination offers fast and reliable convergence to the optimal solu-

tion. The IEEE-37 test feeder was used to test the proposed approach in scenarios that

include distributed energy sources. The proposed learning approach shows superior

performance results in terms of the accuracy of the estimates as well as computation

time.

80
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The joint learning and optimization approach in Chapter 3 entails performing several

Gauss-Newton iterations. The flip side is that these iterations might come at huge com-

putational cost especially for large scale networks. Therefore, a novel learning model

that facilitates real-time monitoring of distribution network operations was proposed

in Chapter 4. The graph-pruned NN approach utilizes the approximate separability

of the DSSE problem resulting from installing µPMUs at some buses. By pruning

the unneeded NN connections, the resulting model prevents over-fitting behavior ex-

ploiting the available knowledge regarding the network physics. A greedy algorithm

was proposed for installing µPMUs in order to minimize the diameter of the resulting

partitioning of the distribution feeder. Simulation results corroborate the efficacy of

the greedy algorithm for finding near-optimal placement solutions. Also, the proposed

PAWNN approach shows superior performance in estimating the network state from few

noisy real-time measurements and pseudo-measurements on the IEEE-37 distribution

feeder. In addition, the proposed approach was shown to be robust against corrupted

measurements.

Building on the so-called Feasible Point Pursuit - Successive Convex Approximation

algorithm, an effective solver for AC OPF problem in multi-phase networks with re-

newables was presented in Chapter 5. First, the AC OPF problem was presented for

multi-phase networks with potentially pervasive integration of renewable energy sources.

The problem was formulated as a nonconvex QCQP, and solved using the FPP-SCA

algorithm. The proposed algorithm was shown to be effective in solving the OPF prob-

lem in many settings, including single- and three-phase models for power networks with

renewables. The FPP-SCA is able to identify optimal operating points that satisfy the

network constraints even under high RES penetration setups.

Also, an extension of the AC OPF formulation was put forth for radial networks

featuring wye- and delta-connected generation and load units. The resulting problem

was also formulated as QCQP which is amenable to the FPP-SCA solver. The FPP-

SCA was empirically shown to be very effective in solving the AC OPF when the power

curtailed from RESs is to be minimized – a setup where competing solution methods

based on convex relaxation approaches may fail in identifying even a feasible solution.

Finally, the ability of the proposed algorithm to find more accurate solutions than the

moment-based relaxation and the Laplacian-based approach was demonstrated using



82

several IEEE test cases with and without delta-connections. The algorithm was also

shown to be able to identify constraints that render the OPF problem infeasible.

6.2 Future Research Directions

The results in this thesis open up interesting directions of future research topics including

utilizing knowledge of physical model parameters in the learning approach for state

estimation, using the physics-aware NN model for managing assets in the smart grid,

and developing unit commitment solvers. Next, we outline some directions for future

research.

6.2.1 Physics-Aware Learning Models

The results obtained from our data-driven approaches are truly intriguing – and hinge

on the particular design of the learning models as well as the distinct training approaches

utilized. This initial success prompts us to consider the following directions.

• Physics-aware learning models Whereas our particular design of the training

procedure in the state estimator is a matter of engineering art, deliberate design of

learning models that utilize knowledge of the network parameters in addition to the

structure can boost the performance of the learning models. In addition, a verifiable

learning approach can be devised by knowing the exact network parameters.

• Theoretical analysis What should the architectural complexity of the neural net-

work ‘preconditioner’ be to ensure good performance? How many stages and how many

nodes? We need theoretical complexity analysis to understand the trade-offs. By an-

swering these questions, we can also solve the dual problem of optimal placement of

measuring devices in order to achieve a monitoring accuracy employing a particular

learning model.

• Network-wide learning-based energy management While our work focused on

optimal control of energy assets, learning methods can make real-time control feasi-

ble [116]. The group behavior of multi-agent learning procedures is an area that re-

quires more research. In addition, a model-free reinforcement learning framework can

be developed that aims for maximal utilization of energy assets and system-wide stable

operation.
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6.2.2 Unit Commitment Problem

The Unit Commitment (UC) problem in power systems involves making multi-period

generation schedules to be used to meet an anticipated demand over a future short-

term period [107]. Due to increased penetration of RESs, solving the UC problem has

become critically important in order to deal with the uncertainty introduced in the

system by random fluctuations in the availability of wind and solar energy. In order

to support integration of wind and solar energy resources, the UC problem has been

studied for power systems with ES units [25]. Also, many variants of the UC problem

have been proposed to determine the placement and operation of ES units in power

networks [28, 105, 109]. Nevertheless, battery operation in distribution networks has

not been well-studied in the literature, especially for multi-phase systems. Since many

investor-owned ES units have been installed recently in distribution networks, solving

the UC problem for ensuring a profitable turnover for these units is necessary. In

standard form, the UC problem can be formulated as

max
{v(t),u(t)}0≤t≤T

∑
0≤t≤T

f(u(t)) (6.1a)

s.t. h(v(t),u(t)) = 0,

g(v(t),u(t)) ≤ 0,

 0 ≤ t ≤ T (6.1b)

Ψ(u(t),u(t− 1)) ≤ 0, 1 ≤ t ≤ T (6.1c)

where v(t) denote the state variables, i.e, voltages, at time instance t, while u(t) collects

the other variables at the same time step. The cost function aggregates the generation

cost and utility-based terms. The constraint (6.1c) encapsulates the binding constraints

on SoC and ramp constraints on all energy resources.

An accurate formulation that incorporates investor-installed ES units in distribution

networks and maximizes profits accrued in battery operation is needed. Multi-phase

unbalanced distribution systems offer a formidable challenge in obtaining accurate solu-

tions that respect the network constraints while ensuring profitable returns for installed

ES units. An SCA based approach in the vein of FPP-SCA can be adopted to tackle the

problem [113], and a decentralized approach [53,110] can also be pursued that allows for

distributed actions from the owners of the ES units. Furthermore, when the available
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SoC and State-of-Health (SoH) estimates are inaccurate [81], a stochastic programming

approach needs to be considered to handle the resulting uncertainty introduced in the

formulation (6.1).
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[93] B. Stott, J. Jardim, and O. Alsaç, “Dc power flow revisited,” IEEE Transactions

on Power Systems, vol. 24, no. 3, pp. 1290–1300, 2009.

[94] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization over

symmetric cones,” Optimization methods and software, vol. 11, no. 1-4, pp. 625–

653, Jan 1999.

http://eta-publications.lbl.gov/sites/default/files/9a._data_and_analytics_ems_core-ls.pdf
http://eta-publications.lbl.gov/sites/default/files/9a._data_and_analytics_ems_core-ls.pdf
https://www.smartcitiesworld.net/news/news/germany-predicted-to-be-smart-grid-investment-hot-spot-974
https://www.smartcitiesworld.net/news/news/germany-predicted-to-be-smart-grid-investment-hot-spot-974


95

[95] X. Su, M. A. S. Masoum, and P. J. Wolfs, “Optimal PV inverter reactive power

control and real power curtailment to improve performance of unbalanced four-

wire LV distribution networks,” IEEE Trans. on Sustainable Energy, vol. 5, no. 3,

pp. 967–977, July 2014.

[96] H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos,

“Learning to optimize: Training deep neural networks for wireless resource

management,” CoRR, vol. abs/1705.09412, 2017. [Online]. Available: http:

//arxiv.org/abs/1705.09412

[97] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus, “Regularization of neural

networks using dropconnect,” in International Conference on Machine Learning,

2013, pp. 1058–1066.

[98] G. Wang, V. Kekatos, A. J. Conejo, and G. B. Giannakis, “Ergodic energy man-

agement leveraging resource variability in distribution grids,” IEEE Trans. on

Power Systems, vol. PP, no. 99, pp. 1–11, Feb 2016.

[99] G. Wang, A. S. Zamzam, G. B. Giannakis, and N. D. Sidiropoulos, “Power system

state estimation via feasible point pursuit: Algorithms and Cramér-Rao bound,”

IEEE Transactions on Signal Processing, vol. 66, no. 6, pp. 1649–1658, Mar 2018.

[100] G. Wang, H. Zhu, G. B. Giannakis, and J. Sun, “Robust power system state

estimation from rank-one measurements,” IEEE Trans. Control Netw. Syst., 2019.

[101] G. Wang, G. B. Giannakis, and J. Chen, “Robust and scalable power system state

estimation via composite optimization,” arXiv preprint arXiv:1708.06013, 2017.

[102] G. Wang, G. B. Giannakis, J. Chen, and J. Sun, “Distribution system state esti-

mation: An overview of recent developments,” Front. Inf. Technol. Electron. Eng.,

vol. 20, no. 1, pp. 1–14, Jan. 2019.

[103] H. Wang and N. N. Schulz, “A revised branch current-based distribution system

state estimation algorithm and meter placement impact,” IEEE Trans. on Power

Systems, vol. 19, no. 1, pp. 207–213, Feb 2004.

http://arxiv.org/abs/1705.09412
http://arxiv.org/abs/1705.09412


96

[104] H. Wang, C. E. Murillo-Sanchez, R. D. Zimmerman, and R. J. Thomas, “On

computational issues of market-based optimal power flow,” IEEE Trans. on Power

Systems, vol. 22, no. 3, pp. 1185–1193, July 2007.
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Appendix A

Proof of Proposition 1

To prove the proposition, we first invoke the following lemma:

Lemma 1 ( [20, Theorem 2] ). Let σ(·) be any continuous sigmoidal function. Then,

given any function f(·) that is continuous on the d-dimensional unit cube Id = [0, 1]d,

and ε > 0, there is a sum, g(·) : Rd → R, of the form

g(z) =
T∑
t=1

αtσ(wT
t z + βt) (A.1)

for which,

|g(z)− f(z)| < ε ∀z ∈ Id.

Proof of Proposition 1. Note that the vector-valued function F(·) can be represented

as K separate scalar-valued functions. In order to prove the proposition, we start by

considering approximating a scalar-valued function fk(z) that represents the mapping

between z and the k-th element of F(z).

Since zj ’s are finite with length L, finite maximum and minimum along each di-

mension can be obtained. Let the vectors that collect the maximum and minimum

values be denoted by z and z, respectively. Then, each training sample zj is replaced by

z̃j = Dz−z(zj − z), where Dz−z is a diagonal matrix that has the values of z− z on the

diagonal. Therefore, the vectors z̃j are inside the L-dimensional cube IL. According to
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Lemma 1, there exists a sum g̃k(z̃) in the form of

g̃k(z̃) =

Tk∑
t=1

α̃t,kσ(w̃T
t,kz + β̃t,k) (A.2)

that satisfies

|fk(z̃j)− g̃k(z̃j)| < ε1 ∀ z̃j (A.3)

for ε1 > 0. Then, let gk(z) be a mapping in the form of (A.2) where the parameters are

given by

αt,k= α̃t,k, βt,k= β̃t,k−w̃T
t,kDz−z z, wt,k= Dz−zw̃t,k.

Then, for all zj we have

|fk(zj)− gk(zj)| < ε1. (A.4)

This result holds for each of the K scalar elements of F(z). Therefore, by parallel

concatenation of the K neural networks used to approximate the K scalar-valued func-

tions, we obtain a shallow neural network that has K outputs and (
∑

i Ti) neurons at

the hidden layer. Setting ε =
√
K ε1, we deduce that there exists a sum gT (z) in the

form of (3.1) that satisfies

‖F(zj)− gT (zj)‖2 < ε ∀ zj . (A.5)

It is clear now that the parameters of this function gT (z), i.e., αt, wt, and βt, achieve

a zero cost function solving Problem (3.3), and hence is optimal in solving (3.3).

In addition, since an approximation can be realized using any sigmoid functions, the

main result in [69] specifies that the minimum number of neurons required to achieve

accuracy at least ε1 for a scalar-valued function is given by

T = O(ε
−L

r
1 ) (A.6)

where r denotes the number of continuous derivatives of the approximated function

f(z), and L represents the number of parameters of the function. In order to achieve
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ε accuracy for approximating F(z), at least one of the real-valued functions that con-

struct F(z) has to achieve ε√
K

. Hence, the complexity of shallow neural networks that

optimally solve (3.3) for ε > 0 is at least

T = O
(( ε√

K

)−L
r

)
.



Appendix B

Continuity of State Estimation

Mapping: An Example Network

The neural networks are known as universal functions approximators. Nevertheless, the

theoretical results on the ability to approximate function are usually limited to contin-

uous functions. Hence, for continuous functions, the neural networks are expected to

be able to achieve high approximation accuracy. Unfortunately, checking the continu-

ity of the state estimation solution, which is an inverse mapping of a highly nonlinear

function, is not simple to be checked.

In this appendix, a 3-bus balanced lossless network is presented, in Fig. B.1, in order

to inspect the continuity of the state estimation mapping. We assume that the simple

network has 3 buses and that the magnitude of the voltages are measured at all buses.

In addition, the active and reactive power flows are measured at all lines. Since, the

phase at Bus 1 can be taken as a reference for the other buses, the state estimation

problem amounts to estimating the lines phase differences, or equivalently, the phases

at Bus 2 and Bus 3.
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Figure B.1: Example 3-bus network

The power flow equations can be expressed as follows

P12 = B12|v1||v2| sin(θ12), (B.1)

Q12 = |v1|2 −B12|v1||v2| cos(θ12), (B.2)

P13 = B12|v1||v3| sin(θ13), (B.3)

Q13 = |v1|2 −B12|v1||v3| cos(θ13) (B.4)

where Bij is the susceptance of the line between Bus i and Bus j, |vi| is the voltage

magnitude at the i-th Bus, and θij is the angle difference on the line (i, j). Assuming that

the collected measurements are noiseless, the solution of the state estimation problem

can be written in closed-form as

θ12 = sin−1
( P12

B12|v1||v2|

)
, (B.5)

θ13 = sin−1
( P13

B13|v1||v3|

)
. (B.6)

Claim 4. The mapping between the measurements P12, P13, |v1|, and |v2| and the state
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of the network, i.e., θ12 and θ13, is continuous if

B12|v1||v2| ≥ ε, and B13|v1||v3| ≥ ε (B.7)

for any ε > 0.

Proof. The proof is straightforward and build upon basic results from real functions

analysis. First, the function

f1(P12, |v1|, |v2|) =
P12

B12|v1||v2|
(B.8)

is continuous on B12|v1||v2| ∈ [ε,∞] for any ε > 0. Then, the mapping functions in (B.5)

is composite function of f1 and sin−1(·) which is a continuous function. Therefore, the

mapping in (B.5) is continuous on B12|v1||v2| ∈ [ε,∞] for any ε > 0 [85]. The same

follows for θ13.



Appendix C

Construction of Quadratic

Matrices for QCQP Formulation

of ACOPF

The quadratic equality constraints (5.19) and (5.20) involve complex voltages xv, and

currents xi and x∆. As mentioned in Section III-B, the complex voltage x̃ is constructed

by concatenating the three vectors. In order to write the constraints (5.19) and (5.20) in

the general form quadratic constraint x̃, we need to construct quadratic matrices that

represent the constraints. To this end, sort the lines in the network according the index

of the receiving end of each line by a nondecreasing order. Note that, due to the tree

structure assumed on the network, each bus except the substation appears only once as

a receiving end. Let us define some transformation matrices as follows.

Tvk = [03×3k I3×3 03×3(n−k) 03×3(n+1) 03×3n]T

T∆,k = [03×3(n+1) 03×3k I3×3 03×3(n−k) 03×3n]T

Tikj = [03×6(n+1) 03×3(j−1) I3×3 03×3(n−j)]
T

U∆,k = [Tvk T∆k
]

Ukj = [Tvk Tikj ]
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Hence, the vectors x∆,k and xki are given by UT
∆,kx̃ and UT

kjx̃, respectively. Accordingly,

the equality (5.19) can be re-written as
sab∆,k

sbc∆,k

sca∆,k

 =


x̃HU∆,k (E41 − E42) UT

∆,kx̃

x̃HU∆,k (E52 − E53) UT
∆,kx̃

x̃HU∆,k (E63 − E61) UT
∆,kx̃

 , ∀k ∈ N . (C.1)

These three complex equalities can be written as six real quadratic equations involving

the complex vector x̃. Introduce the Hermitian matrices Yφ
∆,k for all φ ∈ Φ∆ which are

as follows.

Yab
∆,k =

1

2
U∆,k((E41 − E42) + (E41 − E42)T )UT

∆,k

Ỹab
∆,k =

1

2i
U∆,k((E41 − E42)− (E41 − E42)T )UT

∆,k

Ybc
∆,k =

1

2
U∆,k((E52 − E53) + (E52 − E53)T )UT

∆,k

Ỹbc
∆,k =

1

2i
U∆,k((E52 − E53)− (E52 − E53)T )UT

∆,k

Yca
∆,k =

1

2
U∆,k((E63 − E61) + (E63 − E61)T )UT

∆,k

Ỹca
∆,k =

1

2i
U∆,k((E63 − E61)− (E63 − E61)T )UT

∆,k

Then, the symmetric matrix Bφ
∆,k for φ ∈ Φ∆ can defined as

Bφ
∆,k =

[
<{Yφ

∆,k} −={Y
φ
∆,k}

={Yφ
∆,k} <{Yφ

∆,k}

]
. (C.2)

Similarly, we construct B̃φ
Delta,k as function Ỹφ

∆,k. Using the matrices Ukj and Tvk , one

can follow the same steps to construct the symmetric matrices Bφ
Y,k and B̃φ

Y,k for all

k ∈ N and φ ∈ Φ.



Appendix D

Acronyms

Care has been taken in this dissertation to minimize the use of jargon and acronyms,

but this cannot always be achieved. This appendix contains a table of acronyms and

their meaning.

Table D.1: Acronyms

Acronym Meaning

AC Alternating Current

DC Direct Current

DFS Depth First Search

DNN Deep Neural Network

DSSE Distribution System State Estimation

ES Energy Storage

FPP Feasible Point Pursuit

MIPS Matlab Interior Point Method

NN Neural Network

OPF Optimal Power Flow

PDIPM Primal Dual Interior Point Method

PMU Phasor Measurement Unit

PV Photovoltaic

Continued on next page
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Table D.1 – Continued from previous page

Acronym Meaning

QC Quadratic Convex

QCQP Quadratically Constrained Quadratic Program

RES Renewable Energy Source

SCA Successive Convex Approximation

SCADA Supervisory Control and Data Acquisition

SDR Semidefinite Relaxation

SE State Estimation

SOCP Second Order Cone Program

TRALM Trusted Region Augmented Lagrangian Multipliers

WLS Weighted Least-Squares
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