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Abstract

The problem of predicting a user’s behavior on a web-sitegaiised importance due to the rapid
growth of the world-wide-web and the need to personalizeiafidence a user’s browsing experience.
Markov models and their variations have been found wellesufbr addressing this problem. Of the
different variations or Markov models it is generally fouthdt higher-order Markov models display high
predictive accuracies. However higher order models ae @atsremely complicated due to their large
number of states that increases their space and runtimageetgnts. In this paper we present different
techniques for intelligently selecting parts of differentdler Markov models so that the resulting model
has a reduced state complexity and improved predictionracguwWe have tested our models on various

datasets and have found that their performance is congjsgeiperior to that obtained by higher-order
Markov models.
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1 Introduction

In recent years, the problem of modeling and predicting &siserfing behavior on a web-site has attracted
a lot of research interest as it can be used to improve the aetecperformance [SKS98, Bes95, PM96],
recommend related pages [DH99, PPR96], improve searchesnfP98], understand and influence buying
patterns [CPM98], and personalize the browsing experience [PP99]. Tmfiiance of this problem is ev-
ident by the fact that at the SIGKDD 2000 Conference [KBO@]phoblem of predicting and understanding
a user’s browsing and purchasing behavior was the topiceoKIDDCup 2000 Competition.

Markov models [Pap91] have been used for studying and utasheling stochastic processes, and were
shown to be well-suited for modeling and predicting a uslertavsing behavior on a web-site. In general,
the input for these problems is the sequence of web-pagesvéra accessed by a user and the goal is to
build Markov models that can be used to model and predict #tepage that the user will most likely access
next. Padbanabham and Mogul [PM96] i&énop Markov models for improving pre-fetching strategiess f
web caches. Pitkowt al. [PP99] proposed a longest subsequence models as an taletoahe Markov
model. Sarukkai [Sar00] use Markov models for predicting tiext page accessed by the user. Cadez
et al. [CHM*00] use Markov models for classifying browsing sessions different categories.

In many applications, first-order Markov models are not vegurate in predicting the user’s browsing
behavior, since these models do not look far into the pasobtectly discriminate the different observed
patterns. As a result, higher-order models are often usedortuinately, these higher-order models have a
number of limitations associated with high state-spaceptexity, reduced coverage, and sometimes even
worse prediction accuracy. One simple method to overcomeesaf these problems is to train varying
order Markov models and use all of them during the predicpbase, as is done in the AH"-Order
Markov model proposed in [PP99]. However, this approacth&rexacerbates the problem of state-space
complexity. An alternate approach proposed by Pitletval. [PP99] is to identify patterns of frequent
accesses, which they call longest repeating subsequarm#hen use this set of sequences for prediction.
However, even though this approach is able to reduce the-spaice complexity by up to an order of
magnitude, it also reduces the prediction accuracy of thaltieg model.

In this paper we present techniques for intelligently carmyg different order Markov models so that, the
resulting model has a low state complexity, improved pigaticaccuracy, and retains the coverage of the
All- Kt"-Order Markov models. The key idea behind our work is thatyradithe states of the different order
Markov models can be eliminated without affecting the penfance of the overall scheme. In particular,
we present three schemes for pruning the states of thé& RHOrder Markov model, called (i) support
pruning (ii) confidence pruning (iii) error pruning. Our ejpments on a variety of data sets have shown
that the proposed pruning schemes consistently outperfoerAll-K™"-Order Markov model and other
single-order Markov models, both in term of state compleai well as improved prediction accuracy. For
many problems, our schemes prune up to 90% of the states frerAlt-K"-Order Markov model, and
improve the accuracy by up to 11%.

Even though our algorithms were developed in the contextatf-usage data, we have successfully used
these techniques for prediction in different applicatjcas well. For example, these models were used to
predict the next command typed by the user in word process®don his/her past sequence of commands
or for predicting the alarm state of telephone switches dhaseits past states. These applications will be
discussed in detail in Section 4.1.

The rest of this paper is organized as follows. Section 2gmtssan overview of Markov models followed
by a brief overview of the problem of predicting a user’s bsovg behavior. Section 3 presents a detailed



description of our selective Markov models. Section 4 ptesia detailed experimental evaluation of our
algorithms on a variety of data sets. Finally, Section 5reffmme concluding remarks.

2 Markov Models for Predicting User’s Actions

As discussed in the introduction, techniques derived froarkdv models have been extensively used for
predicting the action a user will take next given the seqaasfcactions he or she has already performed.
For this type of problems, Markov models are representechisetparameters A, S, T >, whereA is

the set of all possiblactionsthat can be performed by the us&is the set of all possible states for which
the Markov model is built; and is a|S| x |A| Transition Probability Matrix(TPM), where each entr;
corresponds to the probability of performing the actjowhen the process is in state

The state-space of the Markov model depends on the numbeewbps actions used in predicting the
next action. The simplest Markov model predicts the nexoadiy only looking at the last action performed
by the user. In this model, also known as finst-order Markov modeleach action that can be performed by
a user corresponds to a state in the model. A somewhat morglicated model computes the predictions
by looking at the last two actions performed by the user. Thisalled thesecond-order Markov model
and its states correspond to all possible pairs of acticatscdn be performed in sequence. This approach is
generalized to th& "-order Markov modelwhich computes the predictions by looking at the lKsictions
performed by the user, leading to a state-space that cerdadipossible sequences lgfactions.

For example, consider the problem of predicting the nexé@agessed by a user on a web site. The input
data for building Markov models consists wEb-sessionsvhere each session consists of the sequence of
the pages accessed by the user during his/her visit to #elsithis problem, the actions for the Markov
model correspond to the different pages in the web site, lamdtates correspond to all consecutive pages
of length K that were observed in the different sessions. In the casesbfolider models, the states will
correspond to single pages, in the case of second-orderlsndde states will correspond to all pairs of
consecutive pages, and so on.

Once the states of the Markov model have been identified réimsition probability matrix can then be
computed. There are many ways in which the TPM can be buile mbst commonly used approach is
to use atraining set of action-sequences and estimate @gcantry based on the frequency of the event
that actiona; follows the states;. For example consider theeb-session Wo§ Ps, Ps, P>, Py, P4}) shown
in Figure 1. If we are usindrst-order Markov modethen each state is made up of a single page, so the
first pagePs; corresponds to the stagg. Since pageps follows the states; the entrytss in the TPM will
be updated. Similarly, the next state will beand the entryts, will be updated in the TPM. In the case
of higher-order model each state will be made up of more th@naztions, so for a second-order model
the first state for theveb-session W-Sonsists of pagesPs, Ps} and since the pagP, follows the state
{Ps, Ps} in the web-session the TPM entry corresponding to the $RtePs} and pageP, will be updated.

Once the transition probability matrix is built making piettbn for web sessions is straight forward. For
example, consider a user that has accessed fRgeés, P,. If we want to predict the page that will be
accessed by the user next, using a first-order model, we willifientify the state, that is associated with
pageP,; and look up the TPM to find the pagg that has the highest probability and predict it. In the case
of our example the prediction would be page



Web Sessions: 1stOrder | Py | P | P3| P4 | Ps
WS : {P3, P, P} s1 = {P1} 0 0 0 2 1
WS : {P3, Ps, Py, P1, P4} s = {Py} 4 0 0 0 1
W% : {P47 P57 P27 Pl? P57 P4} 3= {PB} 0 1 0 1 1
WS : {P3, P4, Ps, Pp, P1} ss={Pyg| O] 1] 0] o 2
WS : {P1, P4, Py, Ps, Py} ss={P5} | 0| 3] 0] 2 ©
2ndOrder | PL | Po | P3| P4 | Ps | 2ndOrder | P | P, | P3 | P4 | Ps
{P1, P4} 0 1 0 0 0 {P3, Ps} 0 1 0 0 0
{P1, Ps} 0 0 0 1 0 {P4, P2} 0 0 0 0 1
(PP} | 0| O] O 1| 1| {(PPsy | O 2] O 0] ©
{Po, Ps5} 0 0 0 1 0 {Ps, P2} 3 0 0 0 0
{Ps3, P>} 1 0 0 0 0 {P3, P4} 0 0 0 0 1

Figure 1: Sample web sessions with the corresponding 1st & 2nd order Transition Probability Matrices.

2.1 Limitations of Markov Models

In many applications, first-order Markov models are not sgstul in predicting the next action to be taken
by the user. This is because these models do not look farhietpdst to correctly discriminate the different
behavioral modes of the different users. As a result, inrotdeobtained good predictions higher-order
models must be use@.g, second and third) . Unfortunately, these higher-ordedef®have a number of
limitations associated with (i) high state-space compyexii) reduced coverage, and (iii) sometimes even
worse prediction accuracy.

The number of states used in these models tend to rise exrllyeas the order of the model increases.
This is because, the states of higher-order models arengpltit different combinations of the actions ob-
served in the dataset. This dramatic increase in the nunilsates can significantly limit the applicability
of Markov models for applications in which fast predictiare critical for real-time performance or in appli-
cations in which the memory constraints are tighty(embedded models for web-access caching [PM96]).
Furthermore, there may be many examples in the test setdhadtchave corresponding states in higher-
order Markov model; thus, reducing their coverage. In swenarios higher-order models must make a
default prediction that can lead to lower accuracies.

To better understand these shortcomings we conducted amimyemt on one of our web datasets. We
compared various higher-order Markov models starting fthenfirst all the way to the fifth order Markov
model. If a higher-order model was unable to make a predi¢toa particular web-session, it was ignored
from accuracy calculations.¢., the accuracy is calculated only on those examples on vth&prediction
was made). The results are plotted in Figure 2, and we carhatag the order of the model increases the
accuracy increases accompanied by a decrease in the cevétdfe same time, as the order of the model
increases, the number of states used for the model als@aseFamatically.

One simple method to overcome the problem of low coverage tsgatn varying order Markov models
and then combine them for prediction [PP99]. In this schefoegach test instance, the highest-order
Markov model that covers the instance is used for predictiéor example, if we build the first, second,
and third-order Markov models, then given a test instaneefinst try to make a prediction using the third-
order model. If this model does not contain the correspandtate, then we try to make a prediction using
the second-order model, and so on. This scheme is calledlitié€t"-Order Markov mode[PP99]. Note
that even though the Alkt"-Order Markov model solves the problem of low coverage itcexbates the
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Figure 2: Plot comparing accuracy, coverage and model size with the order of Markov model.

problem of model size, as the states of all the differentonaiedels are part of the model.

Finally, as the number of states in higher-order Markov n®d&rease the number of training-set in-
stances used to compute the state-action transition piibiesbfor each of the states tends to decrease. A
consequence of this reduction in thepportof individual states, is that some of the estimated statierac
transition probabilities are not accurate. As a result,aerall accuracy achieved by higher-order Markov
models can sometimes be lower that achieved by the corrdsmgplower-order Markov models.

3 Selective Markov Models

As discussed in the previous section, Kl'-Order Markov model holds the promise of achieving higher
prediction accuracies and improved coverage than anyesiorgler Markov model, at the expense of a dra-
matic increase in the state-space complexity. This led aevelop techniques for intelligently combining
different order Markov models so that the resulting mode loav state complexity, improved prediction
accuracy, and retains the coverage of theif-Order Markov model.

Our schemes were motivated by the observation that givenuesee of actions for which we need to
predict the next most probable action, there are multig¢estin the AllK'"-Order Markov model that
can be used to perform that prediction. In fact, there canshmany states as the number of the different
order Markov models used to form the AIt"-Order Markov model. Now, depending on the particular
set of states involved, each of them can have different giiedi accuracies. Based on this observation, we
can then start from the AlK!"-Order Markov model and eliminate many of its states thatapected to
have low prediction accuracy. This will allow us to reduce tlverall state complexity without affecting the
performance of the overall scheme.

The starting point for all of our algorithms is the Mt"-Order Markov model obtained by building a



sequence of increasing order Markov models. However,adsté using this model for prediction, we use a
number of techniques to eliminate certain states acrosdiffieeent order Markov models. The set of states
that survive this step, then become the final model used figtion. The goals of thipruning step is
primarily to reduce the state complexity and secondarilprione the prediction accuracy of the resulting
model. We will refer to these models sslective Markov models

The key step in our algorithm is the scheme used to determipetential accuracy of a particular state.
In the rest of this section we present three different sclsewith an increasing level of complexity. The
first scheme simply eliminates the states that have very lpppat. The second scheme uses statistical
techniques to identify states for which the transition ptailities to the two most prominent actions are not
statistically significant. Finally, the third scheme usasearor-based pruning approach to eliminate states
with low prediction accuracy.

3.1 Support-Pruned Markov Model

The support-pruned Markov mode(SPMM) is based on the observation that states that haveuppuost

in the training set tend to also have low prediction accesciConsequently, these low support states can
be eliminated without affecting the overall accuracy ad agkoverage of the resulting model. The amount
of pruning in the SPMM scheme is controlled by the paramegtesferred to as th&equency thresholdin
particular, SPMM eliminates all the states of the differertter Markov models that are supported by fewer
thang training-set instances.

There are a number of observations to be made about the SPK@Msc First, the same frequency
threshold is used for all the models regardless of theirrorflecond, this pruning policy is more likely to
prune higher-order states as higher order states haveulggsrs, thus dramatically reducing the state-space
complexity of the resulting scheme. Third, the frequencggshold parametes, specifies the actual number
of training-set instances that must be supported by eathasta not the fraction of training-set instances as
it is often done in the context of association rule discoyamp93]. This is done primarily for the following
two reasons: (i) the trust-worthiness of the estimatedstt@mm probabilities of a particular state depend on
the actual number of training-set instances and not on tagvwe number; (ii) the total number of training-
set instances is in general exponential on the order of th&xdanodel, thus the same fractional pruning
threshold will have a completely different meaning for tliffedent order Markov models.

3.2 Confidence-Pruned Markov Model

One of the limitations of the SPMM scheme is that it does nptw all the parameters that influence the
accuracy of the state. In particular the probability disttion of outgoing actions from a state is completely
ignored. For example, consider a Markov state which has tgaing actions/branches, such that one of
them is substantially more probable than the other. Evdreibverall support of this state is somewhat low,
the predictions computed by this state will be quite retidibkcause of the clear difference in the outgoing
probabilities. On the other hand, if the outgoing probébdi in the above example are very close to each
other, then in order for that difference to be reliable, theyst be based on a large number of training
instances. Ideally, we would like the pruning scheme to mby consider the support of the state but also
weigh the probability distribution of the outgoing actidmsfore making its pruning decisions.
This observation led to us to develop tbenfidence-pruned Markov mod€CPMM) scheme. CPMM

uses statistical techniques to determine for each staltes grobability of the most frequently taken action is
significantly different from the probabilities of the ottestions that can be performed from this state. If the



probability differences are not significant, then thisesiatunlikely to give high accuracy and it is pruned.
In contrast, if the probability differences are significtime state is retained.

The CPMM scheme determines if the most probable action méfgigntly different than the second most
probable action by computing the 1Q0- «) percent confidence interval around the most probable action
and checking if the probability of the second action fallshivi that interval. If this is true, then the state
is pruned, otherwise it is retained. fifis the probability of the most probable action, then its (100 «)
percent confidence interval is given by

R PA-P)

——
b 2 PL pL—p)

SP=Pt+Zpf (. 1)
wherez,  is the uppew/2 percentage point of the standard normal distribution mrsithe frequency of
the Markov State [MR94].

The degree of pruning in CPMM is controlled by(confidence coefficient). As the value @fdecreases
the size of the confidence interval increases, resultingarerpruning. Also note, that if a state has a large
number of examples associated with it, then Equation 1 withgute a tighter confidence interval. As a
result, even if the difference in the probabilities betwéss two most probable actions is relatively small,
the state will most likely be retained. As our earlier dissas indicated this feature is desirable.

3.3 Error-Pruned Markov Model

In the previous schemes we used either the support of a stéte probability distribution of its outgoing
branches to gauge the potential error associated with iveder, the error of each state can be also auto-
matically estimated and used to decide whether or not togpauparticular state. A widely used approach
to estimate the error associated with each state is to peroralidation step. During the validation step,
the entire model is tested using part of the training salidation set) that was not used during the model
building phase. Since we know the actual actions perfornyettidd sequences in the validation set, we can
easily determine the error-rates and use them for pruning.

This led us to develop therror pruned Markov mode(EPMM) scheme. Specifically, we have developed
two different error-based pruning strategies that usefardifit definition as to what constitutes the error-rate
of a Markov state. We will refer to these schemeswaarall error pruningandindividual error pruning

The overall error pruning scheme works as follows. Firsteach sequence in the validation set we use
each one of th& single-order Markov models to make a prediction. For eaeldiption we record whether
that prediction was correct or not. Once all the sequencekeirvalidation set have been predicted, we
use these prediction statistics to calculate the errer-odeach state. Next, for each state of the highest-
order Markov model we identify the set of states in the loaeter models that are its proper subsets. For
example, if the highest-order state corresponds to therasttquencéas, as, ag, a7}, then the lower-order
states that are identified afas, ag, a7} (third-order),{as, a;} (second-order) an¢h;} (first-order). Now if
the error-rate of the highest-order state is higher thanodiitg subset lower-order sates, it is pruned. The
same procedure of identifying the subset states and congpidugir error-rates is repeated for all the states in
the lower-order Markov models as well, except the first-oMarkov model. The states from the first-order
Markov model are never pruned so as not to reduce the covefadlge resulting model.

In the second scheme we first iterate over all the higherrastiges, and for each of them we find its
subset states (as described in the previous scheme). Thadentify all the examples in the validation set
that can be predicted using the higher-order stage (he validation examples which have a sequence of



actions corresponding to the higher-order state). Thisfsetamples are then predicted by the higher-order
state and its subset states and the error-rates on thesglegdior each one of the states is computed. If
the error-rate of the higher-order state is greater tharohitg subset states, the higher-order Markov state
is pruned. The same procedure is repeated for all the lovdmrdMarkov models except the first-order
Markov model.

Though both schemes follow a similar procedure of locatimgsst states and pruning the ones having
high error-rates, they differ on how the error-rates forhesiate is computed. In the first scheme, every
lower-order Markov state has a single error-rate value ifv@bmputed over the entire validation set. In
the second scheme, each of the lower-order Markov statéfhiavié many error-rate values as it will be
validated against a different set of examples for each oiits efiperset higher-order states.

4 Experimental Results

We experimentally evaluated the performance of the prap8stective Markov models on a variety of data
sets. In the rest of this section we briefly describe thesesigs, our experimental methodology, and present
the results obtained by our schemes.

4.1 Datasets

We have evaluated the performance of the proposed Selddavikov models schemes on four datasets,
whose characteristics are shown in the Table 1.

Dataset | # Sessiong Avg. Ses. Length # of unique actions
EC1 234,954 3.18967 874
EC2 144,367 7.93933 6,554
OWL 22,884 3.26735 160
TC1 142,983 2.67119 151

Table 1: Preliminary dataset statistics.

e ECommerce Web Logs. We used the web server logs from two large E-Commerce corepdoi
our analysis. These logs were first cleaned using the WebSI§t€m [CTS99] and then broken down
into series of sessions, each session corresponds to thensegof web pages accessed by the user
during his/her visit to the site. Note that the session doatanly the accesses to web pages and
accesses to images are ignored. In our model each sessiesmmrds to an example in the train/test
set and the page accessed by the user is considered as an &htse two datasets will be referred as
EC1andEC2. From Table 1 we can see that EC1 has a total of 934 sessions, an average length
of 3.18 pages/sessions and a total of 874 unique web-pagesaByiiC2 has 144367 sessions of
average length.83 pages/sessions and abos®4 unique web-pages.

e OWL Dataset: This dataset contains the log of editing commands typed figreint users in Mi-
crosoft Word over a period of 2 years [Lin00]. The goal of thedsl built on this dataset was to
predict the next command typed by the user based on the ygsstssequence of commands. Such
predictive system could be used to make online recommeanrdato the user about commands which
could be typed next. This dataset will be referred&¥L . In this dataset, each session corresponds
to the sequence of commands typed by a user on a particulamgmt in one sitting. The different
commands typed by the users constitute as the actions of éinkoMmodel.

8



e Teephone Switch Dataset: This dataset was obtained from a large telecommunicationgpany
which maintains nationwide telephone networks. The datemsetains the log of different alarms
generated by a telephone switch over a period of one montth &ssion in this dataset corresponds
to the sequence of alarms given out by the switch that areertkta the same problem. For this dataset
the alarm generated by the switch is considered as an adtiis dataset will be referred d<C1.

4.2 Experimental Design & Metrics

To make the evaluation of different schemes manageableimitedurselves to the problem of predicting
just the last action of a test example/session. For evalugtirposes we divide the complete dataset into
training set and test set. Depending on the model, the tigaset may further be divided into a validation set.
During the testing step the model is givetrimmed sessiofor predictioni.e., the last part of the session
is removed. The prediction made by the model is then compaittdthe removed part of the session to
compute model's accuracy. In some cases, Markov model lsdemnes are unable to make a prediction
for a session in the test set. This could be either becauskeriéh of test session is less than the order
of the model or the model has not seen a similar session irrdh@rtg step. In our evaluation scheme we
will only consider sessions which are longer than the higbeger of the model and if a model is unable
to predict for these long sessions, it is considered as agypoediction. In all of our experiments, for both
the All-K'"-Order Markov model and selective Markov model schemes webawed first-, second-, and
third-order Markov models,e., K = 3.

The overall performance of the various Markov model-badgdrithms were evaluated in terms of their
accuracy and their model size. Thecuracyof a model is defined as the number of correct predictions
divided by the total number of predictions, and thedel sizés defined as the total number of states in the
model. Accuracy measures the predictive ability of the rhogdbereas the model size gives us an insight
into the memory and time requirements of the model.

4.3 Results for Support Pruned Markov Model

The goal of our first set of experiments was to study the efbét¢he frequency thresholdp] parameter
on the performance of the support-pruned Markov model. Toese this we performed an experiment
in which we used different values f@r ranging from 0 (no pruning) up to 24 in increments of two, and
measured both the accuracy as well as the number of statesiedulting Markov model. These results are
shown in Table 2 for the four different data sets in our experital testbed.

To better visualize the results we plotted the accuracyimddaby the SPMM scheme for different values
of ¢ over that obtained whep = O (i.e., the original All-K"-Order Markov model). These plots are shown
in Figure 3. A number of interesting observations can be ngdeoking at Figure 3. First, for all four data
sets we can see that in the beginning the increase in theeineguhreshold is accompanied by an increase
in the accuracy for the SPMM. In particular, accuracy imgrments for the EC1 and OWL datasets are
quite substantial. Second, as we continue to further iserdae frequency threshold the accuracy achieved
on the different datasets starts to flatten out or even deeréaEClandEC2datasets the overall accuracy
remains about the same, whereas there is sharp drop foOvgttand theTCldatasets. The decrease in the
overall accuracy for increasing values of thés because some useful Markov states are being pruned from
the model; thus, affecting its overall accuracy. Third,leane of the four datasets achieve their maximum
accuracy levels at different values of the frequency thokekhndicating that theptimalvalue of¢ is dataset
dependent. Fourth, the overall accuracy tends to changethinavith ¢; thus, making it possible to use a



Freq. EC1 EC2 OWL TC1
Thr. | Accuracy | # states| Accuracy| # states| Accuracy | # states| Accuracy| # states

0 0.274301| 124125| 0.480756| 295079 | 0.427862 6892 | 0.765419 4406
2 0.283366| 27302 | 0.487485| 49348 | 0.435307 1811 | 0.766087 1631
4 0.289381| 16197 | 0.489525| 28138 | 0.442396 1110 | 0.766422 1140
6 0.291637| 11748 | 0.491019| 20082 | 0.445587 820 | 0.766422 866
8 0.293527 9323 | 0.491687| 15798 | 0.443283 676 | 0.763413 738

10 0.294442 7735 | 0.492306| 13042 | 0.443814 570 | 0.761909 661
12 0.295112 6625 | 0.492415| 11189 | 0.443283 490 | 0.762577 591
14 0.2956 5830 | 0.492634 9799 | 0.442928 435 | 0.762494 530
16 0.295539 5253 | 0.492646 8649 | 0.439206 395 | 0.762828 478
18 0.295702 4716 | 0.492525 7804 | 0.438143 364 | 0.763413 448
20 0.295905 4349 | 0.492586 7086 | 0.436725 341 | 0.762159 412
22 0.295844 4020 | 0.492622 6499 | 0.434066 316 | 0.76241 385
24 0.29623 3733 | 0.492658 5994 | 0.432648 303 | 0.762159 364

Table 2: The accuracy and the model size of SPMM for different values of frequency threshold(g).

validation set approach to estimate its optimal value fohedataset.

The effect of the frequency threshold is very pronouncechemumber of states in the Markov model.
The size of the model drops drastically as the frequencyskiole increases. For example in the case of the
EC2dataset the number of states in the SPMM scheme with highestary is almost 2% of the number
of states of the AlIK'"-Order Markov model. The dramatic reduction in the numbestates and the
accompanied improvement in accuracy are due to the facthibeg are many low-support states that tend
to be noise and outliers in the training set and their lowdepstates (that in general have higher support)
are more reliable in making predictions.

4.4 Results for Confidence Pruned Markov Model

To study the effect of the confidence coefficies) (ised by the CPMM scheme on the accuracy and state
space complexity of the resulting model, we performed a eecgl of experiments in which we varied
from 0.45 to Q01 to obtain 55% to 99% confidence intervals. The accuraayesahnd the model size for
different values of the percentage confidence interval lzoa/s in Table 3.

% Conf. EC1 EC2 OWL TC1

Inter. Accuracy | # states| Accuracy | # states| Accuracy | # states| Accuracy | # states
55 0.295966 | 16992 | 0.492221| 32093 | 0.441687 1468 | 0.770433 1464
60 0.297104| 15736 | 0.492221| 29984 | 0.441156 1408 | 0.770266 1415
65 0.297815| 13970 | 0.49244 26863 | 0.441687 1325 | 0.771686 1351
70 0.2981 12417 | 0.492743| 23788 | 0.442219 1199 | 0.772773 1272
75 0.297978| 12118 | 0.492549| 23267 | 0.443105 1181 | 0.770349 1260
80 0.298161 9656 | 0.492586| 18358 | 0.439738 975 | 0.770851 1118
85 0.297754 9101 | 0.492865| 17425 | 0.439383 942 | 0.769931 1088
90 0.297206 8164 | 0.492913| 15803 | 0.437256 889 | 0.770182 1037
95 0.297002 7202 | 0.49312 14121 | 0.436016 802 | 0.768427 969
99 0.296271 5891 | 0.492962| 11492 | 0.428749 690 | 0.764249 836

Table 3: The accuracy & model size of CPMM for different values of confidence interval.

To better visualize the effect of the confidence intervadisgth, we plotted the accuracy improvements
achieved by CPMM over the accuracy of the Kll'-Order Markov model for the different confidence
intervals. These results are shown in Figure 4. As we canregethis figure, the length of the confidence
interval has a similar effect on the accuracy as that of taguency threshold parameter used in SPMM.
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Figure 3: The accuracy obtained by SPMM for different values of ¢ relative to that obtained by All-K t"-Order Markov model.

Initially, the accuracy improves as we increase the lenftheoconfidence interval; however, after a certain
point, the accuracy starts to decrease. The reason fordhigrmance degradation, is due to the fact that
CPMM prunes a larger fraction of the states as the lengtheofdimfidence interval increases. Consequently,
some reasonably high accuracy states are getting prunedilas w

Looking at the effect of the confidence interval’s length be model size we can see that as the length
of the confidence interval increases, the number of stateeases. Note that the model size reduction
achieved by CPMM is somewhat lower than that achieved by SPM®I believe that this is because the
CPMM scheme tends to retain some of the states that would thes® pruned by SPMM, because their
most probable outgoing actions are sufficiently more fragjtigan the rest.

45 Results for Error Pruned Markov Model

In this section we compare the performance of the overalliagigidual error pruning schemes discussed
in Section 3.3. The accuracy and model size achieved by gwtmanes on the four test datasets are shown
Table 4. The rows labeled “O. EPPM” and “I. EPPM” correspamthie overall and individual error-pruned
schemes, respectively.

Model EC1 EC2 OowL TC1

Accuracy | # states| Accuracy | # states| Accuracy | # states| Accuracy | # states
O. EPPM| 0.31255 10218 | 0.502399| 24207 | 0.469337 1332 | 0.779208 868
I.EPPM | 0.304461| 21619 | 0.499666| 30373 | 0.468451 1795 | 0.790908 1162

Table 4. The accuracy & model size of error pruned Markov models for different datasets.

From the results in this table we can see that both errordopiening schemes produce very similar re-
sults in terms of model accuracy, with the overall erromaadi scheme performing slightly better. However,
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Improvement w.r.t. All K " Order Markov
Model Vs Percentage Conf. Interval

——EC1 =-EC2 - OWL ——TC1

98

96

110 -
e ¢, e
5 108 ~ n
ko]
O 106
=
8 104
~
= 102 i —— : — :l%
= R
5 100 E——
°
O
E
X

%age Improvement w.r.t All

94 T T T T T T T T
55 60 65 70 75 80 85 90 95 99

Percentage Confidence Interval

Figure 4: The accuracy obtained by CPMM for different confidence intervals relative to that obtained by All-K t"-Order Markov
model.

if we compare their corresponding model sizes we can sedltbandividual error-pruned scheme leads
to models that have 33% to 110% more states than the cormisigomodels of the overall error-pruned
scheme. These results suggest that the overall errorgrseieme is more aggressive in pruning states.
We believe this may be due to the fact that in the overall geraned scheme, a lower-order state with low
error-rate can potentially prune most of its superset highéer states. However, in the case of the individ-
ual error-pruned scheme, since each state has a diffememirate that depends on the particular superset
higher-order state, the pruning will be more selective. By, this is only one possible explanation, and
we are currently studying this phenomenon to better unaledsi.

4.6 Overall Comparison of Different Schemes

Our last set of experiments compares the performance achigy our different selective Markov model
schemes against that achieved by the first-, second-, thind-All K-order Markov models. These results
are shown in Table 5. Note that the results for SPMM and CPMMespond to the results obtained using
the optimal frequency threshold and the optimal confideedficient, respectively, for each one of the four
different datasets.

From the results in this table we can see that our algoritiimgeneral, achieve better accuracies than
those achieved by the other algorithms. The error-prunbdrses have the highest accuracies, whereas
the support-pruned schemes lead to models whose state-spanplexity is within a factor of five of that
achieved by the first-order Markov model (that has substiyntivorse accuracy). Comparing the overall
error-pruned schemes against the Ki2-Order Markov model we see that the improvement i©0% for
EC1, 450% for EC2, 969% for OWL and 18% for the TC1 dataset. Furthermore, if we compare the size of
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Model EC1 EC2 OWL TC1
Accuracy | # states| Accuracy | # states| Accuracy | # states| Accuracy | # states

First 0.260625 874 | 0.482292 6554 | 0.37378 160 | 0.555642 151
Second 0.285909| 26866 | 0.473025| 92040 | 0.424517 1902 | 0.555642 1441
Third 0.246662| 95660 | 0.448759| 197745| 0.396665 4960 | 0.769909 4044

All Kth 0.274301| 124125| 0.480756| 295079 | 0.427862 6892 | 0.765419 4406
SPMM 0.29623 3733 | 0.492658 5994 | 0.445587 820 | 0.766422 866
CPMM 0.298161 9656 | 0.49312 14121 | 0.443105 1181 | 0.772773 1272
O. EPPM| 0.31255 10218 | 0.502399| 24207 | 0.469337 1332 | 0.779208 868
I.EPPM | 0.304461| 21619 | 0.499666| 30373 | 0.468451 1795 | 0.790908 1162

Table 5: The accuracy and model size of different Markov models on the four datasets.

their corresponding models, we find that the number of sfatebe error-pruned schemes are significantly
lower than that of the AIK"-Order Markov model. In particular for the two web-log datssthat contain
the largest number of unique actions and sessions, thesgtate complexity of the error-pruned scheme is
smaller by an order of magnitude.

To better compare the different schemes across the diffdegasets we performed statistical significance
tests on the accuracy values of the different models. Thesdts are shown in Table 6. The details of
these tests are explained in Appendix A. Each cell in theeT@btontains three numbers, corresponding
to the number of datasets that the scheme along the row datestisally better, equal, or worse than the
scheme along the column, respectively. As we can see frose thesults, the selective Markov model
schemes perform statistically better than the traditideehniques on most datasets. Furthermore, there is
not statistical difference between the accuracies olddiryethe SPMM and CPMM schemes, and that the
overall error-pruned scheme outperforms the individuadrgoruned scheme in only one dataset.

Model First | Second| Third | All K" | Support| Conf | O.Error | I.Error
First — 1,1,2 | 202] 004 0,0,4 | 0,0,4| 0,04 | 0,04
Second | 2,1,1 — 3,001 1,03 0,0,4 | 0,0,4| 0,04 | 0,0,4
Third 2,0,2 | 1,0,3 - 0,1,3 0,1,3 {0,1,3| 0,04 0,0,4
All Kt | 400 301 | 310 - 0,3,1 /1031 004 | 00,4
Support | 4,0,0 | 40,0 | 3,1,1 1,30 - 0,40 0,04 0,0,4
Conf 40,0 400 | 31,1 1,30 0,4,0 — 0,0,4 0,0,4
O.Error | 4,0,0 | 4,0,0 | 40,0 | 4,0,0 4,0,0 | 40,0 — 1,30
I.Error 40,0 400 | 400 | 400 40,0 | 40,0| 0,31 —

Table 6: Statistical significance comparisons between the different schemes. Each cell shows the number of datasets the scheme
of the row does better, equal, or worse than the scheme on the column, respectively.

5 Conclusions

In this paper we presented a class of Markov model-basedctiogdalgorithms that are obtained by selec-
tively eliminating a large fraction of the states of the All'-Order Markov model. Our experiments on a
variety of datasets have shown that the resulting Markoveisdtave a very low state-space complexity and
at the same time achieve substantially better accuracesttitose obtained by the traditional algorithms.
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A Significance Test for Comparing Accuracies

To get a better understanding of the differences in acoesasie use-testfor comparing the accuracy
values between two schemes [YL99].

If we have two scheme# and B, which produce accuracigs, and py, respectively and the size of the
test dataset is given &s Then we can use the standard normal distribution for thesstaZ,

Pa — Po
V/2p(1—p)/n

where,

_ Pat o
P="3
Please note that the same test set was used for evaluatimgheatchemes.
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