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Abstract. This paper studies the solutions of the Ginzburg-Landau equations on R?® in the presence
of an arbitrarily distributed external magnetic field. The existence and regularity of the solutions at the
lowest energy level are established. The solutions found are in the Coulomb gauge. If the external field is
sufliciently regular, the solutions are shown to have nice asymptotic decay properties at the infinity.
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1. Introduction. In the Ginzburg-Landau semi-quantum mechanical theory of su-
perconductivity the behavior of a superconductor cooled below the transition temperature
in the absence of an external magnetic field is described by the equations

Dié+ 51— [61)6 =,
(1.1) 7;
curl* A + §(¢5*DA¢ —¢(Dag)*) =0,

which are the equations of motion of the free energy density
1 1 A
(1.2) €= §|CUIIAI2+§|DA¢|2+§(|¢|2 ~1)%

Here the complex scalar field ¢ is an order parameter so that |¢|? gives the relative density
of the superconducting condensed electron pairs, called the Cooper pairs which behave
like charged bosonic particles, A is a gauge photon field, and D¢ = V¢ — tA¢. In this
model, A > 0 is a dimensionless coupling constant with A < 1 and A > 1 describing type I
and type II superconductors respectively, the electric field is absent, the magnetic fleld is
determined through H = curl A, and the ground states (or the superconducting vacua) are
given by A =0, ¢ =%, ¢ R'. The Ginzburg-Landau equations (1.1), which have been
accepted as the fundamental equations for low-temperature superconductivity theory, were
first introduced by Ginzburg and Landau in 1950 in their phenomenological approach to
superconductivity (cf. Ginzburg [7]) and later derived by Gorkov [8] theoretically from his
formulation of the Bardeen-Cooper-Schrieffer theory. The relativistic generalization of the
above model in the context of quantum field theories is recognized as the abelian Higgs
model which has shed great light on many aspects in particle physics.
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It is well-known, that, when an external magnetic field H,y, is applied, various dis-
tinguished phenomena such as the Meissner-Ochsenfeld effect, surface currents, and the
Abrikosov mixed state occur in superconductors cooled below a critical temperature. In
order to use the Ginzburg-Landau equations to obtain an appropriate description of these
phenomena, one needs to study the solutions of the equations with full nonlinearity under
the influence of an external field. Unfortunately, in this direction, mathematical results are
still fragmentary. For example, Carroll and Glick [5] proved an existence and uniqueness
theorem for a weak solution of Eqs. (1.1) under the condition that both X and H.,; are
sufficiently small and Heyy is a constant field; Odeh [15] considered the existence of peri-
odic weak solutions of (1.1) on R? simulating the lattice structure of the Abrikosov mixed
states with the assumption that the external field was absent and A > some critical value;
Klimov [12] studied the existence of multiple weak solutions of Egs. (1.1) over a bounded
domain in R® also assuming that no external field was present.

Besides the above restrictions, the regularity of these solutions has never been analyzed.
The difficulty lies in the fact that, in order to study Eqs. (1.1), one has always to choose the
function space of the gauge potential A as the set of all vector fields with zero divergence
(i.e. in the Coulomb gauge) to make (1.1) a nondegenerate elliptic system. This choice
may render the regularity study of the weak solutions almost impossible if no symmetry
assumption is made: as in the case of the Navier-Stokes equations, one will have an extra
“pressure term” Vp which lies in the orthogonal complement of the subspace of divergence-
free vector fields in L? in the equation for A. In the context of fluid dynamics, this pressure
term is natural but it will be a nuisance in the Ginzburg-Landau equations. In other words,
the full Ginzburg-Landau equations have not really been solved.

In this paper we prove the existence of regular solutions of the Ginzburg-Landau
equations on R? in the presence of an arbitrarily distributed external magnetic field. The
solutions found are in the Coulomb gauge and stay at the lowest energy level. These
solutions are physically most interesting because they are energetically stable. Asymptotic
decay properties of the solutions will also be established under some additional regularity
assumptions on the external field.

It should be noted that if the external field is absent, the Ginzburg-Landau equations
(1.1) over R? and R? have extensively been studied in recent years since they give static
solutions of the abelian Higgs model in particle physics. On R2, an argument based
on some topological considerations shows that all finite energy solutions of Eqs. (1.1)
are superconducting vacua (cf. Felsager [6]). On R?, there have been a lot of interest-
ing contributions. In the work of Nielsen and Olesen [14] the finite energy solutions,
now called vortices, are explained as string-like field configurations in three dimensions
of the Ginzburg-Landau theory. For the critical choice of the coupling constant A = 1
(the intermediate phase between type I and type II superconductors) the second order
Ginzburg-Landau equations can be solved by the first order Bogomol’nyi equations [4] and
the prescribed vortex problem is completely settled (Jacobs and Rebbi [10, 17]; Weinberg
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[21); Taubes [19, 20]; Jaffe and Taubes [11]). For arbitrary A > 0, it has been shown
that the finite energy solutions of the system (1.1) have exponential decay properties due
to the broken U(1) symmetry (Jaffe and Taubes [11]), that (1.1) possesses a family of
topologically nontrivial radial-symmetric finite energy solutions (Plohr [16]), and that the
nonlinear desingularization phenomenon (Berger and Fraenkel [3]) occurs for these solu-
tions as A — oo (Berger and Chen [2]).

The author wishes to thank Professor Joel Spruck for helpful conversations.

2. Existence of regular solutions. Let H.,, be an external magnetic field. In the
presence of this external field, the Ginzburg-Landau energy density becomes

1 A
€= %I curl A2 + §|DA¢|2 + §(|¢|2 ~1)? = curl A - Hey,

and the corresponding equations of motion are in the form
A
Do+ 5(1- 161)6 =0,

(2.1) ;
curl* A + §(¢*DA¢ — H(Dad)*) = curl Heyy.

For convenience, we shall use the notation
I? = [P(R%), W&? =Wwhr(R?),
Wh? = the completion of the set C5°(R?)

under the norm ||A|%Z = /|VA|2d3$
Wt.2
R3

where p > 1, k = 1,2,..., and if A = (4;) is a vector field, then VA = (8;A41) and
[VAP = tr[(VA) - (VA)"] = 3°(8;A¢)?. Define

K={AeW" | V.A=0}cCW2

Namely, i’ consists of those vector fields in W'? satisfying the Coulomb gauge condition.
For (A,¢) € K x W12, the total energy is given by

loc ?

E(A,$) = / E(A, )dz.
H3

The functional F is not finite at every point in K x TfVli’z but it is bounded from below

lf Hext € LZZ 1
E(A,(ﬁ) > “§||Hext”%2'

Now we are ready to state our existence and regularity theorem for solutions of the
Ginzburg-Landau equations (2.1).




THEOREM 2.1. For H.,.. € L*N Wll’2 Eqgs. (2.1) has a solution (A, ¢) € (ImWQ’?

oc? loc

T/V;f. This solution is of finite energy and solves the minimization problem

) x

(2.2) E, =min{E(A,4) | (A, 4) €K xW?}

loc

Moreover, if Heyy Is smooth, so is (A, ¢).

Proof. The key point in our approach to the above problem is that we will not try

to solve (2.2) directly in the space K x W72,

unwanted extra “pressure term”. Instead, we will consider the minimization problem

otherwise, we shall still end up with the

(2.3) In=min{I(A,6) | (A,6)e W™ x W)
where

1 1 A
I(A,6) = SIVAIL: + 51Dagls + SI06E = Dl — [curl A B 2.
R3

It is easy to see that I is bounded from below on W% x W2,

We need the inequality (cf. Ladyzhenskaya [13])

so Ip, is a finite number.

(2.4) [AllS: < ci|[VA|S., A eW??2

Let {(Aj, ¢;)} be a minimizing sequence of the problem (2.3). From a simple interpo-
lation inequality, we find

1 1 )
(23)  7IVAlZe + 51Da; 8550 + 2 I0és* = DIl < Sup (A, 65) + [ Hexe||72,

therefore, using (2.4) and (2.5), we see that {A;} is a bounded sequence in L® and W12,
For simplicity, we may assume there exists A € L®* N W"? such that A; =+ A in L® and

V?/l’z. From the compact embedding L*(Q) — LP(Q) (where 1 <p < 6and Q CR%is a
bounded domain) we may further assume

A; - A in LP(Q) (1<p<6).
From
|Da; 651 2 lquﬁj[? — 3lA ;1
> SIV65 = SOAL 4 (185 —1)%) — 314,
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and (2.5) we conclude that {V¢;} is bounded in L?(Q2). Moreover, it follows from |¢;[* <
2(|¢;1* —1)* + 1 and (2.5) that {¢;} is bounded in L*(£2). Hence, we may assume {¢;} is
weakly convergent in L*(2) and W'2(2). From a diagonal subsequence argument, we are
easily convinced that one can find some ¢ € W’licz NL{, and assume ¢; — ¢ in L*(Q) and
W12(8) for every bounded domain  C R®. In particular, ¢; — ¢ in LP(Q)(I < p < 4).

Consequently, for any bounded domain {2,
I?(A, ¢) < liminf I%(¢;, A;)
j—roo
where
2 1 2 1 2
I"(A,¢) = ‘"||VA||L2(Q) + —“DA¢“L2(Q)

51067 = DB / curl A - Hyy, dz
1Y

On the other hand, Ve > 0, there is a bounded domain 2, C R® such that

/ Hoo?Pz <6, 250,

RE—0

This implies
IT(Aj, ;) S T((Aj,65) + e VAl ze,

and therefore,
(2.6) I%(A,8) < I, +eM, QDQ,

where M = sup |[VA;[jzz:. But |[VA|[z2 <liminf||VA| 12, hence, (2.6) becomes
j j—oo

_HVA”L"(Q) + = ||DA¢HL2(9) + —|||(¢l2 D7 2cqy

<I, —i—/curlA-Hextd z+2eM, D Q..
RS

Letting @ — R*, we get, by the arbitrariness of e > 0, the inequality I{A,¢) < I,.
Therefore, the minimizer of I is found. (A, ¢) is the solution of the equations

D6+ 501~ 186 =0,
(2.7)

i
— V2A + §(¢*DA¢ — ¢(Da¢)*) = curi Heyy.
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Standard elliptic regularity argument proves that (A, 4} € [T/Vlicz N Wlﬂ} X WiE2, If Heyy

is smooth, so is (A, ¢).

Since for A € K, [[VA||p2 = {|curl A||;2, so I, < Ep,. In order to show (A, 4) is a
solution to both the equations (2.1) and the minimization problem (2.2), we have only to
verify that A € K.

Indeed, let u € C§°(R®) be an arbitrary scalar test function. We have, using (2.7b),
the identity V- (*D4¢) = (Daw)* - (Dag¢) + v*D% 4, and then Eq. (2.7a),

V(V-A)- Vudiz = / (va) - Vudiz

R3 R3

- ]R {5V [8(Dad)* — 6 D] — Hogy - (crsl Vi)' = 0.

Hence V - A is a harmonic function on R*>. But V - A € L?, thercfore we must have
V - A =0, namely, A is globally in the Coulomb gauge. This proves Theorem 2.1.

If the external field is absent, the energy minimizing solutions are no other than the
superconducting vacua. However, it can be observed that the presence of a small external
field will change this situation: the lowest energy level will no longer contain the vacuum
solutions.

In fact, let @ C R® be a small bounded domain so that the first eigenvalue \; of the
problem Au 4 Au = 0, u|sg = 0 satisfies A; > 1. Suppose H.y; is produced from a
vector potential Acxe € C§P(Q): Hexe = curl Aext, where V- Aoy = 0 but Ay # 0. For
A=A, ¢=1we have

1
E(A,¢) = 5({lAextlizs — [l curl AexeIZ:) < 0.

Therefore E,, < 0 and the lowest energy level does not contain the vacuum solutions.

In the subsequent sections, we will not restrict ourselves to the energy minimizing
_solutions obtained in Theorem 2.1. The results concerning asymptotic decay and so on are
proved for finite energy solutions. To simplify the statements, we shall always assume the
solutions are sufficiently smooth. This assumption can be ensured by requiring that the
external magnetic field Heyy be sufficiently smooth.

3. Boundedness of the order parameter. Our asymptotic decay results depend
on the following pointwise boundedness of the order parameter ¢. The approach here
follows the main line of Taubes [20].

LEMMA 3.1. If (A, ¢) is a finite energy solution of the Ginzburg-Landau equations
(2.1), then |¢| < 1 on R3,




Proof. Let § be an arbitrary bounded domain in R®. Then from Eq. (2.1a), for any
P € W3 (Q), we have

(31) Re [da{Dap-(Dag) + 501 ~ 3"} =0

RE
Define a function € C§°(R') with the properties

1, [s| <2,
0<n<1, n(8)={0 5| > 3.

Introduce a family of cutoff functions n,(z) = n(|z|/p),z € R*,p > 0. Set Q, = {2 €
R® | |zl <p}

Suppose U = {z € Q,| [¢(z)] > 1} # 0 if p > some po. For p > py define Y, €
Wol’z(gﬁ‘p) by o(2)

@) = n(@)19(2) |~ D 55

where (1g(2)] = 1)* = max{|¢(z)] — 1,0}. Define f = /16| on (R*}* = (= € R%| |o(z)| >
1}, Then f*f =1 and on Q;"p

Dabp = Vnp(ld| = 1)f + (VI f + (18] = 1)Daf)n,

Replacing ¥ in (3.1) by +,, we have, by using the simple relations D¢ = (VoD f +
|¢|Daf, Relf(Daf)*] =

(32) / E2{[V18]1%n, + (16| — 1)V, - V16| + 810161 — Lmp| Dot fI?

+
Qap

+ 5061 18] + igln,} = 0.

From (|¢] — 1) < (|¢/* = 1) (on Q;"p) and the Schwarz inequality we have

(ﬂ (6P — 1d% ) / Y, - Vgl
Q

3p

(X

(3.3) } [ 161-19n, - 9iol i
Q+

But, away from the zeros of ¢,

Vo] = m7=(¢*Dsd + $(D4d)*).

2Icfﬁl



Hence
(3.4) IVIgl} < [Dagl.

From the definition of n,, we have

C
|V’7p| < ;

where C' > 0 is a constant independent of p > 0. Inserting the above inequality into (3.3)
and using (3.4) we find

(3.5) (6 = Dllzz 1 Dagllz2-

/ (18] - 1)V, - Vigldz| < 22|
ot P

Combining (3.2), (3.5), and the inequality

1 1 A J
(3.6) ZHH 172 + “2‘||DA¢5||?:2 + 'S'H(léﬂl2 — 7> S B(A, @) + [|[Hex || 22
we obtain

[ #UTI61 + (16— Il 1D + 5091 = 1294 + Dleldn,
af,

< 4—fl(E(A, &) + [ Howe22).

Letting p — oo one finds mes ((R*)*) = 0. Hence |¢| < 1 on R®. This contradiction
shows that (R*)* = §). Hence the proof of Lemma 3.1 is complete.

4. Decay of 1 —[¢[> and A. Let D¢ = 8x¢ — iAr¢. We have the identity
(4.1) DijqB—DjDkqé: —Z'ijgﬁ, ij :akAj —8jAk.
Define g = Da¢, gr = D¢, Using (4.1) and (2.1) one finds
A A1
(4.2) Digi = Dy Dyg; = *5(1 — |61*)g1 + ——-2——|¢f29':
A—1 . )
+—2—¢29‘f — 20Fpgr + o(curl Hege )1 ¢

where the summation convention over repeated indices has been observed.
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LEMMA 4.1. If(A,¢) is a finite energy solution of Eqs. (2.1) with Hex, € W12, then
lg| € WY2. Hence, as an immediate consequence of (2.4) and a standard interpolation

inequality, we have |g| € L? (2 < p < 6).

Proof. Let n, be the cutoff function defined in Section 3. Multiplying both sides of
(4.2) by ngg}" and integrating by parts, we have

the left-hand-side = /{nig}“Dkagl}d%
R3

2 T, .,
__ / BIDeg Pt 2 / (@um)(2)o7 (1, Degi )z,
R3 R

3A+2
2

| the right-hand-side] < lgl|32 + 2/|FM| |n§gkgg| Bz
R3

+ / |(curl Hoxe |1l
R3

Therefore, in virtue of (3.6) and a simple interpolation inequality, we obtain the bound
(4.3) /n§|Dkgg|2d3:c <Ci + 2/|Fkg||n§gkg;[d3w
R R2

where €7 > (0 is a constant depending on E(A, ¢), |Hex. /w12, and A but independent of
pzl

From the Holder inequality we have

(44) ]lellW§|gk91|d3$ < 2]|H1 1% 1,92 d®a
R3 R3

1 32
< 2l[Hliz2llgliz=1l mogllZe;

from (2.4) we have

(4.5) 1709llzs < ClIVnplgl |iz2
< CllineVlgl Iz + 11Vaplize llgllze]-

Away from the zeros of ¢, for fixed | = 1,2, 3,

1 * *
(4.6) |Oklgi] | = migl Digi + 9i{Drg1)*| < |Digil.




Combining (4.4), (4.5), and (4.6) we find
(4.7) /Iszl??ﬁlgkgzld% < Cy + Cslln,Dagl*
[=&]

where C2,C3 > 0 depend on E(A, @), [Hext [|w1.2, and X but are independent of p > 1.

Inserting (4.7) into (4.3} and using a simple interpolation inequality, we have
[tiDagez < o,
R3

where Cy > 0 only depends on C3,C5. Letting p — oo in the above inequality one obtains
|Dag| € L?. Using (4.6) again we conclude that |g| € W2, This proves Lemma 4.1.

LEMMA 4.2. Forany u € W', p > 3, we have u — 0 as |z| — oo.
For a proof of this lemma, see, for example, Jaffe and Taubes [11].

THEOREM 4.3. If(A,¢) is a finite energy solution of the Ginzburg-Landau equations
(2.1) with the external field satisfying Hext € W%, then 1 — |¢|? — 0 as |z| —> oo and
|¢] < 1 on R® or otherwise |¢| = 1.

Proof. Set w =1 —|¢|?. Then, in virtue of Lemma 3.1,
[Vw| = [¢"g + ¢g7| < 2ig].

Hence, applying lemma 4.1, we see that Vw € L® N L2, From (2.4) we obtain w € W16,
Hence w — 0 as [z| — oo (Lemma 4.2).

Finally, from Eq. (2.1a) and the relation
Vi$|* = ¢(D24)* + ¢*D%¢ + 2|D ag)?

we get V2w < A|¢|2w. Since w — 0 as |z| — o0, so, using the maximum principle, we
have w > 0 on R? or otherwise w = 0. This completes the proof of Theorem 4.3.

THEOREM 4.4. If (A, ¢) is a finite energy solution of (2.1) such that A € K and
Heye € W2, then A € W%, and hence, A — 0 as |z| — oo.

Proof. From Eq. (2.7b) and
VineA; =n,V2A; +2Vn, VA; + A;V?,
we easily obtain the bound
(4-8) IV*n0A45liz2 < 1Dadllzs + CilVAllLe + CallAlfe + | Hoxe|[we.:
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where Cy, Cs > 0 are independent of p > 1.
On the other hand, an integration by parts yields

(49) | Tnosfdts == [ V(u,a)- Iy,

3 3
2/ Z(akamp.aj)zd%z/ S (014 Y d.
R3 Q

k=1 #kI=1

On substituting the bound (4.8) into (4.9} and letting p — oo we find VA € W12, In
virtue of the inequality (2.4) one obtains VA € L%, This proves the theorem.

REMARK. The decay property of A stated in Theorem 4.4 does not hold for solutions of
the two-dimensional Ginzburg-Landau equations because in this latter case with H.,y = 0
the equations allows radial-symmetric solutions of the form [16,2]:

Ay =Na(r)df, ¢én= ﬁ(r)eiNe, ’]_11_1_'}% al(r),B(r) =0, ,.15{.10 a(r), B(r) = 1.

Sclutions of this type are obviously in the Coulomb gauge but A do not approach zero
at infinity.

5. Decay of H and D s¢. We shall put some additional assumptions on the external
fleld Heyt to ensure the decay of H and D 4¢.

THEOREM 5.1. Suppose Hex, € W2, If (A, ¢) is a finite energy solution of Eqgs (2.1},
then H = curl A € W%?, In particular, H — 0 as |z| — co.

Proof. Sincecurl? A = —~V2A+V(V-A), wehave curl® A = —V2H. Asa consequence,
applying the operator curl to Eq. (2.1b) one finds

(5.1) VH = [{’H +i(D 4¢)* x Da¢p — curl® Hey,.

‘Let n, be the cutoff function defined in Section 3. Then for fixed j = 1,2, 3,

/nivagﬂjd% = —2/(V77p -VH;y,H;d*z — /nﬁ[VHdeSz:.
R3

RS R3

Hence, by the Schwarz inequality,
(5.2) [EIVH P < O e + 1) 9
RS
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where C' is a constant independent of p > 1. From (3.6), Lemma 4.1, and (5.1) we see that
V2H € L. Letting p — oo in (5.2) we get VH; € L?. Hence H ¢ W12,

On the other hand, since 7,H € W??, by the well-known L? estimates (cf. Ladyzhen-
skaya [13]) we obtain

I, Hll w22 < C1{|V?n,Hi|z2 + |H| 2}
< Co{|IVPH| |12 + [|H||wr.2 }

where Cy,Cy > 0 are constants independent of p > 1. Letting p — oo in the above
inequality one finds H € W22,

From the Sobolev embedding
(5.3) W2 WP 1<p<6

and Lemma 4.2, we have H — 0 as |z| — co. This proves the theorem.

THEOREM 5.2. Under the assumption of Theorem 5.1, if, moreover, A ¢ K, namely,
the solution is in the Coulomb gauge, then D 4¢ € W>? and hence Da¢ — 0 as |z| — oo.

Proof. From (2.4) we see that A € L°. Now rewrite (4.2) as follows

) A
(5.4) Vigi=2A Vg +|AlPg + 5(¢l" = D,
A+1
—|¢{*gr - ——'9?5 g7 — 20Frigr + i(curl Hey )1 4.

Let 1, be the cutoff function introduced in Section 3. Multiplying both sides of (5.4)
by n Pg, and integrating by parts, we have

(5.5) /nﬁlvyzlzd% < 2/’?p|vnp'v91”91fd337
2 R3

12 f ZIA - Val glde + || |AlglZa+
R3
+ @A+ Dllgile + 2 Eg s + | Hoxellwo gl e

Using the inequalities

/ 2A - Varl glde < 1Al ze lgtll o V6l 22,
HH
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I Alalz: < [IAlZs llgllZe,
[Hlg [z < 1H|[22 [lg]iZs,

and the fact that A € L%, g € L?(2 < p < 6) in (5.5) we can find a constant C independent
of p 2 1 such that |n,{Vai]||[r2 < C. Letting p — oo one gets Vg; € L?. This proves
g e wh,

Now, since n,¢; is of compact support, we can find an absolute constant C; > 0 such
that

(5.6) [o9tllwz2 < Ci{lIV2n,g1liL2 + lInpgill 22}
< Co{lln,V2aullz> + llgll w2}

where C> is a constant independent of p > 1.

Except for the first term on the right-hand-side of (5.4), all other terms belong to L2.
Hence, using the decomposition

neA - Vg =A-V(ng) — g1A-Vn,
and (5.6) and (5.4) we obtain the bound
(5.7) 70gtllw2z < Csl|A - V(ng)ilzz + Cy

where C3, C4 > 0 are constants depend on ||gi|lw1.2, [|A]lLs, |H| 12, | Hexe| w2 but not on
p= 1l

On the other hand, using the Hélder inequality, we have

1A -V (mp9)il2 < [[All LoV (mo90)] 22,

1 2
IV(mog)lizs < IV(negn)li2: 11V {90134 ;

using the Sobolev embedding inequality, we have
IV(nog))llzs < lInpgillwrs < Cslnpgillw.2

where Cs > 0 is an absolute constant. As a consequence, one finds, after inserting the
above estimates into (5.7), the inequality

1 2
(5.8) ||’799!”W2'2 < C'sHAIILBllgzllﬁn,anpgt!lém + Cs.

where Cj is independent of p > 1. It then yields from using a simple interpolation inequality
and letting p — co that g; € W22,

The behavior g — 0 as |¢| — oo follows from (5.3) and Lemma 4.2.
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COROLLARY 5.3. Under the condition of Theorem 5.2, we have V¢ -—— 0 as |z| —— co.
Proof. The decay follows from Theorem 4.4, Lemma 3.1, and Theorem 5.2.

6. Exponential decay estimates. We shall show in this section if H,,, decays
exponentially fast at infinity in a sense to be made precise shortly (in particular, if Hey,
is compactly supported), so do H, D4¢, and 1 — |¢{2>. This means the interaction is now
of a local character.

Let (A, ¢) be a finite energy solution of the Ginzburg-Landau equations (2.1) with
H. € W22 and A € K to ensure the decay properties established in Section 5.

From the identity
VEgl* = 2|Dagl® +¢* - Dig + g - (Dhe)"
and Eq. (4.2) we obtain

(6.1) VEgl® = 2D agl® = A1~ 181)lg* + (A + Dl |gf*

A—1 * * * : * * . *
+—2“‘(¢29 g+ (8")’g-9) — 2Fulgf gx — qig}) + i(curl Hex)i(g] — 91)¢

2 (A1) = A = 1116f21g1* — {A(1 = [912) + 4B }g]* — 2| curl e Iy
> 2min {3, LH(161 = D)igl® — (AL - [8) + AIHIHof? — Ce, 1) etrl How

where ¢ € (0,1) is arbitrary.
Since 1 —|¢[*,H — 0 as |2| — oo, from (6.1) we see that a sufficiently large p > 0
can be chosen to make

(6.2) V3g[* > 2min{A, 1}{1 — €)|g|* — C(e, A)} curl Heoyy |?

for z € R® — Q.

Assume now curl Heyy decays exponentially:

(6.3) |eurl Heye| < Cre™=l 2w e R, ¢y >0, p>o0.

Set N
O’(:I:) — 026—(1—6)2m[:t:|

where C2,m > 0 are to be determined. We have, using (6.2),

(6.4) V(o — |g|*) < m*e — 2(1 — €) min{A, 1}|g]?
meECze—(l—e)%m|I| + C36-—2,u|3:!

. : A2y 2 _ -(l—e)l’fmlz:|
<2(1 - e)min{A, 1}(o — |g|*) — (m?*eCy — Cs)e
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provided we choose
(6.5) m = min{v2(1 — €)% min{A\%,1},2(1 — €)%},

Take C; > 0 sufficiently large to make m2eCy — Cs > 0. Then (6.4) becornes
(6.6) V(o ~gl*) < 2(1 ~ e)min{A, 1}(c — [g]*).

Also, we may choose C; large enough to make

(o =19} jzj=p = 0.

Since o — |g|* — 0 as |¢| — oo, applying the maximum principle in (6.6) we have

(6.7) g2 < o = Cre~=Fmlel 1715

where m is determined through (6.5).
From Eq. (2.1a), we easily find

V2w = Alg[tw — 2|g|?

where w = 1 — |¢|?. We can use a similar argument as that in the derivation of the
exponential decay estimate for |g| to obtain the bound

1.
w < 036—(1~€)2mI:€|, = HS,

where C3 > 0 is a constant and 7 = (1 — €)% min{A%, m}.

The exponential decay of H can be deduced from (5.1) under the additional assumption
(6.8) |curl®? Heye| < Cie™ 3l 2 e R®

where Cy,~ > 0 are constants.
Indeed, (5.1) gives us the inequality
(6.9) VEH| > 2[4 [H|* - 2|g*|[H| — 2|H] | curl® Hey |
2
> (2191 ~ OH? — Z(lgf + | curl? Ho )

Consequently, using (6.7) and (6.8) in (6.9) and arguing as before we can obtain the
estimate N
H* < Cse=t=e?mlzl 5 ¢ R

where 7 = 2min{(1 —¢), (1—€)"%v,m} and Cs > 0 is a constant depending on e € {0,1).

In summary, we have
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THEOREM 6.1. Let (A, ¢) be a finite energy solution of Eqs. (2.1) with A € K and
Hext € W2’2.

(a) If Hexy decays according to (6.3), then for any € € (0, 1) there is a constant C(e) > 0
such that

0<1— |¢|2 < C(e)e—(l—e)mllxl’
|Dag| < Cle)em9Imalel,

where z € R®, m; = min{)\7,2m,}, and m, = {A127% 27% 4L
(b) If, in addition, H.yy satisfies the decay property (6.8), then for any e € (0,1) there
is a constant C(e) > 0 such that

[H| < C(e)e”-9Imslzl o« B3
where mg = min{l, 2ma,v}.

NOTE. (a) If Hey is of compact support, then, in the above decay estimates, my =
9~% min{A*,1} and m3 = min{1,2m,}.

(b) If Hey satisfies both (6.3) and (6.8), then the solutions produced by Theorem 2.1
enjoy the above exponential decay property.

In the following we make a brief discussion about the flux quantization problem typical
in superconductivity theory.

Suppose that Hey; decays according to (6.3). Let (A, ¢) be a finite energy solution
satisfying the general assumption in Theorem 6.1. Let M be a surface in R3. We shall
call M an extended surface, if M is noncompact, orientable, without boundary, and there
is a sufficiently large number pp > 0 such that M N B, is a 2-manifold with boundary
(M NB,)=MnNIB, for all p > py and the total length of the curve (M N B,) does
not grow faster than the exponential functions ¢®# (6§ > 0) as p — oo, where B, = {z €
R | J2] < p}.

THEOREM 6.2. Let M be an extended surface in R?® and consider the normalized
excited magnetic flux passing through M defined by the integral

i
@M:—f H - dS.
27 M

(a) @ is an integer.
(b) If M can continuously be deformed into a plane, then &y = 0.
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Proof. Assume p > po is sufliciently large so that |¢| > 2 for |z| = p. Let (M N B,)
take the inherited orientation from M. Using the Gauss formula and Theorem 6.1 {(a) we

obtain

(6.10) U H-dS-I—i/ dln¢
MnB, 3(MnB,)

/ dl
d(MnNB,)

<

f 61D A - dx
B(MNB,)

6—(1—e)m2p_

< 2C(e)

On the other hand,

-—i/ dlng¢ = darg ¢ = 27N,
a(MnNB, (MnNB,)

where N is an integer. Letting p — oo in {6.10) we see that the proof for part (a) is
complete.

Finally, since ®»; continuously depends on M and @, is an interger, therefore ® 7 is
invariant under any continuous deformation of M. If M is a plane, we can rotate M to
obtain M ™, namely, the same plane with opposite orientation. Hence ®,; = ®;,-. This
implies ® 57 = 0. Part (b) is proved.

REMARKS. (a) Theorem 6.2 tells us that although the external flux passing through
an extended surface M can take any value, the excited flux through M may only attain a
number of quanta.

(b) The zero net flux property stated in Theorem 6.2 (b) appears to be a special feature
of the Ginzburg-Landau theory on R3. It may imply that magnetic strings in R® are closed
and vortices living on any cross section of R® appear in pairs with opposite local winding
numbers or topological charges.

7. The case of an arbitrary source current. In the presence of an arbitrary
external source 3-current Jey, the Ginzburg-Landau equations become

A
Di¢+5(1- )b =0,
(7.1) ;
curl? A+ §(¢*DA¢ - ¢(DA¢)*) = —Jext
which are the equations of motion of the Lagrangian density

1 1 A
L= 5| curl A% + -2—[DA<;5|2 + §(|¢|2 —~ 1P 4+ A Tege.
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Note that the left-hand-side of (7.1b) is divergence-free in virtue of (7.1a), therefore
we must assume Jey; satisfies the natural consistency constraint

(7.2) V- Jext = 0.

This condition also ensures that the model is gauge-invariant.

Using (2.4) and the Holder inequality, we easily see that the action I, = fHS Ld?z is
bounded from below on the space K x T/V]i’f if Joye € LT, By a similar approach as that
in the presence of an external magnetic field, one obtains '

THEOREM 7.1. Suppose Jexs € L3 N L. and satisfies the consistency condition (7.2)
in the following weak sense:

/ Jowt - Vud®z =0, Vu € C(RY),
R3

Then

(a) Egs. (7.1) has a least action solution (A, $) in the space K x W’Ii’cz; this solution
is regular, that is, (A, ¢) € W22 x W2, If Jopy is smooth, so is (A, ¢).

loc loc

(b) If Jexs € L?, then 1 — [4|*, A — 0 as |z| — oo and || < 1 on R* or otherwise
|| = 1.

(c) I Jexe € WH2 then H = curl A, Dad € W22 and H,Ds¢ — 0 as |z] — co.

(d) Assume Joqy € W2, If |Toni| < Coe#12l then the exponential decay estimates in
Theorem 6.1 (a) hold for 1-|$|?, D 4¢. Also, Theorem 6.2 holds here for the excited
flux passing through extended surfaces in R®. In addition, if | curl Jo| < Cp e~ vl=l
the decay estimate in Theorem 6.1 (b) holds for H.

Finally, we would like to remark that the results of this paper can also be used to study
nonabelian gauge theories with sources.

For simplicity, let us consider the SU(2) Yang-Mills-Higgs model with the Higgs field in
the adjoint representation of SU(2). Note that the pure Yang-Mills theories with sources
have attracted a lot of attention in recent years (Jackiw, Jacobs, and Rebbi 19]; Sikivie
and Weiss [18]; see also the review article of Arods [1] and the references therein).

As usual, denote by ¢%(a = 1,2,3) the Pauli matrices. Then T = c%/2i(a =1,2,3)
are generators of SU(2) satisfying the simple relation

[Ta,Tb] — EabcTc

where the structure constants €%*¢ are totally antisymmetric with respect to interchange

of indices and €123 = 1.
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With the representation
A, =AlTY, &=90°T*, j,=3,T% v=01,2,3

the equations of motion of the Yang-Mills-Higgs model over (3+1)-dimensional Minkowslki
space-time in the presence of the external source density j, defined by the Lagrangian

1 1 A ara .
(7.3) L= ZF;,,F;,, + E(D”@)“(D”@)“ + g(qj 3 —1)% 4 A58

are in the form:

A
DuD,u® + 2(1-8°8*)8 =0,
D,Fu, +[® D, = j,.

(7.4)
Here

Fao=0,4, —80,A, +[A,, A,]

is the (color) field strength and D, = 8, + [A,, - | is the gauge-covariant derivative.

From the identity [D,, D,}¥ = [F,,, Y], Eqs. (7.4), and the Jacobian identity of the
Lie bracket { , | one easily derives the consistency condition for j,:

(7.5) D,j, =0.

Unlike (7.2) where the constraint is ouly put on the external source, Eq. (7.5) involves
both A, and j,. This considerably complicates the problem. In the following we solve the
case when the constraint (7.5) can be decoupled.

Assume that in a fixed gauge frame j, has the representation
Jv =3, T"
Based upon the structure of Eqs. {(7.4) we can take the ansatz:
(7.6) ¢ =@*T*+ 3T, A, =AlT

for the solutions of the equations. As an immediate consequence, Egs. (7.4) are reduced
to

0u(8u Ay — 3, A,) + 8%(8,9% + 4L9%) — 33(9, 8% — A18%) = 51,
(7.7) 0, 0,8% — AL A, D% —2410,8° — (,A1)0° = -;-(1 — 0°%°)P?,
A’ 73 @
0.0,8° — A, A, +240,8” + (3,4))8% = 51— 0"2")e%;
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and the consistency condition (7.5) becomes:
(7.8) Bujl = 0.
In the above equations if we further assume the fields are time-independent and 4y, 7, =

0 (hence we are looking for nonabelian magnetic monopole solutions) and then make the
identification:

A= (Ai)D=1,2,35 QS - (I)S + i@27 Jext = (ji)v*—-l,Z,Sa

we see that Eqs. (7.7) and the condition (7.8) are recognized as (7.1) and (7.2), respectively.
Therefore a resolution of the problem follows.
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