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Computing Elementary Symmetric Functions and
Their Derivatives: A Didactic

Frank B. Baker, University of Wisconsin

Michael R. Harwell, University of Pittsburgh

The computation of elementary symmetric functions
and their derivatives is an integral part of conditional
maximum likelihood estimation of item parameters un-
der the Rasch model. The conditional approach has the
advantages of parameter estimates that are consistent
(assuming the model is correct) and statistically rigorous
goodness-of-fit tests. Despite these characteristics, the
conditional approach has been limited by problems in
computing the elementary symmetric functions. The in-
troduction of recursive formulas for computing these
functions and the availability of modem computers has

largely mediated these problems; however, detailed
documentation of how these formulas work is lacking.
This paper describes how various recursion formulas
work and how they are used to compute elementary
symmetric functions and their derivatives. The availabil-
ity of this information should promote a more thorough
understanding of item parameter estimation in the Rasch
model among both measurement specialists and
practitioners. Index terms: algorithms, computational
techniques, conditional maximum likelihood, elementary
symmetric functions, Rasch model.

The Rasch model is a popular item response theory model that is based on two parameters, an examinee
trait parameter ~v, 0 < ~v <_ 00, v = 1, ~, ~, ..., IV and an item easiness/difficulty parameter Fi, 0 < t¡ ~ 00, i = 1,
2, 3, ..., k. Given ~ and e, the likelihood of response ui, to dichotomously scored item i is given by

where u;V represents the response of the vth examinee to the ith item and is the realization of U;v (ui, = 1 if
the item is answered correctly and 0 otherwise). Rasch (1960/80) modeled the combinatorial aspects of
responses to dichotomously scored test items in terms of elementary symmetric functions (ESFS):

where the summation is over all vectors of item responses that contain r correct responses.
Andersen (1970, 1972) used Rasch’s (1960/80, 1961) work as the basis for the conditional maximum

likelihood estimation (CMLE) procedure for estimating item parameters, in which the ~s are replaced by
their sufficient statistics, which are their number-correct test scores, and item parameters are estimated
conditionally on these statistics. The resultant likelihood function (Fischer, 1973) is given by
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where

is the number-correct score for examinee v (when it creates no confusion a number-correct score is denoted
by r), fr is the number of examinees with a number-correct score of r, and

is the item score for item ao Taking the derivative of the loglikelihood with respect to an arbitrary e param-
eter and multiplying through by Fi results in

where

is the first derivative of the symmetric function y, with respect to F,, and is an ESF of order r - 1. The

resulting system of k likelihood equations can be solved using the Broyden-Fletcher-Goldfarb-Shanno or
gradient methods (Press, Flannery, Teukolsky, & Vetterling, 1986) that involve both the ESFs and their first
derivatives, or using the Newton-Raphson procedure (Baker, 1992). Thus, numerical evaluation of the
ESFs and their derivatives is central to CMLE under the Rasch model and its extensions.

In recent years, a number of procedures for evaluating the ESFs and their derivatives have been devel-
oped (Fischer, 1995; Fischer & Ponocny, 1994, 1995; Formann, 1986; Gustafsson, 1980; Jansen, 1984;
Verhelst, Glas, & van der Sluis, 1.984). These approaches are based on the difference algorithm (Fischer,
1974; Fischer & Allerup, 1968), the summation algorithm (Fischer, 1974), or a combination of these two
algorithms within the context of the grouping property of ESFs (Liou, 1994; Verhelst & Veldhuijzen, 1991).
Although the mathematical formulation of these algorithms and the grouping approach have been pre-
sented in the literature, the numerical details have not. The goal here was to provide both measurement
specialists and practitioners an understanding of the computational aspects of ESFs as used in CMLE under
the Rasch model and its extensions.

Computing ESFs Using the 1 er~~ac~ Algorithm

A serious problem in the computation of the yr is that the number of multiplications becomes very large
as the number of items (and hence r-) increases. Gustafsson (1977) reported that when the number of items
is 50 and r = 25, Y25 is defined as the sum of 1.26 x 1014 terms, each of which is a product of 25 terms. Even
for modem computers, it is not feasible to compute the y, for even short tests (e.g., 15 items) using direct
multiplication, without substantial rounding errors occurring. Fischer (1974, pp. 242-244) developed an
algorithm that avoided direct multiplication by relying on recursion formulas for computing the ESFs and
their first derivatives. Gustafsson (1977) called this the difference algorithm and indicated that it leads to
less rounding error than direct multiplication and is fast for 20 ~ k ~ 40. The description of the difference
algorithm below relies heavily on the FORTRAN subroutine GAMMA found in Fischer & Formann’s ( 1972)
LLTM computer program (which required only 41 lines of FORTRAN code) and in the PC version of the LLTM
program (Fischer & Wild, 1988), and Fischer’s (1974) book. This subroutine was also used in Gustafsson’s
(1977, 1990) PML computer program.

The recursive relationship between an ESF of order r and its derivative with respect to E as provided by
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Rasch (1960, p. 180, eq. 6.10) is

where

is a symmetric function of order r - 1 in all k item parameters except ~;. For example, if r = 2 then

and

is a symmetric function of order r in all k item parameters except E¡. If r = 2, then r + 1 = 3 and

Whenever an ESF has a superscript, the letter within the parentheses indicates that a derivative of the next
higher-order ESF has been taken with respect to e, indexed by the letter. The subscript of the ESF indicates
its order. For example, the subscript r appears on both sides of Equation 8. On the left, the yr is of order r
and involves all k E parameters; that is, ~,, E2, ..., £k’ On the right side, y&dquo;) is also of order r but involves
only k - I E parameters-F-1, E~, ..., ~; _ 19 ~L + 19 ..., s~. Symbolically, if Y, and y~ are in an equation, both
subscripts denote ESFs of order 1 but they involve item parameter sets of different size.

The recursion formula that is the basis of the difference algorithm is a simple rewrite of Equation 8:

The following relationship (Fischer, 1974, p. 242) also holds:

To illustrate the difference algorithm, suppose that the y, for a 5-item test (Table 1) are to be computed.
Using Equations 13 and 14, it is possible to devise an efficient algorithm for computing the y, and their first
derivatives. Table 2 shows the needed derivatives in symbolic form for r = l, 2, ..., 5.

Using the difference algorithm, the GAMMA subroutine reduces the accumulation of round-off errors in
the computation of the yr by breaking the computations into low-to-high and high-to-low parts (Fischer,
1974). The low-to-high part computes y~ for r = 1, 2, ..., k/2; the high-to-low part computes the symmetric
functions for r = k, k - 1, k - 2, ..., kl2. The midpoint value is determined by the FORTRAN rules for integer
division. For example, when = 5,5/2 + 1 = 2 + 1 = 3 and if k is even, say k = 4, 4/2 + 1 = 2 + 1 = 3, so that
y3 is the midpoint in either case.

The low-to-high part is illustrated using the product-normalized values of Ei for the 5 items of the LSAT-6
dataset (Bock & Lieberman, 1970) under the Rasch model, which is known to fit these data well (Thissen,
1982). The LLTM computer program (Fischer & Formann, 1972) produced estimated F- parameters of E, =
3.5118, F-2 = .6219, E3 = .2905, c4 = .8450, and F-5 = 1.8648. In practice, CMLE starts by computing the Esfs
using the initial estimates of the e,. The final values were used here to provide a link to previous results in the
literature (Baker, 1992; Thissen, 1982).

The logic of the difference algorithm is based on proceeding column-wise from left to right across Table 2.
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Table 1

Elementary Syrnrnetric Functions for k = 5 items

The process begins by computing the lowest-order ESF (r = 1) and its first derivatives with respect to each of
the k e parameters. Then Equation 13 is used to obtain the first derivatives of the next higher-order ESF, and
the value of the ESF is obtained using Equation 14. The order of the ESF is increased by 1 and the process is
repeated until the highest-order ESF has been computed. The end products are the numerical values of the y~
(r = 1, 2, ..., k) and y/fj (r - 1 = 0, 1, 2, ..., k- 1), which are reported in Table 3 for the LSAT-6 data.

Table 2
First Derivatives of the yr and r - 1

Implementation of the difference algorithm begins at the r = 1 column, where the y(i), = (i) need to be
computed. Table 1 shows that 11 is the sum of the five E parameters, and that the derivative of this quantity
with respect to any Ei will be 1 [16i) = 1 for i &reg; 1, ~, ..., 5~. Hence, the numerical values for all entries in the
r - 1 = 0 column of Table 2 will be 1. To obtain the marginal value for column 1, the sum of the products
of £¡ and 16i) (i.e., the inner product), where &reg; 1, 2,..., 5, is computed. Table 3 shows that this sum is
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Using Equation 14 with r = 1,

Next, the entries in the second column of Table 2 [the y2-, terms] are needed to obtainy2 and are computed
using Equation 13:

The marginal value for this column is the sum of the products of E, and y~(’)-

Note that the product of each pair of item parameters appears twice in the total. From Equation 14 it is
known that

thus,

Table 3
First Derivatives yli) 1 ~nd Values &reg;f yT
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Next, compute the y(i) 2 entries for the r - 1 = 2 column of Table 2, which in turn allows y3 to be computed.
As before, use Equation 13 to compute

This is an ESF of order 2 involving k = 5 - 1 elements, namely: £2’ ~3, E~, and E,. Then,

The column marginal is computed using the inner product of the vectors £ and &dquo;12=(i), yielding

Note that each pair appears three times in the final sum. Then from Equation 14:

The upper limit of the low-to-high part of the process is reached at r = 3, and the values in the first three
columns of Table 3 have been filled. The paradigm now shifts to the high-to-low part to fill in the remain-
ing cells in Table 3.

The high-to-low part is based on a rewriting of Equation 13 (Fischer, 1974):

Fischer (1974, p. 243) provided the following relationship in place of Equation 14 for use in the high-to-
low part:

The high-to-low part begins by computing y,, which is y, = E,F,2F-3F,4F-5 = 1.0. In general, if I~~~; &reg; 1 the

estimates have been product-normalized, anchoring the Fi and resolving the identification problem.
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To obtain y,, the cell entries for the right-most column (r- 1 = 4) in Table 2 must be computed. Starting with

From Equation 26, y~) == ‘~1~2~3~4~5 ~° 0)le;. Then

Note that the values of y(i) are the reciprocals of £¡; for example,

From Equation 27,

For completeness, 7, is recalculated using the high-to-low approach. The values of y(i) are obtained using
Equation 26:
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When the ~y3‘~ are summed over i, each triplet appears twice. From Equation 27,

which is the same value obtained using the low-to-high part.
Because the midpoint 7, will have the largest value and has been calculated by two different approaches, it

can be used to test the accuracy of the computations. The GAMMA computer program uses the following
check:

where y-’ is the estimate obtained from the high-to-low part. If TEST > .01, its value is reported to alert the
user to possible rounding errors.

Computing ESFs Using the Summation Algorithm

Gustafsson (1977) suggested that the summation algorithm (Fischer, 1974) be used to compute the y,
and their derivatives because it is less subject to the effects of rounding error than the difference algorithm
because no subtraction is involved. This algorithm is based on the following relationship (Fischer, 1974, p.
250, eq. 14.3.11):

where 0~r~~!;~=l,2,..., k; and »a < r. The recursion involves computing the term on the left-hand side
of Equation 35 in stages. In particular, for each increase in r°, the two terms on the right-hand side of
Equation 35 are computed for each possible value of ~a <_ r°. The process stops whenever the term on the
left-hand side of Equation 35 contains m terms.

The recursion begins by establishing an ESF of order 1 based on a single item, say ~,. Using the LSAT-6
data, for r &reg; na = l, m - 1 = 0, y,(P- 1) = 1 (from Table 1), YI (E1’ ..., ~m_1) = 0, and from Equation 35, y, (6,) =
0 + (EI)(1) = sj = 3.5118. Because this expression does not yet contain the desired a~a = 5 terms, the process
continues. Adding a second item parameter, F2, means r increments to 2 and Equation 35 is used for m = 1
and then separately for rra = 2.

Given two items, the maximum possible order of the ESF is r = 2; thus, for ~° = m = 2, rn - ~ = 1,
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Adding a third parameter, E3, means r can be l, 2, or 3; thus, for r = m = l, m - I = 0,

Adding a fourth parameter E4 yields, for r &reg; ~rc = 1, m - 1 = 0,

Adding a fifth parameter t5 yields, for r~ = rn = 19 m - 1 = 09

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  
May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



178

which has (D terms.

which has (2~ terms. 
’ ’

The remaining y, are obtained using Equation 35 and the terms computed above.

which has CD terms.

which has ~4~ terms.

which has (’5) terms.
Having included all 5 items (rn = 5), the recursion process is terminated and the computed values of the yr

are those reported in Table 3. Although the implementation of the summation algorithm in the GAM subrou-
tine (Fischer, 1974, p. 544) required only 24 lines of FORTRAN code, it is computationally more demanding
than the difference algorithm because it computes the yr for r = 1, 2, ..., ~a as m varies from 1 to k.

A Network Representation of the S~ a~~&reg;~ Algorithm

Liou & Chang (1992) developed a directed acyclic network representation of the possible item response
vectors for k dichotomously scored items. Such a network consists of rc + 1 stages beginning at stage 0 with
a single node. Each node at stage i generates two successor nodes at stage i + 1. Two directed arcs connect
the node at a lower indexed stage to its two successors. Liou (personal communication, May, 1996) sug-
gested that this network approach also could be used to represent the computation of the ESFs using the
summation algorithm.

The network for a 5-item test is shown in Figure l. A node in the network is denoted by rm) where
the first letter denotes the stage of the network and the second indicates the order of the ESF at that node.
For example, node (4,2) indicates that there are four items involved in the ESF at that node and an ESF of
order two corresponds to the node [i.e., yz(y9 e~, Eg, ~a)). The line connecting two successive nodes is an arc
whose length is defined by E:m++!1 where u&dquo;,+, = r m+! - r..

If the node at the end of the arc is below and to the left of the current node, then u&dquo;~+1 = 0. For example,
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Figure I
Directed Network Representation of the Computation of ESFs for 5 Items

the length of the arc connecting nodes (2,1) and (3,1) is E~/ = -L’ = 1. If the node at the end of the arc is
below and to the right, say (2,1) to (3,2), then the length is F2-1 3 = E’ &reg; e,. The length of a path from the
initial node (0,0) to a node in a higher indexed stage is the product of the lengths of the arcs comprising the
path. For example, the length of the path (0,0) -~ (1,0) --> (2, 0) --~ (3,1) = x 1 x Eg = E3. The length of the
path from (0,0) &horbar;~ (1,1) -4 (2,1) = Ei x 1 = E,. The ESF at each node is defined as the sum of the lengths of
all the paths connecting the initial node (0, 0) to that node. For example, at node (2,1),

and at node (391)9

Although the ESF at any node can be found in this manner, it is simpler to define the ESP at a node in terms
of the ESFS of the two nodes in the preceding stage that are connected to it. Thus, at node (m, rm) the two
nodes connected to it are (?M &horbar; 1,~_ i) and (m - 1,~,) and the ESF is given by

where the first term corresponds to the path coming from the upper left and the second term to that coming
from the upper right. Note that Equation 55 is identical to Equation 35, which defines the summation
algorithm. For nodes on the outer edges of the network, the term in Equation 55 corresponding to the
nonexistent arc is set to 0. For example at (3,3) the ESF is ’Yi£l’£z) x £3 + 0. At (3,0) the ESF is 0 + y&reg;(~l,~z).

Implementing the summation algorithm using the network approach is straightforward. The stages ad-
vance from node (0,0) down the left-hand edge of the network depicted in Figure 1. Increasing the stage is
the same as including the next item within the summation algorithm. At each stage, the network is &dquo;swept&dquo;
horizontally from left to right and each of they, possible at that stage are computed using the upper-left/upper-
right paradigm described above. This process is repeated stage by until all k items have been included.
Thus, the y~ computed across the bottom of the network in the last stage are the desired ESFs. It is important to
recognize that this process constructs the network of Figure 1 from the top of the diagram to the bottom of the
diagram. Liou (personal communication, May, 1996) provided a FORTRAN computer program that imple-
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ments this directed acyclic network approach to computing the ESFs in only 15 lines of code.

An Alternative Summation Algorithm
Verhelst et al. (1984) provided a reformulation of the summation algorithm in which the upper triangle

of a k x k matrix is computed with elements

where i = 1, 2, ..., k denotes a row, and j = 1, 2, ..., k denotes a column. When a subscript identifies a
nonexistent cell, e,~ = 0. The tij show that a recursive process is being defined. In the row indexed by i = 1,
the sum of the £ parameters is created item by item for j &reg; 1, 2, ..., k. For 1 < i < j, the definition oft,, is the
same as ~r (F-11 P-21 ..., ~m) in Equation 35 for the summation algorithm, and the values computed in the
preceding row are used. When i ~ j, tii is simply the product of the set of Fi involved in the row-column
combination. Thus, proceeding across columns within a row, and then down by rows produces they, in the
right-most column of the matrix.

To implement this algorithm, the item parameters are initially placed in the order ~1, F2, E3’ ~4, e,. For the
first row of the matrix,

For the second row,

For the third row,
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For the fourth row,

For the fifth row,

These results are presented in terms of the ESFs and their derivatives in Table 4. Table 4 shows that (1) the
kth column (column 5) contains the y~, with the order of the ESF corresponding to the index of the row in
which it appeared; (2) the k - lth column contains the derivatives with respect to the 6, of the ESF having
the next higher order than the index of the row; (3) the k - 2th column contains the second derivatives with
respect to Ek and Ek-l of the ESF of order 2 higher than the index of the row; (4) the k - 3th column contains
the third derivatives with respect to e~, Ek- P and Ek-2 of the ESF of order 3 higher than the index of the row;
and (5) the k - 4th column (the first column in Table 4) contains a single term, which is the derivative of the
ESF of order 4 higher than the index of the row, with respect to ~~ _ 3’ Ek-2’ e~ _ and Ek’

Table 4
ESFs and Derivatives Yielded by the Verhelst, Glas, & van der

Sluis (1984) ’Technique for the Item Order ! a &reg; 1, 2, 3, 4, 5

Note that the first derivatives in Table 4 are with respect to only the kth item. To obtain the first deriva-
tives for the remaining - 1 items, the process would be repeated using each of the remaining - 1 items
as the kth item in the list of items; that is, the item order would be cyclically rotated to the right once for
each matrix. However, it would not be necessary to compute the kth column, but four more matrices of
dimension k - 1 x k - would have to be computed. Computing the full set of k matrices would yield the
ESFs and all of the first derivatives of the yr, but the full set of second- and higher-order derivatives would
not be produced.

As was the case with Fischer’s summation algorithm, this alternative algorithm can be implemented
using a network approach. Starting at node (0,0) whose value is always 1, the network in Figure 1 is

&dquo;swept&dquo; along the path that goes left and down until the last stage is reached at node (5,0). At each node
encountered on this path, the corresponding y~ is computed using the upper-left/upper-right paradigm
described above.

For example, the left and down path originating at (0,0) contains the yo for ali k stages. The stages
themselves advance down the right-hand edge of the network depicted in Figure 1. Again, increasing the
stage is the same as including the next item. Thus, going from node (~,&reg;) to (1,Y) includes £1 and is fol-
lowed by a &dquo;sweep&dquo; to the left and down along the path to node (5,1), yielding the k - (w &horbar; 1) 7,. This
process is repeated stage by stage until ~11 k items have been included. Note that computing the yr along the
left and down path is identical to computing the terms in a row of the matrix depicted in Table 4. The ESF
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computed at the end of a path is they, in the kth column of Table 4. The y, computed at the nodes along the
right edge of the network correspond to the diagonal terms of the matrix in Table 4. It is important to
recognize that under the alternative summation algorithm, the network of Figure 1 is constructed using top
to bottom paths from left to right across the network. This is in contrast to Fischer’s summation algorithm
in which the network is constructed by rows from top to bottom.

Although using different approaches, both the summation and alternative summation algorithms con-
struct the same network. That the two summation algorithms have been shown to be variations on con-
structing a network is very important for several reasons. First, it shows that there was a common underlying
framework for these two algorithms. Second, it leads to very compact FORTRAN computer programs for
evaluating the ESFs. Third, it suggests that other algorithms for evaluating ESFs might be represented by
networks and perhaps a common framework could be developed for a variety of such algorithms.

Computing Derivatives of ESFs the Summation Algorithm
The summation algorithm can also be used to evaluate the first and second derivatives of the ESFs with

respect to the item parameters. A very clever approach was used by Fischer (1974, p. 544) in the GAM
subroutine to obtain the values of the derivatives. To obtain the first derivatives, simply set the value of the
E, with which the derivative is to be taken to 0 and execute the summation algorithm for the full set of k
items, yielding y(’) for r = 1,2, ..., k. To obtain the first derivatives with respect to all k item parameters
requires repeating this process k times. The second derivatives are obtained by setting the values of a pair
of the 6, say e; and Eh’ to 0 and executing the algorithm, which will then yieldy(il’) for that pair. This process
is repeated ~(A; - 1)/2 times to obtain the full set of second derivatives.

To find the first derivative of the ESFS for r = 1, 2, ..., k with to sj the y~’~ ~, ~1 is set to 0 and the
summation algorithm is initiated using c, as the first item to be included. Then, for r m = l , m - 1 = 0,
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These values for the first derivatives are the same as those reported for Item 1 in the first row of Table 3.
This process would be repeated for each of the remaining items to obtain the first derivatives.

The summation algorithm also can be used to obtain the numerical values of the second derivatives of
the y, that are needed when estimating the E; using the Newton-Raphson technique. Although the formulas
for the second derivatives are known, they are not evaluated using direct substitution of the values of the E;.
Instead, they are computed using the summation algorithm, which is illustrated below using the LSAT-6 e
parameter estimates.

Taking the second derivatives ofy~ with respect to Ei = 6, and ch = E2, begin by setting the values of these
two E parameters to 0 and executing the summation algorithm.

Starting with a single item parameter £1’
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Including Eg produces ~° &reg; m &reg; 19 an - 1 &reg; a9
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This process generalizes to any pair of second derivatives. Simply set the particular pair of (~t, ~h) equal to 0 and
execute the summation algorithm for k items. Because the matrix of second derivatives is symmetric, the GAM
subroutine is called k(k - 1)/2 times for a k-item test. Each call yields numerical values of the y~r,‘‘2~ for r = 1,
2,3,..., k. This approach to computing derivatives of the ESFs is computationally intensive because the summa-
tion algorithm computations are performed for the full set of k items each time. In addition, the entire summa-
tion algorithm is repeated k times for the first derivatives and k(k - 1)/2 times for the second derivatives.

ESFs Using the Property
MacLane & Birkhoff (1988) provided a proof of the grouping property of ESFS, and Verhelst & Veldhuijzen

(1991) used this property to construct an algorithm to compute the y,, as well as their first and second

derivatives, in one process. However, for present purposes, using the grouping property only to compute
the y, will be illustrated [see Verhelst & Veldhuijzen (1991) for the complete algorithm].

First, partition the k item parameters into p groups, each containing two item parameters. Next, the
summation algorithm is used to compute the ESFs for each group of item parameters, which are called the
building blocks. The grouping property is then used to compute the ESFS of a larger group formed by
merging two of the groups. This hierarchical process is repeated until all p groups are included and the ESFs
of the full set of item parameters is obtained.

To illustrate this process, the parameter for an additional item was added to the set for LSAT-6. The value Eg
= 1 was selected so that certain computations could be related to earlier results and the set of six e param-
eters remained product-normalized. The set of six item parameters was partitioned into = 3 groups of size
m = 2 as follows:

All arrangements of the item parameters into groups will produce the same final results. The summation
algorithm was used to evaluate the yr for each group. The building blocks are

Verhelst & Veldhuijzen (1991) provided the following relationship:

To merge the first two groups, begin with

then

Because y a(kz) = 0, this first result equals 1 by definition (Verhelst & Veldhuijzen, 1991).
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The numerical values of the y, for the merged group of four items are the same as those obtained earlier
when the fourth item parameter e4 was incorporated in the summation algorithm example. At this point, the
y~ for one group of four items and one of two items are available. These two groups are merged to yield the
ESFs for the full six-item test.

The building blocks now are the ESFS for the group of four items and those for the group of two items
(Items 5 and 6); the numerical values of the Esfs were provided above. In Equation 94, k, = 4, k2 = 2, a =
rnaac(0,~ &reg; 2) and b = min(g,4). Then, for r = g = 0,
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The subscripts on the y(kl) vary from 0 to ~°y and those for y(k2) vary from r to 0. Whenever the subscript of
a y is greater than its group size, its value is 0.

Computing Derivatives of ESFs L ou’s Extended Algorithm

Liou (1994) developed an algorithm for obtaining the first- and higher-order derivatives of ESFs that
embodies the difference algorithm, the summation algorithm, and components of the grouping property of
Esfs. Although Liou’s algorithm can be used to obtain third- and higher-order derivatives, it is illustrated
here for only the first and second derivatives of the Es~’s.

To illustrate how first derivatives are computed, the six item parameter values from the grouping algo-
rithm example are used because many of the needed numerical values are available in these earlier results.
First, evaluate the y, for the full set of k &reg; 6 items using the summation algorithm. In order to take the first
derivatives of the yr for the full set of 6 items with respect to F-6, a group will be defined that only contains
this £ parameter. Equation 13 of the difference algorithm is used recursively in the low-to-high direction in
the following manner:

As first observed for the summation algorithm,
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is the derivative of the next higher-order ESF involving all k items with respect to ~6, and

is the first-order ESF for the remaining 5 items. Then

The 1;6) term was available from the previous computation, and when multiplied by e~ yields the term to be
subtracted from the next higher-order ESF. Thus, as each first derivative is computed it is used in Equation
13 to compute the next higher-order first derivative. Continuing the sequence,

That these first derivatives are the same as the Yr for the five items of the LSAT-6 data can be verified by
examining Table 3. The of Liou’s extended algorithm is that it avoids the of a long
series of intermediate ESFs to reach those needed.

In order to obtain the second derivatives using Liou’s the k item are partitioned
again. For purposes of this the second derivatives will be taken with respect to £5 and E6, which
will constitute the group (~ 1 &reg; Liou (1994) the following for the second
derivatives:

where y, is the ESF of order r for the complete set of k items and yl(k,) and are for the group of size two.
Implementing Liou’s extended algorithm requires the initial computation of the yr for the full set of k

items and for the group of two items using the summation algorithm. The numerical values for the full set
were provided above in the example of the grouping algorithm. Those for the group of two are y,(k,) &reg; 1,

y(kl) = E5 + E6 = 1.8648 + 1.0000 = 2.8648, and y~(kj) = ~5~6 = 1.8648.
Given these initial values, the algorithm proceeds as follows:
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Because

these second derivatives are the same as the yr when k = 4 and only the first four items are involved. This
can be verified by examining the numerical results presented above for the summation algorithm example
when the fourth parameter E4 was added. These results show that the second derivatives of y, for k items
can be computed by grouping the items such that the first group contains the item parameters with which
the derivatives are to be taken, and the second group the remaining item parameters. The yr for the second
group will be those for the derivatives of interest. Because CMLE needs the y, for the full set of k items,
Liou’s algorithm produces the second derivatives needed in the Newton-Raphson procedure much more
efficiently than the summation algorithm for a group of k - 2 items. In practice, Liou’s algorithm is imple-
mented using a low-to-high part and a high-to-low part, as Fischer (1974) did, to prevent the rounding
errors inherent in the difference algorithm from propagating into the higher-order ESFs when r > k/2.

Comparison of the Algorithms s

The algorithms presented here exploit the fact that an ESF of order r based on some subset of size k - v
6 parameters is the same as the vth derivative of an ESF of order r for the complete set of k item parameters.
Inspection of earlier calculations for the various algorithms reveals many instances in which the relation-
ships between the ESFs and their derivatives are being used-for example, the derivatives presented in
Table 4 for the Verhelst et al. (1984) reformulation of the summation algorithm. In the difference and
summation algorithms, v &reg; 1. The difference algorithm obtains the ’Y(’) by using this relationship to remove
the appropriate terms contained in a subset of k - item parameters from the corresponding yr based on the
full set of k item parameters. Liou’s extended algorithm uses the relationship in a similar manner. The
summation algorithm uses it to add the appropriate terms to the yr from a smaller set to theyr for the larger
set. However, it does this recursively within a subset of items as the number of items in a subset, m,
increases by 1 until m = k.

The computations for each of the algorithms are relatively simple, but their number grows dramatically
as the size of a test is increased. Increasingly large tests (k > 50) present two problems that plague the
algorithms: (1) excessive computer time, which relates to efficiency or cost; and (2) numerical accuracy,
which limits the capacity of the algorithms. Comparing the performance of the algorithms on these two
issues exposes their similarities and differences.

Computer Time

The computer time problem arises from the fact that a given yr involves the sum of e) terms, each of
which involves the product of r F- parameters. For example, the difference algorithm requires 2k2 multipli-
cations/divisions and 2k2 subtractions/additions to compute a full set of yr for a k-item test; the summation
algorithm requires k(k - 1)/2 multiplications and k(k - 1)/2 + (k + 1) additions (Gustafsson, 1980). [A
reviewer indicated that the total count of multiplications for one run of the difference algorithm is ~,k2 and
that the total count for one run of the combination algorithm is approximately k(k + 1)l~, ~ 4k(k &reg; 1). °~h~s9
the latter should be more computationally demanding than the difference algorithm alone.]

Gustafsson indicated that, relative to the difference algorithm, the summation algorithm is slower by a
factor of k/4. Verhelst & Veldhuijzen (1991) measured the computer time demand in terms of cost units,
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where a unit consisted of one multiplication and one addition. The cost of the summation algorithm for
computing the ESFs and their first- and second-order derivatives for a k-item test was 1/4k4 - 1/2k’ + 5/4k2.
Formann (1986) stated that the number of operations needed for the evaluation of all k(k - 1)/2 second-
order derivatives increases as a function of e for the difference algorithm and a function of k~ for the
summation algorithm. The fact that CMLE is iterative and the complete set of computations are repeated
using new values of the Ei until a convergence criterion is met compounds the computer time problem.

Surprisingly little empirical evidence on the amount of computer time required is available. Liou (1994)
provided some empirical run times for the calculation of derivatives using her extended algorithm and the
summation algorithm. Liou’s computer programs were written in FORTRAN using double precision (REAL*8)
arithmetic on a VAX 8350 minicomputer and a SUN SPARC-1o work station. She found that for 60 items, the
summation algorithm required approximately 4.2 seconds on the VAX and .1 seconds on the SUN workstation
to compute the first derivatives of the ESFS. In contrast, Liou’s extended algorithm used approximately .l
seconds on the VAX and less than 1 millisecond on the SUN workstation. Liou’s findings suggest the obvious
conclusion that the &dquo;power&dquo; of the computer has a large impact on the computer time used, and that her
extended algorithm is very efficient compared to the summation algorithm for computing derivatives.

Similarly, Verhelst & Veldhuijzen (1991) reported an 80% and 90% reduction in computer time for their
new algorithm relative to that of the summation algorithm for computing first- and second-order deriva-
tives, respectively. Because a considerable amount of test calibration takes place on personal computers, it
would be useful to have additional comparative data for these algorithms using commonly available per-
sonal computers.

Numerical Accuracy

The second problem area is that of numerical accuracy, which directly affects the size of the test that can
be calibrated using CMLE. Although the capacity of all the algorithms is limited by the numerical accuracy
factor, it is a major problem for the difference algorithm because the basic recursion (Equation 13) involves
subtraction. When the order of the ESF approaches kl2, the difference between two very large numbers is
taken and rounding errors in these two numbers can have a major impact. Numerical accuracy is also
adversely impacted by the ratio of £max to £min’ the ratio of the largest values of e; to the smallest value of F-i
in its set of items (Gustafsson, 1980; Verhelst et al., 1984). When this ratio is large, the terms in the ESFs
involve elements of mixed magnitudes that lead to rounding errors. Verhelst et al. (1984) provided an
excellent exposition of the numerical problems inherent in the evaluation of Esfs.

Gustafsson (1980) proposed the combination algorithm to reduce the impact of rounding errors. The
summation algorithm is used to compute the yr, and Equation 13 is then used to compute the first-order
derivatives of the ESFs. At this point, the y(i) are available and the yr are computed using Equation 14.
Fischer’s ratio test then can be used to compare the yr computed using the first derivatives with the corre-
sponding Yr based on the summation algorithm. When the test criterion for a given Yr is exceeded, the first
derivatives are recomputed using the summation algorithm and the F-i = 0 technique, and a new value for yr
is obtained. Gustafsson (1980) reported that when no recomputation was necessary, the combination algo-
rithm was slightly faster than the difference algorithm and that it enabled tests of up to 80-100 items to be
analyzed. However, no empirical evidence to support this claim was provided.

The current version of the PML computer program (Gustafsson, 1990) provides the user the option of
using the difference, summation, or combination algorithm to compute the ESFs needed in CMLE of the item
parameters under the Rasch model. However, the PML program manual (Molenaar, 1990) places an upper
limit on the number of items at 60 for all three algorithms.

Fischer & Ponocny ( 1994, 1995) developed an improved version of the combination algorithm that is both
fast and accurate. The y, for the full set of k items are computed using the summation algorithm, and the yr-I
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for r = 1, 2, ..., k are computed for each item separately using the difference algorithm. The &dquo;bottom-up&dquo;
approach is used for r = l, 2, ..., r’, and the &dquo;top-down&dquo;’ approach for r = k - 1, k - 2, ..., r’. The index value

r’ is determined for each item (see Fischer & Ponocny, 1995, eq. 19.24), and an accuracy check is made at r
== r°’ for each item. If the result is unsatisfactory, the respective y~‘jl for r = 1, 2, ..., k - 1 are recomputed for
that item using the summation algorithm. Fischer (personal communication, November, 1995) reported that
using this algorithm in the LLTM computer program (Seliger & Fischer, 1994) allowed the Rasch model item
difficulty parameters of a 150-item test to be estimated in 32 seconds on a 486DX 100Omhz computer, indicat-
ing that the algorithm is very fast.

Conclusions

Past computational difficulties in computing ESFs and their derivatives have limited the use of CMLE of
item parameters under the Rasch model. For example, ~lri~ht ~ Douglas (1977) were able to estimate param-
eters for only 12-15 items before numerical instability set in. However, the introduction of efficient algo-
rithms and the availability of high-speed personal computers have increased the attractiveness of this method.
Fischer’s (1974) bidirectional version of the difference algorithm increased the capacity to approximately 40
items, and Gustafsson’s (1980) combination algorithm allowed 80-100 items to be calibrated. Verhelst &
Veldhuijzen (1991) reported considerable savings in computer time by using the summation algorithm and
the grouping property of ESFs to calibrate data for 144 parameters, and Fischer & Ponocny (1994, p. 183)
provided an improved combination algorithm that allows 150 items to be calibrated.

Perhaps the most important consequence of these advances is that the newer algorithms for computing
and evaluating ESFs have sufficient capacity for the CMLE procedure to calibrate typical educational and
psychological instruments. However, the problems of computer time and numerical accuracy still have not
been completely resolved.
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