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Abstract 

 
Cancer is a leading cause of morbidity and mortality worldwide. Developing 

molecularly targeted therapies to improve patient outcomes will require comprehensive 

understanding of the genetic events that give rise to cancer. Large-scale efforts to catalog 

the genetic aberrations in human tumors are currently underway. Transposon-based 

insertional mutagenesis screens provide a complementary, comparative genomics 

approach for cancer gene discovery. Sleeping Beauty (SB) transposon mutagenesis has 

been used to identify genes that contribute to intestinal tumor formation. Two of the 

identified genes, Rspo2 and Wac, were the subjects of this thesis research. R-spondin 2 

(RSPO2) belongs to the R-spondin family of secreted Wnt agonists. Activation of RSPO2 

and 3 has been identified in human colorectal and liver cancer, although the functional 

significance of these lesions has not been proven, and genetic screens in mice suggested 

that Rspo2 and Rspo3 are oncogenic in the mammary gland as well. Here we present an 

analysis of RSPO2 and 3 in human colon, breast, and liver cancer. We found that 

expression of RSPO2 and 3 was increased in subsets of all three tumor types, and 

correlated with activation of Wnt signaling in these tumors compared to normal tissues. 

We further investigated the functional significance of increased RSPO2 in breast and 

liver cancer models. We showed that RSPO2 can activate Wnt signaling in non-

transformed breast epithelial cells and RSPO2 overexpression is required for Wnt 

signaling and proliferation in an RSPO2-high breast cancer cell line. We developed an in 

vivo model of RSPO2 activation in the mouse liver using hydrodynamic tranfection with 

transposon-based DNA vectors followed by Fah selection. We found that increased 
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expression of RSPO2 in the liver activated Wnt signaling and promoted hepatomegaly. 

RSPO2 overexpression cooperated with Trp53 inactivation to initiate tumor formation. 

Hepatocellular carcinomas that formed in this model exhibited activated Wnt signaling. 

This model will facilitate further studies of R-spondin signaling and enable development 

of RSPO-targeted therapy. WW domain containing adaptor with coiled-coil (WAC) is an 

adaptor protein required for diverse biological processes, including regulation of gene 

transcription through histone H2B monoubiquitination. Wac was inactivated by 

transposon insertions in three SB screens for genetic drivers of intestinal tumorigenesis in 

wild type, Apc-deficient, and Trp53-deficient backgrounds. We found that WAC was 

somatically mutated and downregulated in human colorectal tumors. Further, mutant 

versions of WAC identified in human tumors were unable to transcriptionally activate 

expression of cdkn1a (the gene encoding p21) in a zebrafish embryo model. Depletion of 

Wac cooperated with Apc and Trp53 inactivation to promote anchorage independent 

growth of mouse colonic epithelial cells. The results of these studies collectively 

implicate RSPO2 as an oncogene in multiple wnt-responsive tissues and suggest WAC is 

a tumor suppressor in the colon that cooperates with APC and TP53. Additional work is 

warranted to further define the signaling pathways regulated by RSPO2 and WAC in 

tumorigenesis and to determine if drug targeting of these pathways is a viable strategy for 

improving the treatment of RSPO2 and WAC-driven cancers.  
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Chapter 1: Introduction 

Cancer gene discovery as a route to targeted and more effective cancer therapies 
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Summary    

Cancer is the cause of death for one in four Americans. Breast and colon cancer 

are two of the leading causes of cancer related death, and liver cancer mortality is both 

common and increasing. Although treatment strategies have improved and record 

numbers of people are living as cancer survivors, therapeutic options are still non-specific 

and minimally efficacious for many patients. Molecularly targeted therapy is a strategy in 

which drugs are designed to target the specific molecular pathways that are dysregulated 

in cancer. Some molecularly targeted therapies have been successfully integrated into 

clinical oncology, but this approach is still in its infancy. The Wnt/beta-catenin pathway 

is an important regulator of organismal development and adult stem cell renewal. 

Aberrantly activated Wnt/beta-catenin signaling promotes many cancer types, including 

colon, breast and liver, and Wnt signaling is an attractive therapeutic target in these 

cancers. Despite challenges, considerable progress has been made recently in developing 

drugs to target the Wnt pathway, reviewed here with a focus on colon, breast and liver 

cancer. In addition to targeting known cancer pathways, identification of novel genetic 

drivers of cancer can provide new avenues for targeted therapies. Forward genetic 

screens in model systems are a complementary approach to genomic profiling of human 

tumors for cancer gene discovery. Sleeping Beauty (SB) transposon mutagenesis is a tool 

for identifying tissue-specific cancer genes. Two genes of interest, Rspo2 and Wac, were 

discovered to be candidate cancer genes in intestinal tumors via SB transposon screens. 

The role of Rspo2 and Wac in cancer biology is the subject of research in this thesis.  
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Molecularly targeted therapy is a major goal of current cancer research 

Cancer is a leading cause of morbidity and mortality worldwide (Bray et al., 

2013). In the United States, approximately 50% of people born today will be diagnosed 

with cancer in their lifetime, and one in four people will die due to cancer (AACR Cancer 

Progress Report Writing Committee et al., 2013; Siegel et al., 2014a). Cancers of the 

colon, breast, and liver are some of the leading causes of cancer-related mortality, and 

together will account for 113,740 cancer-related deaths (19% of all cancer-related deaths) 

in the United States in 2014 (Siegel et al., 2014a).  

In the face of this daunting public health problem, there have been substantial 

advances in cancer prevention and treatment that have yielded a 20% decrease in overall 

cancer mortality in the United States over the past two decades (Siegel et al., 2014a). As 

a result, more than 14 million people currently living in the United States are estimated to 

be survivors of cancer (DeSantis et al., 2014b). Colon and breast cancer are positive 

examples, with mortality decreasing at a rate of 2-3% per year for colon cancer and ~2% 

per year for breast cancer in the last two decades (DeSantis et al., 2014a; Siegel et al., 

2014b). These gains are attributed to a combination of mitigated lifestyle-associated risk 

factors, improved screening, and advances in treatment. In contrast, death rates for liver 

cancer have been increasing in the United States and worldwide (Siegel et al., 2014a). In 

the U.S., liver cancer mortality increased by ~2% per year in the period from 2000 to 

2010 (Altekruse et al., 2014). The increasing burden of liver cancer is attributed to risk 

factors including cirrhosis, chronic infection with hepatitis viruses, alcoholic liver 
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disease, and obesity (Siegel et al., 2014b). Simultaneously, there have not been 

significant improvements in treatment of liver cancer to offset the increased incidence.  

For localized liver cancer, surgery may be curative but recurrence occurs in the 

majority of cases. Additionally, for the ~45% of cases that are diagnosed at an advanced 

stage chemotherapy does not improve survival (Giuliani and Colucci, 2009; Siegel et al., 

2014a). As a result, the overall 5-year survival rate for liver cancer is 18% (Siegel et al., 

2014a). Even for colon and breast cancer, where chemotherapeutic options have 

significantly improved survival, the 5-year survival rate remains 13% for metastatic colon 

cancer and 24% for metastatic breast cancer (Siegel et al., 2014a).  

To improve these outcomes, a major goal in current translational cancer research 

is the development of molecularly-targeted therapies for personalized cancer medicine 

(Figure 1) (Haber et al., 2011). In this paradigm, the clinical diagnosis of cancer would 

involve both traditional histopathological assessment and molecular analyses of a 

patient’s tumor, including DNA sequencing or gene expression profiling. These data 

would be analyzed to identify activation of oncogenic pathways and inhibition of tumor 

suppressor pathways responsible for the individual tumor’s growth. Treatment selection 

would be based on this information, choosing appropriate targeted therapies to intervene 

in the dysregulated pathways. Treatment response would then be monitored in real-time 

by repeat biopsy and imaging to determine if therapies were on target and if the disease 

responded.  

The current state of the art has not yet achieved the ideals of targeted cancer 

therapy. There are still a relatively small number of targeted drugs that are approved for 
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clinical use (Table 1). Personalized medicine has advanced farthest in the treatment of 

breast cancer, where standard practice includes molecular subtyping based on expression 

of hormone and growth factor receptors or microarray-based gene expression analysis, 

and “targeted” anti-hormone therapies and monoclonal antibodies against HER2 have 

greatly improved outcomes for selected patients. Yet for the 15-20% of breast cancer 

patients with triple negative or basal type breast cancer, treatment remains limited to 

cytotoxic chemotherapy (Shastry and Yardley, 2013). For colon cancer, a few targeted 

drugs that inhibit angiogenesis or growth factor signaling are in clinical practice (Table 

1). For liver cancer, only one targeted drug is approved, the multi-kinase inhibitor 

sorafenib, which was shown in phase III clinical trial to extend survival for a mere 2 

months (Table 1) (Llovet et al., 2008). 

In order to expand and improve the repertoire of targeted cancer therapies, efforts 

are focused on developing drugs to target known cancer pathways and identifying novel 

genetic drivers of cancer. Wnt signaling is an important pathway in cancer with 

significant potential for therapeutic intervention. Despite historical difficulty developing 

Wnt antagonists, recent progress has moved several Wnt-targeted drugs forward in 

development pipelines, reviewed here. Ultimately, to reach the goal of personalized 

cancer medicine we also need a comprehensive understanding of the genetic drivers of 

cancer. The second part of this chapter will describe strategies for identifying new cancer 

genes and introduce two genes, RSPO2 and WAC, which are the focus of this thesis 

research.  
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Wnt signaling: A developmental pathway hijacked in tumorigenesis  

Wnt signaling is a developmental pathway hijacked in tumorigenesis to promote 

unregulated cell growth. This dual role is exemplified by the initial discovery and naming 

of the Wnt pathway. In 1976, a novel drosophila mutant was discovered to produce one-

winged or wingless offspring (Sharma and Chopra, 1976). The mutated gene was named 

“wingless.” Six years later, a mouse mammary tumor virus (MMTV) screen identified a 

novel site of recurrent viral integration harboring a mammary tumor oncogene (Nusse 

and Varmus, 1982). This gene was named “Int-1.” Subsequent cloning revealed Int-1 and 

wingless to be homologs, leading to the adoption of the hybrid name “Wnt.” Wnt1 turned 

out to be the first secreted ligand in a conserved pathway that would come to have 19 

Wnt ligands in mammalian genomes, ten Frizzled receptors, and multiple additional 

receptors and co-receptors, whose interactions regulate the “canonical,” beta-catenin 

(CTNNB1)-dependent Wnt pathway, as well as the “non-canonical” planar cell polarity 

(PCP) and calcium-dependent Wnt pathways (Figure 2) (Niehrs, 2012).   

The first connection of the Wnt/CTNNB1 pathway to human cancer was 

discovered in the early 1990s, when the gene underlying the hereditary colon cancer 

syndrome called familial adenomatous polyposis (FAP) was discovered (Kinzler et al., 

1991; Nishisho et al., 1991). Individuals with FAP syndrome are predisposed to the 

formation of hundreds of colonic polyps beginning by their second decade of life 

(Kinzler and Vogelstein, 1996). Without surgical resection of the colon, progression to 

invasive colorectal cancer occurs in essentially all cases with average onset around 40 

years of age. The gene underlying FAP syndrome was named adenomatous polyposis coli 
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(APC) and it was discovered to interact with core components of the emerging Wnt 

pathway (Rubinfeld et al., 1993; Su et al., 1993), highlighting the significance of the Wnt 

pathway in human cancer for the first time.   

APC regulates canonical Wnt signaling by binding CTNNB1 in the cytoplasm 

along with other proteins, including AXIN1, GSK3B, and CK1, in a “destruction 

complex.” CTNNB1 is phosphorylated by GSK3B and CK1 at multiple residues and 

ubquitinated by beta-TRCP, which targets CTNNB1 for proteasomal degradation. In the 

absence of nuclear CTNNB1, TCF/LEF-family transcription factors are bound by 

Groucho proteins in transcriptional repressor complexes, which silence Wnt target gene 

expression (Figure 2). In contrast, when Wnt ligand is present a series of events occur to 

inhibit the destruction complex and stabilize CTNNB1. Wnt ligands bind to a Frizzled 

family receptor (FZDs) and a co-receptor of the lipoprotein related protein family 

(LRP5/6). This precipitates phosphorylation of LRP co-receptors, recruitment of AXIN 

and GSK3B to the receptor complex, activation of dishevelled (DVL), and inhibition of 

the destruction complex, allowing newly synthesized CTNNB1 to accumulate in the 

cytoplasm and translocate to the nucleus. Once in the nucleus, CTNNB1 binds TCF/LEF 

family transcription factors to activate transcription of a gene expression program 

regulating cell proliferation, survival, differentiation, polarity, and migration (Figure 2).  

Activity of the Wnt pathway is regulated by several factors in addition to Wnt 

ligand. The soluble frizzled related protein (SFRP) and dickkopf WNT signaling pathway 

inhibitor (DKK) families are secreted inhibitors of Wnt signaling. Recently, a novel 

module of secreted and cell-surface regulators of the Wnt pathway has been described. R-



 

 8 

spondins (RSPOs) were discovered to be secreted activators of canonical and non-

canonical Wnt signaling in a Xenopus screen (Kazanskaya et al., 2004). RSPO1-4 were 

found to dramatically potentiate Wnt signaling in the presence of Wnt ligand (Kim et al., 

2008). Since that time, the precise mechanisms of RSPO signaling have been the subject 

of considerable inquiry and controversy. Initial reports suggested that RSPOs bound 

directly to FZD receptors and LRP6 (Nam et al., 2006; Wei et al., 2007) or inhibited 

DKK (Binnerts et al., 2007; Kim et al., 2008) in order to activate Wnt signaling. Another 

report suggested that RSPOs could interact with Syndecan receptors (SCD4) to promote 

non-canonical Wnt signaling (Ohkawara et al., 2011). Ultimately, multiple research 

groups discovered that an orphan family of G-protein coupled receptors, the leucine-rich 

repeat containing G protein-coupled receptors (LGR4/5/6) function as receptors for the 

four RSPO ligands (Carmon et al., 2011, 2012a; Glinka et al., 2011a; de Lau et al., 2011). 

This was confirmed and further specified recently by a series of studies describing the 

crystallographic structure of RSPOs in complex with LGR receptors (Chen et al., 2013; 

Peng et al., 2013a; Wang et al., 2013). Despite this clarification, the signaling events 

downstream of RSPO binding to LGR receptors are still incompletely understood. 

Recently two groups identified a mechanism by which RSPO/LGR binding destabilizes 

RNF43 and ZNRF3, E3 ubiquitin ligases that negatively regulate Wnt signaling by 

promoting clearance of FZD and LRP receptors from the cell surface (Hao et al., 2012; 

Koo et al., 2012). These interactions have been confirmed by recent structural studies 

(Peng et al., 2013b; Zebisch et al., 2013). To complicate matters, another group recently 

proposed a contradictory model in which RSPOs can function as inhibitors of Wnt 



 

 9 

signaling through the LGR5 receptor, by stabilizing rather than inhibiting ZNRF3 (Wu et 

al., 2014). Clarification of signaling events initiated by the RSPO/LGR/ZNRF3/RNF43 

module will be important for understanding the role of these factors and Wnt signaling in 

stem cell and cancer biology.  

Wnt signaling in normal stem cells 

Wnt signaling promotes stem cell self-renewal in many tissues. The role of Wnt 

signaling in intestinal, mammary, and liver stem cells will be briefly described here, with 

an emphasis on the recently revealed role of RSPOs as stem cell growth factors and 

LGR5 as a marker of adult stem cells in many tissues. 

Wnt signaling in intestinal stem cells 

The intestinal epithelium is a dynamic tissue, undergoing continual turnover and 

renewal. Intestinal stem cells reside at the base of invaginations in the intestinal 

epithelium called crypts (Barker et al., 2008). Intestinal stem cells divide approximately 

once per day to produce a rapidly dividing progenitor cell compartment of so-called 

transit-amplifying (TA) cells. As TA cells divide they migrate away from the crypt base 

toward the surface epithelium. TA cells differentiate into mature lineages of the intestinal 

epithelium, including absorptive, goblet, enteroendocrine and Paneth cells. Differentiated 

cells undergo apoptosis and shed into the lumen of the gut as new cells from the stem 

compartment replace them (Barker et al., 2008).  

Numerous genetic studies have defined an essential role for Wnt signaling in 

intestinal stem cell homeostasis. Deletion of Tcf7l2, a transcription factor required for 
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CTNNB1-dependent transcription, during development or in adult intestinal epithelium 

results in loss of the intestinal stem cell compartment (van Es et al., 2012; Korinek et al., 

1998). A similar phenotype occurs following conditional deletion of Ctnnb1 (Fevr et al., 

2007; Ireland et al., 2004), overexpression of the Wnt inhibitor Dkk (Kuhnert et al., 2004; 

Pinto et al., 2003), or compound deletion of Lgr4 and Lgr5 (de Lau et al., 2011). 

Conversely, conditional deletion of Apc in intestinal epithelium leads to activated Wnt 

signaling, inhibition of differentiation, and maintenance of “crypt progenitor-like” 

phenotypes in intestinal epithelium (Sansom et al., 2004). Interestingly, transgenic 

overexpression of human RSPO1 by B cells or injection of recombinant RSPO1 in mice 

also leads to intestinal hyperplasia and a expansion of the crypt compartment (Kim et al., 

2005). 

Recently, LGR5 was discovered to be a uniquely specific marker of intestinal 

crypt stem cells (Barker et al., 2007). Lineage tracing experiments found that LGR5-

positive stem cells are capable of differentiating to all the mature cell types of the 

intestinal epithelium (Barker et al., 2007). Isolated LGR5-positive stem cells can also be 

propagated ex vivo in semi-solid medium where they will proliferate and differentiate to 

form “mini-guts” (Sato et al., 2009). These “organoid” cultures recapitulate the structure 

of the intestinal crypt and can be continuously propagated without becoming transformed, 

emphasizing the capacity of LGR5+ stem cells for both differentiation and self-renewal 

(Sato and Clevers, 2013; Sato et al., 2009). Consistent with a role in activating Wnt 

signaling, RSPOs are an essential growth factor in organoid culture (Sato and Clevers, 

2013). Combined with the genetic studies implicating Lgr4/5 and Rspo1 in intestinal stem 
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cell maintenance, these data suggest that the RSPO/LGR signaling module is an 

important regulator of Wnt signaling and intestinal stem cell self renewal.  

Wnt signaling in mammary stem cells 

In the breast, the mammary gland consists of a branching network of ducts, lined 

by luminal epithelial cells. A basal layer of myoepithelial cells underlies the luminal layer 

and contains rare mammary stem cells (Visvader and Stingl, 2014). The identity and 

function of mammary stem cells have been extensively studied using mouse models of 

gland reconstitution following transplantation into a cleared mammary fat pad (Deome et 

al., 1959; Smith et al., 2012). Transplantation studies implicate Wnt signaling in 

mammary stem cell renewal and gland reconstitution. Analysis of Wnt-activated cells in 

the mammary gland using an Axin2-LacZ reporter strain found that 5% of cells with a 

putative stem cell immunophenotype (Lin-, CD24+, CD29hi) expressed Axin2, and the 

Axin2-positive subset had increased efficiency in gland reconstitution compared to 

Axin2-negative counterparts (Zeng and Nusse, 2010). Further, culturing mammary stem 

cells with recombinant Wnt3a ex vivo enhanced their ability to reconstitute functional 

mammary glands upon transplantation (Zeng and Nusse, 2010). Lineage tracing 

experiments using the same Axin2-LacZ reporter strain found that Axin2-positive 

progenitors contribute to luminal and basal lineages at different times in development and 

give rise to alveoli during multiple pregnancies (van Amerongen et al., 2012). Lineage 

tracing using an Lgr5-GFP-IRES-creERT2 reporter strain found that Lgr5 positive cells 

are bi-potent progenitors that have developmental stage-specific contributions to different 

lineages in mammary gland development (Rios et al., 2014; de Visser et al., 2012). 



 

 12 

Similar to Axin2 positive cells, Lgr5-positive mammary epithelial cells also reside in the 

basal compartment and have enhanced regenerative capacity (Plaks et al., 2013). Mice 

null for the Wnt co-receptor Lrp5 exhibit loss of placodes, mammary gland hypoplasia 

and a reduced regenerative capacity in transplantation experiments (Lindvall et al., 2006). 

Mice null for Wnt4 or Rspo1 have defects in mammary duct side-branching and alveoli 

formation (Brisken et al., 2000; Chadi et al., 2009). These genetic studies emphasize the 

importance of Wnt signaling in mammary gland development and stem cell function. 

Wnt signaling in hepatic stem cells 

The liver is an organ capable of massive regeneration following injury or partial 

surgical resection (Michalopoulos, 2007). The role of hepatic stem cells in liver 

regeneration is incompletely understood and likely to depend on the type of liver injury. 

In response to some injuries, such as partial hepatectomy, fully differentiated hepatocytes 

and cholangiocytes (biliary duct epithelial cells) are able to re-enter the cell cycle in order 

to regenerate liver tissue (Michalopoulos, 2007). However, the adult liver also contains a 

population of bi-potent progenitor cells that are quiescent in healthy liver tissue but 

capable of regenerating both hepatocyte and cholangiocyte lineages in the context of 

chronic or toxin-induced liver injury. In rodent models, bi-potent progenitors are 

identified as “oval cells.” Several studies have shown that Wnt signaling is activated in 

oval cells during regeneration following partial hepatectomy (Monga et al., 2001) or toxic 

injury (Apte et al., 2008; Hu et al., 2007; Itoh et al., 2009; Yang et al., 2008). 

Additionally, expression of constitutively active CTNNB1 expands the oval cell 

population in the regenerated liver following toxic injury (Yang et al., 2008). A 
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significant recent study further clarified the role of Wnt signaling in promoting 

hepatocyte regeneration. This study identified a novel mechanism in which expression of 

Wnt3a by macrophages in the liver promotes expression of the Notch inhibitor Numb and 

promotes differentiation of bi-potent progenitors to mature hepatocytes (Boulter et al., 

2012). Importantly, lineage-tracing experiments using the Lgr5-creERT2 reporter allele 

have shown that while Lgr5 is not expressed in normal adult liver, Lgr5 is upregulated in 

bi-potent progenitor cells following multiple types of liver injury (Huch et al., 2013a). 

Further, isolated Lgr5-positive progenitor cells from injured liver can be clonally 

expanded ex vivo in culture medium containing Rspo1 (Huch et al., 2013a). Although 

questions remain regarding the requirement of Wnt signaling in normal hepatocyte 

homeostasis and regeneration following injury, these studies indicate that liver stem cells 

are R-spondin responsive and exhibit Wnt activation during regeneration. Collectively, 

these studies emphasize an important role for Wnt signaling in self-renewal of tissue stem 

cells in the intestine, breast, and liver. 

Wnt signaling in cancer and cancer stem cells 

The cancer stem cell theory posits that there is a subset of cells within a tumor 

that have enhanced capacity for tumor initiation, including stem cell renewal and 

differentiation to bulk tumor cells (Vermeulen et al., 2012). Cancer stem cells are 

believed to be responsible for tumor progression and relapse following treatment, and 

consequently there is significant interest in developing treatments to specifically target 

cancer stem cells. Wnt signaling is aberrantly activated in many tumor types, and may be 

a critical mediator of cancer stem cell proliferation (Figure 3) (Curtin and Lorenzi, 
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2010). The evidence for Wnt activation in colon, breast and liver cancer and cancer stem 

cells are briefly summarized here.  

Wnt signaling in colorectal cancer 

Colorectal cancer is the prototypical Wnt-initiated cancer type. Following the 

discovery that mutations in the APC gene underlie FAP syndrome, somatic mutations in 

APC were identified in sporadic cases of colon cancer (Kinzler and Vogelstein, 1996). 

Inactivation of APC occurs in ~80% of colorectal cancers, and is thought to be an early 

initiating event in colonic polyp formation (Barker and Clevers, 2006; Fodde et al., 

2001). APC loss of function results in constitutive activation of Wnt signaling and 

promotes a “progenitor-like” gene expression profile and formation of benign adenomas 

(van de Wetering et al., 2002). Secondary mutations in additional cancer pathways 

correspond with progression to invasive carcinoma (Fodde et al., 2001; Vogelstein et al., 

1988). In colon tumors that retain wild type APC, Wnt signaling is frequently activated 

by other events, including activating mutation of CTNNB1 or disruption of AXIN1 or 2 

(Figure 3) (Cancer Genome Atlas Network, 2012a). Recently, increased expression of 

RSPO2 or RSPO3 due to recurrent genomic rearrangements was identified in 4-10% of 

CRCs (Seshagiri et al., 2012; Shinmura et al., 2014). Overall, it is estimated that over 

90% of colon tumors exhibit activated Wnt signaling (Cancer Genome Atlas Network, 

2012a).  

The role of Wnt signaling in colon cancer stem cells specifically has recently been 

clarified following the identification of LGR5-positive intestinal stem cells (Barker et al., 

2007). Following deletion of Apc in murine Lgr5-positive intestinal stem cells, Ctnnb1 
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rapidly accumulates and leads to microadenoma and adenoma formation (Barker et al., 

2009). In contrast, deletion of Apc in transit amplifying compartment does not lead to 

adenoma formation in this model (Barker et al., 2009). A second study using a different 

stem cell marker to express constitutively activated Ctnnb1 in intestinal stem cells 

similarly initiated abnormal proliferation of stem cells and adenoma formation (Zhu et 

al., 2009). Significantly, in both models, the adenomas formed as a consequence of Wnt 

activation in intestinal stem cells continued to have a minority population (~7%) of cells 

that retained expression of stem cell markers (Barker et al., 2009; Zhu et al., 2009). 

Further, colon cancer stem cells can be identified by high activity of a Wnt reporter 

construct, and extrinsic signals from the tumor microenvironment are able to promote 

stemness in bulk tumor cells, indicating plasticity in cancer stem cells and the importance 

of Wnt signaling in their regulation (Vermeulen et al., 2010). 

Wnt signaling in breast cancer 

The oncogenic role of Wnt signaling in breast cancer has been investigated since 

the initial discovery of Wnt1 activation in MMTV-induced mammary tumors in mice 

(Nusse and Varmus, 1982). Since then, multiple mouse models have confirmed that 

activation of Wnt signaling can induce tumor formation in the mammary gland, including 

models of Wnt ligand overexpression (MMTV-Wnt1), Ctnnb1 activation (MMTV-

Ctnnb1delN90), and Apc inactivation (Apc+/1572)(Gaspar et al., 2009; Li et al., 2000; 

Michaelson and Leder, 2001; Tsukamoto et al., 1988). Overexpression of Rspo2 or Rspo3 

also promote mammary tumorigenesis in MMTV insertional mutagenesis screens 

(Lowther et al., 2005; Theodorou et al., 2007).   
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Mouse models indicate that Wnt signaling has a specific role in promoting 

proliferation and malignant transformation of mammary stem cells (Incassati et al., 

2010). Premalignant lesions in MMTV-Wnt1 mice contain an expanded population of 

mammary stem cells (Shackleton et al., 2006). Mammary tumors induced by Wnt 

activation (Wnt1, Ctnnb1, or Myc) contain a higher proportion of progenitor-like cells 

compared to tumors initiated by other drivers (Her2, Hras, or polyoma middle T antigen) 

(Li et al., 2003). Expression of Wnt ligands induced by tumor stromal niche factors has 

also been shown to maintain mammary cancer stem cells, emphasizing the role of the 

tumor microenvironment in regulating Wnt signaling (Malanchi et al., 2012). 

The role of Wnt activation in human breast cancer has been more enigmatic. 

Nuclear accumulation of CTNNB1 can be detected by immunohistochemistry and used 

as a measure of Wnt pathway activation. Several groups have identified increased nuclear 

CTNNB1 in a subset of breast cancer, particularly associated with basal or triple-negative 

subtype and decreased patient survival (Geyer et al., 2011; Khramtsov et al., 2010; Ozaki 

et al., 2005) or metaplastic breast cancer (Hayes et al., 2008). However, the genetic 

events underlying Wnt activation in human breast cancer are not fully understood. 

Activating mutation in CTNNB1 are seen in 25% of metaplastic breast cancers, but have 

not been found in other types (Hayes et al., 2008). APC mutations are seen in rare breast 

cancers (Furuuchi et al., 2000). Silencing of SFRP1 due to promoter hypermethylation is 

another mechanism that activates Wnt signaling in some breast cancers (Figure 3) 

(Ugolini et al., 2001). The role of R-spondins in human breast cancer has not yet been 

described.   
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Wnt signaling in liver cancer 

Hepatocellular carcinoma (HCC) commonly arises in the context of chronic liver 

disease. Chronic infection with hepatitis B or C virus, alcoholic liver disease, or non-

alcoholic fatty liver disease can lead to cirrhosis (Flores and Marrero, 2014). In this 

context, cycles of liver injury, inflammation and regeneration contribute to tumor 

formation (Hernandez-Gea et al., 2013). Genetic aberrations leading to activation of Wnt 

signaling are common in HCC. Activating mutations in CTNNB1 itself are the most 

common, occurring in 16-40% of cases depending on etiology, followed by loss of 

function mutation or deletion of AXIN1 (5-15%), and rarely APC (~2%) (Figure 3) (Ahn 

et al., 2014; Guichard et al., 2012; Kan et al., 2013). Silencing of SFRP1 is also seen in 

HCC and can result from epigenetic silencing by the hepatitis C virus core protein (Quan 

et al., 2014). Significantly, amplification and increased expression of RSPO2 was 

recently identified in HCC by two studies, in 3% and 22% of cases, although the 

functional significance of RSPO2 amplification in these cases was not assessed (Ahn et 

al., 2014; Kan et al., 2013).  

Molecular subtyping of HCCs based on microarray gene expression analysis 

identified a subtype of HCCs with activated Wnt signaling and wild type CTNNB1 in 

which Wnt signaling is activated by crosstalk with the transforming growth factor-beta 

(TGFB) pathway (Hoshida et al., 2009). Overall, approximately 50% of HCC cases 

exhibit a gene expression signature consistent with activated Wnt signaling 

(Lachenmayer et al., 2012). 
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Expression of liver progenitor cell markers are seen in 28-50% of HCCs, and the 

role of Wnt signaling in HCC stem cells is an area of active investigation. (Mishra et al., 

2009). Wnt signaling has been shown to be active in isolated HCC stem cells 

(Hernandez-Gea et al., 2013). Further, studies in cultured normal human hepatocytes and 

HCC cell lines indicate that Wnt signaling regulates expression of the HCC stem cell 

marker EpCAM (Yamashita et al., 2007). Additional studies are needed to determine if 

active Wnt signaling is required to maintain HCC stem cells in vivo.  

In sum, these investigations implicate Wnt signaling as a regulator of proliferation 

in both normal and malignant stem cells, and suggest that the Wnt pathway may be a 

viable drug target in colon, breast, liver and other types of cancer. 

Development of Wnt targeted therapies 

Given the important role of aberrantly activated Wnt signaling in many types of 

cancer, there is significant interest in developing drugs to inhibit Wnt signaling for cancer 

therapy. To date, no specific inhibitors of Wnt signaling have received FDA approval, 

although some agents are now in early clinical trials (Table 2). Several challenges have 

complicated the development of Wnt-targeted therapy, including redundancy of pathway 

components, “undruggable” pathway components, and limited drug targets downstream 

of common cancer-associated mutations (Anastas and Moon, 2013). Specifically, 

although inhibition of Wnt ligand/receptor interactions could effectively block Wnt 

signaling in tumors where the pathway is activated by upstream events, such as silencing 

of SFRP genes, the partial redundancy of 19 Wnt ligands and 10 Frizzled receptors 

suggests that specific inhibition of one ligand/receptor interaction might not be sufficient 
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to block tumor cell growth. Targeting the pathway downstream of the receptor has also 

been a challenge due to the “undruggable” nature of the pathway, which contains few 

activating kinases. In many tumors, the Wnt pathway is activated at the level of APC or 

CTNNB1 mutations, and options for inhibiting the pathway downstream of these 

components may be limited to protein-protein interactions between transcriptional 

regulators. In addition, the role of Wnt signaling in maintaining stem cells in many 

tissues, reviewed above, suggests that Wnt targeted therapies could have unwanted side 

effects on normal stem cell populations.  

Despite these obstacles, progress has been made. A successful strategy for 

circumventing these challenges has been the use of high throughput screens to identify 

small molecule Wnt inhibitors in cancer cell lines (Barker and Clevers, 2006). These 

efforts have produced a number of agents that intervene in the Wnt pathway at all levels. 

C59, IWP and LGK974 are Porcupine inhibitors that prevent lipid modification and 

secretion of Wnt ligands (Figure 4) (Chen et al., 2009; Liu et al., 2013; Proffitt et al., 

2013). Both C59 and LGK974 were shown to inhibit MMTV-Wnt1 mammary tumor 

formation (Liu et al., 2013; Proffitt et al., 2013). LGK974 is currently in a phase I clinical 

trial for advanced solid tumors (Table 2). XAV939, IWR, and JW55 are Tankyrase 

(TNKS) inhibitors that stabilize AXIN, thereby increasing CTNNB1 inhibition by the 

destruction complex (Figure 4) (Chen et al., 2009; Huang et al., 2009; Waaler et al., 

2012). A number of compounds have also been identified that inhibit protein interactions 

of CTNNB1 in the nucleus (Figure 4). For example, ICG-001 was identified in a small 

molecule screen for inhibitors of Wnt reporter expression in SW480 CRC cells (Emami 
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et al., 2004). ICG-001 was found to be a potent inhibitor of Wnt signaling (IC50=3uM) 

that functions by preventing CTNNB1 recruitment of CREB binding protein (CBP), a 

histone acetylase that facilitates CTNNB1-dependent transcription (Emami et al., 2004). 

PRI-724 is a second-generation inhibitor of CTNNB1/CBP, which is currently in phase 

I/II clinical trials for treatment of several leukemia and solid tumors (Table 2) (Lenz and 

Kahn, 2014). 

Rational drug design has also produced some promising Wnt inhibitors. 

OTSA101-DTPA-90Y is a chimeric humanized monoclonal antibody (mAb) against 

FZD10 conjugated to Yttrium-90, which is currently in a phase I trial for advanced 

synovial sarcoma (Table 2). OMP-54F28 is a fusion protein that contains the FZD8 

extracellular domain conjugated to a human immunoglobulin Fc domain that is capable 

of binding multiple Wnt ligands. OMP-54F28 is currently in a phase 1 trial for advanced 

solid tumors (Table 2). Further descriptions of additional Wnt inhibitors in preclinical 

development are available in several excellent review articles (Anastas and Moon, 2013; 

Baarsma et al., 2013; Barker and Clevers, 2006).  

Cancer gene discovery is a prerequisite for targeted therapy development 

Despite the significance of the Wnt pathway and other established cancer 

pathways, there is a need to broaden our knowledge of the genetic drivers of cancer, in 

order to identify new therapeutic targets and define genetic contexts for their application. 

Colorectal cancer provides an example of this principle. Although the Wnt pathway is 

dysregulated in the vast majority of CRCs, Wnt activation alone is not sufficient for 

tumor formation. Rather, a series of lesions in multiple pathways are required for the 
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development of invasive carcinoma (Fearon, 2011; Vogelstein et al., 1988). Some lesions 

are highly penetrant (eg. mutations in KRAS and TP53) but most occur in a minority of 

cases (Wood et al., 2007). For this reason, there has been substantial interest and 

challenge in creating a complete catalog of cancer genes.   

Large-scale “cancer genome projects” are underway to comprehensively identify 

the genes and pathways altered in human cancer, including The Cancer Genome Project 

(TCGA) and the International Cancer Genome Consortium (ICGC) (Cancer Genome 

Atlas Research Network et al., 2013a; International Cancer Genome Consortium et al., 

2010). These projects seek to profile large numbers of tumors of various types at the 

DNA, RNA, protein and epigenetic levels, by analyzing somatic mutations, DNA copy 

number changes, promoter methylation, mRNA expression, microRNA expression, and 

protein expression. While these projects are ongoing, comprehensive profiles of 

colorectal and breast cancer have already been published (Cancer Genome Atlas 

Network, 2012a, 2012b). Importantly, a statistical analysis of somatic mutations in 

>4,500 tumors of various types found that 600-5,000 samples of each tumor type might 

be required to reach saturation in the detection of mutated genes that contribute to cancer 

(Lawrence et al., 2014). This suggests that additional cancer genes remain to be 

discovered. Additionally, cancer genes that are altered epigenetically or by large genomic 

amplifications and deletions remain difficult to identify by molecular profiling of human 

tumors alone. 
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SB transposon-mediated mutagenesis for cancer gene discovery 

Forward genetic screens in mice are a complementary approach to human cancer 

genome projects for enabling cancer gene discovery (Copeland and Jenkins, 2010). 

Comparative genomics can highlight the functional significance of cancer genes that are 

altered at low frequency in human tumors. Transposon-based insertional mutagenesis has 

been developed as tool for generating tumors in a tissue-specific manner (Figure 5) 

(Copeland and Jenkins, 2010; Starr and Largaespada, 2005). Briefly, Sleeping Beauty 

(SB) is a cut-and-paste DNA transposon system. The SB transposase enzyme recognizes 

specific DNA sequences flanking the transposon element (inverted repeat/direct repeat 

sequences). SB transposase cuts the genomic DNA at the recognition sites and pastes the 

transposon randomly into another location in the genome at a “TA” dinucleotide (Figure 

5B). Transposon insertions into the genome can function as a mutagen, and SB 

transposons have been engineered to cause gain- and loss-of-function mutations (Figure 

5C). Tissue-specific mobilization of SB transposons is achieved by combining two 

alleles: a conditional SB transposase allele, in which a Lox-stop-Lox cassette prevents SB 

expression, and a tissue-specific Cre recombinase allele (Figure 5A). Expression of SB 

transposase in the tissue of interest leads to insertional mutagenesis and tumor formation. 

Transposon insertion sites within the tumor genomic DNA are sequenced and mapped. 

Analysis of transposon insertion sites from multiple tumors allows identification of 

common insertion sites (CIS) which harbor putative cancer genes (Figure 5D) (Starr and 

Largaespada, 2005).  
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SB screens for drivers of intestinal tumorigenesis identified novel candidate cancer 

genes: Rspo2 and Wac 

Prior work in the Largaespada lab used the Sleeping Beauty system to perform 

three insertional mutagenesis screens for genetic drivers of intestinal tumorigenesis (Starr 

et al., 2009, 2011). These studies were designed to identify novel cancer genes that 

function in a wild type genetic context or cooperate with known predisposing alleles 

(ApcMin/+ or Trp53R270H/+). Over 150 CIS genes were identified, including 77 genes on the 

wild type background, 33 genes on the ApcMin/+ background, and 57 genes on the 

Trp53R270H/+ background. Apc was the most frequently altered CIS gene in all three 

screens (Figure 6), and the overall list of CIS genes was enriched for known cancer 

genes, further underscoring the relevance of genes identified by insertional mutagenesis 

to human cancer genetics (Starr et al., 2009). The list of CIS genes also included many 

novel candidate cancer genes. Two genes were selected for further study in my thesis 

research, R-spondin 2 (Rspo2) and WW domain containing adaptor with coiled-coil 

(Wac). Both Rspo2 and Wac were among the top 10 CIS genes identified by frequency of 

alteration (Figure 6). In the wild type screen, activating insertions in Rspo2 suggested 

that Rspo2 may function as an oncogene. In contrast, Wac was disrupted by transposon 

insertions in all three screens, suggesting that WAC may be a tumor suppressor gene.   
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Thesis Statement 

The following dissertation explores the hypothesis that RSPO2 and WAC are 

cancer genes whose altered expression promotes tumorigenesis. Specifically, I propose 

that RSPO2 is an oncogene that activates Wnt signaling in subsets of colon, breast and 

liver cancer. In tumors with elevated RSPO2 expression, RSPO2 may be required to 

maintain active Wnt signaling and cell growth, providing a rationale for targeted therapy. 

Further, I hypothesize that WAC functions as a tumor suppressor, and that inactivation of 

WAC cooperates with APC and TP53 inactivation to promote colon cancer.  
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Figure 1: A theoretical framework for personalized cancer medicine using 

molecularly targeted therapies. In this paradigm, clinical diagnosis of a tumor 

incorporates both histopathological analysis and genomic profiling, including somatic 

mutation, DNA copy number, gene expression, and other analyses. Genomic information 

is used to subtype the tumor and identify specific genetic lesions that contribute to 

activation of oncogenic pathways and disruption of tumor suppressive pathways. 

Targeted therapies are used for treatment to intervene in the specific dysregulated 

pathways identified. For cases in which an appropriate targeted therapy is not available, 

genetic information can be used to identify appropriate clinical trials to expedite 

development and evaluation of novel targeted drugs. Monitoring in real-time using repeat 

biopsies and PET scans or other imaging technologies is used to evaluate 

pharmacodynamics and tumor responsiveness to treatment. Figure inspired by (Haber et 

al., 2011). 
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Figure 2: Diagram of the canonical (CTNNB1-dependent) Wnt pathway. In the 

absence of activation by WNT ligands (left), CTNNB1, the effector of the pathway, is 

bound in the cytoplasm by a group of proteins called the “destruction complex” which 

includes APC, AXIN, and other members. CTNNB1 is phosphorylated at multiple 

residues by GSK3B and CK1 and ubiquitinated by BTCR(also known as beta-TRCP), 

which targets CTNNB1 for proteasomal degradation. Expression of Wnt target genes is 

repressed by TLE (also known as Groucho) binding to TCF/LEF family transcription 

factors and recruitment of HDACs. In contrast, when ligand is present (right), binding of 

WNT to Frizzled (FZD) family receptors and LRP co-receptors results in 

phosphorylation of LRP, activation of Disheveled (DVL), recruitment of the destruction 

complex to the cell membrane, and inhibition of the destruction complex. CTNNB1 is 

allowed to accumulate in the cytoplasm and translocate to the nucleus where it binds 

TCF/LEF family transcription factors and activates transcription of Wnt target genes. 

Wnt signaling is further regulated by secreted factors, including inhibitory DKK and 

SFRP factors, and activating RSPOs. See main text for additional details.  
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Figure 3: Wnt signaling is aberrantly activated in many types of cancer. Diagram of 

the canonical Wnt pathway indicates components that are recurrently mutated or altered 

in different cancers. Common mechanisms of Wnt dysregulation include inactivation of 

APC by truncating mutation or deletion, loss of function mutation of AXIN1, AXIN2 or 

RNF43, and constitutive activation of CTNNB1 by mutation or deletion of residues in 

exon 3 which are subject to phosphorylation by the destruction complex. Silencing of 

SFRP1 due to promoter hypermethylation and overexpression of RSPO2 and RSPO3 due 

to genomic rearrangements can also activate Wnt signaling in diverse tumor types. 

Alterations in other components of the Wnt pathway have also been observed, including 

overexpression of Frizzled receptors and mutation or deletion of DKK, FBXW7, ARID1A, 

FAM123B, and SOX9. However, the functional relevance of these events in Wnt 

signaling and tumorigenesis has not been investigated. 

Figure inspired by (Curtin and Lorenzi, 2010).  
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Figure 4: Therapeutic agents for inhibition of Wnt signaling. Diagram of the 

canonical Wnt pathway annotated with small molecule activators and inhibitors of 

pathway components (red boxes). Wnt inhibitors target all levels of the pathway, 

including inhibition of WNT ligand secretion with Porcupine inhibitors (LGK974 and 

IWP), stabilization of the destruction complex with Tankyrase inibitors (IWR, JW55, 

XAV939), and inhibition of CTNNB1 transcriptional activation with inhibitors of 

protein-protein interactions (PNU-7465431, PFK115-584, PFK118-310, BC21, 

CGP049090, IQ-1, and others). Drugs marked with an asterix are non-specific inhibitors 

of Wnt signaling that have FDA approval for other clinical indications. See main text for 

details. Figure inspired by (Anastas and Moon, 2013; Baarsma et al., 2013). 
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Figure 5: Schematic diagram depicting a Sleeping Beauty transposon insertional 

mutagenesis screen for cancer gene discovery. (A) Tissue-specific mobilization of 

Sleeping Beauty transposons is achieved by breeding mice to harbor three transgenes: a 

tissue-specific Cre recombinase allele, a conditional transposase allele, and an SB 

transposon concatamer allele. For intestinal tumor screens, transposase expression is 

restricted to the gut by the Villin-Cre and Rosa26-LsL-SB11 alleles. The Lox-stop-Lox 

cassette (LsL) blocks transcription of the transposase (SB11) from the ubiquitous Rosa26 

promoter. Where Cre is expressed in epithelial tissues of the gut, the stop cassette is 

excised and transposase is expressed. Active transposase mobilizes transposons from the 

donor transposon allele (T2/Onc.) (B) Transposon insertional mutagenesis occurs in 

tissues where the transposase (SB11) is expressed. SB is a DNA-based “cut-and-paste” 

transposon system. Transposase enzyme recognizes specific DNA sequences flanking the 

transposon element (inverted repeat/direct repeat sequences, indicated by <<>>). The 

transposase cuts the genomic DNA at the recognition sites and pastes the transposon 

randomly into another location in the genome at a “TA” dinucleotide. (C) Transposon 

insertions cause gain and loss-of-function mutations and drive tumorigenesis. The 

T2/Onc transposon contains a promoter sequence from the murine stem cell virus 5’ long 

terminal repeat (LTR) and splice donor (SD) sequence that can activate expression of 

oncogenes. T2/Onc can also cause loss-of-function insertions within tumor suppressor 

genes (TSG) as it contains bidirectional splice acceptor-polyadenylation sequences 

(SApA). Insertional mutagenesis results in tumor formation. (D) Transposon insertion 

sites are sequenced and mapped to the mouse genome for multiple independent tumors in 

order to define recurrently mutated common insertion sites (CIS). These loci contain 

putative cancer genes, dysregulation of which contributes to tumor formation. 

Figure modified from (Starr and Largaespada, 2005).  
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Figure 6: Top 10 Common Insertion Site (CIS)-associated genes identified by three 

SB transposon mutagenesis screens for genetic drivers of intestinal tumor 

formation. CIS-associated genes were ranked by frequency of transposon insertions 

identified in unique tumors. Results are shown for screens conducted on wild type (WT), 

APC-deficient (ApcMin/+), and p53-deficient (TP53R270H/+) genetic backgrounds. Two CIS 

genes selected for further study, Rspo2 and Wac, are highlighted (Starr et al., 2009, 

2011). 
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Chapter 2: R-spondin 2 drives Wnt signaling and tumorigenesis in multiple tissues 
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Summary  

R-spondins are secreted regulators of Wnt signaling that function in development 

and promote tissue stem cell growth. In murine insertional mutagenesis screens Rspo2 

has been identified as a candidate oncogene in intestinal and breast tumors. Further, 

oncogenic activation of RSPO2 and RSPO3 mediated by recurrent genomic 

rearrangements has been identified in human colorectal cancer. To determine if R-

spondins are oncogenic in other human cancers characterized by Wnt signaling 

activation, we analyzed RSPO2/3 expression in primary breast and liver tumors. RSPO2 

was highly expressed in a subset of primary human breast tumors and significantly 

associated with the basal and Her2 subtypes. Similarly, RSPO2 was elevated in the subset 

of primary human liver cancers with an activated Wnt signaling gene expression profile. 

RSPO2 overexpression increased Wnt signaling in a non-tumorigenic human breast 

epithelial cell line, and knockdown of RSPO2 decreased Wnt signaling and proliferation 

in human breast cancer cells with high basal RSPO2 expression. An in vivo model of 

somatic RSPO2 overexpression revealed that RSPO2 promoted Wnt signaling and 

hepatomegaly in the mouse liver. Overexpression of RSPO2 combined with depletion of 

Trp53 (RSPO2/shp53) also significantly enhanced liver tumor formation. Liver tumors 

that formed in mice expressing RSPO2/shp53 were characterized as hepatocellular 

carcinomas with necrosis and lymphoid infiltrate. These data strongly suggest that 

RSPO2 overexpression promotes tumorigenesis in multiple Wnt-responsive tissues, 

including colon, liver and breast and may be a novel drug target. We have developed in 
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vitro and in vivo models of RSPO-driven cancer for future preclinical testing of R-

spondin and Wnt targeted therapy.   

Introduction  

Wnt/beta-catenin (CTNNB1) is a critical signaling pathway in normal 

development and maintenance of adult stem cells in many tissues (Clevers, 2006; 

Holland et al., 2013). Activation of “canonical” (CTNNB1-dependent) Wnt signaling 

induces transcription through the CTNNB1–TCF complex, activating a gene expression 

program that regulates cell proliferation, survival, differentiation, polarity, and migration 

(Baarsma et al., 2013; Niehrs, 2012). Aberrant activation of Wnt signaling is a feature of 

many types of cancer, including cancer of the colon, liver, lung, brain, breast, ovary, 

prostate, and other tissues (Curtin and Lorenzi, 2010; Polakis, 2012). Consequently, there 

is significant interest in targeting the Wnt pathway therapeutically (Anastas and Moon, 

2013; Barker and Clevers, 2006). Multiple genetic lesions or molecular events can 

activate Wnt signaling. In colon cancer, inactivating mutation or deletion of APC, a core 

negative regulator of CTNNB1, is the predominant mechanism of Wnt activation, 

occurring in ~80% of cases (Barker and Clevers, 2006; Fodde et al., 2001). Activating 

mutations in CTNNB1, loss of function mutations in AXIN1/2, and other pathway 

components are alternate routes to Wnt activation in colon cancer (Polakis, 2012).  

Recently, overexpression of R-spondin 2 and 3 (RSPO2 and RSPO3) due to recurrent 

genomic rearrangements was discovered and proposed to be a novel mechanism of Wnt 

activation in colorectal cancer (Seshagiri et al., 2012). Specifically, Seshagiri et al. 

identified recurrent genomic deletions and inversions associated with increased 
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expression of RSPO2 or RSPO3 in 10% of human colorectal cancers (Seshagiri et al., 

2012). Studies in mice support the hypothesis that RSPOs are oncogenes that activate 

Wnt signaling. An insertional mutagenesis screen for intestinal tumors in mice identified 

Rspo2 as the second-most commonly altered gene after Apc (Starr et al., 2009). 

Significantly, in both human CRCs and mouse intestinal tumors, activation of RSPO2/3 

was mutually exclusive with inactivation of APC, suggesting these lesions operate in the 

same pathway (Seshagiri et al., 2012; Starr et al., 2009). Mouse mammary tumor 

insertional mutagenesis screens identified Rspo2 and Rspo3 as candidate oncogenes in 

breast cancer as well (Lowther et al., 2005; Theodorou et al., 2007). Consistent with 

oncogenic function, R-spondins were overexpressed in mammary tumors with RSPO 

insertions and ectopic expression of Rspo2 or Rspo3 promoted tumor formation of mouse 

mammary epithelial cells in xenograft experiments (Klauzinska et al., 2012; Theodorou 

et al., 2007). Recent efforts to comprehensively catalog genomic alterations in 

hepatocellular carcinoma (HCC) identified amplification and increased expression of 

RSPO2 in 3-22% of cases, although the functional significance of RSPO2 amplification 

in these cases was not assessed (Ahn et al., 2014; Kan et al., 2013). These studies suggest 

that RSPOs might function as oncogenes in multiple tissue types, perhaps by activating 

Wnt signaling. 

Indeed, RSPOs were initially discovered and characterized as secreted enhancers 

of Wnt signaling (Kazanskaya et al., 2004). Subsequently, RSPOs have been shown 

function in development and promote tissue stem cell growth (Jin and Yoon, 2012; 

Schuijers and Clevers, 2012). Rspo2 and Rspo3 are both are essential in mice. Rspo2 null 



 

 43 

mice die in the immediate postnatal period with developmental defects of the lungs, 

kidney, limbs, and craniofacial structures, while Rspo3 null mice die by day E10 due to 

placental defects (Jin and Yoon, 2012). R-spondins promote ex vivo growth of tissue stem 

cells derived from small intestine, colon, stomach, liver and pancreas and are an essential 

media component in organoid cultures from these tissues (Barker et al., 2010; Huch et al., 

2013a, 2013b; de Lau et al., 2014; Sato and Clevers, 2013). Transgenic expression of 

RSPO1 or injection of recombinant RSPO1 in mice leads to intestinal hyperplasia, 

suggesting that RSPO1 is a growth factor promoting proliferation in the intestinal 

epithelium (Kim et al., 2005). 

How RSPOs regulate Wnt signaling has been area of intense study and some controversy 

in recent years (de Lau et al., 2014). Initial studies established that all four members of 

the RSPO family (RSPO1-4) are able to enhance Wnt signaling in the presence of Wnt 

ligand, although these studies proposed contradictory receptors and signaling 

mechanisms (Binnerts et al., 2007; Kazanskaya et al., 2004; Kim et al., 2008; Nam et al., 

2006; Ohkawara et al., 2011; Wei et al., 2007). In 2011, three groups reported nearly 

simultaneous discoveries, definitively establishing the orphan G-protein coupled 

receptors LGR4, LGR5, and LGR6 as receptors for RSPOs (Carmon et al., 2011; Glinka 

et al., 2011a; de Lau et al., 2011). Interestingly, expression of LGR5 identifies stem cells 

in many tissues including the intestine, colon, liver, and mammary gland (Huch et al., 

2013a; Koo and Clevers, 2014; Plaks et al., 2013; de Visser et al., 2012). LGR5-positive 

intestinal stem cells have been identified as the cell of origin for adenoma formation 
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(Barker et al., 2009). This suggests that both normal tissue stem cells and cancer stem 

cells are potentially responsive to RSPO signals.  

The signaling events downstream of RSPO binding to LGR receptors remain 

incompletely understood. It has been proposed that upon RSPO-binding, LGR proteins 

associate directly with the Wnt receptor complex (FZD/LRP) to enhance Wnt signaling 

(Carmon et al., 2012b; de Lau et al., 2011). Alternatively, two groups determined that 

RSPO/LGR enhance Wnt signaling by destabilizing RNF43 and ZNRF3, E3 ubiquitin 

ligases that negatively regulate Wnt signaling by promoting clearance of FZD and LRP 

receptors from the cell surface (Hao et al., 2012; Koo et al., 2012). In this model, when 

RSPOs bind LGR receptors, RNF43 and ZNRF3 are cleared from the membrane and Wnt 

receptors remain, leading to enhanced signaling response to Wnt ligand (Hao et al., 2012; 

Koo et al., 2012). Contradicting this view, another group recently proposed that RSPO2 

could act as a repressor, rather than enhancer, of Wnt signaling via LGR5-dependent 

stabilization, rather than inhibition, of ZNRF3/RNF43 (Wu et al., 2014). Wu et al. 

observed that RSPO2 expression was suppressed in the majority of CRCs due to 

promoter hypermethylation, and RSPO2 was able to inhibit Wnt signaling through LGR5 

in CRC cell lines with decreased RSPO2 expression (Wu et al., 2014). They proposed an 

alternate model in which RSPO2 functions as a tumor suppressor and Wnt antagonist in 

CRC. Supporting this view, LGR5 has been proposed to participate in a stem cell-specific 

negative feedback loop to limit Wnt signaling (Garcia et al., 2009).  

Further complicating the picture, contradictory roles have also been reported for 

other members of the RSPO/LGR/RNF43/ZNRF3 signaling module in cancer. RNF43 
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was initially characterized as an oncogene in  CRC and HCC (Xing et al., 2013; Yagyu et 

al., 2004). Subsequently, RNF43 has been shown to function as a tumor suppressor gene 

in CRC, pancreatic cancer, and mucinous ovarian cancer (Jiang et al., 2013; Koo et al., 

2012; Ryland et al., 2013; Wu et al., 2011). LGR5 expression is increased in large subsets 

of human CRC and HCC (McClanahan et al., 2006; Uchida et al., 2010; Yamamoto et al., 

2003). Yet reports conflict as to whether LGR5 is oncogenic (Hsu et al., 2014; Tsuji et 

al., 2014) or tumor suppressive (Walker et al., 2011) in CRC.  

This study addresses the contradictory models of RSPO function in human cancer, 

and finds support for an oncogenic role of RSPO2 in subsets of colon, liver and breast 

cancer. We investigated the expression of RSPO2 and RSPO3 in primary human colon, 

liver and breast cancers compared to normal tissues, and found that while RSPO2 and 

RSPO3 expression was downregulated in the majority of CRC tumors compared to 

normal colon, expression was upregulated in a subset of tumors corresponding with 

expression of RSPO-fusion genes and activation of Wnt signaling. In breast and liver 

tumors, RSPO3 expression was significantly downregulated compared to normal tissues. 

However, RSPO2 expression was increased in subsets of human breast and liver cancers 

with activated Wnt signaling. In breast cancer, elevated RSPO2 expression was 

associated with the basal subtype. We found that RSPO2 was required for CTNNB1-

dependent transcription and proliferation in a basal breast cancer cell line with high 

RSPO2-expression. We also developed and in vivo model of RSPO2 activation in the 

mouse liver, and found that elevated expression of RSPO2 in the mouse liver promoted 

hyperplastic growth and an enlarged liver phenotype. In the context of p53 inhibition, 
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RSPO2 expression dramatically increased liver tumor formation. These studies support 

an oncogenic role for R-spondins in multiple Wnt-responsive tissue types.  

Results 

RSPO2 and RSPO3 are upregulated in fusion-transcript-positive colon cancer 

Two prior studies identified recurrent genomic rearrangements associated with 

RSPO2 and RSPO3 overexpression in 4-10% of colorectal cancers (Seshagiri et al., 2012; 

Shinmura et al., 2014). Although APC is mutated in ~80% of non-

hypermutated/microsatellite-stable (MSS) CRC overall (Cancer Genome Atlas Network, 

2012a), RSPO-high tumors in both studies were MSS and, yet, retained wildtype APC, 

suggesting that RSPO overexpression and APC loss of function could be mutually 

exclusive mechanisms for activation of canonical Wnt signaling in colorectal cancer.   

The initial studies characterizing RSPO activation in CRC examined a modest number of 

samples (70 and 75) (Seshagiri et al., 2012; Shinmura et al., 2014). In order to determine 

the frequency of these events in a larger cohort of patients and model their effects on cell 

signaling, we analyzed RNA-seq data from 434 CRC tumors and 41 normal colon 

samples obtained through The Cancer Genome Atlas (TCGA 2012, 

http://cancergenome.nih.gov). In this cohort, RSPO2 and RSPO3 expression was 

decreased in the majority of CRCs compared to normal colon. Specifically, 422 of 434 

(97.2%) CRCs have more than four-fold decreased RSPO2 expression, and 250 of 434 

(57.6%) have more than four-fold decreased RSPO3 expression (Figure 1A). This 

concurs with previous observations indicating RSPO2 and RSPO3 expression are 
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suppressed in the vast majority of CRCs (Kazanskaya et al., 2004; Seshagiri et al., 2012; 

Shinmura et al., 2014; Wu et al., 2014).  

In contrast, a small subset of CRCs expressed high levels of RSPO2/3 and RSPO 

fusion transcripts. “RSPO-high” tumors were defined as having greater than four-fold 

elevated mRNA levels compared to normal colon. In this cohort, 2 of 434 CRCs (0.5%) 

were RSPO2-high and 6 of 434 CRCs (1.4%) were RSPO3-high (Figure 1A). Compared 

to the corresponding RSPO-low tumors, RSPO-high tumors expressed 231-fold higher 

RSPO2 levels and 59-fold higher RSPO3 levels. Next we sought to determine if RSPO-

high samples expressed RSPO-fusion genes (Seshagiri et al., 2012; Shinmura et al., 

2014). Three of the eight RSPO-high tumors had paired-end RNA-seq data available 

from TCGA, which allowed us to check for expression of RSPO fusion transcripts using 

DeFuse (McPherson et al., 2011). All three (100%) expressed PTPRK-RSPO3 fusions, as 

described previously (Figure 1A) (Seshagiri 2012, Shinmura 2014).  

RSPO-high human CRCs have activated Wnt signaling and wild type APC 

Many studies have shown that R-spondins enhance Wnt pathway activity in vitro 

(Binnerts et al., 2007; Carmon et al., 2011; Glinka et al., 2011a; Kazanskaya et al., 2004; 

Kim et al., 2008; de Lau et al., 2011; Nam et al., 2006; Ohkawara et al., 2011; Wei et al., 

2007). Accordingly, the initial identification of RSPO gene fusions in CRC found that 

RSPO fusion-positive tumors had activated Wnt signaling in the absence of APC or 

CTNNB1 mutations, consistent with a model where RSPOs function as oncogenes by 

activating the Wnt pathway. However, a contradictory model proposes that R-spondins 

are capable of inhibiting Wnt signaling through LGR5/ZNRF3 stabilization and there is 
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selective pressure to lose this negative feedback by downregulating RSPO2 in CRC (Wu 

et al., 2014). In the set of CRCs analyzed by TCGA, expression of Wnt target genes was 

increased in RSPO-high tumors compared to normal colon (Figure 1B). Interestingly 

clustering CRC and normal samples based on expression of 123 Wnt target genes failed 

to separate RSPO-high CRCs from tumors with other pathway alterations, suggesting 

equivalent Wnt activation (Supplementary Figure S1). Consistent with prior reports, 

RSPO-high status was mutually exclusive with APC mutation (Seshagiri et al., 2012; 

Shinmura et al., 2014). Somatic mutation data was available for four of the eight RSPO-

high CRCs. Of these, 4 of 4 (100%) retained wild type APC. These data are consistent 

with a model wherein R-spondins are an alternate route to activation of Wnt signaling.  

Additionally, although Wu et al. found that an RSPO-high CRC expressing the 

EIF3E-RSPO2 fusion transcript had downregulated expression of LGR5, presumably to 

prevent Wnt inhibition through the RSPO/LGR5 axis, in our analysis of TCGA CRC 

patients we found that LGR5 mRNA was downregulated in only 1 of 8 RSPO-high 

tumors (Supplementary Figure S2). No coding mutations in LGR5 were identified (data 

not shown). These data suggest that LGR5 inactivation is not an absolute requirement in 

RSPO-high tumors. 

These findings support a model in which RSPO2/3 are upregulated in a minority 

of ACP wild type CRCs due to gene fusions or other events, correlating with activation of 

Wnt signaling in those tumors. Because Wnt activation can promote tumorigenesis in 

other tissues, we next examined expression of RSPO2 and RSPO3 in primary human 
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breast and liver cancer, using both TCGA datasets and independently obtained primary 

samples. 

RSPO2 is upregulated in human breast cancer 

Previous studies identified activation of Wnt signaling in a subset of breast 

cancers, correlating with the basal subtype (Geyer et al., 2011; Khramtsov et al., 2010). 

Silencing of SFRP1, a secreted negative regulator of the Wnt pathway, is one mechanism 

that promotes Wnt signaling in breast cancer (Curtin and Lorenzi, 2010; Ugolini et al., 

2001). However, events leading to Wnt activation in breast cancer are incompletely 

understood. Rspo2 and Rspo3 were identified as potential breast cancer oncogenes by 

MMTV insertional mutagenesis screens (Lowther et al., 2005; Theodorou et al., 2007) 

and overexpression of Rspo2 was shown to promote invasiveness and tumor formation in 

mouse mammary epithelial cells (Klauzinska et al., 2012). Interestingly, LGR5 

expression marks stem cells in the mammary epithelium (Plaks et al., 2013; de Visser et 

al., 2012), suggesting that the stem cell compartment may be R-spondin-responsive in the 

breast.  

To analyze R-spondin expression in breast cancer, we obtained pairs of matched 

normal and tumor tissues from 41 patients. RSPO2 and RSPO3 mRNA expression levels 

were quantified by qRT-PCR. Six tumors (14.6%) expressed RSPO2 mRNA levels >4-

fold higher than their matched normal controls and were defined as “RSPO-high” 

(Range: 6.7 to 28.2-fold elevation) (Figure 2). In the TCGA dataset, we compared 1,048 

breast tumors to 111 normal breast tissues (TCGA 2012b, http://cancergenome.nih.gov). 

RSPO2 mRNA was expressed at a very low level in normal breast samples (RPKM <1 in 
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100 of 111, 90.1%, of samples). The majority of breast tumors also maintained low 

RSPO2 expression (RPKM <1 in 842 of 1,048, 80.3%, of samples.) However, 122 of 

1,048 (10.6%) of breast tumors had >4-fold increased RSPO2 expression compared to the 

normal average (range, 4.0-300.7-fold elevated) (Supplementary Figure S3A). 

Similar to our observations in CRC, RSPO3 levels were decreased in the majority 

of breast tumors, both in the set of 41 matched tumor/normal samples and in the TCGA 

dataset (data not shown and Supplementary Figure S3A). In the TCGA dataset, 881 of 

1,048 (83.5%) of breast tumors were RSPO3-low, while rare tumors had elevated RSPO3 

levels (3 of 1,048, 0.3%, Supplementary Figure S3). DeFuse analysis of RSPO-high 

breast tumors in the TCGA set did not identify expression of RSPO fusion transcripts.  

RSPO2-high breast cancers are associated with basal/HER2 subtypes and active Wnt 

signaling. 

To determine the clinical relevance of RSPO2 overexpression, we analyzed 

PAM50 clinical subtype information for 521 breast tumors in the TCGA dataset. RSPO2-

high status was significantly associated with basal (p=2.07E-5) and HER2 (p=0.0259) 

subtypes, and anti-correlated with luminal A (p=0.0052) and luminal B (p=0.0093) 

subtypes (Supplementary Figure S3B). For example, while basal type tumors account 

for only 19% of tumors overall, 41% of RSPO-high breast tumors were basal type. 

While active Wnt signaling, as measured by presence of nuclear CTNNB1, is 

associated with basal subtype tumors (Geyer et al., 2011; Khramtsov et al., 2010), 

expression of Wnt target genes in RSPO-high breast tumors was not consistently elevated 

compared to normal tissue (Supplementary Figure S3C). Specifically, while expression 



 

 51 

of the Wnt target gene LEF1 was significantly elevated in RSPO-high tumors, AXIN2 and 

TCF7 were significantly downregulated (Supplementary Figure S3C). Examination of 

Wnt target gene expression in breast tumors with APC loss of function mutations or 

reduced expression of SFRP1 revealed the same pattern, suggesting Wnt signaling is 

equivalently activated in these subsets (Supplementary figure S3C).  

RSPO2 regulates Wnt signaling and proliferation in breast cancer cells 

To determine the functional significance of elevated RSPO2 expression in breast 

cancer we overexpressed RSPO2 in a non-transformed breast epithelial cell line with 

basal origin (MCF10A, (Debnath et al., 2003)) and we knocked down RSPO2 in an 

RSPO2-high basal-type breast cancer cell line (BT-549 (Barretina et al., 2012)). 

MCF10A cells overexpressing RSPO2 showed transcriptional upregulation of 

Wnt/CTNNB1 target genes (Figure 3A), while there was no effect on proliferation rate in 

MCF10A cells (data not shown.). BT-549 cells express extremely high levels of RSPO2 

compared to the 60 breast cancer cell lines profiled in the Cancer Cell Line Encyclopedia 

(Figure 3B (Barretina et al., 2012)). Knockdown of RSPO2 in BT-549 cells resulted in 

decreased expression of Wnt target genes, as well as reduced cell proliferation (Figure 

3C and D). These results suggest that RSPO2-high breast cancers may require RSPO2 

expression for activation of Wnt signaling and enhanced growth.   
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RSPO2 is upregulated in human liver cancer and is associated with activated Wnt 

signaling 

Aberrant activation of Wnt/CTNNB1 signaling is a common feature of 

hepatocellular carcinoma (HCC) (Ahn et al., 2014; Guichard et al., 2012; Kan et al., 

2013). A study of 642 HCCs showed that activation of the Wnt pathway, defined by gene 

expression profiling, occurs in approximately 50% of cases due to activating mutations in 

CTNNB1 or other events (Lachenmayer et al., 2012). Activating mutations in CTNNB1 

occur in approximately one third of cases (Ahn et al., 2014; Guichard et al., 2012; Kan et 

al., 2013). Importantly, recent whole genome sequencing of 81 hepatitis B virus-

associated HCCs identified genomic amplification and increased mRNA expression of 

RSPO2 in 22% of cases, although the functional effect of these lesions was not assessed 

(Kan et al., 2013). To further characterize the role of R-spondins in HCC, we analyzed 

RSPO2 and RSPO3 mRNA levels by microarray analysis in two sample cohorts including 

319 HCCs, 199 chirrhotic or premalignant samples, and 23 normal liver samples 

(Lachenmayer et al., 2012). RSPO2 expression was uniformly low in normal liver and 

cirrhotic/pre-malignant samples, but was increased in HCC (p<0.05 vs. cirrhotic liver, n/s 

vs. normal ) (Figure 4A).  Analogous to colon and breast tumors, HCC samples express 

significantly lower RSPO3 levels compared to normal, cirrhotic, and pre-malignant 

samples (Supplementary Figure S5B).  

Gene expression-based molecular subclass analysis was performed to further 

characterize RSPO-high liver cancers (Chiang et al., 2008; Lachenmayer et al., 2012). 

RSPO2 expression was significantly elevated in the subclass of HCC characterized by 
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activated Wnt signaling (CTNNB1-class), while RSPO3 expression was suppressed in all 

classes (Figure 4B and data not shown). RSPO2 levels were higher in HCC samples with 

mutated CTNNB1 (p<0.001), indicating that these events tended to co-occur. However, 

50% of RSPO2-high HCC samples belonged to the CTNNB1-class based on gene 

expression profiling yet retained wildtype CTNNB1.  

RSPO2 and RSPO3 expression was also assessed in 200 liver tumors and 50 

normal liver samples from TCGA. In this cohort, RSPO3 was suppressed in 178 of 200 

(89%) liver tumors, while 24 of 200 samples (12%) were RSPO2-high and 1 of 200 

samples (0.5%) was RSPO3-high (Supplementary Figure S5A). RSPO expression was 

increased 29.3-fold on average in RSPO-high tumors compared to normal liver. RSPO-

high tumors had significantly elevated expression of Wnt target genes (AXIN2, TCF7, 

and LEF1) compared to normal liver (Supplementary Figure S5D). Expression of 

LGR5 was also significantly elevated in RSPO-high tumors compared to normal liver 

(Supplementary Figure S5C). Again, we found significant co-occurrence of RSPO-high 

status and CTNNB1 mutation in this cohort (p=1.72E-09). DeFuse analysis of RSPO-high 

liver tumors in the TCGA set did not identify expression of RSPO fusion transcripts. 

R-spondin overexpression is not induced by activated CTNNB1  

The co-occurrence of high RSPO2 expression and CTNNB1 mutation in liver 

cancer suggests a model in which CTNNB1 causes transcriptional upregulation of R-

spondins. Indeed, RSPOs were shown to be Wnt target genes in Xenopus (Kazanskaya et 

al., 2004). In this model, R-spondin upregulation may provide positive feedback to 

enhance Wnt signaling, rather than being an initiating event. 
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To test this hypothesis we used an in vivo model of constitutive CTNNB1 

activation in the mouse liver. We generated mice that somatically expressed CTNNB1-

S33Y in the liver by hydrodynamic tail vein injection of DNA transposon vectors in 

Fumarylacetoacetate hydrolase (Fah) deficient mice (Wangensteen et al., 2008). Liver 

cells in Fah deficient mice will die unless the mice are maintained on the drug NTBC. By 

delivering CTNNB1-S33Y along with a functional copy of Fah on the same transposon 

and then withdrawing NTBC, the liver becomes repopulated only with cells that have 

incorporated both CTNNB1-S33Y and Fah in their genome. In this experiment, 

transposon vectors expressing Fah, luciferase, GFP, and either CTNNB1-S33Y or GFP 

control were injected into Fah null mice with ubiquitous transposase expression (Fah-/-

;Rosa26-SB11, Figure 5A)(Keng et al., 2013). Tumors formed in the livers of all four 

(100%) mice injected with CTNNB1-S33Y by 90 days post-hydrodynamic injection 

(PHI), and were classified as hepatocellular carcinomas by histopathological analysis 

(Supplementary Figure S4A). No tumors formed in the GFP-injected control mice (zero 

of six) by 90 days PHI. RNA was isolated from samples of grossly normal liver from 

CTNNB1-S33Y- and GFP-injected mice, and from tumors of CTNNB1-S33Y-injected 

mice and used for gene expression analysis. CTNNB1-S33Y was well expressed in 

experimental tissues (data not shown). As expected, grossly normal liver and tumors from 

CTNNB1-S33Y-injected mice showed increased expression of the Wnt target gene Axin2 

compared to GFP-injected livers, confirming activation of Wnt signaling in these tissues 

(Supplementary Figure S4B). However, neither Rspo2 nor Rspo3 was upregulated in 

CTNNB1-S33Y-injected livers. Indeed, analogous to human HCC, Rspo3 expression was 
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significantly suppressed in tumors from CTNNB1-S33Y-injected mice (Supplementary 

Figure S4B). Despite prior literature suggesting R-spondins constitute a positive 

feedback loop in Wnt regulation, Rspo2/3 were not transcriptionally activated by 

CTNNB1 in the mouse liver, rather Rspo3 was significantly downregulated in tumors 

initiated by activated CTNNB1. Similarly, treating MCF10A breast cells with 

recombinant Wnt ligand did not induce expression of RSPO2 or RSPO3 (Supplementary 

figure S4C). These results suggest that although high RSPO2 expression co-occurs with 

other lesions in the Wnt pathway in liver cancer, elevated RSPO2 expression is not 

merely a consequence of activated Wnt signaling and may, rather, be an independently 

selected event. 

RSPO2 promotes Wnt signaling and tumorigenesis in the mouse liver 

To study the in vivo effects of elevated RSPO2 expression we next generated mice 

that somatically expressed RSPO2, alone or with knockdown of Trp53, by hydrodynamic 

injection and Fah selection, as described above (Wangensteen et al., 2008). Control mice 

were injected with transposon vectors expressing Fah, GFP, and luciferase to track liver 

repopulation. Experimental mice were injected with vectors expressing Fah, GFP, 

luciferase, and RSPO2 and/or Trp53 shRNA (Figure 5A). Necropsies were performed 15 

and 25 days PHI, and at 30 day intervals between day 60 and 150 PHI to assess liver 

mass and tumor formation. At early time points (day 15-25 PHI) mice injected with 

RSPO2 had slightly enlarged livers compared to GFP controls (1.2-1.5-fold, p>0.05, data 

not shown). At later time points there was a prominent phenotype of enlarged liver 

(hepatomegaly) in mice injected with RSPO2 with or without Trp53 shRNA compared to 
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GFP controls (1.6-2.2-fold enlarged, p<0.01, Figure 5B and C). Mice injected with 

Trp53 shRNA did not develop enlarged livers (Figure 5B and C). There was no 

difference in liver size between male and female mice injected with RSPO2 (Figure 5D). 

To characterize the enlarged liver phenotype, sections of grossly normal liver 

were stained with DAPI to quantify nuclear density. Mice injected with RSPO2 or 

RSPO2 and Trp53 shRNA had 30-40% increased nuclear density compared to control 

mice receiving GFP or GFP and Trp53 shRNA, suggesting that the enlarged livers in 

these mice arose due to hyperplastic growth (Figure 5D and E).  

At 150 days PHI, mice injected with GFP or GFP and Trp53 shRNA had low 

tumor penetrance (4-5%), consistent with the background level of tumor formation in this 

model (Figure 6A). Mice injected with RSPO2 alone had a non-significant increase in 

tumor penetrance (18%). However, expression of RSPO2 combined with Trp53 shRNA 

dramatically increased tumor penetrance (63% of RSPO2/Trp53 shRNA mice vs. 5.2% of 

GFP/Trp53 shRNA mice, p=3.37E-5, Figure 6A). RSPO2/Trp53 shRNA-injected mice 

formed 1.8 tumors/mouse on average (range 1- 5). Histologic examination indicated the 

tumors were adenocarcinomas with areas of necrosis and lymphoid infiltrate (Figure 6B 

and C).  

Expression of RSPO2 and its effect on Wnt signaling were assessed by qRT-PCR 

and IHC. Nuclear localization of CTNNB1 and expression of Wnt target genes (Axin2 

and Tcf7) was significantly increased in livers and tumors from RSPO2/Trp53 shRNA-

injected mice compared to GFP/Trp53 shRNA-injected controls (Figure 7A-C). At early 

time points (days 15-25 PHI) expression of Wnt target genes was also significantly 



 

 57 

increased in the livers of mice injected with RSPO2 compared to GFP-injected controls 

(Supplementary Figure S6). These data confirm that RSPO2 expression enhances Wnt 

signaling and promotes tumor formation in the mouse liver.  

Discussion 

Activation of Wnt/CTNNB1 signaling is an important oncogenic driver and 

potential therapeutic target in many types of cancer (Barker and Clevers, 2006; Curtin 

and Lorenzi, 2010; Polakis, 2012). The molecular events underlying Wnt pathway 

activation are heterogeneous. R-spondins are recently discovered regulators of Wnt 

signaling that exert their effect through LGR/RNF43/ZNRF3-dependent regulation of 

Wnt receptor stability (de Lau et al., 2014). RSPO1 has been shown to be a potent growth 

factor for intestinal epithelium in vivo (Kim et al., 2005). Recent work identified a 

potentially oncogenic role for RSPO2 and RSPO3 in CRC and other cancers (Kan et al., 

2013; Seshagiri et al., 2012; Watson et al., 2013). In contrast, another study suggested 

that RSPO2 functions as a tumor suppressor gene in CRC (Wu et al., 2014). To address 

this controversy, the current study examined evidence for oncogenic activation of RSPO2 

and RSPO3 in human colon cancer, and showed that subsets of human breast and liver 

cancer also overexpressed RSPO2. We further demonstrated that elevated RSPO2 

expression was functionally significant for Wnt signaling activation, cell proliferation, 

and tumorigenesis using cell line and mouse models. 

We analyzed mRNA expression of RSPO2, RSPO3, and Wnt pathway target 

genes in primary human tumors of the colon (N=434), breast (N=1089), and liver 

(N=519) compared to their respective normal tissues (N=41 colon, 152 breast, and 73 
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liver samples) using publically available RNAseq data from the TCGA and 

independently acquired primary tumor samples. We found that the majority of tumors of 

all three types expressed significantly lower RSPO2 and RSPO3 levels compared to 

normal tissues or, in the case of RSPO2 expression in the breast, maintained a low basal 

level (Figure 1A, 2, and 4A, and Supplementary Figure S3A and S5A). This concurs 

with the recent observation that RSPO2 expression is suppressed in the majority of CRCs 

reported in (Wu et al., 2014) and further suggests that downregulation of RSPO2 and 

RSPO3 may be selected for during tumorigenesis in multiple Wnt-responsive tissues. 

Further studies are needed to address if RSPO2/3 suppression in breast and liver cancers 

is due to promoter hypermethylation, as seen at the RSPO2 promoter in CRC (Wu et al., 

2014). Functional studies will also be required to determine how RSPO2/3 suppression 

affects Wnt signaling in breast and liver and whether restoration of RSPO2/3 expression 

is growth suppressive in RSPO-low tumors.  

In contrast to the suppression of RSPO2/3 seen in the majority of cases, we 

confirmed that a subset of CRC expressed highly elevated levels of RSPO2 or RSPO3, 

associated in some cases with detection of RSPO fusion transcripts (Figure 1A) 

(Seshagiri et al., 2012; Shinmura et al., 2014). In this cohort, RSPO-high CRCs occurred 

at a lower frequency (2%) than in previous reports. Overexpression of RSPO2 was also 

observed in 11% of breast and 12% of liver cancers, while RSPO3 overexpression was 

less common in these tissues (Figure 2A and 4A, Supplementary Figure S3A and 

S5A). We defined tumors as “RSPO-high” if they expressed >4-fold elevated mRNA 

levels compared to normal tissues. As a consequence, the absolute level of RSPO 
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expression defined as “RSPO-high” varied by tissue type. For example, the average 

expression of RSPO2 in RSPO2-high colon tumors was 139-fold higher than in RSPO2-

high breast tumors. This difference in RSPO2 expression level may reflect tissue-specific 

differences in responsiveness to R-spondins, or differences in the optimal level of Wnt 

activation required to promote tumorigenesis in different tissues. Consistent with this 

idea, analysis of the tumor spectrum initiated by different mutations of Apc in mice has 

show that Apc mutations that activate the Wnt pathway to a lesser degree promote 

mammary tumors, while mutations associated with greater Wnt pathway activation 

promote intestinal tumors (Bakker et al., 2013; Gaspar et al., 2009).   

RSPO fusion transcripts were not detected in breast or liver tumors, raising the 

question of how R-spondins are upregulated in these tissues. We investigated the 

possibility that RSPO2/3 were overexpressed as a consequence of activated Wnt 

signaling initiated by other events, constituting a positive feedback regulatory loop 

(Kazanskaya et al., 2004). We found that RSPO2 and RSPO3 were not transcriptionally 

upregulated in breast epithelial cells treated with recombinant Wnt3a ligand or in murine 

liver tissues expressing a constitutively active CTNNB1 transgene (Supplementary 

Figure S4B and C). Rather, Rspo2 and Rspo3 expression were unchanged in grossly 

normal liver expressing activated CTNNB1. In CTNNB1-initiated tumors, Rspo3 

expression was significantly decreased, reminiscent of the pattern seen in human liver 

tumors.  

Wnt target gene expression was increased in RSPO-high tumors compared to 

normal tissues (Figure 1B and 4B; Supplementary Figure S1, S3C, and S5). Although 



 

 60 

RSPO-high CRC samples retained wild type APC as previously reported (Seshagiri et al., 

2012; Shinmura et al., 2014) in HCC RSPO-high status significantly co-occurred with 

mutations in CTNNB1. In these cases, multiple genetic lesions in the Wnt pathway within 

one tumor may represent selection for the “just right” level of pathway activation 

(Leedham et al., 2013; Segditsas and Tomlinson, 2006) or may represent the presence of 

multiple, potentially cooperating clones within a tumor (Halberg and Dove, 2007; Merritt 

et al., 1997). An alternate explanation for the lack of mutual exclusivity could be that R-

spondin overexpression is selected based on regulation of other pathways in addition to 

Wnt/CTNNB1 signaling. Indeed, R-spondins have been shown to regulate the “non-

canonical” Wnt/planar cell polarity (PCP) pathway (Glinka et al., 2011a; Ohkawara et al., 

2011). Dysregulation of Wnt/PCP has been associated with cancer progression and 

metastasis (Wang, 2009). Further research will be required to determine if regulation of 

Wnt/PCP or other pathways is a function of RSPO overexpression in cancer.  

Wu et al. proposed that downregulation of LGR5 is required in RSPO-high 

tumors, in order to prevent negative feedback inhibition of Wnt signaling through LGR5 

(Wu et al., 2014). Our observations suggest LGR5 downregulation is not a requirement in 

RSPO-high tumors. LGR5 was highly expressed in 7 of 8 RSPO-high CRCs, consistent 

with its role as a Wnt target gene (Supplementary Figure S2). Similarly, LGR5 levels 

were significantly elevated in RSPO-high breast and liver tumors compared to their 

respective normal tissues (data not shown and Supplementary Figure S5C). High LGR5 

expression in these tissues is a marker of activated Wnt signaling (Van der Flier et al., 

2007). These data do not support the negative feedback loop model proposed by Wu et al. 
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However, further investigation may reveal other mechanisms by which such a feedback 

loop is subverted in RSPO-high tumors.  

We investigated the functional significance of elevated RSPO2 expression in the 

breast and liver using cell line and mouse models. Prior literature established that 

overexpression of RSPO2 promoted tumor formation of transplanted mouse mammary 

epithelial cells (Klauzinska et al., 2012). We took the reverse approach of identifying an 

RSPO2-high human breast cancer cell line for loss of function experiments. The BT-549 

cell line was derived from a basal subtype tumor and expresses 33-fold elevated RSPO2 

levels compared to the average expression of 60 breast cancer cell lines (Figure 3B). BT-

549 is an appropriate cell line model, as ~40% of RSPO-high breast cancers are basal 

subtype (Supplementary Figure S3B).  Depletion of RSPO2 in BT-549 cells decreased 

expression of Wnt target genes and reduced cell proliferation (Figure 3C and D). This 

suggests that RSPO-high basal breast cancers rely on RSPO2 expression for growth and 

oncogenic signaling, and that RSPO-targeted therapy may be effective in these tumors. 

BT-549 may represent a useful cell line model for the 11% of breast cancers and 25% of 

basal subtype breast cancers that express elevated RSPO2 levels and may respond to 

drugs inhibiting RSPO or Wnt signaling. 

We developed a model of RSPO2 overexpression in the mouse liver. High RSPO2 

levels in the mouse liver promoted a hyperplastic, enlarged liver phenotype (Figure 5B-

E). This phenocopies a similar degree of hepatomegaly reported in multiple models of 

CTNNB1 activation in the liver (Harada et al., 2002; Stein et al., 2011). Indeed, we found 

Wnt signaling was activated by RSPO2 expression in liver, indicated by increased 
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nuclear CTNNB1 and increased expression of Wnt target genes (Figure 7B and C). 

RSPO2-driven liver enlargement is also consistent with the mitogenic effect of RSPO1 

expression seen in intestinal epithelium (Kim et al., 2005). 

Expression of RSPO2 alone in the mouse liver did not significantly increase 

tumor formation in this model (Figure 6A). However, RSPO2 overexpression combined 

with depletion of Trp53 gave rise to tumors in 63% of mice by day 150 PHI, compared to 

only 5% of mice with Trp53 depletion alone (Figure 6A). RSPO2/shp53 tumors were 

classified as adenocarcinomas with features of lymphoid infiltration and necrosis. These 

data strongly suggest that RSPO2 is oncogenic in the liver, but that additional mutations 

or alterations are required for tumor formation. This in vivo model of RSPO2-driven liver 

tumor formation will be a valuable tool for future studies and preclinical testing of RSPO 

and Wnt targeted therapies.  

In sum, these data indicate that R-spondin overexpression can activate canonical 

Wnt signaling and promote tumor formation in the breast and liver as well as the colon. 

This raises the enticing possibility that R-spondins could be used as biomarkers or 

therapeutic targets in the diagnosis and treatment of multiple types of cancer. However, 

many important questions remain. Future studies should be designed to determine if 

RSPO-high tumors require RSPO expression for tumor maintenance and whether 

therapeutic inhibition of R-spondins themselves or downstream components of the Wnt 

pathway can an effective treatment strategy for R-spondin driven tumors. Future studies 

should also investigate whether activation of other pathways, including non-canonical 

Wnt pathways, contribute to RSPO-driven tumorigenesis.  
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Methods 

Acquisition of RNAseq and somatic mutation data from TCGA   

RNAseq and somatic mutation data for colon, breast, and liver tumors were extracted 

from The Cancer Genome Atlas (TCGA) data matrix (https://tcga-

data.nci.nih.gov/tcga/dataAccessMatrix.htm), and updated as of July 2014. These data 

were generated by the TCGA Research Network (http://cancergenome.nih.gov/).  

Primary breast tissue RNA isolation, cDNA synthesis, and qRT–PCR 

Normal/tumor matched pairs were obtained from the University of Minnesota Tissue 

Procurement facility. Briefly, cDNA synthesis and qPCR were performed as described 

(Burns et al., 2013; Refsland et al., 2010). Tissue RNA was from 100  mg flash-frozen 

tissue disrupted by a 2-h water bath sonication in 1  ml of Qiazol Lysis Reagent (RNeasy, 

Qiagen). Cell RNA was made using Qiashredder (RNeasy, Qiagen). qPCR was 

performed on a Roche Lightcycler 480 instrument. The RSPO2 and RSPO3 primer sets 

were designed using the ProbeFinder version 2.48 for the Human Universal ProbeLibrary 

(UPL) from Roche Applied Science. The housekeeping gene TBP was used for 

normalization (Burns et al., 2013; Refsland et al., 2010). Primer and probe sequences are 

listed in Supplementary Table S1.  

Primary liver tissues and microarray gene expression analysis 

Gene expression profiling of a total of 319 primary HCCs, 199 chirrhotic or premalignant 

samples, and 23 normal liver samples were analyzed for this study as reported in 

(Lachenmayer et al., 2012). HCC samples were classified according to subtypes defined 
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in (Chiang et al., 2008). Briefly, five gene expression classes were defined by 

hierarchical clustering for a training set of HCCs. Marker genes were identified that were 

differentially expressed in each class (CTNNB1, IFN, proliferation, Poly7, and 

unannotated). Expression of marker genes was used to classify subsequent HCC samples 

(Chiang et al., 2008; Lachenmayer et al., 2012).  

Tissue culture reagents and cell lines 

BT549, MCF10A, and MCF7 cells were obtained from the American Type Culture 

Collection (ATCC). BT549 and MCF7 cells were cultured in RPMI 1640 medium 

supplemented with 10% FBS and 0.023IU/mL bovine insulin. MCF10A cells were 

cultured as in (Debnath et al., 2003) in Dulbecco’s Modified Eagle Medium (DMEM) 

supplemented with 5% horse serum, 20 ng/ml EGF, 0.5 ug/ml hydrocortisone, 100ng/ml 

cholera toxin, 10 ug/ml insulin and 1% penicillin/streptomycin. All cells were grown on 

tissue culture-treated plates under standard conditions of 37°C and 5% CO2. 

In vitro gene knockdown and overexpression and proliferation assays 

For RSPO2 knockdown experiments, plasmids encoding lentiviral shRNAmirs against 

RSPO2 or a non-silencing control shRNAmir were purchased from OpenBiosystems. 

Lentiviral particles were produced in 293T cells using the Trans-Lentiviral Packaging Kit 

(Thermo Scientific). For overexpression experiments, lentiviral expression vectors were 

cloned with RSPO2 or dsRed regulated by a CAGGS promoter and followed by an IRES-

GFP to monitor transduction efficiency. Lentiviral particles were produced in 293T cells 

by co-transfection with helper plasmids. For both knockdown and overexpression 
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experiments, viral supernatant was collected after 24 hours of virus production, cleared, 

and applied to transduce experimental cells with 12 ug/mL polybrene overnight. 

Transduced cells were selected with 1 ug/mL puromycin. Knockdown efficiency and 

overexpression levels were assayed by qRT-PCR.   

Mouse strains, hydrodynamic injection, and liver analysis  

All animal work was conducted according to an institutionally approved animal welfare 

protocol. Mouse strains and hydrodynamic injection protocols were as described (Bell et 

al., 2007; Keng et al., 2011). Briefly, doubly transgenic mice (Fah-/-; Rosa26-SB11) 

received 20 ug of plasmid DNA by hydrodynamic tail vein injection. Prior to injection 

mice were maintained on 2-(2-nitro-4-trifluoromethylbenzoyl)- 1,3-cyclohexanedione 

(NTBC) drinking water, but NTBC was withdrawn immediately post-injection. At the 

indicated time points, mice were euthanized with CO2 and whole livers were removed, 

weighed and analyzed for gross tumor formation. Macroscopic hyperplastic nodules were 

counted. Nodules at least 1mm in size were isolated for RNA extraction. Histological 

sections were also taken from larger nodules for hematoxylin & eosin (H&E) staining or 

immunohistochemistry (IHC) analysis. H&E stained sections were reviewed 

independently by two pathologists. IHC for CTNNB1 was performed as in (Watson et al., 

2013) using β-Catenin (6B3) Rabbit mAb #9582 (Cell Signaling) at 1:100 as a primary 

antibody.  
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Quantitative reverse transcriptase PCR (qRT-PCR) 

RNA was isolated from cell lines and mouse liver tissues using the PureLink RNA Mini 

Kit according to manufacturer protocol (Ambion). RNA samples were analyzed by gel 

electrophoresis to assess quality and treated with DNase to remove contaminating 

genomic DNA (Turbo DNA-free Kit, Ambion). Complementary DNA was synthesized 

from 1 ug template RNA per sample using random hexamer primers (SuperScript III 

First-Strand Synthesis System, Invitrogen). qRT-PCR reactions were conducted with 

FastStart Universal SYBR Green Master mix (Roche), using 0.5 ul of cDNA template per 

25 ul reaction. Primer sequences for qRT-PCR reactions are listed in Supplementary 

Table S1. Data were analyzed by normalization to ACTB using the following equation: 

relative expression = ((2^(CT_ACTB))/((2^(CT_GOI)). 
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Figure 1: RSPO2 and RSPO3 are highly expressed in rare colorectal tumors and 

associated with expression of RSPO fusion transcripts and activated Wnt signaling. 

(A) RSPO2/3 mRNA levels in 41 normal colon tissues and 434 CRC tissues from TCGA 

RNA-Seq. RSPO fusion status is indicated by symbol shape and color: Black circle = not 

assessed, grey triangle = data not collected, green triangle = RSPO2 fusion detected, red 

triangle = RSPO3 fusion detected, open triangle = no RSPO2 or RSPO3 fusion detected. 

(B) mRNA expression of Wnt target genes (AXIN2, TCF7, and LEF1) in 41 normal 

colon tissues and 8 “RSPO-high” CRC tissues with R-spondin expression elevated >4-

fold compared to normal colon. Symbol colors: orange = RSPO2-high tumor, blue = 

RSPO3-high tumor. 
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Figure 2: RSPO2 is highly expressed in a subset of breast tumors. RSPO2 mRNA 

levels in tumor (red circles) and matched normal tissue (blue circles) from 41 breast 

cancer patients. mRNA levels were measured using qRT-PCR and normalized using TBP 

mRNA levels. Yellow line indicates mRNA expression level 4-fold higher than the 

normal sample average.  
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Figure 3: RSPO2 regulates Wnt signaling and proliferation in breast cancer cell 

lines. (A) Wnt target gene mRNA levels in MCF10A cells transduced with lentivirus 

expressing RSPO2 or GFP. mRNA levels were measured by qRT-PCR and normalized 

using ACTB levels  (B) RSPO2 mRNA expression in 58 breast cancer cell lines. The 

BT549 cell line is indicated by data label. Gene-centric RMA-normalized mRNA 

expression data were extracted from the Cancer Cell Line Encyclopedia (Barretina J, et 

al. Nature, 2012). (C) Knockdown of RSPO2 in BT549 cells decreases expression of 

Wnt/beta-catenin target genes. BT-549 cells were transduced with lentivirus encoding 

shRNA to RSPO2 or a nonsilencing (Nons) control. Knockdown efficiency and 

expression of Wnt target genes were quantified by qRT-PCR and normalized with beta-

actin to the Nonsilencing control. (D) Knockdown of RSPO2 expression decreases 

proliferation of BT-549 cells. Proliferation was measured by MTS absorbance for three 

biological replicates per sample. 
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Figure 4: RSPO2 is highly expressed in the subset of HCC with activated Wnt 

signaling. (A) RSPO2 mRNA expression was determined by microarray analysis (left, 

Affymetrix U133 2.0) in normal liver (n=10), cirrhosis (n=13), Low-grade dysplastic 

nodules (LGDN, n=10), high grade dysplastic nodules (HGDN, n=8), and liver cancer 

(HCC, n=91). Analysis of RSPO2 expression by molecular subclass (right) showed that 

RSPO2 expression was significantly elevated in tumors with a Wnt-active gene 

expression signature (CTNNB1, n=25) compared to other classes (IFN, n=18; 

Proliferation, n=23; poly 7, n=9; other/unannotated, n=17). 
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Figure 5: RSPO2 expression drives hyperplastic growth in the mouse liver.            

(A) Experimental diagram: Fah-/- mice maintained on NTBC drinking water were 

hydrodynamically injected with plasmid DNA encoding Fah (selectable marker), 

luciferase (reporter), and the indicated combination of transgenes from an SB transposon-

based expression construct. Following hydrodynamic injection, NTBC was withdrawn 

and modified hepatocytes selectively repopulated the liver. In vivo luciferase imaging 

was used to confirm expression of transgenes in repopulated livers. Mice were necropsied 

and liver mass and tumor formation were assessed on days 15 and 25 post-hydrodynamic 

injection (PHI) and then at 30 day intervals from 60 – 150 days PHI. Table indicates 

number of mice injected with each set of transgenes (B) Average liver mass was 

significantly increased in mice injected with RSPO2, alone or in combination with Trp53 

shRNA (shp53) compared to GFP or GFP/shp53 control mice at all time points 60-150 

days PHI. The number of mice included in each time point are listed in part A. *p<0.05. 

(C) At 150 days post-hydrodynamic injection, RSPO2 expression significantly increased 

average liver mass in both male and female mice, while shp53 had no effect on liver size. 

**p<0.005. (D) Sections of grossly normal liver from mice at 150 days post 

hydrodynamic injection were stained with DAPI to visualize nuclear density. (E) Nuclei 

per 40x field were quantified for 6 livers per group. Nuclear density increased 30-40% 

with RSPO2 expression, consistent with hyperplastic growth. *p<0.05. 
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Figure 6: RSPO2 promotes tumor formation in the mouse liver. (A) Tumor 

penetrance in Fah-null mice injected with GFP, RSPO2, GFP plus shRNA against Trp53 

(GFP/shp53), or RSPO2 plus shRNA against Trp53 (RSPO2/shp53) at 150 days PHI. (B) 

Gross images of representative livers from RSPO2/shp53-injected mice at 150 days PHI. 

Tumors are indicated by blue arrowheads. (C) Representative hematoxylin & eosin-

stained section of a liver tumor from an RSPO2/shp53-injected mouse. Histopathological 

analysis determined that tumors in RSPO2/shp53-injected mice were hepatocellular 

carcinomas with features of lymphoid infiltration and necrosis. T, tumor; N, necrosis. 

10X magnification. 
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Figure 7:  RSPO2 increases Wnt signaling in the mouse liver. (A,B) Expression of 

RSPO2 (A) and endogenous Wnt target genes (B) were assessed by qRT-PCR in grossly 

normal liver and tumor samples from mice injected with GFP/Trp53 shRNA or 

RSPO2/Trp53 shRNA. Wnt target genes were significantly elevated in murine liver and 

tumors expressing RSPO2. (C) Beta-catenin protein expression and localization were 

examined by immunohistochemical staining in normal liver and tumor samples from 

mice injected with GFP/Trp53 shRNA or RSPO2/Trp53 shRNA. Cytoplasmic and 

nuclear expression of CTNNB1 were elevated in tumors from RSPO2/shp53-injected 

mice. *p<0.05. 
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Supplementary Figure S1: Wnt target gene expression in CRC and normal colon 
samples. 
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Supplementary Figure S2: Expression of LGR-family receptors in normal colon and 

CRC samples. LGR4, LGR5 and LGR6 mRNA levels were analyzed for 41 normal 

colon tissues, 417 RSPO-Low CRCs, and 8 RSPO-High CRCs. Data from TCGA RNA-

Seq. Symbol color: orange = RSPO2-high, blue = RSPO3 high. ***, p<0.0005; **, 

p<0.005. 
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Supplementary Figure S3: RSPO2 is elevated in a subset of breast cancers 

associated with the basal and HER2 subtypes. (A) RSPO2 and RSPO3 mRNA levels 

in 1048 breast cancer and 111 normal breast tissue samples from TCGA RNA-Seq. (B) 

Molecular subtype distribution of 462 tumors with medium or low RSPO expression and 

59 breast tumors with elevated RSPO expression. Elevated expression of RSPO2 is 

correlated with basal subtype (p=2.07E-5) and Her2 subtype (p=0.0259) and negatively 

correlated with luminal A subtype (p=0.0052) and luminal B subtype (p=0.0093). (C) 

mRNA expression of Wnt target genes (AXIN2, TCF7, and LEF1) in 111 normal breast 

tissues 842 RSPO-low breast tumors, and 122 RSPO-high breast tumors, defined by 

RSPO mRNA expression elevated >4-fold compared to normal breast.  
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Supplemental Figure S4: RSPO2 and RSPO3 are not transcriptionally activated by 

Wnt/CTNNB1 in normal liver, liver tumors, or MCF10A breast epithelial cells. (A) 

Representative hematoxylin & eosin-stained sections of a liver tumor from an Fah-/- 

mouse injected with activated beta-catenin (CTNNB1-S33Y). (Left) 2X low power view 

of a tumor nodule in a background of liver dysplasia. (Middle) 10X view of background 

hepatocytes with dysplasia. (Right) 20X high power view of a tumor nodule with atypical 

nuclei and lymphoid infiltrate. (B) Expression of Axin2, Rspo2, and Rspo3 in grossly 

normal liver and tumor tissue from Fah-/- mice injected with GFP or CTNNB1-S33Y. 

Gene expression was analyzed for eight samples of normal liver per group and seven 

tumors induced by CTNNB1-S33Y. Axin2 was used as a positive control for induction of 

CTNNB1-dependent transcription. Rspo2 expression was not altered by activated Wnt 

signaling, while Rspo3 expression was significantly suppressed in tumors with active 

CTNNB1. (C) MCF10A breast epithelial cells were treated with recombinant mouse 

Wnt3a (rmWnt3a) ligand for 24 hours. AXIN2, RSPO2, and RSPO3 mRNA expression 

levels were measured by qRT-PCR. AXIN2 served as a positive control for induction of 

CTNNB1-dependent transcription. Neither RSPO2 or RSPO3 was induced by rmWnt3a 

treatment.  
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Supplementary Figure S5: RSPO3 is suppressed in HCC and RSPO2-high liver 

tumors express high levels of Wnt target genes and LGR5. (A) RSPO2 and RSPO3 

mRNA levels in 50 normal liver tissues and 200 liver cancers. Data from TCGA RNA-

Seq. (B) RSPO3 mRNA levels in an additional cohort of normal liver (n=10), cirrhosis 

(n=13), Low-grade dysplastic nodule (LGDN, n=10), high grade dysplastic nodule 

(HGDN, n=8), and liver cancer (HCC, n=91). mRNA expression was determined by 

microarray analysis (Affymetrix U133 2.0). (C) LGR4, LGR5 and LGR6 mRNA levels 

in 50 normal liver tissues, 176 RSPO-Low HCCs, and 24 RSPO-High HCCs from TCGA 

RNA-Seq.  (D) mRNA expression of Wnt target genes (AXIN2, TCF7, and LEF1) in 50 

normal liver tissues and 24 RSPO-high liver tissues. Data are from TCGA RNA-Seq.  
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Supplementary Figure S6: RSPO2 increases expression of Wnt target genes 

including LGR5 in the mouse liver. mRNA expression of Wnt target genes (Axin2, 

Tcf7, and Lef1) in livers from mice hydrodynamically injected with vectors expressing 

RSPO2 or GFP at early time points (days 15 and 25 PHI). Open circles, day 15; closed 

circles, day 25. 
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Supplementary Table S1: qRT-PCR primer sequences. 
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Chapter 3: WAC is inactivated in colorectal cancer and suppresses cellular 

transformation 
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Summary   

Colorectal Cancer (CRC) is a genetic disease in which a stepwise accumulation of 

somatic mutations in oncogenes and tumor suppressor genes (“cancer genes”) drives 

tumor initiation and progression. The majority of recurrently mutated genes are affected 

in <5% of cases and functional validation of these putative cancer genes is a substantial 

challenge. To identify genes that contribute to the initiation or progression of colorectal 

cancer (CRC), we recently conducted a set of forward genetic screens using transposon 

insertional mutagenesis to drive intestinal tumor formation in mice. These studies were 

designed to identify novel cancer genes that function in a wildtype genetic context or 

cooperate with known predisposing alleles (ApcMin/+ or Trp53R270H/+). WW domain 

containing adaptor with coiled-coil (WAC), is a gene not previously associated with 

cancer that was identified in all three screens. While the function of WAC is incompletely 

understood, previous reports indicate that the WAC protein participates in multiple 

cellular processes, including golgi biogenesis, autophagy, modulation of gene expression, 

and induction of p21 expression and cell cycle arrest in response to DNA damage. In 

human CRC samples, resequencing the WAC gene identified non-silent mutations in 3% 

of samples. Further, we found CRC-associated WAC mutants were functionally deficient 

in induction of p21 in a zebrafish embryo model. We evaluated the role of WAC in 

cellular transformation by depleting WAC in mouse and human colonic epithelial cell 

lines. In these model, loss of WAC expression increased anchorage-independent growth 
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of colonic epithelial cells in cooperation with inactivated APC and TP53. These data 

suggest that WAC functions as a tumor suppressor in the colonic epithelium.  

Introduction 

Colorectal cancer (CRC) is the third leading cause of cancer-related death in both 

men and women in the United States, and a devastating public health problem (Siegel et 

al., 2014b). Current treatment relies primarily on surgical resection and traditional 

cytotoxic chemotherapy. Developing molecularly targeted therapies that selectively kill 

cancer cells on the basis of their aberrant biology is an important goal of current cancer 

research, which relies on understanding the genetic mechanisms that drive tumor 

formation and progression (Haber et al., 2011). 

Decades of prior research have established a multistep model of CRC initiation 

and progression, driven by the stepwise accumulation of somatic mutations in oncogenes 

and tumor suppressor genes (collectively, “cancer genes”) (Fearon, 2011; Vogelstein et 

al., 1988). Mutation of Adenomatous Polyposis Coli (APC) is thought to be a rate-

limiting step in the initiation of the majority (70-80%) of human CRCs (Fearon, 2011). 

APC functions as a tumor suppressor at least in part by restraining Wnt signaling (Reya 

and Clevers, 2005). Canonical Wnt signaling is a critical pathway in normal gut 

development and homeostasis, which signals through nuclear accumulation of beta-

catenin and transcriptional activation of target genes (Reya and Clevers, 2005; Verzi and 

Shivdasani, 2008). APC antagonizes Wnt signaling by promoting proteosomal 

degradation of beta-catenin. However, dysregulated beta-catenin following APC mutation 

leads to inappropriate expression of oncogenic target genes including Cyclin D1 and 
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Myc, and alters cellular differentiation, migration, and survival (de Lau et al., 2007; 

Sansom et al., 2004; van de Wetering et al., 2002). Thus cells with APC loss of function 

escape the normal turnover of the GI epithelium, and persist to accumulate additional 

genetic defects which drive tumorigenesis. 

These additional genetic lesions are heterogenous. For example, although 

mutations in APC, TP53 and KRAS are common lesions in CRC and are thought to 

cooperate in CRC progression, few (<10%) of tumors acquire all three mutations (Smith 

et al., 2002). Rather, a variety of routes exist to development of invasive disease. Recent 

whole-exome sequencing of human colorectal tumors revealed an average of ~80 somatic 

mutations per tumor, less than 15 of which were predicted to be drivers of tumor 

formation (Wood et al., 2007). Moreover, the majority of recurrently mutated genes were 

affected in less than 5% of cases (Wood et al., 2007). Determining which of these low-

frequency events significantly contribute to tumorigenesis and understanding how they 

cooperate with predominant cancer genes is an important area of ongoing investigation. 

Forward genetic screens in mice can complement efforts to understand genomic 

changes in human tumors by highlighting genes that are drivers of cancer initiation or 

progression (Copeland and Jenkins, 2010). We have identified WW domain containing 

adaptor with coiled-coil (WAC) as a candidate tumor suppressor gene in colorectal 

cancer, based on its predicted loss of function in forward genetic screens for intestinal 

tumors in mice (Starr et al., 2009, 2011). 

WAC is a WW domain-containing adaptor protein with multiple reported 

functions. The WW domain is a protein-protein interaction motif, similar to the SH3 
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domain, which binds proline-containing peptides. As a class, WW-domain proteins 

function in transcription co-activation, ubiquitin-dependent protein degradation, pre-

mRNA splicing, and signal transduction (Sudol et al., 2001). WAC also contains a C-

terminal coiled-coil domain able to mediate additional protein-protein interactions.  

Although the function of WAC has not been fully elucidated, several studies have 

linked WAC to disparate biological processes. An initial report suggested WAC functions 

in RNA processing due to co-localization with a member of the pre-mRNA splicing 

machinery (Xu and Arnaout, 2002). Another group reported WAC complexes with the 

cytoplasmic deubiquitinase VCIP135 and p97 and is required for golgi biogenesis 

(Totsukawa et al., 2011). WAC also is required for starvation-induced autophagy 

(McKnight et al., 2012). In humans, germline deletions on chromosome 10 encompassing 

WAC are associated with multiple congenital abnormalities and mental retardation 

(Okamoto et al., 2012; Wentzel et al., 2011). Finally, it was recently discovered that 

WAC functions as an adaptor protein in transcription-coupled histone modification and is 

required for transcriptional activation of target genes (Zhang and Yu, 2011). Specifically, 

WAC binds the C-terminal domain of RNA polymerase II through its WW domain and 

recruits RNF20/40 through its coiled-coil domain. Histone H2B monoubiquitination 

(H2Bub1) by the RNF20/40 complex is known to regulate transcription at targeted loci 

(Pavri et al., 2006; Weake and Workman, 2008). Importantly, it was shown that WAC is 

required for recruitment of the RNF20/40 complex to loci of active transcription, and that 

loss of WAC expression prevents induction of p21 expression and cell-cycle arrest in 

response to DNA damage (Zhang and Yu, 2011). RNF20 and H2Bub1 have been shown 
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to regulate expression of other proto-oncogenes and tumor suppressors in addition to p21 

(Shema et al., 2008). Several members of the H2Bub1 pathway, including RNF20, are 

mutated or dysregulated cancer, suggesting that H2Bub1 may be a novel cancer pathway 

(Johnsen, 2012).  

Results 

Murine insertional mutagenesis screens identified Wac is a candidate tumor 

suppressor gene  

Wac has been identified as a CIS-associated gene in ten published transposon 

insertional mutagenesis screens (Supplementary Table S1) (Bard-Chapeau et al., 2014; 

Berquam-Vrieze et al., 2011; Genovesi et al., 2013; March et al., 2011; Pérez-Mancera et 

al., 2012; Quintana et al., 2013; Rahrmann et al., 2013; Starr et al., 2009, 2011; Wu et al., 

2012). These screens implicated Wac dysregulation in tumor formation of 7 unique 

tissues (colon, liver, pancreas, brain, peripheral nervous system, skin, and blood). In 

particular, multiple studies identified Wac as a candidate tumor suppressor gene in 

intestinal tumors (Supplementary Table S1) (March et al., 2011; Starr et al., 2009, 

2011). These studies were conducted in wild type and Apc-deficient genetic backgrounds, 

and showed a pattern of transposon insertions in Wac predicted to result in gene loss of 

function (Figure 1A). As a result, these studies suggest that Wac deficiency promotes 

Apc-driven intestinal tumor formation.  

Because p53 mutations are a frequent event late in adenoma formation and are 

thought to promote the transition to invasive carcinoma, we designed an SB screen to 

identify cancer genes that cooperate with p53 loss of function. The full results of this 
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screen will be described in a separate publication. Briefly, a cohort of experimental mice 

was generated to express a dominant negative Trp53 and SB transposase (SB11) 

specifically in the intestinal tract, leading to tissue-specific mobilization of an oncogenic 

transposon (T2/Onc). Quadruple transgenic experimental mice (Trp53LsL-R270H/+; Rosa26-

LsL-SB11; T2/Onc; Villin-Cre;) had decreased survival and formed intestinal tumors with 

decreased latency compared to control mice with dominant negative Trp53 alone (data 

not shown.) Transposon insertion sites were identified in 30 tumors from experimental 

mice and 57 CIS-associated genes were identified. Wac was the eighth most frequently 

altered gene in this screen, with insertions in 11 of 30 tumors (Figure 1A). Transposon 

insertions in Wac showed a lack of orientation bias and were distributed throughout the 

gene, suggesting selection for Wac loss of function as in prior studies (Figure 1A). 

To further investigate the status of Wac in Trp53R270H/SB-induced intestinal 

tumors, we isolated mRNA from six tumors with transposon insertions in Wac and from 

adjacent normal intestinal tissue. We measured mRNA levels of Wac and its putative 

target gene p21 by qRT-PCR (Supplementary Figure S1). Primers for Wac were 

designed to probe a region distal to the transposon insertions in all six tumors (exons 5-

6). Wac mRNA levels were variable in tumors, and only one of six tumors had 

significantly decreased Wac expression compared to matched normal tissue 

(Supplementary Figure S1A). Expression of p21 was also variable, but not significantly 

altered in tumors overall (Supplementary Figure S1B). Our ability to detect changes in 

Wac gene expression caused by transposon insertions may be limited by clonal 

heterogeneity within tumors or contamination with normal cell types. Despite this 
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limitation, transposon insertional mutagenesis screens strongly suggest that Wac 

alterations promote intestinal tumorigenesis on multiple genetic backgrounds. 

WAC is somatically mutated and down-regulated in human CRC 

To determine if WAC loss of function occurs in human colorectal cancer, we 

analyzed publically available mutation data from The Catalog of Somatic Mutations in 

Cancer (COSMIC) database (Forbes et al., 2011). Non-silent, somatic mutations in WAC 

occurred in 21 of 690 (3.0%) of samples profiled (Figure 1B). Several of these mutations 

were likely to result in WAC loss of function, including nonsense mutations (E175X, 

S475X, and Q618X) and point mutations within the coiled-coil domain (L627P and 

K640N), which is known to mediate binding to RNF20/40 and required for histone 

monoubiquitination. Interestingly, recurrent mutation of serine 475 was seen in three 

samples, although that residue is not within a known functional domain.  

We analyzed mRNA expression of WAC in 409 human colorectal tumors and 21 

normal colon tissues profiled by The Cancer Genome Atlas (Cancer Genome Atlas 

Network, 2012a). WAC mRNA levels were significantly decreased in colorectal tumors 

compared to normal colon tissues (p=0.00016), with 5.4% of CRCs having more than 2-

fold decreased WAC mRNA levels compared to normal colon (Figure 1C).  

Overexpression of wildtype but not mutant WAC induces p21 expression in zebrafish 

embryo 

Because WAC plays a known role in induction of p21 expression (Zhang and Yu, 

2011), we chose to use induction of p21 expression as an assay for the functionality of 
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cancer-associated WAC mutants using an in vivo zebrafish embryo model. Injection of 

wild type WAC mRNA into zebrafish embryos induced a consistent two-fold induction 

of p21 expression (Figure 2A). We also tested whether three cancer-associated Wac 

mutants were capable of inducing p21 expression. WAC-E172X is a nonsense mutation 

lacking both the WW and coiled-coil functional domains of the protein. WAC-S475L and 

WAC-K479N are point mutants of unknown significance, although serine 475 is 

evolutionarily conserved and may be regulated by phosphorylation (Figure 2B). In 

contrast to wild type WAC, none of the three cancer-associated WAC mutants induced 

p21 mRNA expression (Figure 2A). These results support the hypothesis that cancer-

associated WAC mutants cause protein loss of function.  

WAC regulates p21 expression in colonic epithelial cells 

To understand the consequences of WAC loss of function in colonic epithelial 

cells we chose to use a well-established cellular system. The YAMC and IMCE cell lines 

are conditionally immortalized colonic epithelial cell lines derived from “Immorto-

mouse” tissues, which differ in their Apc status (Jat et al., 1991; Whitehead and Joseph, 

1994; Whitehead et al., 1993). Conditional immortalization is mediated by the presence 

of a transgenic allele that expresses a temperature-sensitive SV40 large T antigen from an 

interferon-responsive promoter (H-2Kb-tsA58). Thus under “permissive conditions” 

(33°C, interferon-gamma-containing media [+INF-γ]), the heat-labile SV40 large tumor 

antigen (SV40 LTag) is expressed and stable. In contrast, in “non-permissive conditions” 

(39°C, -INF-γ), the SV40 large T antigen is unstable and cells senesce and die within 

days. While the YAMC cell line is Apc wild type, the IMCE cell line harbors a mutant 
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Apc allele (ApcMin/+). Both YAMC and IMCE cells are non-tumorigenic in nude mice 

and fail to form colonies in soft agar. These cells represent a valuable tool for 

investigating the function of a genetic lesion of interest in a genetically-relevant model of 

“normal” and pre-neoplastic colonic epithelium. 

We depleted Wac in IMCE cells either transiently or stably, by transfection with siRNA 

or transduction with a lentiviral vector expressing anti-Wac shRNA respectively. In both 

cases, knockdown of Wac in IMCE cells led to significantly decreased expression of p21 

mRNA (Figure 2C and data not shown).  

Wac regulates transcription of target genes through recruitment of RNF20/40 and 

monoubiquitination of histone 2B (H2Bub1) (Zhang and Yu, 2011). A list of genes 

positively and negatively regulated by RNF20 were identified by gene expression 

profiling of HeLa cells depleted of RNF20 (Shema et al., 2008). In that study, several 

pro-apoptosis genes were found to require RNF20 and H2Bub1 for expression. We tested 

whether Wac was similarly required for expression of the identified apoptosis genes in 

colonic epithelial cells. However, knockdown of Wac in IMCE cells did not significantly 

alter mRNA levels of Bad, Bax, Bid, or Bcl2l2 (Figure 2C and data not shown).  

WAC inhibits colony formation of non-tumorigenic cells 

As a candidate tumor suppressor gene, we hypothesized that decreased expression 

of WAC might contribute to cellular transformation of pre-malignant colonic epithelial 

cells. Under permissive conditions, in which SV40 LTag is expressed, Knockdown of 

WAC expression in IMCE cells resulted in increased colony formation in soft agar 

(Figure 3A-C). WAC depletion did not induce colony formation of YAMC cells 
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harboring wild type Apc, or in non-permissive conditions, in which SV40 LTag is 

destabilized (Figure 3A and C and data not shown). This suggests that WAC may 

function as a tumor suppressor by restraining anchorage-independent growth in the 

context of mutant APC and inhibited p53/RB.  

To further investigate this relationship in a human cell context, we depleted WAC 

expression in AA/C1 cells. AA/C1 is a cell line derived from an intestinal polyp of a 

patient with familial adenomatous polyposis (FAP), a syndrome caused by germline 

mutation of APC (Williams et al., 1990). AA/C1 cells have a truncating mutation in APC 

but retain wild type p53. AA/C1 cells are anchorage-dependent and non-tumorigenic in 

nude mice (Williams et al., 1990, 1994). Previous studies showed that mutation of p53 

alone was insufficient to transform AA/C1 cells, despite p53 loss of function being a 

common late stage event in intestinal adenocarcinoma formation (Williams et al., 1994). 

Knockdown of WAC alone in AA/C1 cells did not significantly alter colony formation in 

soft agar (Figure 3D). However, simultaneous knockdown of WAC and p53 increased 

colony formation compared to knockdown of p53 alone (Figure 3D).  

Discussion 

We have presented several lines of evidence suggesting WAC functions as a tumor 

suppressor gene. Insertional mutagenesis screens in mice found Wac to be frequently 

inactivated in intestinal tumors on multiple genetic backgrounds (Starr et al., 2009, 2011; 

unpublished). In human colorectal cancer, WAC was mutated or down-regulated in 8% of 

cases. Using induction of Cdkn2a (p21) gene expression in zebrafish embryos as an assay 

of WAC function, we showed that mutations in WAC identified in human CRC cause loss 
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of function. Finally, depletion of WAC increased anchorage-independent growth of 

mouse and human colonic epithelial cell lines when APC and p53 were also mutated or 

inhibited. Collectively, these data suggest that WAC loss of function is a low penetrance 

event in CRC that promotes tumorigenesis in the context of APC and p53 depletion. 

Interestingly, WAC may also be relevant in other tumor types, as Wac was identified as a 

CIS in transposon-induced cancers of the liver, pancreas, brain, peripheral nervous 

system, skin, and blood in mice, and found to be somatically mutated in >2% of cases of 

pancreatic, endometrial, and small cell lung cancer in humans (Bard-Chapeau et al., 

2014; Berquam-Vrieze et al., 2011; Cancer Genome Atlas Network, 2012a; Cancer 

Genome Atlas Research Network et al., 2013b; Genovesi et al., 2013; Pérez-Mancera et 

al., 2012; Quintana et al., 2013; Rahrmann et al., 2013; Rudin et al., 2012; Wu et al., 

2012). 

The mechanism by which WAC functions as a tumor suppressor gene remains to 

be identified. We showed that cancer-associated mutations prevented the ability of WAC 

to induce p21 gene expression. This may be relevant to WAC’s tumor suppressive 

function. The p21 cyclin-dependent kinase inhibitor is an important negative regulator of 

the cell cycle. p21 promotes G1/S phase cell cycle arrest by p53-dependent and 

independent mechanisms in response to multiple cell stress stimuli (Abbas and Dutta, 

2009). As such, p21 is well-positioned to function as a tumor suppressor by restraining 

cellular proliferation. However, p21 itself is rarely mutated in cancer, and expression of 

p21 has been documented to have both tumor suppressive and paradoxical oncogenic 

effects in different contexts (Abbas and Dutta, 2009). Nonetheless, there is evidence that 
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p21 is tumor suppressive in the colonic epithelium. First, in the normal colonic 

epithelium, p21 expression is induced (independent of p53) when proliferating progenitor 

cells migrate away from the crypt base, cease proliferation, and terminally differentiate; a 

process that is dysregulated in early tumor formation (El-Deiry et al., 1995).  Second, 

although p21 null mice do not develop GI-tract tumors independently, deletion of Cdkn1a 

(encoding p21) collaborates with Apc mutation to increase the penetrance, number, and 

size of intestinal tumors in a mouse model (Yang et al., 2001). Third, 

immunohistochemical studies of human CRCs have shown that decreased expression of 

p21, irrespective of p53 expression, correlates with increased metastasis and decreased 

overall survival (Bukholm and Nesland, 2000; Zirbes et al., 2000). WAC loss may 

similarly promote tumorigenesis by preventing expression of p21. However, it remains to 

be tested if p21 is the critical effector of WAC-mediated tumor suppression.  

In addition to regulating transcription of multiple cancer genes, H2Bub1 may be a 

tumor suppressor pathway due to its participation in several other processes (Johnsen, 

2012). H2Bub1 functions in DNA double strand break repair and homologous 

recombination (Moyal et al., 2011; Nakamura et al., 2011; Shema et al., 2008). H2Bub1 

is also required for differentiation of embryonic and mesenchymal stem cells (Fuchs et 

al., 2012; Karpiuk et al., 2012) and WAC was directly shown to be required for some of 

those phenotypes (Karpiuk et al., 2012). Regulation of cellular differentiation is an 

intriguing potential mechanism of tumor suppression for WAC. It is known that Wnt 

signaling an important regulator of stem cell renewal and differentiation in the gut (de 

Lau et al., 2007). If WAC is required for differentiation of the gut epithelium through 
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H2Bub1, loss of WAC could cooperate with APC inactivation by preventing terminal 

differentiation of enterocytes.  

Additional studies are needed to specify the mechanism of cooperation between 

WAC, APC, and p53 in suppressing tumorigenesis. Better understanding of secondary 

mutations that cooperate with APC inactivation in the progression of CRC will have a 

significant impact on the field by allowing us to develop better pre-clinical models for 

testing therapeutic regimens, identify new targets for drug development, and generate 

hypotheses for rational combination therapy directed against interacting pathways in 

cancer. 

Methods 

Somatic mutation and gene expression analysis in human tumors 

Human colorectal cancer mutation data for 690 tumors were acquired from the Catalog of 

Somatic Mutations in Cancer database (COSMIC, 

http://cancer.sanger.ac.uk/cancergenome/projects/cosmic) (Forbes et al., 2011). WAC 

mRNA levels were obtained for 409 colorectal tumors and 21 normal colon tissues using 

data generated by The Cancer Genome Atlas (TCGA) Research Network 

(http://cancergenome.nih.gov) (Cancer Genome Atlas Network, 2012a). 

Zebrafish embryo experiments 

In vitro transcribed RNA encoding human wildtype or mutant WAC was micro-injected 

into one-cell zebrafish embryos obtained from natural matings of wildtype fish. Embryos 

were raised under standard conditions at 28.5°C in embryo water until 24 hours post 
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fertilization. Batches of 10 embryos per condition were dechorionated and RNA was 

extracted for analysis by quantitative RT-PCR. Fold-change in p21 mRNA expression 

was determined by normalization with S6K to uninjected control embryos. Data represent 

the average of >3 biological replicates +/- S.E.M. Primers used for qRT-PCR are listed in 

Supplementary table S2. 

Cell lines  

Immortomouse cell lines (IMCE and YAMC) were acquired from Robert H. Whitehead. 

Immortomouse cells were cultured in RPMI-1640 medium containing 5% fetal calf 

serum, 1 mg/ml insulin, and 10E-5 M alpha-thioglycerol. In “non-permissive” conditions, 

cells were cultured at 37°C and 5% CO2. Under “permissive conditions” culture medium 

additionally contained 5 units per ml of mouse gamma interferon to upregulate 

expression of SV40 LTag, and cells were cultured at 33°C, as described (Whitehead and 

Joseph, 1994; Whitehead et al., 1993).  

The AA/C1 cell line was acquired from Christos Paraskeva. AA/C1 cells were cultured in 

DMEM supplemented with 20% FBS, 2mM Glutamine, 1 ug/ml hydrocortisone, 0.2 

units/ml insulin, and penicillin/streptomycin under standard conditions of 37°C and 5% 

CO2. 

RNAi vectors and gene knockdown experiments, and RNA isolation 

For transient knockdown experiments, IMCE cells were transfected with a pool of 

siRNAs against Wac (siGENOME Mouse Wac siRNA SMARTpool, #225131) or a non-

targeting control pool (siGENOME Non-Targeting siRNA Pool #1, Thermo 
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Scientific/Dharmacon) using Lipofectamine RNAiMAX transfection reagent 

(Invitrogen). siRNA was used at a final concentration of 25 pmol/well with 7.5 ul of 

lipofectamine and 1E6 cells in a standard 6-well plate. Gene expression was analyzed 72 

hrs after transfection as below.  

Stable knockdown strains were generated by transduction of YAMC, IMCE, or AA/C1 

cells with lentivirus encoding shRNA targeted to WAC, TP53, or a non-silencing control 

(mouse Wac shRNA V2LMM_20397, human WAC shRNA V2LHS_135342, human 

p53 shRNA V2LHS_93613, Openbiosystems). Lentiviral particles were produced in 

293T cells using the Trans-Lentiviral Packaging Kit (Thermo Scientific). Viral 

supernatant was collected at 24 hours, cleared, applied to cells with 12 ug/mL polybrene, 

and incubated overnight. Transduced cells were selected with 1 ug/mL of puromycin 

(Invitrogen). Knockdown efficiency was evaluated by qRT-PCR.   

RNA isolation and quantitative reverse transcriptase polymerase chain reaction (qRT-

PCR) 

RNA was isolated from cell lines and mouse intestinal tissues using the PureLink RNA 

Mini Kit according to manufacturer protocol (Ambion). RNA samples were analyzed by 

gel electrophoresis to assess quality and treated with DNase to remove contaminating 

genomic DNA (Turbo DNA-free Kit, Ambion). Complementary DNA was synthesized 

from 1 ug template RNA per sample using random hexamer primers (SuperScript III 

First-Strand Synthesis System, Invitrogen). qRT-PCR reactions were conducted with 

FastStart Universal SYBR Green Master mix (Roche), using 0.5 ul of cDNA template per 

25 ul reaction. Primer sequences for qRT-PCR reactions are listed in Supplementary 
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Table S2. Data were analyzed by normalization to ACTB using the following equation: 

relative expression = ((2^(CT_ACTB))/((2^(CT_GOI)). 

Colony formation in soft agar 

Cells were plated in 0.48% low-melt agar (SeaPlaque, Lonza) in complete, permissive 

media at a density of 10,000 cells per well in 6-well plates, on a base layer of 3.2% agar. 

Assays were incubated under permissive conditions (33°C and 5% CO2) for three weeks, 

then fixed and stained with 10% formalin containing 0.005% crystal violet for 1 hour at 

room temperature to visualize colony formation. Colonies were imaged on a Leica S8 

AP0 microscope. Colony counts per well were quantified from digital photographs using 

ImageJ software (Schneider et al., 2012). Results shown are representative of at least 2 

independent experiments. 
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Figure 1: WAC disruption occurs in mouse and human intestinal tumors. (A) Wac 

was identified as a common insertion site (CIS) in three SB screens for GI tract cancer 

genes. Diagram depicting transposon insertion sites in the Wac gene. Triangles depict the 

location and orientation of transposon insertions. Orange triangles represent transposon 

insertions with the MSCV promoter within the transposon in the same orientation as Wac 

transcription while purple triangles represent transposon insertions in the opposite 

orientation (Starr et al., 2009, 2011) and unpublished. (B) Somatic mutations in WAC 

have been identified in 3.0% of human colorectal cancers. Diagram of the WAC protein, 

its functional domains, and somatic mutations in WAC identified in human colorectal 

tumors. Two non-coding mutations predicted to alter WAC splicing (c.610+1G>A and 

c.1437+1G>A) are not pictured. W, WW domain (aa 129-162). C, coiled-coil domain (aa 

617-647) (Forbes et al., 2011). (C) WAC mRNA levels in 21 normal colon tissues and 

409 CRC tumors profiled by RNAseq. Data obtained from TCGA (Cancer Genome Atlas 

Network, 2012a).  

  



 

 114  



 

 115 

Figure 2: Wild type WAC induces expression of p21 but cancer-associated WAC 

mutants are non-functional. (A) Wild type WAC and cancer-associated WAC mutants 

were overexpressed in zebrafish embryos by injection with in vitro transcribed mRNA. 

Cdkn1a (p21) mRNA expression levels were measured by qRT-PCR.  Fold-change in 

p21 mRNA expression was determined by normalization with S6K to uninjected control 

embryos. Data represent the average of >3 biological replicates +/- S.E.M.  (B) Wac-

S475 is conserved and is a potential phosphorylation site. Diagram indicates evolutionary 

conservation of Wac serine 475 in human, mouse, zebrafish, xenopus, and drosophila. In 

silico analysis of potential phosphorylation sites indicated the peptide 

“LISTPPVSSQPKVST” could be a target of several kinases (GSK, STKR, NEK, CDC2, 

CDK4, Dyrk1, GSK3A, and MAPK) (GPS 2.1, (Xue et al., 2011)). (C) Knockdown of 

Wac expression by siRNA in mouse colonic epithelial cells (IMCE). Analysis was 

performed at 72 hours following siRNA transfection. Knockdown efficiency and effect 

on mRNA expression of p21 and Bax were assessed by qRT-PCR. mRNA levels 

represent fold-change, normalized with Actb to non-silencing (Nons) control samples. 

Average data for three biological replicates are shown. *p<0.05. 

  



 

 116  



 

 117 

Figure 3: WAC represses anchorage independent growth in non-tumorigenic 

colonic epithelial cells. (A) Decreased WAC expression increased anchorage-

independent growth of Immortomouse cells with mutant Apc (IMCE, ApcMIN; SV40 

Large T antigen tsA58) but not wild type Apc (YAMC, Apc+/+; SV40 Large T antigen 

tsA58). WAC knockdown and control cells were plated in soft agar at permissive 

conditions (33°C, +INF-γ). Colony formation was measured at 3 weeks by staining with 

crystal violet and automated colony counting with ImageJ software. (B)Wac mRNA 

levels were assessed by qRT-PCR, normalized with Actb to non-silencing shRNA 

control. (C) Quantification of colony formation in  part A. Results are representative of 

three independent replicate experiments.  (D) Combined knockdown of WAC and p53 in 

human colon adenoma cells (AAC1, truncated APC, wt p53) increased colony formation 

compared to p53 knockdown alone.  
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Supplementary Figure S1: Expression levels of Wac and p21 in SB-induced murine 
intestinal tumors harboring transposon insertions in Wac compared to adjacent 
normal intestinal tissue.   
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Chapter 4: Future directions  

– Towards targeted therapy for RSPO2 and WAC-driven tumors – 
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Summary 

This thesis research identified RSPO2 and WAC as regulators of cell signaling 

and tumorigenesis. Specifically, we found that RSPO2 activates Wnt signaling and 

promotes tumor formation in the colon, breast, and liver, and WAC is a tumor suppressor 

gene in the colon required for induction of the cell cycle regulator p21. In order to 

advance our understanding of RSPO2 and WAC in cancer, we propose developing 

additional in vivo models of RSPO2 activation and WAC depletion. Such models can be 

used to further define the signaling pathways regulated by RSPO2 and WAC, the genetic 

contexts in which RSPO2 and WAC perturbation contribute to tumorigenesis, and the 

required mediators of RSPO2 and WAC-driven tumorigenesis. These models can also be 

used for preclinical drug development studies. Here we outline an approach to these 

research questions and propose a number of strategies for therapeutically targeting 

RSPO2- and WAC mutation-driven tumors. 

Developing in vivo models to study RSPO activation and WAC depletion in cancer 

In vivo models of RSPO2 activation and WAC depletion will be useful tools for 

better understanding RSPO2- and WAC-driven tumor biology and for preclinical testing 

of targeted cancer therapies. In this thesis we developed a mouse model of RSPO2 

overexpression in the liver, using hydrodynamic injection of DNA vectors encoding 

transposable expression constructs in a Fah null mouse, followed by Fah selection for 

modified hepatocytes (Chapter 2, Figure 5A). Using this model, we found that hepatic 
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expression of RSPO2 alone promoted tumor formation in 18% of mice, a non-significant 

increase over the tumor frequency seen in mice injected with shRNA against Trp53 (4%) 

or a GFP control vector (5%) on day 150 post-injection. Importantly, combined 

overexpression of RSPO2 and knockdown of Trp53 (RSPO2/shp53) promoted tumor 

formation in 65% of mice (Chapter 2, Figure 6A). Tumors that formed in RSPO2/shp53 

mice were adenocarcinomas with activated Wnt signaling (Chapter 2, Figure 7B and C). 

In future studies, this model can be extended in several ways to answer important 

questions. To determine whether RSPO2 expression is required for maintenance of 

established liver tumors, a doxycycline-inducible promoter could be used to regulate 

RSPO2 expression in this model (Chin et al., 1999; Urlinger et al., 2000). This could 

establish proof of concept for the utility of RSPO2-targeted therapy in liver cancer. Mice 

injected with doxycycline-inducible RSPO2 and shRNA against Trp53 could be 

maintained on doxycycline to allow tumor formation. At day 150 post-injection, mice 

could be randomized to continue receiving doxycycline or receive no drug. Tumor 

burden at subsequent time points could be compared to determine the requirement for 

ongoing RSPO2 expression in RSPO2-initiated tumors. Alternatively, at day 150 post-

injection tumors could be isolated, disaggregated, and transplanted into replicate recipient 

mice treated with doxycycline or no drug. This approach would have the advantage of 

allowing direct observation of the effect of RSPO2 withdrawal on individual tumors. 

These models could subsequently be used to test pharmacological inhibition of RSPO2, 

as discussed below.   



 

 126 

Although our studies focused on the role of WAC in colorectal cancer, the 

identification of WAC by transposon insertional mutagenesis screens in six other tissues, 

including the liver, suggests that WAC may function as a tumor suppressor gene more 

broadly (Bard-Chapeau et al., 2014; Berquam-Vrieze et al., 2011; Genovesi et al., 2013; 

Pérez-Mancera et al., 2012; Quintana et al., 2013; Rahrmann et al., 2013; Wu et al., 

2012). To test the hypothesis that WAC is a tumor suppressor in the liver, mice could be 

hydrodynamically injected with transposon vectors encoding shRNA against Wac, with 

or without shRNA against Trp53, and monitored for tumor formation at subsequent time 

points. This model could be used to evaluate if inactivation of Wac and Trp53 cooperate 

in liver as well as intestinal tumorigenesis (Chapter 3, Figure 3).   

Models of RSPO2 and WAC perturbation in the colon would also be a valuable resource. 

Adenoviruses have been used for gene delivery in the colon (Kuhnert et al., 2004; Shibata 

et al., 1997). Rectal infusion of mice with recombinant adenovirus expressing RSPO2 

(Ad-RSPO2) could be used to validate RSPO2 as an oncogene in colorectal cancer. Such 

a model could further be used to determine if canonical Wnt signaling is the critical 

mediator of RSPO2-driven tumorigenesis, by infusing Ctnnb1-deficient mice with Ad-

RSPO2. Wac inactivation could be modeled by generating a floxed allele for conditional 

knockout of Wac (Wacfl/fl). Mice harboring this allele could be rectally infused with 

adenovirus expressing Cre recombinase, or bred to a tissue-specific Cre recombinase 

allele (ex. Villin-Cre) to test if WAC functions as a tumor suppressor in vivo. Conditional 

Wac knockout mice could be bred to ApcMin mice to determine how WAC inactivation 

modifies the Apc-driven intestinal tumor phenotype. These studies will clarify the role of 
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RSPO2 and WAC in tumor formation and provide preclinical models for testing targeted 

therapies.  

Development of targeted therapies 

In this thesis we have shown that subsets of human colon, breast and liver cancers 

express high levels of RSPO2, and that WAC is mutated or downregulated in a subset of 

colon cancers. Functional analysis of these alterations supports an oncogenic role for 

RSPO2 activation and WAC depletion in tumorigenesis. Future studies should be 

designed to determine whether RSPO2- and WAC-driven tumors continue to require 

these alterations for their sustained growth in vivo, and whether RSPO2 and WAC, or 

their associated signaling pathways, could be targeted therapeutically. Several strategies 

for developing RSPO2- and WAC-targeted therapy are discussed below.  

Strategies for RSPO2-targeted therapy 

Because RSPO2 is a secreted protein, it may be readily inhibited by monoclonal 

antibody or Fc-fusion-based therapies. Recombinant humanized monoclonal antibodies 

been successfully developed to target other secreted growth factors for cancer therapy 

(ex. Bevacizumab, which targets vascular endothelial growth factor) (Tol and Punt, 

2010). Fc fusions proteins, in which a protein of interest is genetically fused to a human 

immunoglobulin Fc domain, provide an alternative approach (Huang, 2009). An Fc 

fusion to the extracellular domain of the RSPO receptor LGR5 (LGR5-exo-Fc) has been 

developed and shown to bind RSPO1 with a KD of 3.1 nM (de Lau et al., 2011). Since 
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LGR5 is a receptor for all four RSPO ligands (Kim et al., 2008) LGR5-exo-Fc could be 

tested as a therapeutic inhibitor of RSPO2.    

Several questions will need to be addressed in the development of RSPO2-targeted 

therapy. Will RSPO-high tumors continue to rely on RSPO expression for their growth? 

If RSPO2-targeted therapy does inhibit tumor cell growth, will relapse occur with other 

activating lesions in the Wnt pathway? If RSPO2 inhibition has the potential to 

paradoxically activate Wnt signaling, as proposed by (Wu et al., 2014) will there be side 

effects of RSPO2-inhibition on normal intestinal epithelium?  

An alternative approach is to inhibit the Wnt pathway rather than RSPO2 itself. 

Since R-spondins do not directly activate the Wnt pathway, but rather enhance signaling 

in the presence of Wnt ligands, RSPO2-driven tumors might be sensitive to Porcupine 

inhibitors that prevent the secretion of Wnt ligands (Liu et al., 2013; Proffitt et al., 2013). 

Wnt inhibitors that target the pathway downstream of ligand-receptor interactions, 

reviewed in Chapter 1, might also be effective in blocking RSPO2-initiated Wnt 

signaling (Chen et al., 2009; Emami et al., 2004; Huang et al., 2009; Waaler et al., 2012). 

However, targeting the Wnt pathway raises additional concerns. Many normal tissue stem 

cells rely on Wnt signaling for homeostatic growth, including normal intestinal stem cells 

(Barker et al., 2008). Drugs targeting the Wnt pathway will have to be assessed for 

toxicity in stem cell compartments. Additionally, a potential drawback of inhibiting 

canonical Wnt signaling in RSPO2-driven tumors is that it ignores other pathways, 

including non-canonical Wnt signaling, that might be activated by R-spondins (Glinka et 
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al., 2011b; Ohkawara et al., 2011). Future studies will need to directly test the efficacy of 

Wnt pathway inhibitors in RSPO2-driven tumor models.  

Strategies for WAC-targeted therapy 

WAC is an adaptor protein required for multiple cellular functions, including 

golgi biogenesis, starvation-induced autophagy, and monoubiquitination of histone H2B 

(H2Bub1) (McKnight et al., 2012; Totsukawa et al., 2011; Zhang and Yu, 2011). 

Additionally, H2Bub1 regulates expression of a large number of target genes, which in 

turn influence the cell cycle, apoptosis, cell differentiation, and other processes (Fuchs et 

al., 2012; Karpiuk et al., 2012; Shema et al., 2008). Future studies will need to be 

designed to determine which of these functions of WAC are tumor suppressive, and 

therefore should be pursued for drug development. Given that H2Bub1 regulates 

differentiation and expression of many cancer genes, it is tempting to hypothesize that 

WAC behaves as a tumor suppressor through regulation of H2Bub1. Indeed, other factors 

that regulate H2Bub1 have also been implicated in cancer (Johnsen, 2012). Restoring 

H2Bub1 in tumors with mutated or downregulated WAC would be pharmacologically 

challenging. It may be a more successful strategy to identify “druggable” transcriptional 

targets downstream of H2Bub1, for example, by screening RNAi libraries in WAC-

depleted tumor models.  
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