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ABSTRACT

This research deals with an analysis of the problem of a fluid-driven fracture propagating

through a poroelastic medium. Formulation of such model of an hydraulic fracture is at

the cross-road of four classical disciplines of engineering mechanics: lubrication theory,

filtration theory, fracture mechanics, and poroelasticity, which includes both elasticity

and diffusion. The resulting mathematical model consists of a set of non-linear integro-

differential history-dependent equations with singular behaviour at the moving fracture

front.

The main contribution of this research is a detailed study of the large-scale 3D dif-

fusion around the fracture and its associated poroelastic effects on fracture propagation.

The study hinges on scaling and asymptotic analyses. To understand the behavior of

the solution in the tip region, we study a semi-infinite fracture propagating at a constant

velocity. We show that, in contrast to the classical case of the Carter’s leak-off model

(1D diffusion), the tip region of a finite fracture cannot, in general, be modeled by a

semi-infinite fracture when 3D diffusion takes place. Moreover, 3D diffusion does not

permit separation of the problem into two regions: the tip and the global fracture.

We restrict our study of the fracture propagation to an investigation of two limiting

cases: zero viscosity and zero toughness. We show that large-scale 3D diffusion and its

associated poroelastic effects can significantly affect the fracture evolution. In particular,

we observe a significant increase of the net fracturing fluid pressure compared to the case

of 1D diffusion due to the porous medium dilation. Another consequence of 3D diffusion

is the possibility of fracture arrest. Indeed, the fracture stops propagating at large time,

when the fracturing fluid injection rate is balanced by the leak-off rate at pressure below

the critical propagation pressure.
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Chapter 1

Introduction

1.1 Context

Hydraulic fracturing is a process by which a fracture is initiated and propagated in a rock

mass by injection of a pressurized fluid from a borehole. A natural example of hydraulic

fracturing is a magma-driven dike, which can reach kilometers in length (Lister and

Kerr, 1991). Hydraulic fracturing is widely used in industry, for example, stimulation of

hydrocarbons reservoirs, disposal of liquids (e.g. production water in the oil industry,

supercritical CO2, and liquid waste), and preconditioning of rock masses in the mining

industry.

Let us consider in more details an example of stimulation of an oil reservoir by hy-

draulic fracturing (HF) (Economides and Nolte, 2000). First, a fluid with low viscosity

(the “pad”) is used to break down the rock and initiate propagation of a crack. Low

viscosity is necessary to reduce frictional losses in the well. After propagation is es-

tablished, special agents (such as high-density polymers and crosslinkers) are added in

order to increase viscosity to up to 1000 times that water, and enhance the creation of

a filter cake on the fracture walls to reduce fluid losses. The fracturing fluid is followed

1
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Figure 1.1: Hydraulic fracturing vs waterflooding [after Adachi (2001)]

by a slurry of fluid carrying propping materials (the “proppant”). The function of the

proppant (e.g., coarse sand) is to hold the fracture open after the hydraulic fracturing

treatment is completed in order to provide a high-permeability channel for the hydro-

carbons (oil or gas). The last step of the treatment is the cleanup of the well. For

this purpose, breaking agents are injected in order to break down the polymer chains.

The resulting thin fluid is pumped out, leaving the proppant in place. This procedure

can take up to one day. Obviously, one would like to create a fracture that is as long

as possible using the least amount of fracturing fluid. At the same time, the fracture

should be wide enough in order to place the proppant inside the fracture.

Another interesting example from the oil industry is a postprimary recovery method

called waterflooding (WF) (Craig, 1971; Thakur et al., 2003). After the main recovery

period, when the efficiency of a production well drops significantly, water is pumped into

the reservoir through secondary wells which surround the production well. This water

pushes the oil toward the production well, thus increasing its efficiency. The treatment

can last for several months. The objective of this treatment is to inject into the reservoir
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as much fluid as fast as possible. Some investigations indicate that the formation of a

fracture improves the efficiency of the treatment (Craig, 1971; Thakur et al., 2003).

In both examples, a fluid-driven fracture propagates though a permeable medium and

in both cases we have some fluid losses due the infiltration of the fracturing fluid into

the medium. This process is referred to as leak-off. Despite their apparent similarities,

the two problems are different: the fracturing fluids have vastly different viscosities and

treatment times differ significantly. Additionally, the leak-off phenomenon is evidently

desirable in waterflooding recovery operations, while it is not in the hydraulic fracturing

treatments. It is apparent that these two “similar” problems are in fact quite different

from a physical point of view. Indeed, one can often assume [Adachi et al. (2007)] that

during an HF treatment, viscous dissipation associated with the flow of the fracturing

fluid dominates over the energy dissipation associated with the rock damage, whereas

during a WF treatment the situation seems to be the opposite. Thus, for the modeling

of HF, toughness – a measure of the energy required to crack the solid, can often be

taken to be equal to zero, whereas for modeling of WF the fracturing fluid viscosity can

be taken to be equal to zero. These two limits were studied in a series of papers where

they were called the viscosity- and toughness-dominated regimes of fracture propagation

[see Detournay (2004) for a summary]. In particular, it was shown that for a Newtonian

fluid the viscosity-dominated regime is valid for short treatments, whereas the toughness-

dominated regime is expected for long treatments.

The other significant difference between the HF and WF treatments is in the diffusion

pattern. As illustrated in Fig.1.2, during an HF treatment when the fluid losses are

minimized, the diffusion explores only a narrow neighborhood around the fracture, i.e.,

the pore fluid pressure changes only in the boundary layer adjacent to the fracture. If the

width of this boundary layer is small enough compared to the fracture size, the diffusion

pattern is one-dimensional, and the mathematical model can be simplified significantly.
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Figure 1.2: Diffusion patterns

In contrast to HF, a WF treatment can be characterized by a rather large diffusion

zone, the size of which is at least of the order of the fracture size (see Fig.1.2). In this

case we say that the diffusion is three-dimensional. An interesting consequence of such

large-scale diffusion is the following: as the fracturing fluid infiltrates into the porous

rock, the rock dilates and attempts to close the fracture. Mathematically, this means

that additional confining stress is generated.

Most papers on hydraulic fracturing simulation assume the first, one-dimensional,

diffusion pattern. The theoretical modeling of such a one-dimensional fluid leak-off

was developed by Carter (1957). The Carter’s leak-off model also takes into account

formation of a low permeability cake build-up on the fracture walls, resulting from the

fracturing fluid infiltration. This theory proved to be very efficient for modeling HF

(Economides and Nolte, 2000). At the same time, it is obvious that the Carter’s leak-off

model is not applicable to three-dimensional cases like WF. Development of a theory

describing the propagation of a fluid-driven fracture with large scale-diffusion is the

raison d’être of the present research.
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1.2 Models

Modeling a fluid-driven fracture propagation is a challenging problem. The mathemat-

ical formulation of the problem is represented by a set of nonlinear integro-differential

equations. Also, the problem has a moving boundary where the governing equations de-

generate and become singular. The complexity of the problem often restricts researchers

to consider only simple fracture geometries. The most widely used ones are (see Fig.1.3):

i) the plane strain or KGD model introduced by Khristianovic and Zheltov (1955) and

Geertsma and de Klerk (1969), which assumes that crack deformation and propagation

occurs under plane strain conditions; ii) the PKN model, introduced by Perkins and

Kern (1961) and Nordgren (1972), which assumes an elliptically shaped cross-section

fracture of constant height (plane strain deformation is assumed within a vertical cross-

section), and localization of the elasticity equation, leading to a simple proportionality

relationship between the fracture aperture and the fluid pressure; and iii) the penny-

shaped or radial model, which assumes a crack propagating symmetrically with respect

to the well perpendicular to it.

3D diffusion was first introduced into the modeling of a fluid-driven fracture by Ha-

goort et al. (1980). The authors studied a KGD fracture propagating through a porous

medium by assuming a homogeneous pressure distribution inside the crack and by adopt-

ing Darcy’s law to describe the fracturing fluid flow through the porous medium. As a

result, the pore fluid pressure evolution is governed by a diffusion equation. The problem

was solved numerically through the discretization of a relatively large domain around

the fracture. Some further development of this model was carried out by several authors

including Gordeyev (1993); Gordeyev and Entov (1997); Murdoch and Germanovich

(2006), and Mathias and Reeuwijk (2009).

Gordeyev (1993) approached the problem analytically. Starting from the general
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Figure 1.3: Different hydraulic fracturing models [after Adachi (2001)]

equations of poroelasticity introduced by Biot (1941), Gordeyev derived a set of equa-

tions governing the propagation of an axisymmetric/plane strain hydraulic fracture in

a poroelastic medium. The set of governing equations was solved explicitly only in the

case of the penny-shaped geometry and for large times, when the fracture propagation

terminates. Gordeyev and Entov (1997) examined the propagation of penny-shaped and

plane strain fractures as well. Instead of introducing a propagation criterion, the au-

thors postulated that the fracture length evolves according to the square root of time.

However, this time-dependence of the fracture length is not appropriate for the prob-

lem under consideration. An interesting work was published by Mathias and Reeuwijk

(2009), who studied the case of a “stationary” 3D leak-off. These authors considered

the case of very slow propagation of a fluid-driven fracture assuming the pore pressure

around the fracture to be always in equilibrium. Of the papers mentioned here, only
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Gordeyev (1993) has studied some poroelastic effects like the generation of an additional

confining stress due to the dilation of the medium.

Some numerical simulations of KGD fracture propagation through a poroelastic

medium were performed by Boone and Ingraffea (1990) and Boone et al. (1991). It

was concluded there that the poroelastic effects can have a significant influence on a hy-

draulic fracture propagation. For example, it was shown that poroelastic mechanisms i)

contribute to an increase of the breakdown pressure, ii) can cause the pressure at closure

to be significantly greater than that of the minimum in situ stress, iii) affect the re-

opening pressure, and iv) influence the process of fracture closure and reopening, in that

the fracture was observed to close progressively from the tip back towards the borehole,

whereas in the absence of the poroelastic effects it first pinches near the borehole.

It is also worthwhile to mention studies on non-hydraulic fractures in poroelastic/

thermoelastic materials done by Atkinson and Craster (1991, 1992); Craster and Atkin-

son (1994, 1996) and other authors. These papers dealt either with stationary or semi-

infinite fractures. In both cases the problem is linear and can be effectively solved using

integral transforms.

1.3 First glance at a “simple” mathematical model

Models of hydraulic fracturing aim to predict the evolution of the fracturing fluid pressure

at the inlet, the fracture length and the aperture field. In this research, we study the

influence of 3D diffusion and the related poroelastic effects on the propagation of a

fracture. Physically, one would expect to find the following effects: i) a decrease in the

fracture opening and/or an increase of the fracturing fluid pressure due to the porous

medium dilation and ii) an arrest of the fracture propagation at large times due to the

balance between the fracturing fluid injection rate and the leak-off rate.

It is worth noting that in the case of 1D diffusion fracture arrest is impossible.
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Figure 1.4: Sketch of the problem

Indeed, when diffusion is one-dimensional, the fluid leak-off rate at a given position of

the fracture depends only on the fracturing fluid pressure history at this position and

does not depend on the pressure in the adjacent regions. As time elapses, the leak-off

rate at each position decreases proportionally to 1/
√

t, where t is time; therefore, a

balance between the fluid injection and leak-off is not possible.

In this research we aim to gain a physical understanding of the processes under in-

vestigation rather than to develop a numerical solution of the general case. For this

reason we mainly concentrate on studying the particular propagation regimes in which

certain physical processes overshadow other ones. For example, if the energy dissipation

due to the fluid viscosity dominates over the energy dissipation due to the rock tough-

ness we say that the fracture propagates in the viscosity-dominated regime. During its

evolution, а fracture can go through different propagation regimes, and we would like

to know what are the intrinsic parameters that govern fracture propagation, namely

when a given propagation regime is valid, which parameters govern transitions between

different regimes, and what are the characteristic times of these transitions.
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From here on we consider a penny-shaped fracture driven by the injection of an in-

compressible Newtonian fluid with viscosity µin, at a constant rate Q0 (see Fig.1.4). The

fracturing fluid infiltrates into the porous medium and, as a result, a low permeability

cake builds up on the walls of the fracture. The crack propagates through an infinite,

homogeneous, brittle, poroelastic rock saturated by a fluid with the same viscosity µout

as the filtrate, i.e., these fluids are physically indistinguishable inside the medium. The

medium is characterized by Young’s modulus E, Poisson’s ratio ν, fracture toughness

KIc, intrinsic permeability κ, storage coefficient S, Biot coefficient α, a far-field (undis-

turbed) pore pressure p0, and is subjected to a far-field stress σ0, perpendicular to the

fracture plane. We assume the existence of a cavity (lag) separating the fracture front

and the fracturing fluid front. The cavity can be fully filled or partially filled (cavitation)

with the pore fluid.

It was mentioned above that the diffusion process leads to the porous medium dila-

tion. This dilation can be modeled by the introduction of the so-called backstress. By

definition, the backstress would be the stress induced across the fracture plane if the

fracture were closed. Studying this backstress is one more goal of this research.

The governing equations are summarized below (see Chapter 2 for details):

• Lubrication equation
∂w

∂t
+ g + ∇ · q = 0. (1.1)

Here t is time, w (r, t) is the fracture opening, g (r, t) is the fluid leak-off rate, and

q (r, t) is the “in-plane” fracturing fluid flux inside the fracture given by

q (r, t) = − w3

12µ
∇pin, (1.2)

where pin is the fluid pressure inside the fracture, µ = µin in the fracturing fluid

filled region, and µ = µout in the cavity region. If the cavity is only partially filled

with the pore fluid, the fluid pressure in the cavity is equal to zero: pin = 0.
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• Elasticity equation

w (r, t) =
∫

S(t)

[pin (r̄, t) + σb (r̄, t)− σ0]L [S (t) , r, r̄] dr̄. (1.3)

Here S (t) is the fracture surface, σb is the backstress, and L (S, r, r̄) is the elasticity

kernel. In the case of the penny-shaped fracture S (t) = {r < R (t) , z = 0}, where

{r, ϕ, z} is a cylindrical coordinate system with the origin at the fracture center

and R (t) is the fracture radius.

• Propagation criterion

KI = KIc, (1.4)

where KI is the stress intensity factor which can be related to the opening asymp-

tote in the tip region by

w (r, t)→ 25/2

π1/2

KI

E′
x1/2, x→ 0, (1.5)

where E′ ≡ E/
(
1− ν2

)
is the plane strain modulus and x is the distance from the

fracture tip;

• Poroelasticity equations

pout (r, t)− p0 =
∫ t

0
dt̄

∫

S(t̄)

g (r̄, t̄) psi (r − r̄, t− t̄) dr̄, (1.6)

σb (r, t) =
∫ t

0
dt̄

∫

S(t̄)

g (r̄, t̄) σsi
b (r − r̄, t− t̄) dr̄, (1.7)

where pout (r, t) is the pore pressure outside the fracture, psi (r, t) and σsi
b (r, t) are

the medium responses to an instantaneous point fluid source, gsi (r, t) = δ (t) δ (r),

and δ (x) is the Dirac delta function;

• Low permeability cake build-up
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– Fracturing fluid filled region

pin − pout|r∈S(t) =
vc

κc
g, (1.8)

where κc is the permeability of the cake, vc is the thickness of the cake given

by

vc (r, t) = β

∫ t

0
g (r, t̄) dt̄, (1.9)

β is a dimensionless constant coefficient characterizing the rate of cake buildup

relative to the leak-off rate

– Cavity

pin − pout|r∈S(t) = 0. (1.10)

Our eventual goal is to find the fracture opening profile w (r, t), the leak-off rate profile

g (r, t), the fluid pressure distributions pin (r, t) and pout (r, t), the backstress profile

σb (r, t), and the fracture shape S (t).

1.4 On different approaches in hydraulic fracturing studies

One can see that the problem under consideration is highly non-linear and challenging

even though we have predefined a simple penny-shaped fracture geometry. Part of

the challenge comes from the integral equations (1.3), (1.6), and (1.7) and the time

dependence of the integration domain (moving boundary); the other part of the challenge

comes from the non-linear structure of the equation governing the fluid flux inside the

fracture (1.2).

Papers dealing with theoretical modeling of fluid-driven fractures can conveniently

be divided into two main groups. The first group can be characterized by ad-hoc conjec-

tures in the construction of solutions. This group contains such classical works as Khris-

tianovic and Zheltov (1955), Geertsma and de Klerk (1969), Perkins and Kern (1961)
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and Nordgren (1972), which represent the historical cornerstone of hydraulic fracturing

modeling. This group includes studies conducted by Abé et al. (1976); Advani et al.

(1987); Biot et al. (1986), who further develop the classical models. Some of these works

were built upon inconsistent assumptions, however. For example, Advani et al. (1987)

adopted the incompatible assumptions of viscosity domination in energy dissipation and

uniform fracturing pressure distribution along the crack (Detournay, 2004).

The second group contains papers mostly written from the early 1990’s and which

aim to construct a rigorous solution to the non-linear set of integro-differential equations

representing the problem. The papers within this group are hinged on scaling and

asymptotic analysis (Detournay, 2004), and they address the following features of the

problem: i) the moving boundary and degeneration of the governing equations at this

boundary, and ii) the strong dependence of the set of the physical processes involved

into the propagation of the fracture on the problem parameters like viscosity, toughness,

permeability of the hosting medium, treatment time etc. (see Section 1.1 ). The latter

property is related to the multiple time scale nature of the problem (Detournay, 2004).

Let us consider each of these features in more detail.

Tip region

As already stated, the governing equations degenerate in the tip region, and the solution

of these equations is singular. As a result, the question of appropriate boundary condi-

tions arises. The problem of boundary conditions is especially important for numerical

modeling of a fluid-driven fracture propagation. The original approach to tackle this

problem consisted in adopting the square root tip asymptote (w ∼ x1/2, where x is the

distance from the tip) that is predicted by linear elastic fracture mechanics. This tip

asymptote, referred to as the toughness-dominated asymptote, depends only on the elas-

tic modulus and on the toughness of the hosting medium. However, it is clear that this
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tip asymptote is not appropriate in the limiting case of zero rock toughness. Spence and

Sharp (1985) and later Lister (1990) observed that in this case the tip solution is of the

form w ∼ x2/3, due to the coupling of lubrication theory and linear elasticity. This par-

ticular asymptotics was further studied by Desroches et al. (1994), who demonstrated

that w ∼ x2/3, is also the solution of a semi-infinite hydraulic fracture propagating

steadily in a zero toughness impermeable elastic solid. This stationary solution depends

only on the fracturing fluid viscosity, the elastic modulus of the medium, and the tip

velocity and it is called the viscosity-dominated asymptote. The authors suggested that

the tip region of a finite fracture is equivalent to a steadily propagating semi-infinite

fracture. A rigorous justification of this assumption in the case of an impermeable rock

was provided by Garagash and Detournay (2005). In this research we will show that in

the case of 3D diffusion, the tip region of a finite fracture cannot, in general, be modeled

by a steadily propagating semi-infinite fracture.

In addition, Desroches et al. (1994) (and also Carbonell et al. (1999)) introduced a

criterion based on the consideration of energy dissipation, that shows which asymptote

(viscosity- or toughness-dominated) should be used. Namely, if energy dissipation is

mainly associated with viscous flow, then the viscosity-dominated tip asymptote should

be used, otherwise, when energy dissipation is mainly due to the creation of new surfaces

in the solid material, the toughness-dominated tip asymptote is the proper choice.

In studying the propagation of a hydraulic fracture in a permeable medium (the

Carter’s leak-off) with zero toughness, Lenoach (1995) has found one more tip asymp-

tote, w ∼ x5/8. A natural question arises: under which conditions should each asymptote

be used? The first understanding of this problem came with the recognition of the mul-

tiscale nature of the tip region. Thus, Garagash and Detournay (2000) have shown that

the solution of a semi-infinite fluid-driven fracture propagating through an impermeable

medium can be characterized by a single length scale &mk. This length scale is a function
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of the fluid viscosity, the material toughness, the elastic modulus and the propagation

velocity. If x! &mk, then the solution is given by the toughness-dominated asymptote,

whereas for x " &mk the solution is given by the viscosity-dominated one. Moreover,

the authors developed a numerical solution for the intermediate region, x ∼ &mk. Ex-

perimental validation of this result was reported by Bunger and Detournay (2008), who

studied the propagation of a penny-shaped hydraulic fracture through an impermeable

medium (polymethyl methacrylate (PMMA) and glass).

Applying the results of Garagash and Detournay (2000) one arrives at the following

criterion of choosing a relevant asymptote: if the size of the fracture is small compared to

the characteristic length scale &mk, the toughness-dominated asymptote should be used,

otherwise, if the size of the fracture is large compared to &mk, the viscosity-dominated

asymptote should be used. In the latter case the toughness-dominated region, which is

small compared to &mk, plays the role of a boundary layer near the tip of the fracture

(Garagash and Detournay, 2005).

An important property of the tip solution is its dependence on the tip velocity. This

dependence plays a key role during matching the tip solution to the global one (Adachi,

2001; Madyarova, 2003). Moreover, one can encounter a situation in which the tip

solution changes its nature during the fracture propagation. For example, in the case of

a penny-shaped fracture driven by a Newtonian fluid (Savitski and Detournay, 2002),

the viscosity-dominated asymptote is applicable only at small times, whereas for large

times the toughness-dominated asymptote is the correct one.

Further, Detournay et al. (2002) and Garagash et al. (2009) have shown that in the

case of a permeable medium the 5/8 tip asymptote found by Lenoach (1995) can appear

at a length scale, which is intermediate to the ones of the toughness- and viscosity-

dominated asymptotes. In other words, the incorporation of new physical processes

leads to the appearance of new length scales. In turn, the overlapping of different length
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scales can lead to a complicated structure of the tip asymptote.

Multiple time scales

In Section 1.1 we have illustrated that different hydraulic fracturing applications can

involve different physical processes. Thus, for example, for short treatments the diffusion

process has a 1D diffusion pattern, whereas for long treatments it has a 3D pattern (see

Fig.1.2). To quantify the influence of a particular physical process, one can introduce

a characteristic time or length scale. In the case of diffusion, the characteristic length

scale is &d ∼
√

cT , and the characteristic time scale is td ∼ L2/c, where c is the diffusion

coefficient, T is the treatment time or another time scale of interest, and L is the fracture

size. If &d ! L or td ! T the diffusion pattern is 1D, otherwise if &d ! L or td ! T it is

3D. The diffusion time scale td also can be called the characteristic time of the transition

from 1D to 3D diffusion.

A transition time can also be introduced when two competitive processes are consid-

ered. For example, in the case of a penny-shaped fracture driven by a Newtonian fluid

(Savitski and Detournay, 2002) there exists a competition between energy dissipation

associated with the material toughness and energy dissipation associated with the frac-

turing fluid viscosity. The transition time scale tmk is such that for times t ! tmk the

viscosity is the main source of the energy dissipation, and for large times t " tmk the

toughness is the main source.

Another example of competitive processes is the storage of the injected fracturing

fluid inside the fracture versus the fracturing fluid leak-off. Again, there is a time scale

tmm̃ [KGD fracture, (Adachi, 2001)] such that for times which are small compared to

this tmm̃, the main part of the injected fluid is stored inside the fracture and the leak-off

process can be neglected whereas for large times t" tmm̃ the situation is the opposite,

i.e., the main part of the injected fluid leaks into the formation.
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One can see that in the case of a simple geometry, propagation of a hydraulic fracture

can be characterized by a set of transition times ti. We define a propagation regime as

a limiting case of the fracture propagation during which either t ! ti or t " ti for

each transition time ti (Detournay, 2004). For example, in the case of a penny-shaped

fracture propagating through an impermeable medium (Savitski and Detournay, 2002)

we have only one transition time tmk and two propagation regimes: t ! tmk called the

viscosity-dominated regime, and t" tmk – the toughness-dominated regime.

In the case of a penny-shaped fracture propagating through a permeable medium

(the Carter’s leak-off model), we already have four propagation regimes and four charac-

teristic transition times (Madyarova, 2003) (but only two transition times are indepen-

dent). These regimes are M , the storage-viscosity-dominated regime; K, the storage-

toughness-dominated regime; M̃ , the leak-off-viscosity-dominated regime; and K̃, the

leak-off-toughness-dominated regime. The corresponding transition times can be de-

noted by tmk, tmm̃, tkk̃, and tm̃k̃. Each of the propagation regimes introduced above can

be characterized in terms of the transition times as follows: M , t ! tmk and t ! tmm̃;

K, t " tmk and t ! tkk̃; M̃ , t ! tm̃k̃ and t " tmm̃; and K̃, t " tm̃k̃ and t " tkk̃ . A

nice property of a propagation regime is that in the case of a simple fracture geometry,

such as the ones introduced in Section 1.2 , and simple boundary conditions (for exam-

ple fracturing at a constant injection rate), the solution of the problem is self-similar

(Detournay, 2004).

It is convenient to represent the fracture propagation by a trajectory line lying inside

a geometrical figure. Each vertex of this figure corresponds to a propagation regime.

Along an edge connecting two different propagation regimes, the domination of one

physical process is displaced by the domination of another one. In Fig.1.5 we show

the parametric space for the case of a penny-shaped fracture propagating through a

permeable medium, which we discussed above.
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Figure 1.5: Examples of parametric spaces

All trajectories of the fracture propagation start at the M -vertex and end, for large

enough times, at the K̃-vertex. If the different time scales are well separated, a trajectory

can follow some of the edges of the parametric space. For instance, trajectory 1 illustrates

the case tmm̃ ! tmk, whereas trajectory 3 demonstrates the opposite case tmk ! tkk̃.

Trajectory 2 shows the case when all the transition times are of the same order.

Here, a transition between two different propagation regimes is characterized by a

transition time. Alternatively, one can introduce а transition parameter. For example,

Savitski and Detournay (2002) used the dimensionless viscosity M to describe the transi-

tion of a penny-shaped fracture propagation from the viscosity- to toughness-dominated

regime. This dimensionless viscosity can be expressed in terms of the transition time

tmk by M = (t/tmk)−2/5. Thus, for the M -vertex M = ∞, whereas for the K-vertex

M = 0. Mathematically, the notion of a transition parameter is more straightforward

and more general. Usually transition parameters depend on time, but in some cases they

can be time-independent. For instance, Fig.1.5 shows the parametric space of a KGD

crack propagating through a permeable medium (the Carter’s leak-off model) (Adachi

et al., 2002). Here the dimensionless viscosity M does not depend on time. As a result,

the solution of the problem along the MK-edge is self-similar. Moreover, for the KGD
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geometry, the edge M̃K̃ is also self-similar. All trajectories start at the MK-edge, and

end at the M̃K̃-edge. In Fig.1.5 we also trace trajectories 1-3, which are analogous to

the ones we discussed in the case of the penny-shaped geometry.

In practice, the different times scales are often well separated. For example, in the

case of an HF stimulation of an oil reservoir, the fracture propagates near the M -vertex,

T " tmm̃ ! tmk, where T is the treatment time (Adachi et al., 2007). Therefore the

fracture evolves along the MM̃ -edge. Another situation takes place in laboratory experi-

ments when tmk ! T " tkk̃ (Adachi et al., 2007). In this case the fracture spends most of

its propagation time along the KK̃-vertex. In practice, studying of the parametric space

and locating the domain of the fracture propagation can significantly simplify modeling

the problem under consideration and improve the efficiency of numerical simulations.

For example, if it is known that the fracture spends most of its propagation time at

the KK̃-edge, then, during the numerical simulation it is not necessary to model the

fracture propagation along the MK-edge. Therefore one can start the simulation from

the K-vertex using the self-similar solution at this vertex to define the initial conditions.

1.5 Objectives and organization of the research

The main objective of this research is to study the 3D diffusion and the backstress effect.

Throughout this study we will intensively use scaling and asymptotic analysis.

In Chapter 2 we formulate the problem mathematically for a penny-shaped geometry.

We discuss the main assumptions built in the model, and the restrictions introduced by

them.

In Chapter 3 we study a semi-infinite fracture propagating through a poroelastic

medium at a constant velocity. We build a semi-analytical solution of the problem, in

the sense that we construct the near- and far-field asymptotes, as well as some interme-

diate ones, and develop a numerical algorithm for the calculation of a transient solution
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connecting the analytical asymptotes. We show that, due to the time-dependence of the

diffusion length scale, the tip region of a finite fracture is not always equivalent to a

steadily propagating semi-infinite fracture (see the details in Chapters 3 and 4).

Through the rest of the research we use the following simplifications: i) there is

no cake build-up; and ii) from a diffusion point of view the fracturing fluid pressure

distribution is uniform along the fracture. The former assumption means that pin =

pout|r∈S(t) (further, we simply omit the subscripts “ in” and “out”). The latter assumption

means that in the diffusion equation (1.6) the fluid pressure in the left-hand side is

uniform along the fracture, whereas in the lubrication and elasticity equations it can be

nonuniform. This is an appropriate assumption for the toughness-dominated regime, or

when the confining stress σ0 is large compared to the far-field pore fluid pressure p0.

Indeed, the propagation of a hydraulic fracture is driven by the difference between the

fracturing fluid pressure and the far-field confining stress, p− σ0, whereas the diffusion

is driven by the difference between the fracturing fluid pressure and the far-field pore

pressure, p − p0. Therefore if σ0 " p0 then p − p0 " p − σ0, which means that from a

diffusion point of view the fracturing fluid pressure is uniform and equal to the confining

stress, p ≈ σ0. Using a uniform pressure distribution we can invert (1.6)

v (r, t) ≡
∫ t

0
g (r, t̄) dt̄ =

∫ t

0
u [S (t̄) , r, t− t̄] [p (t̄)− p0] dt̄, (1.11)

where v (r, t) is the fluid displacement function, the total amount of the fluid leaked-off

at time t through a unit surface of the fracture. The function u (S, r, t) can be considered

as the fluid displacement function normal to the surface S generated by a uniform unit

pulse of pore pressure applied along the surface S, p (r ∈ S, t)−p0 = δ (t). We can write

a similar equation for the backstress.

It is natural to break our “simple” problem into two even simpler ones: i) studying

the poroelastic medium response to a uniform pressure pulse generated on a stationary
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surface S (we refer to this problem as the auxiliary problem); and ii) studying a hydraulic

fracture propagation using convolution-type equations similar to (1.11).

Chapter 4 is devoted to the auxiliary problem. In Chapter 5 we study the propagation

problem in the case of the toughness-dominated regime, whereas in Chapter 6 we study

the viscosity-dominated regime. Finally we summarize the results in Chapter 7.



Chapter 2

Mathematical formulation

In this Chapter we introduce the mathematical model, which describes the propagation

of a penny-shaped fracture through an infinite poroelastic medium.

2.1 Lubrication theory

We assume that there is a cavity (lag) separating the fracture edge and the fracturing

fluid front. The cavity can be fully filled or partially filled (cavitation) with pore fluid.

In the case of cavitation, the fluid pressure inside the cavity pin is taken to be equal to

zero, pin = 0. Fluid transport in the fluid-filled part of the fracture is governed by the

volume balance equation
∂w

∂t
+

∂v

∂t
+

1
r

∂

∂r
(rq) = 0, (2.1)

and by Poiseuille’s law

q (r, t) = − w3

12µ

∂pin

∂r
. (2.2)

In the above, r is the radial coordinate of the cylindrical system of coordinate {r, ϕ, z}

with the origin at the fracture center, t is time, w (r, t) is the fracture opening, v (r, t)

is the integrated fluid leak-off rate or the leak-off displacement function, q (r, t) is the

21
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fracturing fluid flux inside the fracture, pin (r, t) is the fluid pressure inside the fracture,

and µ is the fluid viscosity taken to be µ = µin in the fracturing fluid filled region, and

µ = µout in the cavity region.

In writing the volume balance equation (2.1) we have neglected the compressibility

of the fluid. Indeed, the compliance of the crack Cc, Cc ∼ R/E′, is large compared to

the fracturing fluid compliance Cf , Cf ∼ w/Kf , where E′ ≡ E/
(
1− ν2

)
is the plane

strain modulus, E is the Young’s modulus, ν is the Poisson’s ration, Kf is the bulk

modulus of the fracturing fluid, and R is the fracture radius. Therefore the fracturing

fluid compressibility effect is as small as wE′/ (RKf) ∼ (pin − σ0) /Kf " σ0/Kf ! 1,

where σ0 is far-field confining stress. For example, for water Kf ≈ 2.2 GPa, and for

hydraulic fracturing σ0 ∼ 10 MPa; the compressibility effect correction is therefore of

order of 10−2.

Poiseuille’s law (2.2) is valid only for a stationary flow and it does not take into

account the inertia effect. Garagash (2006) has shown that the inertia effect is important

only at a time scale, which, in the case of hydraulic fracturing, is small compared to the

treatment time. Therefore this effect can be dismissed.

The boundary conditions are given by

2π lim
r→0

rq (r, t) = Q0, w (R (t) , t) = υ (R (t) , t) = q (R (t) , t) = 0, (2.3)

where Q0 is the fracturing fluid injection rate. Here we consider times at which the

fracture radius R (t) is large compared to the wellbore radius, therefore we can model

the injection by a point source in the center of the fracture [see first equation of (2.3)].

The initial conditions are given by

w (r, 0) = v (r, 0) = q (r, 0) = R (0) = 0. (2.4)

Strictly speaking, these boundary conditions are only formal and not physical, in a

sense that they are introduced from view point of mathematical convenience rather than
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from the perspective of a physical problem. Here we would like to reiterate that we

are considering only time scales at which the fracture radius R (t) is large compared

to the well bore radius. At these times the exact form of the initial conditions is not

important. The only requirement is that the total amount of injected fracturing fluid is

correct. Moreover, we expect that a particular similarity solution could act as a small-

time asymptote for the problem under consideration. Thus, in practice, this self-similar

solution plays the role of initial conditions.

2.2 Elasticity equation

The fracture opening w and the pressure loading pin applied to the fracture walls can

be related using the linear theory of elasticity. If the response of the medium is purely

elastic, then the opening w can be expressed in terms of the net pressure pin − σ0.

In order to incorporate the backstress σb, we decompose the hydraulic loading and the

confining stress as follows: {pin, σ0 − σb} = {pin + σb, σ0}+{−σb,−σb} (note that σb > 0

for tensile backstress). Obviously, the second part of the loading, {−σb,−σb}, does not

make any contribution to the opening. Therefore, the net pressure is equal to pin+σb−σ0.

The relation between the fracture opening and the net pressure can be written

through superposition of dislocations (Arin and Erdogan, 1971; Cleary and Wong, 1985)

pin (r, t) + σb (r, t)− σ0 = − E′

R (t)

∫ 1

0

∂w [sR (t) , t]
∂s

M

[
r

R (t)
, s

]
ds, (2.5)

where E′ ≡ E/
(
1− ν2

)
is the plane strain modulus, E is the Young’s modulus, ν is

the Poisson’s ration, σb (r, t) is the backstress due to the leak-off, and M (ξ, s) is the

elasticity kernel,

M (ξ, s) =
1
2π






1
ξ K

(
s2

ξ2

)
+ ξ

s2−ξ2 E
(

s2

ξ2

)
, ξ > s

s
s2−ξ2 E

(
ξ2

s2

)
, s > ξ

, (2.6)
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K (x) and E (x) are complete elliptic integrals of the first and second kinds (Abramowitz

and Stegun, 1972).

Inversion of (2.5) was initially obtained by Sneddon and Lowengrub (1969) in the

form of a double integration. Here we use a modified version of this inverse relation

(Barr, 1991; Savitski and Detournay, 2002)

w (r, t) =
8
π

R (t)
E′

∫ 1

0
{pin [sR (t) , t] + σb [sR (t) , t]− σ0}G

[
r

R (t)
, s

]
sds, (2.7)

where

G (ξ, s) =






1
ξ F

(
arcsin

√
1−ξ2

1−s2 , s2

ξ2

)
, ξ > s

1
sF

(
arcsin

√
1−s2

1−ξ2 , ξ2

s2

)
, ξ < s

, (2.8)

F (φ, m) is the incomplete elliptic integral of the first kind (Abramowitz and Stegun,

1972).

2.3 Propagation criterion

The propagation criterion is introduced within the context of linear elastic fracture

mechanics (LEFM). The main assumption of LEFM is that the process zone, a region

near the fracture tip where behavior of the material in not elastic (e.g. region of plastic

deformation, microcracking, etc.), is small compared to the fracture size. According to

LEFM a fracture can propagate only if the mode I stress intensity factor KI exceeds the

material toughness KIc. Thus in the case of quasi-static fracture propagation we can

write the following criterion

KI = KIc. (2.9)

For a penny-shaped fracture, the stress intensity factor KI is given by (Sneddon and

Lowengrub, 1969)

KI =
2√
π

R1/2 (t)
∫ 1

0

pin [sR (t) , t] + σb [sR (t) , t]− σ0√
1− s2

sds. (2.10)
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By accounting for the propagation criterion (2.9), one arrives to the following tip asymp-

tote (Rice, 1968)

w (r, t)→ 25/2

π1/2

KIc

E′
√

R (t)− r as r → R (t) . (2.11)

2.4 Poroelasticity equations

The hosting medium is modelled according to the theory of linear poroelasticity (Biot,

1941). However, we neglect the solid-to-fluid coupling, i.e., we assume that mechanical

deformations do not affect the fluid transport through the medium. This simplification

was studied by Detournay and Cheng (1991), who have concluded that in the case of

hydraulic boundary conditions when the pore pressure is prescribed, the fluid exchange

between the fracture and the medium calculated via poroelastic theory is nearly iden-

tical to that computed by uncoupled diffusion equation. The assumptions allows us to

uncouple pure elastic deformation due to hydraulic loading (introduced in Section 2.2)

from the pore pressure diffusion leading to generation of the backstress.

From the hydraulic diffusion point of view the fracture is simply a distributed fluid

source g (r, t). It is convenient to decompose this fluid source g (r, t), which is distributed

in space and time, into a set of instantaneous point fluid sources gsi (r, t) = δ (t) δ (r),

where δ (t) is the Dirac delta function

g (r, t) =
∫ t

0
dt̄

∫

z̄=0,r̄<R(t̄)

g (r̄, t̄) gsi (r − r̄, t− t̄) dr̄. (2.12)

Due to the linearity of the diffusion equation, the pore pressure field outside the fracture

pout (r, t) can be written as

pout (r, t)− p0 =
∫ t

0
dt̄

∫

z̄=0,r̄<R(t̄)

g (r̄, t̄) psi (r − r̄, t− t̄) dr̄, (2.13)
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where psi (r, t) is the pore pressure induced by an instantaneous point fluid source

gsi (r, t) (Cheng and Detournay, 1998). Integration by parts with respect to time yields

pout (r, t)− p0 =
∫ t

0
dt̄

∫

z̄=0,r̄<R(t̄)

v (r̄, t̄) pli (r − r̄, t− t̄) dr̄, (2.14)

where v (r, t) ≡
∫ t
0 g (r, t̄) dt̄ is the fluid displacement, and pli (r, t) ≡ ∂psi (r, t) /∂t.

Let us discuss the meaning of pli (r, t). Comparing (2.13) and (2.14) one can see

that pli (r, t) is the fluid pressure distribution generated by an instantaneous point fluid

dilation vli (r, t) = δ (t) δ (r). This instantaneous point dilation is actually equivalent

to the time dipole of a fluid source gli (r, t) = δ′ (t) δ (r), where prime means derivative

with respect to argument. In other words we have an instantaneous injection of fluid

immediately followed by an instantaneous withdrawing of the same amount of fluid at

the same point.

A similar equation can be written for the backstress σb (r, t)

σb (r, t) =
∫ t

0
dt̄

∫

z̄=0,r̄<R(t̄)

v (r̄, t̄)σli
zz (r − r̄, t− t̄) dr̄. (2.15)

The pore pressure field pli (r, t) and the stress field σli
zz (r, t) induced by an instantaneous

point fluid dilation vli (r, t) are given by (Cheng and Detournay, 1998)

pli (r, t) =
2c2

π3/2κ

1
|r|5

(
2
|r|2

4ct
− 3

)(
|r|√
4ct

)5

exp

(
−|r|

2

4ct

)
, (2.16)

σli
zz (r, t) =

ηc

2πκ

1
|r|3

[
δ (t) +

16c√
π

1
|r|2

(
1− |r|2

4ct

)(
|r|√
4ct

)5

exp

(
−|r|

2

4ct

)]
, (2.17)

where c is the diffusion coefficient, κ is the permeability, η = α (1− 2ν) / (2− 2ν), and α

is the Biot coefficient (Biot, 1941). Substitution of these expressions into (2.14), (2.15)

and integration over the angle ϕ yield

pout (r, ϕ, z = 0; t)− p0 = − 1
S

1√
π

∫ t

0

(4c)−3/2 dt̄

(t− t̄)5/2

∫ R(t̄)

0
r̄v (r̄, t̄) exp

[
− r2 + r̄2

4c (t− t̄)

]
×
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{

3I0

(
rr̄

2c (t− t̄)

)
− 1

2c (t− t̄)

[(
r2 + r̄2

)
I0

(
rr̄

2c (t− t̄)

)
− 2rr̄I1

(
rr̄

2c (t− t̄)

)]}
dr̄,

(2.18)

σb (r, ϕ, z = 0; t) =
η

S

2
π

∫ R(t)

0
r̄v (r̄, t̄)

E
[

4rr̄
(r+r̄)2

]

(r − r̄)2 (r + r̄)
dr̄+

+
η

S

4√
π

∫ t

0

(4c)−3/2 dt̄

(t− t̄)5/2

∫ R(t̄)

0
r̄v (r̄, t̄) exp

[
− r2 + r̄2

4c (t− t̄)

]
×

{
I0

(
rr̄

2c (t− t̄)

)
− 1

4c (t− t̄)

[(
r2 + r̄2

)
I0

(
rr̄

2c (t− t̄)

)
− 2rr̄I1

(
rr̄

2c (t− t̄)

)]}
dr̄,

(2.19)

where S = κ/c is the storage coefficient, andIν (x) is the modified Bessel function of the

first kind (Abramowitz and Stegun, 1972).

2.5 Low permeability cake build-up

As the fracturing fluid infiltrates into the medium, a low permeability cake of thickness vc

builds up on the fracture walls. We assume that the cake thickness vc is small compared

to the fracture opening w, and that the fluid flow across the cake is one dimensional in

the direction normal to the fracture plane. Pressure drop across the cake can be found

from Darcy’s law

∂v

∂t
= −κc

pout|z=0 − pin

vc
⇒ pin − pout|z=0 =

vc

κc

∂v

∂t
, (2.20)

where κc is the cake permeability. We further postulate that the rate of the solid particles

into the cake is proportional to the fluid leak-off rate, i.e.,

vc (r, t) = βv (r, t) , (2.21)

β is the proportionality coefficient.

In the cavity region we have only pore fluid which is not able to leave any deposit

on the fracture walls, vc = 0, therefore the pressure field is continuous

vc = 0 ⇒ pin − pout|z=0 = 0. (2.22)



Chapter 3

Semi-infinite fracture

3.1 Introduction

In this chapter we study the tip region of a fluid-driven fracture propagating through

a poroelastic medium. Inspired by numerous works on the tip region, we model it by

a semi-infinite fracture propagating at a constant speed (see Section 1.4). The main

accent of our study is on investigating the influence of large-scale 3D diffusion on the

propagation of a semi-infinite fracture. This large-scale diffusion, which engage a large

volume of the poroelastic material into the fracture evolution process, can lead to the

generation of an additional confining stress (backstress). Studying this stress is one

more goal of this research. In this study, we also take into account the fluid lag and

low permeability cake build-up. The only input parameters of our model are the tip

velocity and the parameters describing the properties of the poroelastic medium and

the properties of the fracturing and pore fluids. The main restrictive assumptions here

is that the tip cavity is fully filled with the pore fluid. As a result our model fails to

describe the near-lag region of a fracture propagating in a low permeability rock. Indeed,

in this case, the pore fluid only partially fills the cavity and the fluid pressure in the

28
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cavity is equal to zero whereas the model predicts negative fluid pressure. However,

our model is still valid in the far-field region, the size of which is large compared to

the fluid lag length, x " λ, where x is the distance from the fracture tip and λ is the

length of the fluid lag. At the same time, the problems studied by Garagash et al.

(2009) and Detournay and Garagash (2003) represent limiting cases of our more general

consideration (see Section 3.2). Note finally that our problem is very similar to the one,

studied by Entov et al. (2007). However, we use a different approach to model the tip

region of a finite fracture (see discussion in Appendix A.1).

This chapter is organized as follows. In Section 3.2 we present the current under-

standing of the tip region. In Section 3.3 we introduce the mathematical model and

discuss limits of its applicability.

In Section 3.4 we discuss general ideas of scaling analysis. We show that the problem

depends only on five dimensionless parameters. In Subsection 3.4.1 we introduce a

reference scaling. The main idea of this scaling is to simplify our governing equations

and introduce explicitly the dependence of the problem on five dimensionless parameters.

Before solving the problem numerically, we perform detailed scaling and asymptotic

analyses. Thus is Section 3.5 we study the behaviour of the solution for different limiting

cases. In Subsection 3.5.1 we show how our model degenerates to the ones studied

by Garagash and Detournay (2000); Garagash et al. (2009); Detournay and Garagash

(2003). In Subsections 3.5.2 and 3.5.3 we investigate the cases of the storage and leak-off

domination respectively. In Section 3.6 we find near- and far-field solutions.

In Section 3.7 we present a numerical transient solution which connects the near-

and far-field asymptotes. We discuss the main outcomes of the study in Section 3.8.

Finally we summarize the results in Section 3.9.
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3.2 Review of present knowledge

Different aspects of a semi-infinite fracture propagation were studied by Garagash and

Detournay (2000); Garagash et al. (2009); Detournay and Garagash (2003).

Garagash and Detournay (2000) have studied the case of an impermeable medium.

The authors have shown that the solution is characterized by the existence of a lag

between the fracturing fluid front and the fracture tip. This lag is filled with the vapour

of the fracturing fluid. The pressure of this vapour is equal to zero. As a result the

pressure distribution along the fracture is not singular anymore as it would be if the

fracturing fluid were allowed to reach the fracture tip. Garagash and Detournay (2000)

have found the following estimation for the maximum length of the lag λ

λ - 4µinE′2V

σ3
0

,

where V is the tip velocity.

The authors also have studied the intermediate distances from the tip, which are

large compared to the lag length, yet small compared to the size of the finite fracture

the tip region of which is modeled by a semi-infinite crack. It was shown that if this

intermediate region exists the fluid pressure and the fracture opening are given by an

intermediate asymptote, which can be constructed assuming that the fluid reaches the

tip of the fracture propagating through a medium of zero toughness. Therefore in the

presence of such an intermediate region the details of the tip solution are not important

for the solution of a finite fracture.

Garagash et al. (2009) have analyzed a semi-infinite fluid-driven fracture steadily

propagating through a permeable medium. The fluid exchange between the fracture and

medium was approximated by the Carter’s leak-off model (Carter, 1957). The fracturing

fluid was assumed to reach the tip of the fracture. The authors have shown that the

solution is characterized by a multiscale singular behavior at the tip, and that the nature
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of the dominant singularity depends both on the relative importance of the dissipative

processes and on the scale of reference. In general the tip region can be divided into

three regions: the near-field toughness region, the intermediate leak-off-viscosity region,

and the far-field storage-viscosity region. The first region can be characterized by an

uniform fluid pressure distribution and large energy dissipation due to the fracturing of

the solid, while the last two regions can be described by large fluid pressure gradient

and large dissipation of energy in the fluid. The difference between the last two regions,

however, is in the fracturing fluid balance mechanism: in the leak-off-viscosity region the

volume of the infiltrated into the rock formation fluid is large compared to the fracture

volume, whereas in the storage-viscosity region the situation is the opposite, i.e., the

volume of the filtrate is small compared to the fracture volume. In each of these three

regions, the fracture aperture w is a power law function of the distance from the tip

x. Thus, w ∼ x1/2 in the near-field toughness region, w ∼ x5/8 in the intermediate

leak-off-viscosity region, and w ∼ x2/3 in the far-field storage-viscosity region.

Mathematically this multiscale nature of the tip solution can be characterized by

two independent length scales, which both depend on the tip velocity. For example

one can define the following two length scales &mk and &mm̃ , where &mk is the length

scale characterizing the transition from the toughness region to the viscosity region in

the case of an impermeable medium and &mm̃ is the length scale characterizing the

transition from the leak-off region to the storage region in the case of zero toughness.

Furthermore, Garagash et al. (2009) have introduced a conceptual representation of this

multiscale solution in the parametric mm̃k-space (see Fig.3.1). In this representation,

the k-vertex corresponds to the near-field toughness region, the m̃-vertex corresponds

to the intermediate leak-off-viscosity region, and m-vertex corresponds to the far-field

storage-viscosity region. The spatial variation of the solution between the k- and m-

vertices depends on the ratio of the length scales χ6 = &mm̃/&mk. If this ratio is small,
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Figure 3.1: Parametric space and few solution “trajectories” parametrized by number χ:
0 < χ1 < χ2

χ ! 1, the solution has only two regions: the near-field toughness and the far-field

storage-viscosity. With the increase of the ratio χ, the intermediate leak-off-viscosity

region emerges in between the near-field toughness region and far-field storage-viscosity

region (see Fig.3.1).

Detournay and Garagash (2003) have carried out a detailled analysis of the fluid flow

around the cavity (the region between the fracture edge and the fracturing fluid front)

at the of a fluid-driven fracture propagating in a permeable saturated rock. They have

carried out their analysis under the following assumptions: i) the problem is stationary,

i.e., the tip velocity V and the cavity length λ are constant for the time scale of reference,

ii) the cavity is fully filled with the pore fluid, iii) the fluid exchange is allowed only in the

cavity region, i.e., the fracture walls behind the cavity are impermeable, iv) the cavity lies

entirely within the toughness-dominated region, i.e., w ∼ x1/2, v) the pore pressure field

in the permeable rock is governed by the homogeneous 3D diffusion equation. Because of
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their focus on the cavity region, Detournay and Garagash (2003)have taken the length of

the cavity region as an input parameter (in other words, they do not solve the complete

semi-infinite hydraulic fracture problem). The authors have shown that the fluid pressure

is not singular, as in the case of impermeable rocks when the existence of a lag is

accounted for. However, in contrast to impermeable rocks where the tip cavity is at zero

pressure, the fluid pressure distribution in the cavity is now unknown and furthermore

not uniform. This is a result of the fact that the flow of the pore fluid in the cavity

region has rather complicated pattern: the pore fluid is drawn in, by suction, at the tip

of the advancing fracture, and then is reinjected to the porous medium behind the tip,

near the interface between the two fluids. Detournay and Garagash (2003) focused on

the calculation of the fluid pressure in the tip cavity. In particular they have derived

analytical expressions for the pressure and the fluid flux distributions in the two limiting

cases: λ/&d ! 1 and λ/&d " 1, where &d is the diffusion length scale. The authors also

have discussed the inapplicability of their model for low permeability rocks. Indeed, in

this case, the pore fluid only partially fills the cavity and the fluid pressure in the cavity

is equal to zero. Instead, the model predicts negative fluid pressure.

3.3 Mathematical model

It is conventional to study the problem in a moving coordinate system {x, y, z} attached

to the fracture tip and introduced by

x = −r + R (t) = −r +
∫ t

0
V (τ) dτ, y = rϕ, z = z, (3.1)

where V (t) is the tip velocity.
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cake build-up

Figure 3.2: Semi-infinite fracture

3.3.1 Lubrication equations

In the moving coordinates system, the volume balance equation (2.1) reads

∂w

∂t
+ V

∂w

∂x
+

∂v

∂t
+ V

∂v

∂x
− ∂q

∂x
= 0,

where we have used x! R. Assuming that in the tip region w ∼ xaw and v ∼ xav with

aw, av < 1 (to be verified a posteriori), V ∂/∂x " ∂/∂t. Therefore the volume balance

equation can be rewritten as follows

V (w + v) = q, (3.2)

where we have used the following boundary conditions derived from (2.3)

w|x=0 = v|x=0 = q|x=0 = 0. (3.3)

Poiseuille’s law(2.2) in the moving coordinate system transforms into

q =
w3

12µ

∂pin

∂x
, µ =





µout, x ∈ [0, λ)

µin, x ∈ [λ,∞)
, (3.4)

where λ is the size of the cavity region.
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3.3.2 Elasticity equation

Taking limit ξ, s→ 1 in the kernel (2.6) and substituting the result into (2.5) we arrive

to the following elasticity equation

pin + σb − σ0 =
E′

4π

∫ ∞

0

∂w

∂s

ds

x− s
, (3.5)

where we have used the fact that if x! X ∼ R, then
(∫ ∞

0
saw−1 ds

x− s

)/ (∫ ∞

X
saw−1 ds

x− s

)
= O

[( x

X

)aw−1
]

.

3.3.3 Linear elastic fracture mechanics

The propagation criterion (2.11) transforms to

w → 25/2

π1/2

KIc

E′
x1/2 as x→ 0. (3.6)

3.3.4 Diffusion equations

So far, assuming that x, y ! R, we were able to transform our governing equations in

the tip region to the ones that describe the propagation of a semi-infinite fracture. The

situation becomes more complicated when we try to do the same with the poroelasticity

equations (2.18) and (2.19). The problem here arises from the time dependence of the

diffusion length scale &d ∼
√

ct. It is obvious that in order to represent the tip region by

a semi-infinite fracture, the finite fracture itself has to be large compared to the diffusion

length scale, i.e., R "
√

ct. After we have established this restriction, the procedure of

transformation of the poroelastic equations (2.18) and (2.19) is straightforward. First,

assuming R "
√

ct, one should replace the Bessel functions in these equations by their

large-argument asymptotes and eliminate the curvature effects (Chapter 4 contains the

details of the procedure for a fixed length fracture). Second, one should perform the

change of coordinates (3.1) and, assuming R"
√

ct, move the upper limit of integration
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to infinity. Third, assuming the fracture tip velocity V to be constant, one should

perform integration over time [here some hints can be taken from the work by Cleary

(1978)]. Alternatively, we can use the singular solution for a moving constant strength

2D source derived by Cleary (1978)

p(V ) =
1

2πκ
eξK0 (|ξ|) , ξ =

V x

2c
, (3.7)





σ(V )

xx

σ(V )
zz




 = − η

2πκ

{
∓1

ξ
+ eξ [K0 (|ξ|)± sign (ξ) K1 (|ξ|)]

}
=

= ± η

2πκ

1
ξ
− η





2p(V ) − dp(V )/dξ

dp(V )/dξ




 , (3.8)

where Kν (x) is the modified Bessel function of the second kind (Abramowitz and Stegun,

1972). Note that an equation for the temperature field, similar to (3.7), can be found in

Carslaw and Jaeger (1950) for the equivalent problem in heat conduction.

The strength of the fluid source is given by

g (r, t) ≡ ∂v (r, ϕ, z, t)
∂t

= V
∂v (x, y, z, t)

∂x
, (3.9)

therefore the poroelastic equations (2.18) and (2.19) transform to

pout − p0 = V

∫ ∞

0

∂v

∂s
p(V ) (x− s) ds, (3.10)

σb = V

∫ ∞

0

∂v

∂s
σ(V )

zz (x− s) ds. (3.11)

3.3.5 Low permeability cake build-up

The cake build-up equations (2.20), (2.21), and (2.22) yield

pin − pout|z=0 =
1 + sign (v)

2
βv

κc
V

∂v

∂x
. (3.12)

Here we have used the fact that the fluid displacement function v is negative in the lag

region. To demonstrate this let us take a look at the expression for the fluid exchange
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rate between the fracture and the medium given by (3.9). Together with the boundary

conditions (3.3), it gives us another interpretation of the fluid displacement function,

namely v (x) ∼
∫ x
0 g (s) ds. This means that the fluid displacement function is propor-

tional to the total fluid volume exchange between the fracture and the medium on the

interval s ∈ [0, x). Moreover, the problem is stationary and depends only on the spatial

coordinate x, therefore the total volume of the pore fluid in the lag region is constant,

and the total fluid volume exchange rate between the fracture and the medium is equal

to zero

v (λ) = 0. (3.13)

This equation can be used to define the length of the lag region. Moreover, there is

a region next to the fracture tip and inside the cavity where the pore fluid enters the

cavity. Thus, the fluid displacement function v is negative there. Since there are no

reasons for the fluid displacement function to be equal to zero at any other point, we

conclude that this function is negative inside the cavity, whereas it is positive outside

the cavity.

One more obvious restriction when modeling the tip region by a semi-infinite fracture

is λ ! R. Indeed, as in the case of the diffusion length scale, in order to model the

tip region by a semi-infinite fracture, the fluid lag λ, being one more length scale of the

problem, should be small compared to the fracture size R.

3.4 Scaling

The problem under consideration has three characteristic length scales

&µ = ε−2 12µinV

σ0 − p0
, &k =

8
π

(
KIc

σ0 − p0

)2

, &d =
2c

V
, ε =

σ0 − p0

E′
. (3.14)

Here &µ is the viscosity length scale, &k is the toughness length scale, &d is the diffusion

length scale, and ε is a small parameter.
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To study the influence of different physical processes we use scaling analysis. We

rewrite each physical quantity a in the from a = a∗A, where A is the dimensionless

physical quantity which is usually of order 1, and the parameter a∗ is of the same order

as a, a∗ ∼ a. In the case of our problem the general scaling is given by

x = &∗ξ, w = w∗Ω, v = v∗Υ, {pin − σ0, σb} = p∗ {Π,Σ} , (3.15)

where &∗ is the length scale of interest, w∗, v∗, and p∗ are characteristic values of the

fracture opening w, fluid displacement function v, and net fluid pressure inside the

fracture p−σ0 at the length scale of interest respectively, and ξ, Ω, Υ, Π, and Σ are the

dimensionless coordinate, fracture opening, fluid displacement function, fluid pressure

inside the fracture, and backstress respectively.

In scaled form, the governing equations read as follows

• Lubrication equation (3.2), (3.4)

GvΩ + GcΥ = Ω3 dΠ
dξ

, m =





µout/µin, Υ (ξ) < 0

1, Υ (ξ) > 0
, (3.16)

• Propagation criterion (3.6)

Ω→ Ω0 ≡ GKξ1/2 as ξ → 0, (3.17)

• Elasticity equation (3.5)

Π + Σ =
GE

4π

∫ ∞

0

dΩ
dξ̄

dξ̄

ξ − ξ̄
, (3.18)

• Leak-off equation (3.12), (3.10), and (3.7)

GpΠ+1 = Gcb
1 + sign (Υ)

2
Υ

dΥ
dξ

+Πd, Πd ≡
GS

2π

∫ ∞

0

dΥ
dξ̄

eGd(ξ−ξ̄)K0
(
Gd

∣∣ξ − ξ̄
∣∣) dξ̄,

(3.19)
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• Backstress equation (3.11), (3.8)

Σ = − η

2π

GS

Gd

∫ ∞

0

dΥ
dξ̄

dξ̄

ξ − ξ̄
− η

Gd

dΠd

dξ
. (3.20)

Here Gi are the dimensionless groups defined by

Gv =
σ0 − p0

p∗

ε2&µ&∗
w2
∗

, Gc =
σ0 − p0

p∗

ε2&µ&∗v∗
w3
∗

, GE =
p∗

σ0 − p0

w∗
ε&∗

, GK =
2ε
√

&k&∗
w∗

,

Gp =
p∗

σ0 − p0
, Gcb = εβ

κ

κc

v2
∗

ε2&d&∗

2
SE′

, GS =
v∗
ε&d

2
SE′

, Gd =
&∗
&d

. (3.21)

Each of these dimensionless groups can be associated with a certain physical process.

Thus Gv and Gc describe the distribution of the fracturing fluid between the fracture

and the poroelastic medium, respectively. Indeed, Gv is proportional to the amount of

fluid stored inside the fracture, whereas Gc is proportional to the amount of fluid which

has leaked into the medium. The group GE is the elasticity group, the group GK is

referred to as the dimensionless material toughness. The last four groups describe the

fluid leak-off. Namely the group Gp ∼ (pin − σ0) / (σ0 − p0) and if it is small, then from

a diffusion point of view the fluid pressure inside the fracture pin is uniform and equal to

the confining stress σ0, pin ≈ σ0. The groups Gcb and GS describe the fluid pressure drop

from pin inside the fracture to p0 in the far-field. Thus Gcb is proportional to the pressure

drop across the cake, Gcb ∼ pin − pout|z=0, whereas GS is proportional to the pressure

drop in the poroelastic medium GS ∼ pout|z=0 − p0. Finally Gd is the diffusion group.

If it is large then the scale of reference &∗ is large compared to the diffusion length scale

&d and the diffusion process is one dimensional, otherwise the diffusion process is three

dimensional.

To understand the influence of different physical processes on the fracture propaga-

tion we study different limiting cases. In each limiting case some processes are domi-

nating whereas the other ones could be neglected. Here we obtain a limiting case by

contrasting
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• energy dissipation associated with the viscous flow of the fracturing fluid versus

energy dissipation associated with the cracking of the rock material

• volume of the fracture versus volume of the fluid which has leaked into the poroe-

lastic medium

• pressure drop in the cake pin− pout|z=0 versus pressure drop in the porous medium

pout|z=0 − p0

• 1D diffusion versus 3D diffusion

• (pin − σ0) / (σ0 − p0)! 1 vs (pin − σ0) / (σ0 − p0)" 1

It is convenient to study each limiting case in an inherent scaling. To finish introduction

of the scaling (3.15) one has to define the parameters &∗, w∗, v∗, and p∗. Usually a

scaling is introduced in such a way that the groups representing the dominating physical

processes are either finite, e.g., equal to 1, or large compared to 1. The rest of the

groups are usually small compared to 1. Thus, for example, if we want to study region

where the fluid leak-off is negligible we introduce a scaling such that Gv = 1 and Gc ! 1,

whereas if we want to study a general case when the volume of the fracture and the

volume of the leaked-off fluid are of the same order we can introduce a scaling such that

Gv = Gc. Therefore in order to define the dimensional parameters &∗, w∗, v∗, and p∗

one can simply define four equations which define/relate the values of the dimensionless

groups, and then solve the set of these equations with respect to &∗, w∗, v∗, and p∗.

A general result of the scaling procedure introduced in this section is that the di-

mensionless formulation of our problem depends only on six dimensionless parameters:

m, η, and four other dimensionless parameters which depend on a particular scaling.

Indeed, we have eight dimensionless groups (3.21) and four equations binding the values

of these groups, therefore only four of these groups are independent.
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3.4.1 Diffusion scaling

Here we introduce a “reference” scaling that will be used throughout this chapter. All

the other scaling introduced in this charter, will be eventually expressed in terms of

this reference scaling. The motivation for introducing a reference scaling stems from the

dependence of problem on on six dimensionless parameters, four of which hinge on the

scaling. Therefore, by introducing the reference scaling, we fix these four parameters.

At the same time, if we need for some reason to rescale the problem (for example when

we are interested in a particular limiting case) we can express the new set of governing

parameters in terms of those from the reference scaling. This significantly simplifies

writing and analyzing of the governing equations in different scalings.

Since the main goal of this research is to study 3D diffusion we introduce a scaling,

that highlights the role of diffusion, i.e., Gd = Gp = GE = 1 and Gv = Gc. Thus

&∗ = &d, w∗ = v∗ = ε&d, p∗ = σ0 − p0. (3.22)

The governing equations (3.16)-(3.20) read as follows

• Lubrication equation (3.16)

Ω + Υ =
1

mMΩ3 dΠ
dξ

, m =





µout/µin, Υ (ξ) < 0

1, Υ (ξ) > 0
, (3.23)

• Propagation criterion (3.17)

Ω→ Ω0 ≡ Kξ1/2 as ξ → 0, (3.24)

• Elasticity equation (3.18)

Π + Σ =
1
4π

∫ ∞

0

dΩ
dξ̄

dξ̄

ξ − ξ̄
, (3.25)
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• Leak-off equation (3.19)

Π + 1 =
X
S

1 + sign (Υ)
2

Υ
dΥ
dξ

+ Πd, Πd ≡
1

2πS

∫ ∞

0

dΥ
dξ̄

eξ−ξ̄K0
(∣∣ξ − ξ̄

∣∣) dξ̄,

(3.26)

• Backstress equation (3.20)

Σ = − η

2πS

∫ ∞

0

dΥ
dξ̄

dξ̄

ξ − ξ̄
− η

dΠd

dξ
. (3.27)

Here the dimensionless parameters are given by

K = 2

√
&k

&d
, M =

&µ

&d
, X = εβ

κ

κc
, S =

1
2
SE′, (3.28)

where K is the dimensionless material toughness, M is the dimensionless fluid viscosity,

X describes the cake build-up, and S describes fluid transport through the poroelastic

medium. Physical understanding of the structure of the parameter S can be gained from

the following chain of simple transformations. We start with Darcy’s law, which provides

us with the estimation of the fluid flux through the poroelastic medium: g = −κ∇pout,

where∇pout ∼ (σ0 − p0) /&̃d and &̃d ∼
√

ct. Then integrating the fluid flux g over time we

obtain the following estimation for the fluid displacement function v: v ∼ S (σ0 − p0) &̃d.

Therefore the fluid displacement function v is equal to the volume of the fracturing fluid

which has leaked into the rock formation and has been stored inside the region of size

&̃d. There are two mechanisms of the fluid storage in the medium: compressibility of the

fluid and deformation of pores. To finish the chain of transformations we recall that the

reference scaling was introduced under the assumption that &̃d ∼ &d ∼ x, thus v ∼ Sv∗.

Therefore in the case when diffusion is the only leak-off mechanism (no cake build-up),

the parameter S provides us with an estimation of the fluid displacement function Υ,

Υ ∼ S. Hereafter, we refer to the parameter S as the dimensionless storage coefficient.

The advantage of the formulation (3.23)-(3.28) compared to the ones introduced

by Garagash and Detournay (2000) and Detournay and Garagash (2003) is that this
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formulation does not include the fluid lag length explicitly. However, once the fluid

displacement function Υ is known, the dimensionless lag length Λ = λ/&d can be found

from

Υ (Λ) = 0. (3.29)

3.5 Structure of solution

We see that our problem depends on six dimensionless parameters: the material tough-

ness K, the fracturing fluid viscosity M, the cake build-up parameter X , the storage

coefficient S, the ratio of the pore fluid viscosity to that of the fracturing fluid m, and

the poroelastic stress modulus η. Throughout this section, we assume that m = 1 and

η = 0. In order to understand the dependence of the solution on the other four pa-

rameters we study different limiting cases. Our study is mainly based on simple scaling

considerations rather than on explicit solutions.

One general statement can be done about the dependence of the fluid lag on the cake

build-up parameter, namely the length of the fluid lag decreases with X . To illustrate

this fact let us imagine a fracture propagating with a certain cake permeability. Now,

let us reduce the permeability of the cake by a small amount. If we assume that the

distribution of the fluid flux and pore pressure in the medium are still the same, the

pressure of the fracturing fluid should increase. Moreover since the thickness of the

cake is not uniform, the pressure gradient of the fracturing fluid should also increase.

Therefore in order to reach a new equilibrium the fracturing fluid should move a bit

toward the fracture tip. This leads to a decrease of the length of the fluid lag.
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Table 3.1: Scalings for different limiting cases
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3.5.1 Previous works in reference to our model

In this subsection we illustrate how our model degenerates to the ones which were studied

by Garagash and Detournay (2000); Garagash et al. (2009); and Detournay and Garagash

(2003).

3.5.1.1 Impermeable cake build-up

Mathematically, the impermeability of the cake build-up is equivalent to taking X/S →

∞. Physically this means that the fracturing fluid is not allowed to infiltrate into the

hosting rock. In other words

Υ (ξ) = 0, ξ ≥ Λ. (3.30)

Thus the leak-off equation (3.26) transforms to

Π (ξ) + 1 =
1

2πS

∫ Λ

0

dΥ
dξ̄

eξ−ξ̄K0
(∣∣ξ − ξ̄

∣∣) dξ̄, 0 ≤ ξ ≤ Λ. (3.31)

Case of large storage coefficient, S " 1

Here we assume that the dimensionless storage coefficient S is very large. Thus the fluid

pressure distribution pin is uniform along the fluid lag and equal to the far-field pore

pressure p0,

Π (ξ) = −1, 0 ≤ ξ ≤ Λ. (3.32)

One can also obtain this solution directly from the leak-off equation (3.31) assuming

that S → ∞.

Substitution of the uniform pressure distribution into the lubrication equation (3.23)

yields

Υ (ξ) = −Ω (ξ) , 0 ≤ ξ ≤ Λ. (3.33)
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Now it is easy to show that mathematically this problem is similar to the one, studied

by Garagash and Detournay (2000). To illustrate this fact we introduce the following

scaling

{ξ,Ω} = M{ξGD,ΩGD} , Π =Π GD,

where “GD” stands for the authors names. In terms of our dimensionless groups (3.21)

this scaling is defined by Gp = GE = Gv = 1.

In this scaling, the lubrication equation (3.23), propagation criterion (3.24), and

elasticity equation (3.25) read

1 = Ω2
GD

dΠGD

dξGD
, ξGD ≥ ΛGD, (3.34)

ΩGD → κGDξ1/2
GD as ξGD → 0, (3.35)

ΠGD =
1
4π

∫ ∞

0

dΩGD

dξ̄

dξ̄

ξGD − ξ̄
, (3.36)

where ΛGD = M−1Λ and κGD = M−1/2K.

One can see that this set of equation is exactly the same as the one derived by

Garagash and Detournay (2000). The only difference is that Garagash and Detournay

(2000) assumed that the fluid lag is filled with the vapor of the fracturing fluid. The

pressure of this vapor was assumed to be equal to zero. In our case the fluid lag is filled

with the pore fluid. The pressure of this fluid is equal to the undisturbed far-field pore

pressure p0.

Garagash and Detournay (2000) have derived the following expression for the size of

the fluid lag region

ΛGD ≈ 4.36 · 10−3κ6
GDe−κ2

GD , κGD " 1

ΛGD ∼ 1, κGD ! 1
. (3.37)
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Case of toughness domination

Here we assume that the fracture opening in the lag region is governed by the square root

LEFM asymptote (3.24). This case was studied by Detournay and Garagash (2003). To

illustrate how our model degenerates to the one, introduced by Detournay and Garagash

(2003) we use the following scaling

ξ = ΛξDG, {Ω,Υ} = KΛ1/2 {ΩDG,ΥDG} , Π + 1 = MK−2ΠDG. (3.38)

Therefore the lubrication equation (3.23), propagation criterion (3.24), elasticity equa-

tion (3.25), and leak-off equation (3.31) transform to

ΩDG + ΥDG = Ω3
DG

dΠDG

dξDG
, (3.39)

ΩDG → ξ1/2
DG as ξDG → 0, (3.40)

M
K2

ΠDG − 1 =
1
4π

K
Λ1/2

∫ ∞

0

dΩDG

dξ̄

dξ̄

ξDG − ξ̄
, (3.41)

ΠDG (ξDG) =
1

2πρDG

∫ 1

0

dΥDG

dξ̄
exp

[ηDG

2
(
ξDG − ξ̄

)]
K0

(ηDG

2
∣∣ξDG − ξ̄

∣∣
)

dξ̄. (3.42)

Here ηDG = 2Λ and ρDG = SM/
(
K3Λ1/2

)
are the dimensionless parameters introduced

by Detournay and Garagash (2003).

One can see that in the case of the toughness domination when K2/M " 1, the

elasticity equation (3.41) degenerates, and the problem in the lag region depends only

on two dimensionless parameters ηDG and ρDG. Note that within this degenerated model

it is impossible to define the size of the lag region.

3.5.1.2 Zero lag

Leak-off equation

Here we assume that the dimensionless fluid pressure Π is small compared to 1, Π! 1.

Therefore from a diffusion point of view the fluid pressure inside the fracture is uniform
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and equal to the confining stress σ0, pin ≈ σ0. Below we solve the leak-off equation

(3.26) under slightly more general assumption. Namely we assume that Π +1 ≈ const

along the fracture. Under this assumption, the solution of the leak-off equation (3.26)

is of the form

Υ = Aconst
Υ ξ1/2. (3.43)

Note that the structure of this solution is similar to the one of the Carter’s leak-off

model.

In Appendix A.2 we calculate the diffusion part Πd of the pressure [see def. (3.26)]

and show that it is indeed uniform

Πd =
π1/2

25/2

Aconst
Υ

S . (3.44)

Substitution of this expression and (3.43) into the leak-off equation (3.26) yields

Aconst
Υ = − π1/2

25/2X
+

√
π

25X 2
+ 2

Π +1
X S. (3.45)

After substitution of (3.43) and (3.44) into the backstress equation (3.27) we get

Σ =0 . (3.46)

Note that this result is valid for any η.

We see that in the case when Π + 1 ≈ const along the fracture, in particular when

the far-field confining stress σ0 is large compared to the far-field pore pressure p0 which

means that Π+1 ≈ 1, the fluid lag is negligible and the fluid leak-off is similar to the one

predicted by the Carter’s model. We would like to stress here that expressions (3.43),

(3.45) give the exact solution of the leak-off equation (3.26) which takes into account

3D diffusion whereas the Carter’s leak-off model considers only 1D diffusion. Therefore

similarity between our solution (3.43), (3.45) and the Carter’s leak-off model is just an

interesting fact, not a retrieve of the 1D case.
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Degenerated model

One can see that the problem has been reduced to the one studied by Garagash et al.

(2009). It is convenient to analyze this case in the following scaling

ξ =
K6

M2
ξG, Ω =

K4

MΩG, Π =
M
K2

ΠG, (3.47)

In terms of the dimensionless groups (3.21) this scaling is defined by GK = GE = Gv = 1.

In this scaling, the lubrication equation (3.23), propagation criterion (3.24), elasticity

equation (3.25), and leak-off equation (3.26) transform to

ΩG + χGξ1/2
G = Ω3

G
dΠG

dξG
, (3.48)

ΩG → ξ1/2
G as ξG → 0, (3.49)

ΠG =
1
4π

∫ ∞

0

dΩG

dξ̄

dξ̄

ξG − ξ̄
, (3.50)

where χG = Aconst
Υ /K is a dimensionless parameter, similar to χ introduced by Garagash

et al. (2009) (see also Section 3.2).

We see that in this case the structure of the solution depends only on one dimen-

sionless parameter χG. Thus, if χG = 0 then the solution has only two regions: the

near-field toughness region ξG ! 1, and the far-field viscosity region ξG " 1. Note

that in the former region the fracture opening is governed by the square root LEFM

asymptote (3.49), whereas in the latter one the opening is given by ΩG ∼ ξ2/3
G . As the

parameter χG increases, the intermediate leak-off-viscosity region emerges in between

the near-field toughness region and far-field storage-viscosity region (see Fig. 3.1). In

this region ΩG ! χGξ1/2
G and ΩG ∼ χ1/4

G ξ5/8
G .

3.5.2 Case of storage domination

Here we consider the case when the fluid displacement function Υ is small compared

to the fracture opening Ω, |Υ| ! Ω. It is clear that in this case our model is not
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applicable in the cavity region. Indeed, if the fluid exchange between the fracture and

medium is slow, the pore fluid can not entirely fill the cavity, therefore the pressure in

the cavity should be equal to zero. Instead, our model predicts negative fluid pressure.

Nevertheless it is interesting to investigate the behavior of the solution in this limiting

case.

To study this case we introduce the following scaling

ξ =
K6

M2
ξ̃, Ω =

K4

M Ω̃, Υ = υΥ̃, Π =
M
K2

Π̃, (3.51)

where υ is a small positive parameter which we will define later. In terms of the dimen-

sionless groups (3.21), this scaling corresponds to GK = GE = Gv = 1.

In this scaling, the lubrication equation (3.23), propagation criterion (3.24), elasticity

equation (3.25), and leak-off equation (3.26) transform to

Ω̃ +
υM
K4

Υ̃ = Ω̃3 dΠ̃
dξ̃

, (3.52)

Ω̃→ ξ̃1/2 as ξ̃ → 0, (3.53)

Π̃ =
1
4π

∫ ∞

0

dΩ̃
dξ̄

dξ̄

ξ̃ − ξ̄
, (3.54)

M
K2

Π̃ + 1 =
Xυ2M2

SK6

1 + sign
(
Υ̃

)

2
Υ̃

dΥ̃
dξ̃

+

+
υ

2πS

∫ ∞

0

dΥ̃
dξ̄

exp
[
K6

M2

(
ξ̃ − ξ̄

)]
K0

(
K6

M2

∣∣∣ξ̃ − ξ̄
∣∣∣
)

dξ̄. (3.55)

If υM/K4 ! 1, the set of equations (3.52), (3.53), and (3.54) gives a unique solution for

the fracture opening Ω̃ and fluid pressure Π̃, which do not depend on any parameters. In

order to find the fluid displacement distribution Υ̃, one has to solve the leak-off equation

(3.55) where the only unknown is Υ̃
(
ξ̃
)
.
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3.5.2.1 Cake build-up domination

He we assume that pin − pout|z=0 " pout|z=0 − p0. In other words the pressure drop in

the cake is large compared to the pressure drop in the porous medium. In this case the

parameter υ can be defined by

υ =
K3

M

√
S
X . (3.56)

In terms of the dimensionless groups (3.21) this is equivalent to Gcb = 1.

The leak-off equation (3.55) reads

M
K2

Π̃ + 1 =
1 + sign

(
Υ̃

)

2
Υ̃

dΥ̃
dξ̃

+

+
1
2π

K3

M
√
XS

∫ ∞

0

dΥ̃
dξ̄

exp
[
K6

M2

(
ξ̃ − ξ̄

)]
K0

(
K6

M2

∣∣∣ξ̃ − ξ̄
∣∣∣
)

dξ̄. (3.57)

where we assume that the term with the integral is small compared to 1.

The solution of this equation is given by

Υ̃
(
ξ̃
)

=

√

2
∫ ξ̃

Λ̃

(
M
K2

Π̃
(
ξ̄
)

+ 1
)

dξ̄, ξ̃ > Λ̃,

Υ̃
(
ξ̃
)

= O
(

1√
XS

min[1,
K3

M ]
)

, 0 < ξ̃ < Λ̃, (3.58)

where Λ̃ =
(
M2/K6

)
Λ. Here we have used the fact that if K6/M2 " 1 then the

diffusion kernel exK0 (|x|) can be replaced by its large argument asymptote
√

π/ (2x)

(see Subsection 3.6.2), therefore the integral in (3.57) is of order M/K3.

Since the integral in (3.58) has to be positive, the function which is under the integral

also has to be positive. Therefore we have the following implicit equation for the fluid

lag length
M
K2

Π̃
(
Λ̃

)
+ 1 = 0. (3.59)
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The assumption pin − pout|z=0 " pout|z=0 − p0 is thus valid if

(XS)−1/2 min[1,K3/M]! 1. At the same time the assumption |Υ| ! Ω is valid only if

υM/K4 = K−1
√
S/X ! 1.

Case K2/M" 1

This is the case of the toughness domination. Therefore the fracture aperture is given

by the square root LEFM asymptote (3.53), and the fluid pressure distribution can be

found from the lubrication equation (3.52)

Π̃ = ln ξ̃ + const, (3.60)

where const is the integration constant. Substitution of this solution into the equation

for the lag gives

Λ̃ = exp
(
−K2/M

)
, (3.61)

where we have used K2/M" 1. Note, that this solution is similar to the one obtained

by Garagash and Detournay (2000), who used different dimensionless variables, namely

κGD ≡ K/M1/2 and ΛGD = MΛ. Therefore our solution can be rewritten as ΛGD =

κ6
GD exp

(
−κ2

GD

)
.

Case K2/M! 1

This is the case of the viscosity domination, therefore the fluid pressure distribution

is given by Π̃ = −6−2/3ξ̃−1/3 (see Subsection 3.6.2.2). Thus we have the following

expression for the fluid lag

Λ̃ =
M3

36K6
, (3.62)

or in terms of “GD”: ΛGD = 1/36.
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3.5.2.2 Negligible cake build-up

Here we assume that pin − pout|z=0 ! pout|z=0 − p0, i.e., the pressure drop in the cake

is small compared to the pressure drop in the porous medium. The parameter υ can be

defined by (GS = 1)

υ = S





1, K6/M2 " 1

K3/M, K6/M2 " 1
, (3.63)

whereas the leak-off equation (3.55) transforms to

M
K2

Π̃ + 1 = XS
1 + sign

(
Υ̃

)

2
Υ̃

dΥ̃
dξ̃





M2/K6, K6/M2 " 1

1, K6/M2 " 1
+

+
1
2π






∫∞
0

dΥ̃
dξ̄

exp
[
K6

M2

(
ξ̃ − ξ̄

)]
K0

(
K6

M2

∣∣∣ξ̃ − ξ̄
∣∣∣
)

dξ̄, K6/M2 " 1
√

π
2

∫ ξ̃
0

dΥ̃
dξ̄

dξ̄√
ξ̃−ξ̄

, K6/M2 " 1
. (3.64)

Here we have used the fact that if K6/M2 " 1 then the diffusion kernel exK0 (|x|) can

be replaced by its large argument asymptote
√

π/ (2x) (see Subsection 3.6.2)

Note that there is always a region ξ̃ > Ξ̃ were
(
M/K2

)
Π̃+1 ≈ 1. It can be show that

in this region the solution of the leak-off equation is given by Υ̃ = 25/2π−1/2K3M−1ξ̃1/2 >

0 (see, Subsection 3.5.1.2). It is obvious that the size of the lag region is of the same

order as the size of the region where the assumption
(
M/K2

)
Π̃ +1 ≈ 1 is not valid

anymore, therefore
M
K2

Π̃
(
Λ̃

)
∼ −1. (3.65)

This criterion is similar to the one governing the fluid lag in the case of the cake build-

up domination [see (3.59)]. Therefore all calculation of the previous subsection are also

applicable to our case of zero cake build-up.

One can see that the assumption pin − pout|z=0 ! pout|z=0 − p0 is valid if

XSmax[1,M2/K6] ! 1. At the same time the assumption |Υ| ! Ω is valid only if
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υM/K4 = SK−1max[1,M/K3] ! 1. These two assumption can be easily satisfied in

the case of a small storage coefficient, S ! 1.

3.5.3 Case of leak-off domination

Here we consider the case when the fluid displacement function behind the cavity is large

compared to the fracture opening, Υ" Ω.

To study this case we introduce the following scaling

{ξ,Ω} =
√
Mυ

{
ξ̃, Ω̃

}
, Υ = υΥ̃, Π = Π̃, (3.66)

where υ is a large positive parameter which we will define later. Note that in terms of

the dimensionless groups (3.21) this scaling means that Gp = GE = Gc = 1.

In this scaling the lubrication equation (3.23), propagation criterion (3.24), elasticity

equation (3.25), and leak-off equation (3.26) transform to
√
M
υ

Ω̃ + Υ̃ = Ω̃3 dΠ̃
dξ̃

, (3.67)

Ω̃→ K
(Mυ)1/4

ξ̃1/2 as ξ̃ → 0, (3.68)

Π̃ =
1
4π

∫ ∞

0

dΩ̃
dξ̄

dξ̄

ξ̃ − ξ̄
, (3.69)

Π̃ + 1 =
Xυ3/2

SM1/2

1 + sign
(
Υ̃

)

2
Υ̃

dΥ̃
dξ̃

+
1

23/2π1/2

υ3/4

SM1/4

∫ ξ̃

0

dΥ̃
dξ̄

dξ̄√
ξ̃ − ξ̄

. (3.70)

Here we have used the fact that
√
Mυ " 1 (recall that υ is a large parameter) and

replaced the diffusion kernel exK0 (|x|) by its large argument asymptote
√

π/ (2x) (see

Subsection 3.6.2). Hence the diffusion is one dimensional, i.e., the leak-off rate at any

position depends only on the pressure history at this position and does not depend on

any processes happening in the adjacent regions. Also we assume here that the fluid

exchange between the fracture and the medium is very fast. As a result, the fluid pressure
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in the lag region is uniform and equal to the far-field pore pressure p0. Moreover, the

assumption that the fluid lag is entirely filled with the pore fluid means that the absolute

value the fluid displacement function Υ in the cavity is exactly equal to the aperture of

the fracture Ω, Υ = −Ω. Therefore in our scaling (3.66) the fluid pressure Π̃ and fluid

displacement function Υ̃ in the lag region are given by

Π̃
(
ξ̃
)

= −1, ξ̃ < Λ̃, (3.71)

Υ̃
(
ξ̃
)

= −
√
M
υ

Ω̃
(
ξ̃
)
≈ 0, ξ̃ < Λ̃, (3.72)

where we have used the fact that the parameter υ is large, therefore
√
M/υ is small.

Note that these two equations can be derived directly from the lubrication equation

(3.67) and leak-off equation (3.70).

One can see that in our scaling (3.66) the dimensionless material toughness

K (Mυ)−1/4 is small [see (3.69)]. Therefore, hereafter in this subsection we assume

that the material toughness is equal to zero.

3.5.3.1 Cake build-up domination

Here we assume that pin − pout|z=0 " pout|z=0 − p0. In other words, the pressure drop

in the cake is large compared to the pressure drop in the porous medium. In this case

the parameter υ can be defined by

υ = M1/3

(
S
X

)2/3

. (3.73)

In terms of the dimensionless groups (3.21) this is equivalent to Gcb = 1.

The leak-off equation (3.70) reads

Π̃ + 1 =
1 + sign

(
Υ̃

)

2
Υ̃

dΥ̃
dξ̃

+
(XS)−1/2

23/2π1/2

∫ ξ̃

0

dΥ̃
dξ̄

dξ̄√
ξ̃ − ξ̄

. (3.74)
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One can see that the assumption pin − pout|z=0 " pout|z=0 − p0 is valid if
√
XS " 1.

At the same time the assumption Ω! Υ is valid only if
√
M/υ = M1/3 (X/S)1/3 ! 1.

One more assumption we have made here is that the material toughness is equal to zero,

K (Mυ)−1/4 = K/M−1/3 (X/S)1/6 ! 1. These assumptions can be easily satisfied in

the case of large storage coefficient, S " 1. Moreover, under these assumptions, our set

of governing equation (3.67), (3.69), and (3.74) does not depend on any parameters. As

a result the length of the fluid lag Λ̃ is a constant. In the original scaling this leads to

the following dependence of the fluid lag Λ on our governing parameters

Λ = M2/3

(
S
X

)1/3

Λ̃, Λ̃ = const. (3.75)

Our leak-off equation (3.74) is similar to the leak-off equation (3.57) which describe

the case of low permeability rock. Thus we can define the length of the fluid lag Λ̃ using

the following implicit equation [cf. (3.59)]

Π̃
(
Λ̃

)
+ 1 = 0. (3.76)

To estimate the upper limit of Λ̃ we solve the leak-off equation (3.74) assuming
∣∣∣Π̃

∣∣∣! 1.

As a result, we have Υ̃ =
√

2ξ̃. Then using this solution we solve the set the lubrication

equation (3.67) and elasticity equation (3.69). Thus Π̃ ≈ −0.15ξ̃−3/8 (see Subsection

3.6.2.3). Now we substitute this solution into (3.76) and find the following estimation

for the length of the fluid lag

Λ̃ " 6.39 · 10−3. (3.77)

3.5.3.2 Negligible cake build-up

Here we assume that pin− pout|z=0 ! pout|z=0−p0, i.e., the pressure drop in the cake is

small compared to the pressure drop in the porous medium. In this case the parameter

υ can be defined by (GS = 1)
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υ = M1/3S4/3. (3.78)

The leak-off equation (3.70) reads

Π̃ + 1 = XS
1 + sign

(
Υ̃

)

2
Υ̃

dΥ̃
dξ̃

+
1

23/2π1/2

∫ ξ̃

0

dΥ̃
dξ̄

dξ̄√
ξ̃ − ξ̄

. (3.79)

The assumptions pin − pout|z=0 " pout|z=0 − p0 and Ω ! Υ are valid if XS ! 1 and
√
M/υ = M1/3/S2/3 ! 1 respectively. Also the material toughness is taken to be equal

to zero, K (Mυ)−1/4 = K/ (MS)1/3 ! 1. Under these assumptions, the set of governing

equation (3.67), (3.69), and (3.79) does not depend on any parameters. In particular

Λ =( MS)2/3 Λ̃, Λ̃ = const. (3.80)

To estimate the length of the fluid lag we use the following equation (see Subsection

3.5.2.2)

Π̃
(
Λ̃

)
∼ −1. (3.81)

To solve this equation we follow the procedure of the previous subsection. Namely we

solve the leak-off equation (3.79) assuming
∣∣∣Π̃

∣∣∣ ! 1. Hence Υ̃ =2 5/2π−1/2ξ̃1/2. Then

using this solution we solve the set the lubrication equation (3.67) and elasticity equation

(3.69). Thus Π̃ ≈ −0.184ξ̃−3/8 (see Subsection 3.6.2.3). Now we substitute this solution

into (3.80) and find the following estimation for the length of the fluid lag

Λ̃ " 1.1 · 10−2. (3.82)

3.6 Near- and far-field asymptotes

3.6.1 Near-field asymptote, ξ ! 1

Here we consider scales which are small compared to the diffusion length scale, ξ ! 1.

At these scales the pore pressure Πd is uniform, i.e., Πd

(
ξ̄ ∈

{∣∣ξ − ξ̄
∣∣! 1

})
≈ Πd (ξ).
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Now, let us consider the region inside the cavity and near the very tip. The fluid

pressure is uniform there

Π0 = const. (3.83)

The fracture opening Ω is given by the toughness-dominated asymptote Ω0 [see (3.24)],

and the fluid displacement function Υ can be found from the lubrication equation (3.23)

Υ0 = −Ω0 = −Kξ1/2. (3.84)

Substitution of these solutions (3.83) and (3.84) into the backstress equation (3.27) leads

to

Σ0 = const. (3.85)

3.6.1.1 Toughness-dominated region with small lag Λ! 1

If we assume that the whole cavity is inside the quasi steady-state region, Λ ! 1, then

the lubrication equation yields

Υ = −Ω, ξ ∈ [0,Λ) . (3.86)

If we also assume that we are in the toughness-dominated region, Ω =Ω 0, and if we

recall that the pore pressure is uniform, Π0 = const, we can get the following solution

of the lubrication equation (3.23) in the neighborhood of ξ = Λ [cf. Garagash and

Detournay (2000)]

ΠΛ = Π0 +
M
K2

ln
(

ξ

Λ

)
, ξ ≥ Λ. (3.87)

Here we have used the fact that Υ (Λ) = 0, therefore in the neighborhood of ξ = Λ one

can assume that Υ! Ω.

Substitution of this solution into the leak-off equation (3.26) yields

ΥΛ =

√
2MS
K2X

[
ξ ln

(
ξ

Λ

)
− ξ + Λ

]
, ξ ≥ Λ. (3.88)
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Recall that the solution (3.87), (3.88) is valid only if Ω0 " ΥΛ, which leads us to the

following criterion

Λ < ξ ! Λ exp
(
K4X
2MS

)
.

3.6.2 Far-field asymptote, ξ " 1

In this subsection we look for a solution of the problem of the following asymptotic form

Ω∞ = A∞Ω ξaΩ , Υ∞ = A∞Υ ξaΥ , ξ →∞, (3.89)

where A∞i and 0 < ai < 1 are constants. Substitution of these expressions into the

elasticity equation (3.25) yields

Π∞ + Σ∞ =
A∞Ω aΩ

4
cot (πaΩ) ξaΩ−1. (3.90)

Here we have used the “localization” property of the elasticity kernel. [see (3.5) and

following explanation, and Garagash and Detournay (2000)]. The term “localization”

means, that the kernel “sees” only a finite region around the point of its singularity.

That is why we can assume that Ω ∼ ξaΩ and dismiss the fact that away from the

singularity this assumption is not correct.

In contrast, in the case of the diffusion kernel eξ−ξ̄K0
(∣∣ξ − ξ̄

∣∣) localisation is taking

place only at large ξ [see the leak-off equation (3.26)] . The small and large argument

asymptotes of the diffusion kernel are given by (Abramowitz and Stegun, 1972)

exK0 (|x|)→






e2x
√
−π/ (2x), x→ −∞

− ln (|x|) , x→ 0
√

π/ (2x), x→∞

, (3.91)

therefore at large ξ the main influence in the integral in (3.26) is due to the
√

π/ (2x)

asymptote on the interval ξ̄ ∈ [0, ξ). We prove this result carefully in Appendix A.3
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where we also evaluate the integral. As a result, the leak-off equation (3.26) transforms

into

Π∞ + 1 =
X
S A∞Υ

2 aΥξ2aΥ−1 +
A∞Υ aΥ

23/2S
Γ (aΥ)

Γ (aΥ + 1/2)
ξaΥ−1/2. (3.92)

Now, for large ξ the fluid pressure Π∞ in the left-hand side is small (as proved later)

and can be omitted. The resultant equation has the following solution

aΥ =
1
2
, A∞Υ = − π1/2

25/2X
+

√
π

25X 2
+

2S
X . (3.93)

Substitution of this solution into the backstress equation (3.27) yields

Σ∞ = 0, as ξ →∞. (3.94)

Here we have retrieved the case of one dimensional diffusion which is embedded into

the Carter’s leak-off model. One see that the problem has been degenerated to the one

studied by Garagash et al. (2009). In the next subsections, we go briefly through the

process of solution of this problem.

3.6.2.1 Toughness region

In this region energy dissipation associated with the cracking of the rock material dom-

inates over energy dissipation associated with the flaw of the viscous fluids. Thus the

fracture aperture is governed by the square root asymptote of linear elastic fracture

mechanics (3.24)

Ωk
∞ = Kξ1/2. (3.95)

Substitution of this solution and the solution for the fluid displacement function (3.89),

(3.93) leads to the following solution for the fluid pressure distribution

Πk
∞ = MK + A∞Υ

K3
ln ξ + const, (3.96)

where const is the integration constant.
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Figure 3.3: Fracture opening profile Ω (ξ), K = M = X = S = 1

This solution is valid only if ξ " 1 and Πk
∞ ! 1. Therefore the toughness region is

defined by

1! ξ ! min
{

exp
(

1− const

M
K3

K + A∞Υ

)
, ξkm, ξkm̃

}
. (3.97)

Here ξkm and ξkm̃ are the transition length scales from the toughness region to the

storage- and leak-off-viscosity regions respectively (see the next two subsections). These

transition length scales can be defined from Ωk
∞ (ξkm) = Ω∞ (ξkm) and Ωk

∞ (ξkm̃) =

Ωleak−off
∞ (ξkm̃), thus

ξkm =
K6

2235M2
, ξkm̃ = 5.89 · 10−4 K8

M2 A∞Υ
2 . (3.98)

Note that this far-field toughness region emerges in the solution of a semi-infinite fracture

propagation only under certain conditions which are defined by(3.97).
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Figure 3.4: Fluid displacement function profile Υ (ξ), K = M = X = S = 1

3.6.2.2 Storage-viscosity region

This region can be characterized by large energy dissipation in the fracturing fluid and

negligible fluid losses. The solution of (3.23), (3.89), (3.90), (3.93), and (3.94) is given

by

Ω∞ = 21/335/6M1/3ξ2/3 + 2−1A∞Υ ξ1/2, (3.99)

Π∞ = −6−2/3M1/3ξ−1/3, (3.100)

where the second term in the right-hand side of (3.99) is the leak-off correction. Thus

one can neglect the leak-off only if ξ " ξmm̃, where ξmm̃ is the transition length scale

from the storage- to leak-off-viscosity region

ξmm̃ = 2−83−5M−2 A∞Υ
6 . (3.101)

Substitution of the pressure solution (3.100) into the leak-off equation (3.92) adds
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Figure 3.5: Fluid displacement function profile Υ (ξ), K = M = X = S = 1: the
fracturing-pore fluids boundary region

the next order term into the solution for the fluid displacement function Υ∞

Υ∞ = A∞Υ ξ1/2 − 61/3M1/3Sξ1/6

4XA∞Υ + 1.45337
. (3.102)

Thus the assumption Π∞ ! 1 is valid only if ξ " 6MS3 [A∞Υ (4XA∞Υ + 1.45337)]−3.

Finally substitution of (3.102) into the backstress equation (3.27) yields

Σ∞ =
6−2/3M1/3η

4XA∞Υ + 1.45337

[√
3

2
ξ−5/6 − 0.484446ξ−4/3

]
. (3.103)

Here we have used (3.90) to evaluate the first term in the right-hand side of the backstress

equation (3.27) that is similar to the right-hand side of the elasticity equation (3.25). We

also have used the result of Appendix A.3 to evaluate the second term of the right-hand

side of (3.27).
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Figure 3.6: Fluid pressure profile Π (ξ), K = M = X = S = 1. Here Πη=0 (0) = −1.068
and Πη=0.5 (0) = −1.098

In summary, this far-field storage-viscosity region is defined by

ξ " max

{
1, ξkm, ξmm̃,

6MS3

A∞Υ
3
(
4XA∞Υ + 1.45337

)3

}
. (3.104)

One can see that this region is always a part of the solution of a semi-infinite fracture

propagation.

3.6.2.3 Leak-off-viscosity region

This region can be characterized by large energy dissipation in the fracturing fluid and

large fluid losses. Therefore the fracture volume effect in the lubrication equation (3.23)

can be neglected. The solution of (3.23), (3.89), (3.90), (3.93), and (3.94) is given by

Ωleak−off
∞ = 2.53356M1/4 A∞Υ

1/4 ξ5/8 + 1.30165M1/2 A∞Υ
−1/2 ξ3/4 (3.105)

Πleak−off
∞ = −0.163974M1/4 A∞Υ

1/4 ξ−3/8 − 0.244059M1/2 A∞Υ
−1/2 ξ−1/4 (3.106)
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Figure 3.7: Backstress profile Σ (ξ), K = M = X = S = 1. Here Σ (0) = 0.1815

Υleak−off
∞ = A∞Υ ξ1/2 − 0.779996M1/4ξ1/8S

5XA∞Υ + 2.66365
. (3.107)

Σleak−off
∞ =

0.0974995M1/4η

5XA∞Υ + 2.66365

[
1.20711ξ−7/8 − 0.696309ξ−11/8

]
. (3.108)

This far-field leak-off-viscosity region is defined by

max

{
1, ξkm̃,

M2/3S8/3

A∞Υ
8/3

(
5XA∞Υ + 2.66365

)8/3

}
! ξ ! ξm̃m, (3.109)

where

ξm̃m = 206M−2 A∞Υ
6 (3.110)

is the transition length scale from the leak-off- to storage-viscosity region which we have

defined assuming that the storage correction in the solution for the fracture aperture

(3.105) is small.

One can see that similarly to the far-field toughness region this region emerges into

a real solution only for some restricted sets of parameters.
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Figure 3.8: Backstress profile Σ (ξ), K = 4, M = 1, X = 1013, S = 0.01, and η = 0.5.
Here Σ (0) = 0.054

3.7 Transient solution

A transient solution which connects the above near- and far-field asymptotes, can be

computed only numerically. We describe the numerical algorithm in Appendix A.4.

In the rest of this section we test our numerical scheme against different asymptotic

solutions.

Figs 3.3-3.7 illustrate a general case. In particular one can see that the transient

solution matches the analytical near- and far-field asymptotes very well. The length of

the fluid lag region can be easily defined from Figs 3.4 and 3.5, where we show the profile

of the fluid displacement function Υ. Recall that the fluid displacement function changes

its sign at the boundary between the fracturing and pore fluids, Υ (Λ) = 0, therefore in

our case Λη=0 ≈ 0.2 and Λη=0.5 ≈ 0.28.

Looking at the backstress profile (see Fig. 3.7) one can observe the following features:
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Figure 3.9: Backstress profile Σ (ξ), K = 4, M = 1, X = 1013, S = 0.01, and η = 0.5

the backstress along the fracture is tensile, Σ > 0, and it is singular near ξ ≈ Λ. The

first feature will be discussed in details in the next section. As for the second feature

one would wander whether it is just a bug of the algorithm or it is a feature of the

solution. To check this we simulate the propagation of a fracture with small fluid lag

and impermeable cake build-up. Since the fluid exchange between the fracture and the

medium is allowed only in the lag region where the net fluid exchange is equal to zero,

the problem in the far-field ξ " Λ can be modeled by a fluid source dipole propagating

at a constant speed. To derive the solution for а dipole we perform an integration by

parts in the backstress equation (3.27)

Σ =
η

S

∫ Λ

0
Υ

(
ξ̄
)
Σli

(
ξ − ξ̄

)
dξ̄,

where

Σli (ξ) =
1
ξ2
− 1

2
eξ [3K0 (|ξ|)− 4sign (ξ) K1 (|ξ|) + K2 (|ξ|)] .
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Figure 3.10: Backstress profile Σ (ξ), K = 4, M = 1, X = 1013, S = 0.01, and η = 0.5

The length scale of the variation of the fluid displacement function is of order Λ whereas

for Σli it is of order 1, therefore if Λ! 1 then

ΣS (ξ) ≈ η

SΥSΣli (ξ − ξS) , ΥS =
∫ Λ

0
Υ

(
ξ̄
)
dξ̄, ξS =

1
ΥS

∫ Λ

0
ξ̄Υ

(
ξ̄
)
dξ̄. (3.111)

Here ΥS is the strength of the dipole and ξS is the position of the dipole.

To model such a dipole we set K = 4, M = 1, X = 1013, S = 0.01, and η = 0.5. In

this case Λ ≈ 4.52×10−6 ! 1, ξS ≈ 1.98×10−6, and ΥS = −4.9×10−9. The results are

shown in Figs 3.8-3.10. One can observe very good agreement between the numerical

and analytical solutions (see Fig. 3.9). Although the backstress is compressive behind

the lag, it is still tensile in the far-field ξ ! 1 where the system feels the finiteness of the

cake build-up permeability (see Fig. 3.10).

Figs 3.11-3.13 compares our numerical solution with the toughness-dominated uni-

form pressure region asymptotes (3.87) and (3.88).

Interesting results are shown in Figs 3.14-3.17, where we compare our numerical
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Figure 3.11: Constant pressure region solution + toughness dominance: fluid displace-
ment function profile Υ (ξ), K = 0.4, M = 0.01, X = 100, and S = 1

simulations with the analytical solutions, found by Detournay and Garagash (2003) (see

also Subsection 3.5.1.1). Recall that this work studied the case of impermeable cake

build-up assuming that the fracture aperture along the fluid lag is governed by the

square root LEFM asymptote (3.24). The authors have shown that in this case the

solution depends only on two parameters

vDG = 2Λ, ρDG =
MS
K3Λ1/2

.

Also they have found analytical asymptotes for the following limiting cases: vDG ! 1

and vDG " 1. To model the build-up of an impermeable cake, we set parameter XM/S

to be very large (XM/S = 1012). Figs 3.14 and 3.15 illustrate the comparison with the

asymptote vDG ! 1, whereas Figs 3.16 and 3.17 the comparison with the asymptote

vDG " 1.
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Figure 3.12: Constant pressure region solution + toughness dominance: fluid displace-
ment function profile Υ (ξ) (enlarged behind the lag region), K = 0.4, M = 0.01,
X = 100, and S = 1

3.8 Discussion

3.8.1 Diffusion

Above we have shown that the diffusion process is three dimensional only in the near-field

region ξ " 1, whereas in the far-field region ξ " 1 it is one dimensional (see Subsection

(3.6.2)). A nice illustration of this fact is presented in Fig. 3.18. Thus, the fracture front

propagates according to the linear law x = V t, whereas diffusion spreads out according

to the square root law x =
√

ct. One can see that diffusion covers small distances faster

than the fracture front. At larger distances the fracture front catches up with diffusion

and then passes it leaving behind (see Fig. 3.18). As the result the near-field region of

the fracture is under the cover of 3D diffusion. At the same time the far-field region is

governed by 1D diffusion.

Additional insight into the diffusion process can be grasped from the contours plot
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Figure 3.13: Constant pressure region solution + toughness dominance: fluid pressure
profile Π (ξ), K = 0.4, M = 0.01, X = 100, and S = 1

of the pore pressure distribution around the fracture (see Figs 3.19-3.21). Fig. 3.20

illustrates presence of a fluid source dipole in the lag region. At the same time in the

far-field the pore pressure levels are almost parallel to the fracture plane (see Fig. 3.21).

This supports the fact that diffusion in the far-field is one dimensional.

3.8.2 Carter’s leak-off model

Recall the main simplifying assumptions of the Carter’s leak-off model: i) the diffusion

process is one dimensional and ii) the fluid pressure inside the fracture is equal to the

far-field confining stress. In this chapter we have shown that for a propagating fracture

the assumption of 1D diffusion is not necessary. Indeed, in Subsection 3.5.1.2 we have

demonstrated that a Carter-like leak-off model is valid under less restrictive assumption,

namely pin − σ0 ! σ0 − p0, which means that from a diffusion point of view the fluid
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Figure 3.14: Comparison with analytical solution found by Detournay and Garagash
(2003): fluid displacement function profile Υ (ξ) for the case of vDG ! 1. The simulations
were performed for K = 4, M = 1, X/S = 1012, and 1) S = 100, Λ = 1.86 × 10−6; 2)
S = 1.0, Λ =2 .0× 10−6; 3) S = 0.2, Λ =2 .25× 10−6; 4) S = 0.01, Λ =4 .4× 10−6

pressure inside the fracture pin is uniform and equal to the far-field confining stress σ0.

In particular this assumption is valid in the far-field.

3.8.3 Backstress

Studying the general solution of the problem shown in Figs 3.3-3.7 one can observe that

i) the backstress effect does not have any significant influence on the solution, and ii) the

back stress is tensile along the fracture. Simulation of different cases shows that indeed

the backstress effect is not so important in the tip region.

The fact that the backstress is tensile can be easily explained in the case of zero cake

build-up. Indeed, the loading pressure pin can be decomposed into pin (x) = σ0 + p (x),

where p is the net pressure which, in the case of a semi-infinite fracture, is negative,
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Figure 3.15: Comparison with analytical solution found by Detournay and Garagash
(2003): fluid pressure profile Π (ξ) for the case of vDG ! 1. The simulations were
performed for K = 4, M = 1, X/S = 1012, and 1) S = 100, Λ =1 .86×10−6; 2) S = 1.0,
Λ =2 .0× 10−6; 3) S = 0.2, Λ =2 .25× 10−6; 4) S = 0.01, Λ =4 .4× 10−6

p (x) < 0. The uniform part σ0 of the loading pressure results in a square root source

distribution which does not lead to any backstress generation (see Subsection 3.5.1.2).

At the same time the negative part p leads to the generation of a negative source distri-

bution, and, as a result, to a tensile backstress.

3.9 Summary of the chapter results

In this Chapter we have studied propagation of a semi-infinite fracture through a poroe-

lastic medium. Namely, we have performed a detailed scaling analysis and found the

near- and far-field asymptotes, as well as some intermediate ones. In particular, we

have shown that the far-field fluid leak-off can be modeled as Carter’s leak-off. Also we
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Figure 3.16: Comparison with analytical solution found by Detournay and Garagash
(2003): fluid displacement function profile Υ (ξ) for the case of vDG " 1. The simulations
were performed for K = 4 × 104, M = 108, X/S = 1020: 1) S = 109, Λ = 187; 2)
S = 3.3× 106, Λ = 207.5; 3) S = 106, Λ = 227; 4) S = 3.3× 104, Λ = 318

provide an explicit expression for the Carter’s leak-off coefficient given by (3.93). One

more outcome of the chapter is the numerical algorithm for calculation of the transient

solution. We have shown that the numerical algorithm agrees well with the asymptotic

solutions.

When derivingthe governing equations we mentioned that the tip region of a finite

fracture can be represented by a semi-infinite fracture only if the diffusion length scale
√

ct is small compared to the fracture size R. This means that in the case of 3D diffu-

sion, when fracture size is small compared to the diffusion length scale, R !
√

ct, this

representation is not valid. Therefore, a new approach of modeling the tip region of a

finite fracture is needed.
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Figure 3.17: Comparison with analytical solution found by Detournay and Garagash
(2003): fluid pressure profile Π (ξ) for the case of vDG " 1. The simulations were
performed for K = 4×104, M = 108, X/S = 1020: 1) S = 109, Λ = 187; 2) S = 3.3×106,
Λ = 207.5; 3) S = 106, Λ = 227; 4) S = 3.3× 104, Λ = 318
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Figure 3.18: Illustration of diffusion length scale
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Figure 3.19: Pore pressure distribution −1 + Πd (ξ, z/&d), K = M = X = S = 1, and
η = 0.5
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Figure 3.20: Pore pressure distribution −1 + Πd (ξ, z/&d) (lag region), K = M = X =
S = 1, and η = 0.5
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Figure 3.21: Pore pressure distribution −1+Πd (ξ, z/&d) (far-field), K = M = X = S =
1, and η = 0.5



Chapter 4

Auxiliary problem

4.1 Introduction

In this chapter we study the so-called auxiliary problem, i.e., the poroelastic medium re-

sponse to a unit pore pressure pulse applied to a disk-shaped surface S. The disc of radius

R is located at the origin of a cylindrical coordinate system {r, ϕ, z}, S = {r ≤ R, z = 0}.

We restrict the description of the medium response to u (r, t), the component of the fluid

displacement, normal to the disc, and to σzz (r, t), the normal stress component.

Instead of the fluid displacement function u (r, t), one could use the fluid exchange

rate g (r, t) = ∂u (r, t) /∂t to describe the medium response. Mathematically these two

functions are equivalent, whereas from a physical point of view it is easier to operate

with the fluid exchange rate g (r, t), which is more intuitive. In hydraulic fracturing,

however, we are more interested in the total fluid losses than in the instantaneous rates.

Thus,the fluid displacement function u (r, t) is more convenient choice here.

From a diffusion point of view, a hydraulic fracture simply correspond to a planar

distribution of fluid sources, which evolves with time. It is conventional to describe this

fluid source distribution by the fluid rate distribution g. As a result the terms “fluid

80
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source distribution” and “fluid rate distribution” are often used as equivalent. In the

present research we also use the fluid displacement function distribution u to characterize

the fluid source distribution. We believe that there will not be any confusion.

Figure 4.1: Sketch of auxiliary problem

The auxiliary problem is the cornerstone of the present research. First of all, it helps

us understand the physics of the leak-off process. Once the solution of the auxiliary

problem is known, the problem of a propagating fracture can be simplified significantly.

Indeed, if one assumes that the fluid pressure is uniform along the fracture and that

there is no low permeability cake build-up, i.e., pin (r, t) = pout (r, z = 0, t), then after

decomposition of a continuous in time pressure variation into series of pressure pulses

(Berchenko et al., 1997),

pin (t)− p0 =
∫ t

0
δ (t− t̄) [pin (t̄)− p0] dt̄,

one can obtain the following expression for the fluid displacement function [cf. (1.11)]

v (r, t) =
∫ t

0
u [R (t̄) , r, t− t̄] [pin (t̄)− p0] dt̄. (4.1)

Similar expression can be written for the backstress

σb (r, t) =
∫ t

0
σzz [R (t̄) , r, t− t̄] [pin (t̄)− p0] dt̄. (4.2)

The assumption of uniform fluid pressure is valid only if pin− p0 " pin−σ0. Indeed,

the fracture propagation is driven by the net fluid pressure, i.e., by the difference between
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the fracturing fluid pressure pin and the far-field confining stress σ0, whereas the diffusion

process is driven by the difference between the fluid pressure inside the fracture pin and

the far-field pore pressure p0. Thus the criterion pin − p0 " pin − σ0 means that from

a diffusion point of view the fluid pressure inside the fracture is uniform and can be

approximated by the far-field confining stress, pin ≈ σ0.

Also we have assumed here that the diffusion process does not depend on the stress

field, i.e., the solid-to-fluid coupling can be neglected. This simplification was studied by

Detournay and Cheng (1991)who have concluded that in the case of hydraulic boundary

conditions, when the pore pressure is prescribed, the fluid exchange between the fracture

and the medium calculated via poroelastic theory is nearly identical to that computed

by uncoupled diffusion equation. This assumptions allows us to uncouple the elastic

deformation due to hydraulic loading from the pore pressure diffusion leading to the

generation of the backstress.

The plane strain analog of our problem was studied by Detournay and Cheng (1991).

The authors have analyzed the poroelastic medium response to a unit step of pore

pressure rather than to an impulse. Although mathematically the medium response to

a unit step loading is just integrated over time medium response to a unit impulse [see

(4.1)], sometimes it is easier to think in terms of a step loading. Thus below we will

analyze some results in terms of a step loading, whereas all calculations will be done in

terms of a unit impulse of the pore pressure. One more useful connection between a unit

step and impulse is that the fluid exchange rate between the fracture and the medium

in the case of a step loading is equal to the fluid displacement function in the case of a

unit impulse.

In contrast to Detournay and Cheng (1991), we perform here a detailed analysis of

the region near the stationary tip. In particular we show that solution of the auxiliary

problem in this region is singular, and that it strongly depends on the diffusion length
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scale &d ∼
√

ct, where c is the diffusion coefficient.

The results of this chapter can also be applied to the equivalent thermal problem.

4.2 Problem formulation

4.2.1 Starting equations

We assume that the pore pressure p as well as the stress σij in the medium are initially

equal to zero, p = σij = 0. At time t = 0 a unit pulse of pore pressure is then generated

along the disc r ≤ R, z = 0.

p (r, ϕ, z, t) = δ (t) , r ≤ R, z = 0. (4.3)

This pulse triggers diffusion of the porous fluid throughout the medium. The pore

pressure field is governed by

∂p

∂t
− c∇2p =

1
S

∂u

∂t
δ (z)H (R− r) , (4.4)

where H (x) is the Heaviside step function, u is the fluid displacement function intro-

duced previously, and S = κ/c is the storage coefficient. The right-hand side of this

diffusion equation describes yet unknown fluid sources distributed over the disc r ≤ R,

z = 0. On the other hand the pore pressure field induced by a known distribution u

along the disk S and over the time period [0, t] can be written as [see discussion related

to (2.12), and (2.13)]

p (r, t) =
∫ t

0
dt̄

∫

z̄=0,r̄<R

u (r̄, t̄) pli (r − r̄, t− t̄) dr̄, (4.5)

where pli is given by (2.16).

The pressure change into the poroelastic medium leads to a generation of stress σij .

Here we are interested only in the normal stress σzz acting on the plane z = 0, which
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can be expressed in the same way as the pressure [cf. (2.15)]

Sb (r, t) ≡ σzz (r, t) =
∫ t

0
dt̄

∫

z̄=0,r̄<R

u (r̄, t̄) σli
zz (r − r̄, t− t̄) dr̄, (4.6)

where σli
zz is given by (2.17).

We can now formulate the problem mathematically: we are looking for a fluid source

distribution u (r, t), such that the pore pressure field given by (4.5) satisfies the boundary

condition (4.3). Once the source distribution is known, we calculate the backstress

distribution using (4.6).

In some cases, we are more interested in the total fluid volume exchange between the

“fracture” and the medium U rather than in the detailed distribution of u

U (R, t) = 2π
∫ R

0
ru (r, t) dr. (4.7)

Therefore, we will also compute this total fluid displacement function U .

4.2.2 Scaling

The problem has four parameters c, κ, η, and R. The explicit dependence of the solution

on these parameters can be determined by introducing the following scaling

(r, z) = (Rξ,Rζ) , t = TRτ, u =
SR

TR
ψ, U =

SR3

TR
Ψ,

p =
Π
TR

, pli =
Πli

SR3TR
, Sb = η

Ξ
TR

, σli
zz =

ηΞli

SR3TR
, (4.8)

where TR = R2/(4c) is the diffusion time scale. In this scaling, equations (4.5), (2.16),

(4.6), (2.17), and (4.3) yield

Π (ξ, τ) =
∫ τ

0
dτ̄

∫

ζ̄=0,ξ̄<1

ψ
(
ξ̄, ϕ̄, τ̄

)
Πli

(
ξ − ξ̄, τ − τ̄

)
dξ̄, (4.9)

Πli (ξ, τ) =
1

2π3/2 |ξ|5

(
2
|ξ|2

τ
− 3

)(
|ξ|√

τ

)5

exp

(
−|ξ|

2

τ

)
, (4.10)
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Ξ (ξ, τ) =
∫ τ

0
dτ̄

∫

ζ̄=0,ξ̄<1

ψ
(
ξ̄, ϕ̄, τ̄

)
Ξli

(
ξ − ξ̄, τ − τ̄

)
dξ̄, (4.11)

Ξli (ξ, τ) =
1

2π |ξ|3

[
δ (τ) +

4√
π

1
|ξ|2

(
1− |ξ|2

τ

)(
|ξ|√

τ

)5

exp

(
−|ξ|

2

τ

)]
, (4.12)

Π (ξ, τ) = δ (τ) , ξ ≤ 1, ζ = 0. (4.13)

We also will work in the Laplace transform domain. The Laplace transform of the scaled

governing equations (4.9)-(4.13) are given by

Π̃ (ξ, s) =
∫

ζ̄=0,ξ̄<1

ψ̃
(
ξ̄, ϕ̄, s

)
Π̃li

(
ξ − ξ̄, s

)
dξ̄, (4.14)

Π̃li (ξ, s) =
e−2

√
s|ξ|

π |ξ| s, (4.15)

Ξ̃ (ξ, τ) =
∫

ζ̄=0,ξ̄<1

ψ̃
(
ξ̄, ϕ̄, s

)
Ξ̃li

(
ξ − ξ̄, s

)
dξ̄, (4.16)

Ξ̃li (ξ, s) =
1

2π |ξ|3
[
1−

(
1 + 2s1/2 |ξ|+ 4s |ξ|2

)
exp

(
−2s1/2 |ξ|

)]
, (4.17)

Π̃ (ξ, s) = 1, ξ ≤ 1, ζ = 0, (4.18)

where s is the Laplace transform parameter.

4.3 Small-time asymptote, τ ! 1

At small times the problem can be split into two independent parts: the global and the

tip region problems. The tip region is such a region near the boundary of the prescribed

pressure domain where the geometry of the domain is not important. Furthermore, if

the size of the tip region is large compared to the length scales of all physical processes

under consideration, the solution of the tip region problem is autonomous.

In general, the geometry can be described by two length scales: the size of the domain

and the radius of the boundary curvature. In our case of a unit disc, these two length

scales are the same and equal to 1. Therefore the tip region is defined by |1− ξ| ! 1.
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The physical processes are represented only by diffusion with a length scale of the

order of
√

τ . Thus the solution of the tip region problem is autonomous only if
√

τ !

1. We see that this criterion is time dependent, and it is valid only for small times.

Physically, it means that at early times the tip region does not “know” anything about

the finiteness of the prescribed pressure domain. As time elapses the diffusion explores

a larger domain bringing information about the finiteness of the prescribed pressure

domain to the tip. This makes the separation of the problem into the tip region problem

and the global one impossible.

Below, we find the solution for both the tip region and the global problem. We show

that these solutions match each other.

4.3.1 Tip region, |1− ξ| ! 1

In the tip region equations (4.9), (4.12), and (4.18) written for z = 0 yield (see Appendix

B.1 for the details of the derivation)

Π̃ =
1
π

∫ 2
√

s

0
φ

(
ζ̄
)
K0

(∣∣ζ − ζ̄
∣∣) dζ̄, (4.19)

1
2





Ξ̃xx

Ξ̃zz




 = ∓ 1
π

∫ 2
√

s

0
φ

(
ζ̄
)
[

1
(
ζ − ζ̄

)2 −
K1

(∣∣ζ − ζ̄
∣∣)

∣∣ζ − ζ̄
∣∣

]
dζ̄ −





0

Π̃




 , (4.20)

Π̃ =1 , 0 < ζ < 2
√

s, (4.21)

where φ ≡
√

sψ̃, ζ ≡ 2
√

s (1− ξ), Kν (x) is the modified Bessel function of the second

kind, and by Ξ̃xx we denote the normal stress parallel to the disc (the problem under

consideration has only two dimensions). The
√

s in these equations reflects the fact that

we still do not do any assumptions about the relative size of the diffusion length scale

and the size of the prescribed pressure domain, but we do assume that the curvature

of the domain boundary is large compared to the diffusion length scale. This helps us
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to estimate the error of the assumption
√

τ ! 1 in the case of finite small times (recall

that both geometry related length scales are of the same order, and τ ∼ 1/s).

It is interesting to note the following properties of the poroelastic stress

Ξ̃xx + Ξ̃zz = −2Π̃,

∫ +∞

−∞
Ξ̃zz (ζ) dζ = 0. (4.22)

Here the first equation can be linked to the irrotationality of the displacement field

(Cheng and Detournay, 1998), while the second equation follows from equilibrium con-

sideration.

4.3.1.1 Near-field asymptote, |ζ| ! 1

Let us consider the near-tip region when it is small compared to the diffusion length,

ζ ! 1. On these scales the diffusion is so fast that it flattens the pressure distribution

Π̃. In other words the pressure is uniform near the very tip (inside and outside the

domain of the prescribed pressure). At the same time due to the logarithmic singularity

of the kernel in (4.19), the flux function φ should have a square root singularity, φ ∼

1/
√

ζ (Polyanin and Manzhirov, 2008). To prove this property we rewrite the governing

equation (4.19) in the following way

π =
∫ ∆

0
φ

(
ζ̄
)
K0

(∣∣ζ − ζ̄
∣∣) dζ̄ +

∫ ∞

∆
φ

(
ζ̄
)
K0

(∣∣ζ − ζ̄
∣∣) dζ̄, |ζ| ! 1. (4.23)

Let 0 < ζ ! ∆ ! 1 such that in the first integral we can use the small-argument

asymptote of the kernel, K0
(∣∣ζ − ζ̄

∣∣) - − ln
(∣∣ζ − ζ̄

∣∣), and in the second one we can

omit the ζ, hence

π = −
∫ ∆

0
φ

(
ζ̄
)
ln

(∣∣ζ − ζ̄
∣∣) dζ̄ +

∫ ∞

∆
φ

(
ζ̄
)
K0

(∣∣ζ̄
∣∣) dζ̄, ζ ≥ 0. (4.24)

Here only the first integral depends on ζ. Therefore for ζ ! 1 the flux distribution

function φ should be such that the first integral does not depend on ζ. Let us check a
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solution of the form φ ∼ 1/
√

ζ

∫ ∆

0

ln
(∣∣ζ − ζ̄

∣∣)
√

ζ̄
dζ̄ = 2

√
∆

[
ln (∆− ζ)− 2 +

√
ζ

∆
ln

(√
∆ +

√
ζ√

∆−
√

ζ

)]
,

∫ ∆

0

ln
(∣∣ζ − ζ̄

∣∣)
√

ζ̄
dζ̄

ζ(∆
- 2∆1/2 ln ∆. (4.25)

4.3.1.2 Far-field asymptotes, 2
√

s" |ζ| " 1

One more change of variable, x = ζ̄ − ζ, moves the lower limit of integration of (4.19)

to the minus infinity. Then equations (4.19) and (4.21) have the following solution

φ∞ = 1. (4.26)

In time domain this solution corresponds to ψ∞ = 1/
√

πt.

The divergence of this asymptote from the exact solution of (4.19), (4.21) is given

by

ε∞ ∼
1
π

∫ ∞

min(ζ,2
√

s−ζ)
K0 (x) dx ≈ e−min(ζ,2

√
s−ζ)

√
2π min (ζ, 2

√
s− ζ)

. (4.27)

Substitution of (4.26) into (4.19) and (4.20) yields

Π̃ =0 , ζ ! −1, (4.28)

1
2





Ξ̃xx

Ξ̃zz




 = ± 1
πζ
−





1

0




 , ζ " 1, (4.29)

1
2





Ξ̃xx

Ξ̃zz




 = ± 1
πζ

, ζ ! −1. (4.30)

4.3.1.3 Transient solution

The explicit form of the near-field solution as well as the transient solution that connects

the near- and far-field asymptotes are computed numerically. A detailed description of
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Figure 4.2: Stationary tip: flux distribution function φ ≡
√

sψ̃ vs ζ

the algorithm can be found in Appendix B.2. The results of the numerical simulations

are shown in Figs 4.2-4.6. We see that the transient solution converges to the asymptotes

studied above. In particular in Fig. 4.6 we show the backstress distribution in the tip

region. One can see that although in the far-field the backstress behaviour is singular,

Ξ̃zz ∼ 1/ζ, it is finite in the near-field. Below we will show that the far-field asymptote

of the tip solution corresponds to the near-field asymptote of the global solution.

An interesting illustration of the diffusion process is presented in Fig. 4.7 where

we show the fluid displacement function distribution in the time domain for different

times. We normalize the fluid displacement function on its value at the center of the

disc. One can see, that for small times the fluid displacement function distribution is not

uniform only in a very small region near the tip. The size of this region is approximately

equal to 2
√

τ . As time elapses the size of this region increases and the shape of the fluid
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Figure 4.3: Stationary tip: normal component of stress Ξ̃zz behind tip, ζ > 0

displacement function distribution evolves towards the shape of the large-time asymptote

given by
(
1− ξ2

)−1/2 [see (4.50)].

4.3.2 Global solution

Assuming τ ! 1 we can reduce the governing equations (4.9)-(4.12) to (see Appendix

B.1 for the details of the derivation)

Π0 = − 1
2
√

π

∫ τ

0

ψ0 (ξ, τ̄) dτ̄

(τ − τ̄)3/2
, (4.31)

Ξ0 =
2
π

∫ 1

0
ξ̄ψ0

(
ξ̄, τ

) E

[
4ξξ̄

(ξ+ξ̄)2

]

(
ξ − ξ̄

)2 (
ξ + ξ̄

)dξ̄, (4.32)

where E (x) is the complete elliptic integral of the second kind (Abramowitz and Stegun,

1972), and subscript “0” stands for small-time. Equation (4.31) with the boundary

condition (4.13) can easily be solved using the Laplace transform. As the result we have
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Figure 4.4: Stationary tip: pressure distribution Π̃ ahead of tip, ζ < 0

the following solution for the source distribution function

ψ0 =
1√
πτ

1 + sgn (1− ξ)
2

. (4.33)

The fluid exchange function Ψ0 is equal to

Ψ0 =
√

π

τ
. (4.34)

Substitution of the solution (4.33) into (4.32) yields

Ξ0 = − 1
π3/2τ1/2

{
(1− ξ)−1 E

[
4ξ

(1 + ξ)2

]
+ (1 + ξ)−1 K

[
4ξ

(1 + ξ)2

]}
, (4.35)

where K (x) is the complete elliptic integral of the first kind (Abramowitz and Stegun,

1972).

Note that our solution (4.33), (4.35) matches the far-field tip region solution (4.26),

(4.28)-(4.30) (see Figs 4.2 and 4.6).
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Figure 4.5: Stationary tip: parallel component of stress Ξ̃xx ahead of tip, ζ < 0

4.4 Large-time asymptote, τ " 1

To derive the large-time asymptote we work mainly in the Laplace space. In terms of

the Laplace transform parameter s, large times τ " 1 means that s! 1. Therefore, we

have a small parameter s. Asymptotic expansion of the singular fluid dilation solutions

(4.15) and (4.17) for small s yields

Π̃li (ξ, s) - s

π |ξ| −
2s3/2

π
, (4.36)

Ξ̃li (ξ, s) - − s

π |ξ| +
8s3/2

3π
. (4.37)

Hence, we can seek a solution in the form of series with respect to
√

s

Ã∞ (ξ, s) = Ã(0)
∞ (ξ, s) + s1/2Ã(1)

∞ (ξ, s) + . . . , (4.38)

where A = {ψ, Π,Ξ}.
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Figure 4.6: Stationary tip: backstress distribution Ξ̃zz vs ζ

After substituting our singular solutions (4.36) and (4.37) into the governing equa-

tions (4.14) and (4.16) and collecting O (1) and O
(
s1/2

)
terms, we have

O (1) : Π̃(0)
∞ (ξ, s) =

s

π

∫

ζ̄=0,ξ̄<1

ψ̃(0)
∞

(
ξ̄, ϕ̄, s

)
∣∣ξ − ξ̄

∣∣ dξ̄, (4.39)

O
(
s1/2

)
: Π̃(1)

∞ (ξ, s) =
s

π

∫

ζ̄=0,ξ̄<1

ψ̃(1)
∞

(
ξ̄, ϕ̄, s

)
∣∣ξ − ξ̄

∣∣ dξ̄ − 2s

π
Ψ̃(0)
∞ (s) , (4.40)

O (1) : Ξ̃(0)
∞ (ξ, s) = − s

π

∫

ζ̄=0,ξ̄<1

ψ̃(0)
∞

(
ξ̄, ϕ̄, s

)
∣∣ξ − ξ̄

∣∣ dξ̄ = −Π̃(0)
∞ (ξ, s) , (4.41)

O
(
s1/2

)
: Ξ̃(1)

∞ (ξ, s) = − s

π

∫

ζ̄=0,ξ̄<1

ψ̃(1)
∞

(
ξ̄, ϕ̄, s

)
∣∣ξ − ξ̄

∣∣ dξ̄ +
8s

3π
Ψ̃(0)
∞ (s) . (4.42)
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Figure 4.7: Normalized flux distribution function ψ (ξ, τ) /ψ (0, τ) in time domain for
different times: τ = 0.0004, 0.01, 0.04, 0.09, 0.25, 0.5, 1.0, 10.0. Solid lines for τ =
0.0004, 0.01, 0.04, 0.09 were obtained from inverse Laplace transform of the tip solution;
dashed thick lines are numerical solutions of the global problem; solid line

(
1− ξ2

)−1/2

is the large-time asymptote; and dashed thin lines mark diffusion length scale for
τ = 0.0004, 0.01, 0.04, 0.09 and located at ξ = 1−

√
τ .

4.4.1 O (1) solutions

Integration of (4.39) over the angle leads to

Π̃(0)
∞ (ξ, ζ = 0, s) =

4
π

s

∫ 1

0
ξ̄ψ̃(0)
∞

(
ξ̄, s

) K

[
4ξξ̄

(ξ+ξ̄)2

]

ξ + ξ̄
dξ̄. (4.43)

The solution of this equation with the boundary condition (4.18) is given by

ψ̃(0)
∞ (ξ, s) =

(πs)−1

√
1− ξ2

. (4.44)
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Substitution of this solution into (4.43) gives us the pressure distribution outside the

domain of the prescribed pressure (domain of the boundary condition)

Π̃(0)
∞ (ξ, ζ = 0) =






1, ξ ≤ 1

2
π arctan

(
1√

ξ2−1

)
, ξ > 1

. (4.45)

Here we have used the following formulas for the elliptic integral K (x) (Gradshteyn and

Ryzhik, 1994)

K

[
4x

(1 + x)2

]
= (1 + x) K

(
x2

)
, x ≤ 1,

K (x) =
∫ 1

0

1√
1− xt2

dt√
1− t2

.

The fluid exchange function Ψ̃(0)
∞ (s) is given by

Ψ̃(0)
∞ (s) = 2/s. (4.46)

4.4.2 O (
√

s) solutions

Mathematically, equations (4.39) and (4.40) are almost identical. The only difference

is that instead of term Π̃(0)
∞ in the left-hand side of (4.39), equation (4.40) has Π̃(1)

∞ +

2sΨ̃(0)
∞ (s) /π. The boundary condition for (4.39) is Π̃(0)

∞ (ξ ≤ 1, ζ = 0, s) = 1, whereas

for (4.40) we have Π̃(1)
∞ (ξ ≤ 1, ζ = 0, s) = 0. Therefore we have the following expression

for ψ̃(1)
∞ (ξ, s)

ψ̃(1)
∞ (ξ, s) =

2s

π
Ψ̃(0)
∞ (s) ψ̃(0)

∞ (ξ, s) . (4.47)

The fluid exchange function Ψ̃(1)
∞ (s) is then given by

Ψ̃(1)
∞ (s) =

2s

π
Ψ̃(0)2
∞ (s) . (4.48)

Substitution of the solution (4.47) into (4.42) yields

Ξ̃(1)
∞ (ξ, s) = −2s

π
Ψ̃(0)
∞ (s) Π̃(0)

∞ (ξ) +
8s

3π
Ψ̃(0)
∞ (s) . (4.49)



96

4.4.2.1 Back to time domain

Combining equations (4.38), (4.44), and (4.47) and applying the inverse Laplace trans-

form, we obtain

ψ∞ (ξ, τ) =
1 + 4π−3/2τ−1/2

π
√

1− ξ2
. (4.50)

Doing the same with equations (4.38), (4.46), and (4.48) we get

Ψ∞ (τ) = 2 +
8τ−1/2

π3/2
. (4.51)

And finally, combination of (4.38), (4.41), and (4.49) yields

Ξ∞ (ξ, τ) = −Π̃(0)
∞ (ξ)

[
δ (τ)− 2 (πτ)−3/2

]
− 8

3
(πτ)−3/2 . (4.52)

A reasonable question arises: should we keep the delta function in the above equation?

On one hand it seems that for large times this delta function is not important. On the

other hand it is clear from the expression for the backstress in the case of a propagating

fracture (4.2) that this delta function is important. To understand the meaning of this

delta function we write down (4.52) in the case of a unit step loading Π (ξ ≤ 1, ζ = 0, τ) =

H (τ)

ΞH
∞ (ξ, τ) = −Π̃(0)

∞ (ξ)
[
H (τ) +

4
π3/2τ1/2

]
+

16
3π3/2τ1/2

,

where H (τ) is the Heaviside step function.

One can see that the Heaviside function corresponds to the large-time equilibrium

backstress generated by a unit pressure step loading. This is what one would expect

from such a loading. Now if we have a unit impulse of the pore pressure, the backstress

at large times is equal to zero and the history of the backstress evolution looks like an

impulse. Therefore the delta function in (4.52) is simply a mathematical description of

this history.



97

0.001 0.01 0.1 1 10
2

5

10

20

50

Figure 4.8: Total fluid displacement function Ψ vs time τ

4.5 Transient solution

The transient solution, which connects the small- and large-time asymptotes, is com-

puted numerically. First, we solve the integral equation (4.14) with the boundary condi-

tion (4.18). As a result, we find the flux distribution function in the Laplace domain, ψ̃.

Then, we use this solution in (4.16) to calculate the Laplace transform of the backstress,

Ξ̃. We finish our computation with a numerical inversion of the Laplace transform so-

lution, following the technique developed by Lopez-Fernandez and Palencia (2004) (see

also Appendix B.4). The details of the computation can be found in Appendix B.3.

The algorithm was implemented in Mathematica 6.0. Computation of the backstress

was done inside the disc {ξ ≤ 10, ζ = 0}, which was discretized with a spatial step equal

to 0.1. The problem was solved for quite a wide range of times: 10−5 < τ < 105. Outside

this large domain the region of the prescribed pore pressure can be approximated by a

point source. Therefore we have the following far-field asymptote

Ξ̃ff (ξ, s) = Ψ̃ (s) Ξ̃li (ξ, s) . (4.53)
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Figure 4.9: Backstress Ξ vs time τ for different spacial points: ξ = 0, 0.95, 1.05, 1.95

The results of the numerical simulation are shown in Figs 4.8-4.12. Fig. 4.8 shows the

time dependence of the fluid exchange function Ψ. Figs 4.9-4.12 illustrate the temporal

and spatial behavior of the backstress. One can observe a very good agreement between

the numerical transient solution and the asymptotic solutions.

Note that inside the region ξ < ξΞ=0 (τ), where Ξ [ξΞ=0 (τ) , τ ] = 0, the backstress is

compressive, Ξ < 0, whereas outside this region it is tensile, Ξ > 0, see Fig. 4.9. It is

clear that ξΞ=0 (0) = 1 and ξΞ=0 (τ →∞)→∞. This behavior of the backstress mimics

the diffusion process. In fact, when the diffusion is one dimensional (early times) the

backstress is mainly concentrated inside the pressurising domain, and as time elapses

the compressive backstress occupies a larger region of the medium.

4.6 Summary of the chapter results

In this chapter we have solved the auxiliary problem (see the Introduction). Namely,

we have found a semi-analytical solution for the response of a poroelastic medium to an
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Figure 4.10: Spatial distribution of backstress Ξ for small time, τ = 10−4

impulse of pore pressure applied to a penny-shaped domain. This semi-analytical solu-

tion includes the analytical small- and large-times asymptotes for the flux distribution

around the fracture as well as for the backstress [see (4.34), (4.35), (4.51), (4.52)]. For

intermediate times we have built a numerical transient solution (see Section 4.5). Also

we have found the semi-analytical far-field asymptote (4.53) for the backstress where the

spatial dependence is known analytically and the the temporal dependence was obtained

by doing a numerical inversion of the Laplace domain using the numerical solution for

the fluid exchange function Ψ.
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Figure 4.12: Far-field spatial distribution of backstress Ξ for different times: τ =
0.1, 1.0, 10



Chapter 5

Fracture propagation: zero viscosity

5.1 Preamble

Finally, we have arrived to a point when we can study the propagation of a hydraulic

fracture through a poroelastic medium. In this chapter we consider the simple case of

zero viscosity. The main assumption here is that the most of the energy dissipation

is associated with the damage of the solid medium rather than with the viscous flow

of the fracturing fluid. In other words the fracturing fluid viscosity is assumed to be

equal to zero, with the implication that the fluid pressure inside the fracture is uniform.

Savitski and Detournay (2002) have shown that in the case of a penny-shaped fracture

propagating through an impermeable medium by injection of a Newtonian fluid, the

toughness-dominated regime can be observed only at large times t ! tmk, where tmk is

the characteristic transition time between the viscosity- and the toughness-dominated

regimes given by

tmk =

√
µ5

inQ
3
0E

′13

K18
Ic

. (5.1)

One more simplification introduced in this chapter is the disregard for the low per-

meability cake build-up effect. As a result, there is no need to distinguish pin and pout

101
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and, similarly, the viscosities µin and µout. Therefore, we shall now omit the subscripts

“in” and “out”.

Earlier works on the toughness-dominated regimes with leak-off include studies per-

formed by Bunger et al. (2005) and Mathias and Reeuwijk (2009). Bunger et al. (2005)

have conducted a detailed examination of the case of the Carter’s leak-off model by means

of scaling and asymptotic analyses. On the other hand, Mathias and Reeuwijk (2009)

studied the case of “stationary” 3D leak-off, when the propagation of a fluid-driven frac-

ture is very slow and the pore pressure around the fracture is always in equilibrium. The

authors have not provided any estimations of applicability of their pseudo steady-state

model.

An interesting work was conducted by Berchenko et al. (1997) who studied propa-

gation of a natural fracture through a porous medium. The authors have introduced an

efficient approach to calculation of the fluid exchange volume between the fracture and

the medium. Namely they decomposed a continuous in time fluid pressure variation in-

side the fracture into series of pressure impulses and then represented the fluid exchange

volume induced by the continuous pressure variation by the superposition of the fluid

exchanges induced by a single impulse (see introduction to Chapter 4). Unfortunately

Berchenko et al. (1997) have made some significant algebraic errors. In fact simple scal-

ing analysis shows that the main expression for the fluid exchange volume is incorrect

[see equation (7) of Berchenko et al. (1997)]. Nevertheless we should admit that the idea

introduced by these authors is the core of our research.

Neither of these papers considered the backstress effect.

In this chapter we build a general model of a hydraulic fracture driven by a zero

viscosity fluid through a poroelastic medium. The main restrictive assumptions are i)

there is no low permeability cake build-up, and ii) the solid-to-fluid coupling can be

neglected (see introduction to Chapter 4). Throughout this chapter we intensively use
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scaling and asymptotic analyses. We show that the parametric space is a prism. In this

parametric space the case of the Carter’s leak-off model studied by Bunger et al. (2005)

occupies only one edge, whereas the pseudo steady-state model introduced by Mathias

and Reeuwijk (2009) covers only one face.

The main objective of the problem is to define the evolution of the fracture radius

R (t), the fracturing fluid pressure pin (t), and the efficiency of the hydraulic fracturing

E (t) ≡ Vcrack/Vinject, where Vcrack is the volume of the fracture and Vinject is the volume

of the injected fracturing fluid.

5.2 Mathematical model

5.2.1 Dimensional formulation

In the case of zero viscosity, µ = 0, the fluid pressure along the fracture is uniform,

p (r < R (t) , z = 0, t) = p (t). As a result, Poiseuille’s law (2.2), introduced in Chapter

2, degenerates. Therefore, instead of the local volume balance equation (2.1) introduced

in Chapter 2, we use the global volume balance

Vinject (t) = Vcrack (t) + Vleak (t) . (5.2)

Here Vinject (t) = Q0t is the volume of the injected fracturing fluid and Vcrack (t) is the

fracture volume

Vcrack (t) = 2πR2 (t)
∫ 1

0
w [R (t) s, t] sds. (5.3)

Substitution of the elasticity equation (2.7) into (5.3) yields

Vcrack (t) =
16
3

R3 (t)
E′

{
p (t)− σ0 + 3

∫ 1

0
σb [R (t) s, t]

√
1− s2sds

}
, (5.4)

where E′ ≡ E/
(
1− ν2

)
is the plane strain modulus, E is the Young’s modulus, ν is the

Poisson’s ration, and σb (r, t) is the backstress.
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As indicated earlier [see Chapter 4], we can represent the continuous evolution of the

fluid pressure inside the crack by a sum of spatially uniform time impulses of pressure.

Then, the leaked-off volume Vleak and the backstress σb can be written in the form

Vleak (t) =
∫ t

0
U [R (s) , t− s] [p (s)− p0] ds, (5.5)

σb (r, t) =
∫ t

0
Sb [R (s) , r, t− s] [p (s)− p0] ds, (5.6)

where U (R, t) is the volume of the fracturing fluid that has escaped from a fracture of

radius R at an elapsed time t after a uniform unit impulse of pressure has been applied

(see Chapter 4), and Sb (R, r, t) is the generated backstress. In the following we refer

to U (R, t) as the leak-off Green function, and to Sb (R, r, t) as the backstress Green

function.

Recall the following relations between these dimensional Green functions U (R, t),

Sb (R, r, t) and the dimensionless ones Ψ (τ), Ξ (ξ, τ), obtained in Chapter 4 [see (4.8)]

U (R, t) =
SR3

TR
Ψ

(
t

TR

)
, Sb (R, r, t) =

η

TR
Ξ

(
r

R
,

t

TR

)
, TR =

R2

4c
, (5.7)

where S is the storage coefficient, c is the diffusion coefficient, and η is the poroelastic

stress coefficient.

We close the formulation of the problem with the propagation criterion [see (2.9)

and (2.10)]

KIc =
2√
π

R1/2 (t)
∫ 1

0

p [sR (t) , t] + σb [sR (t) , t]− σ0√
1− s2

sds, (5.8)

where KIc is the material toughness.

One can see that our model has only two unknowns: the fracturing fluid pressure

p (t) and the fracture radius R (t).
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5.2.2 Dimensionless formulation

The problem depends on seven dimensional parameters: KIc, E′, Q0, c, S, σ0, and p0,

and one dimensionless parameter η. It is possible to reduce this set of parameters to five

dimensionless quantities. Inspired by earlier works on hydraulic fracture (Detournay,

2004) we introduce the following scaling

r = R (t) ξ, R (t) = L (t) ρ (t) ,

p (t)− σ0 =
KIc

L1/2 (t)
Π (t) , σb (r, t) =

KIc

L1/2 (t)
Σ (ξ, t) . (5.9)

where ρ (t) ∼ 1 is the dimensionless radius, Π (t) ∼ 1 is the dimensionless net pressure,

Σ (ξ, t) is the dimensionless back stress, and L (t) ∼ R (t) is the characteristic size of

the fracture. Note that the introduced above scaling is time-dependent. Moreover we

have not defined yet the parameter L (t). Below we will show that for different propa-

gation regimes the parameter L (t) can be defined in such a way that the dimensionless

quantities ρ, Π, and Σ will not depend on time.

In the scaling (5.9) our governing equations transform to

• Backstress equation (5.6) after substitution of (5.7)

Σ (ξ, t) = 4ηGd (t)
∫ 1

0

L2 (t)
L2 (ts)

1
ρ2 (ts)

Ξ
[
ξ

L (t) ρ (t)
L (ts) ρ (ts)

, 4Gd (t)
L2 (t)
L2 (ts)

1− s

ρ2 (ts)

]
×

×
[
Gσ (t) +

√
L (t)
L (ts)

Π (ts)

]
ds, (5.10)

• Propagation criterion (5.8) combined with the backstress equation (5.10)

1 =
2√
π

ρ1/2 (t) Π (t) + Kbs (t) , (5.11)

• Volume balance equation (5.2) where we substituted (5.4), (5.5), (5.7), and (5.11)

1 =
8
√

π

3
Gv (t) ρ5/2 (t) [1 + Vbs (t)−Kbs (t)] +
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+ 4Gc (t)
∫ 1

0

L (ts)
L (t)

ρ (ts) Ψ
[
4Gd (t)

L2 (t)
L2 (ts)

1− s

ρ2 (ts)

][
Gσ (t) +

√
L (t)
L (ts)

Π (ts)

]
ds.

(5.12)

Here Kbs (t) is the change of the stress intensity factor due to the backstress

Kbs (t) =
4ηGd (t)
ρ1/2 (t)

∫ 1

0

L (t)
L (ts)

1
ρ (ts)

kbs

[
L (t) ρ (t)

L (ts) ρ (ts)
, 4Gd (t)

L2 (t)
L2 (ts)

1− s

ρ2 (ts)

]
×

[
Gσ (t) +

√
L (t)
L (ts)

Π (ts)

]
ds, (5.13)

and Vbs (t) is the change of the fracture volume due to the backstress

Vbs (t) =
4ηGd (t)
ρ5/2 (t)

∫ 1

0
ρ (ts)

L (ts)
L (t)

vbs

[
L (t) ρ (t)

L (ts) ρ (ts)
, 4Gd (t)

L2 (t)
L2 (ts)

1− s

ρ2 (ts)

]
×

[
Gσ (t) +

√
L (t)
L (ts)

Π (ts)

]
ds, (5.14)

where

kbs (R, τ) =
2√
π

∫ R

0

ξΞ (ξ, τ)√
R2 − ξ2

dξ, (5.15)

vbs (R, τ) =
6√
π

∫ R

0
ξ
√
R2 − ξ2Ξ (ξ, τ) dξ. (5.16)

One can see that our dimensionless formulation depends on the following four time-

dependent dimensionless groups:

• Storage group

Gv (t) =
KIc

Q0E′
L5/2 (t)

t
, (5.17)

which is proportional to the fraction of the injected fluid volume stored in the

fracture;

• Leak-off group

Gc (t) =
cSKIc

Q0
L1/2 (t) , (5.18)

which characterizes the amount of the fluid that has leaked into the formation;
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• Diffusion group

Gd =
ct

L2 (t)
, (5.19)

which is related to the diffusion process with
√
Gd proportional to the ratio of the

diffusion length scale to the fracture size. Thus this dimensionless group is small,

Gd ! 1, in the case of 1D diffusion and large in the case of 3D diffusion, Gd " 1;

• Pressure group

Gσ (t) =
σ0 − p0

KIc
L1/2 (t) ∼ σ0 − p0

p− σ0
, (5.20)

which describes the effect of the material toughness on the net fluid pressure p−σ0

compared to σ0 − p0. Indeed, in the case of small toughness when KIc → 0 and

Gσ → ∞, one can assume that from a diffusion point of view the fracturing fluid

pressure p is equal to the confining stress σ0, p ≈ σ0; whereas in the case of large

toughness when KIc → ∞ and Gσ → 0, the net fluid pressure p − σ0 is large

compared to σ0 − p0.

Note that the only unknown here are the dimensionless fracture radius ρ (τ) and frac-

turing fluid pressure Π (τ).

5.3 Methodology

Incorporation of the diffusion and poroelastic effects into the theory of hydraulic fractur-

ing relies on evaluating the convolution type integrals [see (5.10), (5.12)-(5.14)]. Indeed,

evaluation of the fracturing fluid volume which has leaked into the formation requires

a “convolution” on Ψ (τ) [see (5.12)], whereas evaluation of the backstress Σ (ξ, t) and

related fracture volume Vbs (t) and stress intensity factor Kbs (t) changes requires “con-

volutions” on Ξ (ξ, τ). These “convolutions” involves both arguments of Ξ (ξ, τ) and are

way more complicated than the “convolution” on the single argument Ψ (τ) [see (5.10),

(5.13), and (5.14)].
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To simplify calculations of Vbs (t) and Kbs (t) we have introduced the two additional

functions vbs (R, τ) and kbs (R, τ), such that “convolutions” on these functions yield

Vbs (t) and Kbs (t) [see (5.13)-(5.16)]. Physically the function vbs (R, τ) can be interpreted

as the volume change of a fracture of radius R > 1 at an elapsed time τ due to the

backstress generated by a unit impulse of the pore pressure applied at time τ = 0 along

the part of the fracture R located inside the unit circle ξ < 1 (we assume that the center

of the fracture R is located at ξ = 0). The function kbs (R, τ) is the corresponding

change in the stress intensity factor. Note that there is a simple connection between

kbs (R, τ) and vbs (R, τ) [see (5.15), (5.16)]

kbs (R, τ) =
2
3

∂vbs (R, τ)
∂R2

. (5.21)

Small-time asymptotes of kbs (R, τ) and vbs (R, τ)

Recall the small-time asymptote of Ξ (ξ, τ) [see, (4.35)]

Ξ0 (ξ, τ) = − 1
π3/2τ1/2

{
(1− ξ)−1 E

[
4ξ

(1 + ξ)2

]
+ (1 + ξ)−1 K

[
4ξ

(1 + ξ)2

]}
, (5.22)

where K (x) and E (x) are the complete elliptic integrals of the first and second kinds

respectively (Abramowitz and Stegun, 1972).

Note that this asymptote has rather strong singularity 1/ (1− ξ), which causes signif-

icant problems in numerical simulations. Also one can observe a separation of variables,

which simplifies the evaluation of kbs (R, τ) and vbs (R, τ) at small time.

Substitution of this small-time asymptote Ξ0 (ξ, τ) into the expression for kbs (R, τ)

(5.15) yields

kbs (R, τ) = 0. (5.23)

Therefore, vbs (R, τ) depends only on time [see (5.21)], and in order to define vbs (R, τ)

we can evaluate it at any convenient point, e.g., R = 1. The expression for the stress
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distribution, given by (5.22), can be simplified by means of (Gradshteyn and Ryzhik,

1994)

E

[
4x

(1 + x)2

]
= (1 + x)

[
2E

(
x2

)
−

(
1− x2

)
K

(
x2

)]
, x ≤ 1,

K

[
4x

(1 + x)2

]
= (1 + x) K

(
x2

)
, x ≤ 1,

such that

Ξ0 (ξ, τ) = − 2
π3/2τ1/2

E
(
ξ2

)

1− ξ2
, ξ ≤ 1. (5.24)

Now, using the integral representation of the elliptic integral

E (x) =
∫ 1

0

√
1− xt2

1− t2
dt,

one can calculate vbs (R, τ) [see (5.16)]

vbs (R, τ) = −3
2
τ−1/2. (5.25)

Large-time asymptotes of kbs (R, τ) and vbs (R, τ)

The large-time asymptote of Ξ (ξ, τ) is given by [see, (4.52)]

Ξ∞ (ξ, τ) = −Π̃(0)
∞ (ξ)

[
δ (τ)− 2 (πτ)−3/2

]
− 8

3
(πτ)−3/2 , (5.26)

where δ (τ) is the Dirac delta function and

Π̃(0)
∞ (ξ) =






1, ξ ≤ 1

2
π arctan

(
1√

ξ2−1

)
, ξ > 1

.

Note that in the leading order we have separation of variables.

Substitution of this large-time asymptote Ξ∞ (ξ, τ) into the definitions of kbs (R, τ)

and vbs (R, τ), given by (5.15) and (5.16), leads to

kbs (R, τ) = −2δ (τ)√
π

+O
(
τ−3/2

)
, (5.27)

vbs (R, τ) = −3R2 − 1√
π

δ (τ) +O
(
τ−3/2

)
. (5.28)
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5.4 Propagation regimes

The problem under study has six propagation regimes. Therefore it is convenient to rep-

resent the fracture propagation by a trajectory line lying inside the prismatic parametric

space shown in Fig. 5.4 where

• K0-vertex represents the storage-dominated regime with 1D diffusion, during which

most of the injected fluid is stored inside the fracture;

• K̃κ0-vertex is related to the leak-off-dominated regime with 1D diffusion, when the

net fluid pressure p− σ0 is large compared to σ0 − p0;

• K̃σ0-vertex is another leak-off-dominated regime with slow 1D diffusion, when from

a diffusion point of view the fracturing fluid pressure p is approximately equal to

the confining stress σ0;

• K∞-vertex is the storage-dominated regime with pseudo steady-state (3D) diffu-

sion;

• K̃κ∞-vertex is the pseudo steady-state (3D) diffusion version of the K̃κ0-vertex;

• K̃σ∞-vertex is the pseudo steady-state (3D) diffusion version of the K̃σ0-vertex.

In the transition from one regime to another, the domination of one physical process

is displaced by the domination of another one. Mathematically this means that the

transition is controlled by the ratio of the dimensionless groups, representing the physical

processes. For example the transition K∞K̃κ∞ is governed by Gc/Gv, such that Gc/Gv =

0 for the K∞-vertex, and Gc/Gv = ∞ for the K̃κ∞-vertex. In another example the

transition from 1D to 3D diffusion is governed by Gd, such that Gd = 0 for 1D diffusion,

and Gd =∞ for 3D diffusion.
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Figure 5.1: Parametric space

Usually, each propagation regime is studied in an inherent time-dependent scaling,

such that the propagation of a fracture in a given propagation regime does not depend

on time in this scaling. It is convenient to introduce an inherent scaling in such a way

that all dimensionless groups which correspond to the dominating physical processes

are equal to 1, whereas all the other groups are small compared to 1. Note that these

small dimensionless groups are still time-dependent, therefore it is easy to estimate

when a given propagation regime is valid. Also using these small time-dependent groups

we can easily calculate the characteristic transition times between different propagation

regimes. For example in order to calculate the characteristic transition time tAB between

the two propagation regimes A and B, one should follow the following procedure: first,

introduce an inherent to the propagation regime A scaling; second, obtain in terms of this

inherent scaling an expression for the dimensionless group G(A)
B (t), which is dominant

in the regime B, whereas it is small in the regime A; and third, solve the equation

G(A)
B (tAB) = 1 to obtain the characteristic transition time tAB.
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ver- definition scaling solution
tex Gd Gσ Gv/Gc definition L (t) ρ

K0 ! 1 – " G−1/2
d max [1,Gσ] Gv = 1

(
Q0E′

KIc
t
)2/5 (

3
8
√

π

)2/5

K̃κ0 ! 1 ! 1 ! G−1/2
d G(1D)

c = 1
(

Q0I−1t1/2

c1/2SKIc

)2/3
22/3

π4/3

K̃σ0 ! 1 " 1 ! G−1/2
d Gσ G(1D)

c Gσ = 1
[

Q0I−1t1/2

c1/2S(σ0−p0)

]1/2
π−3/4

K∞ " 1 – " max [1,Gσ] Gv = 1
(

Q0E′

KIc
t
)2/5 (

3
8
√

π

)2/5

K̃κ∞ " 1 ! 1 ! 1 Gc = 1
(

Q0
cSKIc

)2 (1−η)2

16π

K̃σ∞ " 1 " 1 ! Gσ GcGσ = 1 Q0
cS(σ0−p0)

1−η
8

Here G(1D)
c ≡ Gc

G1/2
d

(
1− 4η

E′S

)
and I ≡ 1− 4η

E′S

Table 5.1: Propagation regimes and corresponding scalings

In our case we can introduce different scalings by fixing the length scale L (t) [see

(5.20)-(5.17)]. We define different propagation regimes in terms of the dimensionless

groups (5.20)-(5.17) in Table 5.1, where we also introduce different scalings which are

intrinsic to each of these propagation regimes. The transition times between different

propagation regimes are given by

• K0K∞- edge

tK0K∞ =
Q4

0E
′4

c5K4
Ic

;

• K0K̃κ0- edge

tK0K̃κ0
=

[
c1/2S

(
K2

IcE
′3

Q2
0

)1/5 (
1− 4η

E′S

)]−10

;

• K0K̃σ0- edge

tK0K̃σ0
=

[
c1/2S (σ0 − p0)

(
E′4

Q0K4
Ic

)1/5 (
1− 4η

E′S

)]−10/3

;

• K̃κ0K̃σ0- edge

tK̃κ0K̃σ0
=

[
c1/2SK4

Ic

(σ0 − p0)3 Q0

(
1− 4η

E′S

)]2

;
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• K̃κ0K̃κ∞- edge

tK̃κ0K̃κ∞ =
Q4

0

c5S4K4
Ic

;

• K̃σ0K̃σ∞- edge

tK̃σ0K̃σ∞ =
Q2

0

c3S2 (σ0 − p0)2
;

• K∞K̃κ∞- edge

tK∞K̃κ∞ =
Q4

0

c5S5E′K4
Ic

;

• K∞K̃σ∞- edge

tK∞K̃σ∞ =

√
Q3

0K
2
Ic

c5S5E′2 (σ0 − p0)5
.

• K̃κ∞K̃σ∞-edge is self-similar, i.e., the transition along this edge is impossible.

Moreover all trajectory lines of the fracture propagation begin at the K0-vertex

and end at some point of the K̃κ∞K̃σ∞-edge.

Note that the case of the Carter’s leak-off model studied by Bunger et al. (2005) cor-

responds to the K0K̃σ0-edge, whereas the pseudo steady-state model introduced by

Mathias and Reeuwijk (2009) corresponds to the K∞K̃κ∞K̃σ∞-face with Gη = 0.

In the rest of this section we give some details of derivation of asymptotic solutions

for different propagation regimes.

5.4.1 K0K̃κ0K̃σ0-face: 1D diffusion, Gd ! 1

Substitution of the small-time asymptotes of kbs (R, τ) and vbs (R, τ) [see (5.23) and

(5.25)] into the expressions for Kbs (t) and Vbs (t) [see (5.13) and (5.14)] leads to

Kbs (t) = 0, (5.29)

and

Vbs (t) = −
3ηG1/2

d (t)
ρ1/2 (t)

∫ 1

0

(
L (ts) ρ (ts)
L (t) ρ (t)

)2
[
Gσ (t) +

√
L (t)
L (ts)

Π (ts)

]
ds√
1− s

. (5.30)
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Combination of the propagation criterion (5.11) and the volume balance equation (5.12)

followed by substitution of the obtained above expressions for Kbs (t) and Vbs (t) and the

small-time asymptote Ψ0 (τ) =
√

π/τ [see (4.34)] yields

1 =
8
√

π

3
Gvρ

5/2 (t) + 2
√

πG(1D)
c (t) ρ2 (t)×

×
∫ 1

0

[
L (ts) ρ (ts)
L (t) ρ (t)

]2
[
Gσ (t) +

√
π

2

√
L (t)
L (ts)

ρ−1/2 (ts)

]
ds√
1− s

. (5.31)

Here

G(1D)
c (t) ≡ Gc (t)

G1/2
d (t)

(
1− 4ηGd (t)Gv (t)

Gc (t)

)
=

c1/2SKIc

Q0t1/2
L3/2 (t)

(
1− 4η

E′S

)
, (5.32)

where the second term in the brackets corresponds to the fracture volume decrease due

to the pore pressure induced dilation of the medium. Obviously, the medium dilation

should be less than the amount of fluid it absorbs, therefore

4ηGd (t)Gv (t)
Gc (t)

< 1, or
4η

E′S
< 1. (5.33)

The only unknown in the volume balance equation (5.31) is the fracture radius ρ (τ).

Once the fracture radius ρ (τ) is known, one can use the propagation criterion (5.11) to

obtain the fracturing fluid pressure

Π (t) =
√

π

2
ρ−1/2 (t) , (5.34)

where we have used the fact that Kbs (t) = 0 [see (5.29)].

As indicated above, in the case of 1D diffusion we have only three different propaga-

tion regimes, namely K0, K̃κ0, and K̃σ0. It is easy to solve the volume balance equation

(5.31) for each of these propagation regimes. One should simply introduce an inherent

propagation regime scaling [see Table 5.1], then rewrite the volume balance equation

(5.31) in terms of this scaling and solve the resultant equation. The solutions of the

volume balance equation for each propagation regime are presented in Table 5.1.
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5.4.2 K∞K̃κ∞K̃σ∞-face: pseudo steady-state diffusion, Gd " 1

Substitution of the large-time asymptotes of kbs (R, τ) and vbs (R, τ) [see (5.27) and

(5.28)] into the expressions for Kbs (t) and Vbs (t) [see (5.13) and (5.14)] leads to

Kbs (t) = Vbs (t) = − 2√
π

ρ1/2 (t) η [Gσ (t) + Π (t)]
[
1 +O

(
G−1/2

d

)]
. (5.35)

Thus, the propagation criterion (5.11) gives

Π (t) =
√

π

2
ρ−1/2 (t)

1− η
+

ηGσ (t)
1− η

, (5.36)

whereas the volume balance equation (5.12) combined with the above equation (5.36)

yields

1 =
8
√

π

3
Gv (t) ρ5/2 (t)+

8Gc (t) ρ (t)
1− η

∫ 1

0

L (ts) ρ (ts)
L (t) ρ (t)

[
Gσ (t) +

√
π

2

√
L (t)
L (ts)

ρ−1/2 (ts)

]
ds.

(5.37)

where we have used the large-time asymptote of the leak-off Green function Ψ∞ = 2 [see

(4.51)].

One can see that the volume balance equation (5.37) depends only on the fracture

radius ρ (t). Following the procedure described at the end of the previous subsection, one

can easily solve this volume balance equation for each of the pseudo steady-state diffusion

propagation regimes K∞, K̃κ∞, and K̃σ∞. The results of the solution are presented

in Table 5.1. Below we discuss only some characteristic features of each propagation

regimes.

K∞-vertex: storage-dominated regime

The solutions for the two storage-dominated regimes K0 (1D diffusion) and K∞ (pseudo

steady-state diffusion) are the same in terms of the fracture radius ρ . However in terms

of the fracturing fluid pressure Π these solutions are different [see (5.34) and (5.36)].
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Indeed the propagation criterion (5.36) yields

ΠK∞ (t) =
ΠK∞ (t)|η=0

1− η
+

ηGσ (t)
1− η

, ΠK∞ (t)|η=0 = 0.5
√

πρ−1/2
K∞

(t) , (5.38)

whereas the 1D diffusion solution is

ΠK0 (t) = ΠK∞ (t)|η=0 . (5.39)

Figure 5.2: Physical interpretation of the difference between K0- and K∞-vertices

Therefore the poroelastic effects split the storage dominated regime (known before

as the K-vertex, see Bunger et al. (2005)) into two: the K0-vertex (1D diffusion) which

is similar to the former K-vertex, and the K∞-vertex (pseudo steady-state diffusion)

characterized by a higher pressure. The essence of the difference between these two

regimes is illustrated in Fig. 5.2. Initially the fracture front propagates faster than

the diffusion front, therefore the diffusion length scale is small compared to the size of

the fracture and the diffusion is one dimensional. As time goes on, the diffusion front

catches up and then passes the fracture front, making the diffusion length scale to be

larger than the fracture size, and, as a result, switching the propagation regime from the

1D diffusion to the pseudo steady-state (3D) diffusion.
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K̃κ∞K̃σ∞-edge: leak-off-dominated regime, Gv ! 1

In this case the fracture is stationary, and the volume balance equation (5.37) has the

following solution

R∞ (t) =

[√
π + 2 (1− η)Gσ/Gc −

√
π

4Gσ

]2
∣∣∣∣∣∣
L=1

. (5.40)

It is interesting to note that the K̃κ∞K̃σ∞ edge is self-similar, i.e. a trajectory of the

system can not follow this edge. Moreover, all trajectories of the system end at some

point on this edge.

Figure 5.3: Fracture radius ρ vs time τ : general case Gv = Gc = 1, η = 0.0, 0.25, 0.5

5.5 Transient solution

To obtain a general trajectory of the system starting at the K0-vertex and ending at the

K̃κ∞K̃σ∞-edge, we develop an implicit numerical algorithm solving our set of governing

equations (5.11)-(5.16). From a numerical point of view it is convenient to introduce a
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Figure 5.4: Fracturing fluid pressure Π vs time τ : general case Gv = Gc = 1, η =
0.0, 0.25, 0.5

new, time-independent scaling such that Gσ = 1

ρ (τ) =
R (t)
Ltr

, τ =
t

T
, (5.41)

where

Ltr =
(

KIc

σ0 − p0

)2

, T =
L2

tr

4c
. (5.42)

Now the governing equations (5.11)-(5.16) transform to

• Propagation criterion

1 =
2√
π

ρ1/2 (τ) Π (τ) + Kbs (τ) , (5.43)

• Volume balance equation

τ =
8
√

π

3
Gvρ

5/2 (τ) [1 + Vbs (τ)−Kbs (τ)] +

+ 4Gc

∫ τ

0
ρ (τ̄) Ψ

[
τ − τ̄

ρ2 (τ̄)

]
[1 + Π (τ̄)] dτ̄ , (5.44)
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Figure 5.5: Hydraulic fracturing efficiency E vs time τ : general case Gv = Gc = 1,
η = 0.0, 0.25, 0.5

where Gi = Gi (t = T, L = Ltr) and

Kbs (τ) =
η

ρ1/2 (τ)

∫ τ

0

1 + Π (τ̄)
ρ (τ̄)

kbs

[
ρ (τ)
ρ (τ̄)

,
τ − τ̄

ρ2 (τ̄)

]
dτ̄ , (5.45)

Vbs (τ) =
η

ρ5/2 (τ)

∫ τ

0
ρ (τ̄) vbs

[
ρ (τ)
ρ (τ̄)

,
τ − τ̄

ρ2 (τ̄)

]
[1 + Π (τ̄)] dτ̄ , (5.46)

In this scaling the found above asymptotes have the following form:

• K0-vertex

ρ0 (τ) =
(

3
8
√

πGv

)2/5

τ2/5, Kbs0 (τ) = 0,

Vbs0 (τ) = −3
2
η
π1/2τ1/2

ρ1/2
0 (τ)

[
Γ (9/5)

Γ (23/10)
+

π1/2

2ρ1/2
0 (τ)

Γ (8/5)
Γ (21/10)

]
,

Π0 (τ) =
π1/2

2
ρ−1/2
0 (τ) , E0 (τ) =

8
√

π

3
Gv

ρ5/2
0 (τ) [1 + Vbs0 (τ)]

τ
;

• K̃κ0-vertex

ρκ (τ) = π−4/3G−2/3
c

(
1− ηGv

Gc

)−2/3

τ1/3, Kbsκ (τ) = 0,
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Figure 5.6: Fracture radius ρ vs time τ : Gv = 10−5, Gc = 10, η = 0.0, 0.25, 0.5. Here
fracture goes through K̃κ0-vertex

Vbsκ (τ) = −3
2
η
π1/2τ1/2

ρ1/2
κ (τ)

[
Γ (5/3)
Γ (13/6)

+
π

4ρ1/2
κ (τ)

]
,

Πκ (τ) =
π1/2

2
ρ−1/2

κ (τ) , Eκ (τ) =
8
√

π

3
Gv

ρ5/2
κ (τ) [1 + Vbsκ (τ)]

τ
;

• K̃σ0-vertex

ρσ (τ) = 2−1/2π−3/4G−1/2
c

(
1− ηGv

Gc

)−1/2

τ1/4, Kbsσ (τ) = 0,

Vbsσ (τ) = −3
4
η

πτ1/2

ρ1/2
σ (τ)

[
1 +

1

ρ1/2
σ (τ)

Γ (11/8)
Γ (15/8)

]
,

Πσ (τ) =
π1/2

2
ρ−1/2

σ (τ) , Eσ (τ) =
8
√

π

3
Gv

ρ5/2
σ (τ) [1 + Vbsσ (τ)]

τ
;

• K̃κ∞K̃σ∞-edge

ρ∞ (τ) =

[√
π + 2 (1− η) /Gc −

√
π

4

]2

, Π∞ (τ) =
π1/2

2
ρ−1/2
∞ (τ)
1− η

+
η

1− η
,

Vbs∞ (τ) = Kbs∞ (τ) = − 2√
π

ηρ1/2
∞ (τ) [1 + Π∞ (τ)] , E∞ (τ) =

8
√

π

3
Gv

ρ5/2
∞ (τ)

τ
.
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Figure 5.7: Fracturing fluid pressure Π vs time τ : Gv = 10−5, Gc = 10, η = 0.0, 0.25, 0.5.
Here fracture goes through K̃κ0-vertex

Here we have introduced the hydraulic fracturing efficiency E defined by E ≡ Vcrack/Vinject.

During the development of the numerical solution we encounter the following diffi-

culties: i) the problem is history dependent and ii) the leak-off and the backstress Green

function are numerical and singular. As a result, it is difficult to perform the spatial

integration of the backstress Green function in (5.15) and (5.16) as well as the temporal

integration (convolution) in (5.45), (5.46) and (5.44). To overcome these difficulties we

use remeshing and numerical decomposition of the backstress Green function into “phys-

ically meaningful” analytical functions. The implementation of these ideas is described

in Appendix C.

The results of the numerical simulations for different values of the parameters Gi are

presented in Figs 5.3-5.14. We show that, depending on the values of the parameters

Gi, the system can travel through different vertices, although the journey always has to

start at the K0-vertex and terminate at the K̃κ∞K̃σ∞-edge.
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Figure 5.8: Hydraulic fracturing efficiency E vs time τ : Gv = 10−5, Gc = 10, η =
0.0, 0.25, 0.5. Here fracture goes through K̃κ0-vertex

In some cases the propagation of the fracture terminates before it arrives to the

K̃κ∞K̃σ∞-edge (see Figs 5.9-5.14) . In these cases, the system, going through a diffusion-

dominated vertices, arrives to a point when the dilation of the poroelastic medium ∼ Vbs

is very large, such that the volume of the fracture becomes equal to zero. Substituting

the obtained above analytical expressions for Vbs and Kbs into Vcrack (τ) ∼ 1 + Vbs (τ)−

Kbs (τ) = 0 and solving it with respect to time τ one can easily estimate the fracture

closure time. Note the this estimate is based only on the total volume of fracture and it

does not say where the fracture will close. In reality though the fracture will rather switch

to a viscosity-dominated propagation regime then close. Indeed, from a point of view of

the lubrication theory, the fracture is just a channel for the fracturing fluid. Therefore

the decrease of the fracture opening leads to an increase of the pressure gradient of

the viscous fracturing fluid, which in turn leads to an increase of energy dissipation

associated with the fluid viscosity. This leads to the violation of the assumption of zero

fracturing fluid viscosity. Moreover the pressure profile of the fracturing fluid inside the
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Figure 5.9: Fracture radius ρ vs time τ : Gv = 10−15, Gc = 3× 10−11, η = 0.0, 0.5. Here
fracture goes through K̃σ0-vertex

fracture becomes to be strongly nonuniform, thus one can not use the results of the

auxiliary problem to model the poroelastic effects. As a result one has to use more

sophisticated models to study this situation.

5.6 Discussion

In the present chapter we have performed a detailed study of a penny-shaped fracture

driven by a zero viscosity fluid through a poroelastic medium. The main contribution of

this study is the incorporation of large scale 3D diffusion and related poroelastic effect

(backstress) into the theory of hydraulic fracturing. The study relies on scaling and

asymptotic analyses. In fact, we have shown that the problem under consideration has

six self-similar propagation regimes (see Section 5.4). In particular we have demonstrated

the existence of a stationary solution (K̃κ∞K̃σ∞-edge) when the fracture propagation

arrests. In this case the fracturing fluid injection is balanced by the 3D fluid leak-off.

This stationary solution in the case of zero backstress, η = 0, was originally obtained by
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Figure 5.10: Fracturing fluid pressure Π vs time τ : Gv = 10−15, Gc = 3 × 10−11,
η = 0.0, 0.5. Here fracture goes through K̃σ0-vertex

Mathias and Reeuwijk (2009).

Numerical simulations illustrate that poroelastic effects represented by the backstress

have significant influence on the propagation of a hydraulic fracture. Namely in the case

of 3D diffusion the backstress effect leads to a decrease of the fracture radius (see Figs

5.3 and 5.6) accompanied by an increase of the fracturing fluid pressure (see Figs 5.4

and 5.7). Moreover, the poroelastic effects can lead to premature closure of a fracture

propagating in a leak-off dominating regime with 1D diffusion (see the discussion at the

end of the previous section).

Let us perform some simple numerical estimates of the influence of the poroelastic

effects. Using data of typical high permeable reservoirs (see Chapter 7) one can conclude

that the fracture arrives into the K̃σ∞-vertex in just a few minutes which is very fast

compared to the treatment time. In the K̃σ∞-vertex the fracture radius is equal to R ≈

3.4 m and the net pressure is p− σ0 ≈ 7.4 MPa in the case of the low porosity reservoir

(LPR), wheres for the mean porosity reservoir (MPR) R ≈ 0.35 m and p − σ0 ≈ 7.2

MPa (see Table 7.1). If one does not take into account the poroelastic effect he would
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Figure 5.11: Hydraulic fracturing efficiency E vs time τ : Gv = 10−15, Gc = 3 × 10−11,
η = 0.0, 0.5. Here fracture goes through K̃σ0-vertex

arrive to R ≈ 4.4 m and p − σ0 ≈ 0.071 MPa in the LPR case, and R ≈ 0.44 m and

p− σ0 ≈ 0.71 MPa in the MPR case. One can see that the fracture radius decrease due

to the poroelastic effects is not so significant. At the same time the net pressure increase

is huge (100 times in the LPR case and 10 times in the MPR case).

In all our examples, the numerical simulation sweeps huge time ranges. Is it reason-

able from a practical point of view? Well, if one wants to get accurate solution one has

to have good, from a physical point of view, initial condition. In this research we use the

small-time asymptote (K0-vertex) as the initial condition. This force us to go to very

small initial times. This is one more inconvenient feature of the problem of hydraulic

fracturing. In practice though assessment of the part of the parametric space of the

fracture propagation can dramatically simplify the situation. Knowing this information

one can use the analytical vertex asymptotes for preliminary estimation, and then op-

timize a numerical algorithm. For example Figs 5.6-5.14 illustrate that one can use the

asymptotic solution of an intermediate vertex as the initial condition provided that the

transition time from the K0-vertex into this vertex is small compared to the treatment
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Figure 5.12: Fracture radius ρ vs time τ : Gv = 10−30, Gc = 10−10, η = 0.0, 0.5. Here
fracture goes through K̃κ0- and K̃σ0-vertices

time. In Chapter 7 we consider in details an example of production water reinjection.

We show there that the fracture propagation arrests within just a few minutes, whereas

the characteristic threatment time is of order of hundred days. Thus from a practical

point of view in this case one can simply use the analytical large-time asymptote to

design the treatment.

The technique developed in this chapter could be also applied to the problem of in situ

stress determination by hydraulic fracture (Detournay et al., 1989). In this application

the in situ stress determination relies on the interpretation of the fracture breakdown

and reopening fluid pressure as well as of the fracture closure pressure during the shut-in

phase of experiment. It is obvious that the poroelastic effects could lead to a significant

corrections into the stress measurements.
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Figure 5.13: Fracturing fluid pressure Π vs time τ : Gv = 10−30, Gc = 10−10, η = 0.0, 0.5.
Here fracture goes through K̃κ0- and K̃σ0-vertices

Figure 5.14: Hydraulic fracturing efficiency E vs time τ : Gv = 10−30, Gc = 10−10,
η = 0.0, 0.5. Here fracture goes through K̃κ0- and K̃σ0-vertices



Chapter 6

Fracture propagation: zero

toughness

6.1 Preamble

In this chapter, we study the propagation of a hydraulic fracture driven by a viscous

Newtonian fluid through a poroelastic medium with zero material toughness. In contrast

to the case analyzed in the previous chapter, we assume here that energy dissipation

associated with the cracking of the rock material is small compared to energy dissipation

associated with the viscous flow of the fracturing fluid. Similarly to the previous chapter

we neglect the low permeability cake build-up effect. One more restrictive assumption

of this chapter is that the net pressure p − σ0 is small compared to σ0 − p0. Thus,

from a diffusion point of view the fluid pressure p inside the fracture is uniform and

approximately equal to the confining stress, p ≈ σ0. As a result, the fluid leak-off

process and the associated backstess effect can be studied in terms of the decompositions

introduced in the previous chapters [see Chapters 4 and 5].

Some particular cases of our problem were studied by Savitski and Detournay (2002)

128
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and Madyarova and Detournay (2008). The former work dealt with the impermeable

case, whereas the latter one adopted the Carter’s leak-off model to study the permeable

case. The main contribution of this chapter is the introduction of 3D leak-off and the

backstress effect into the theory of hydraulic fracturing. The main objective of the

problem is to define the evolution of the fracture radius R (t), fracture opening profile

w (r, t), fluid displacement function profile v (r, t), and fracturing fluid pressure profile

p (r, t).

Although, we include the backstress effect into the analytical consideration, we are

not able to incorporate this effect into the numerical simulations. This is due to the

strong singularities of the backstress Green function Ξ (ξ, τ) with respect to space and

time (see Chapter 4).

6.2 Mathematical model

6.2.1 Dimensional formulation

Substitution of (2.2) into (2.1) yields

∂ (w + υ)
∂t

=
1

µ′r

∂

∂r

(
rw3 ∂p

∂r

)
, (6.1)

where µ′ ≡ 12µ. The boundary conditions are given by [see (2.3)]

w (R (t) , t) = υ (R (t) , t) = lim
r→R(r)

w3 (r, t)
∂p (r, t)

∂r
= 0,

− 2π

µ′
lim
r→0

rw3 (r, t)
∂p (r, t)

∂r
= Q0, (6.2)

where Q0 is the fracturing fluid injection rate.

It is also useful to write down the global volume balance equation, which can be

obtained by the integration of the lubrication equation (6.1) over space and time

Q0t = 2π

∫ R(t)

0
w (r, t) rdr + 2π

∫ R(t)

0
υ (r, t) rdr, (6.3)
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where we have used our boundary conditions (6.2).

The connection between the fracture opening w and the fracturing fluid pressure p

is given by the elasticity equation (2.7)

w (r, t) =
8
π

R (t)
E′

∫ 1

0
{p [sR (t) , t] + σb [sR (t) , t]− σ0}G

[
r

R (t)
, s

]
sds, (6.4)

where E′ ≡ E/
(
1− ν2

)
is the plane strain modulus, E is the Young’s modulus, ν is the

Poisson’s ration, σb (r, t) is the backstress due to the leak-off, and G (ξ, s) is the elasticity

kernel,

G (ξ, s) =






1
ξ F

(
arcsin

√
1−ξ2

1−s2 , s2

ξ2

)
, ξ > s

1
sF

(
arcsin

√
1−s2

1−ξ2 , ξ2

s2

)
, ξ < s

, (6.5)

F (φ, m) is the incomplete elliptic integral of the first kind (Abramowitz and Stegun,

1972).

The leak-off displacement function υ and the backstress σb are given by [cf. (5.5),

(5.6)]

υ (r, t) = (σ0 − p0)
∫ t

0
u [R (s) , r, t− s] ds, (6.6)

σb (r, t) = (σ0 − p0)
∫ t

0
Sb [R (s) , r, t− s] ds, (6.7)

where u (R, r, t) is the volume of the fracturing fluid that has escaped through a unit

area around a point r from a fracture of size R at an elapsed time t after a uniform unit

impulse of pressure has been applied (see Chapter 4), and Sb (R, r, t) is the generated

backstress.

Simple scaling analysis reveals (see Chapter 4)

u (R, r, t) =
SR

TR
ψ

(
r

R
,

t

TR

)
, Sb (R, r, t) =

η

TR
Ξ

(
r

R
,

t

TR

)
, TR =

R2

4c
, (6.8)

where S is the storage coefficient, c is the diffusion coefficient, and η is the poroelastic

stress modulus.
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6.2.2 Dimensionless formulation

Here we introduce the following scaling [cf. (5.9)]

r = R (t) ξ, R (t) = L (t) γ (t) , υ (r, t) = U (t) Υ (ξ, t) , σb (r, t) = ε (t)E′Σ (ξ, t) ,

p (r, t)− σ0 = ε (t)E′Π (ξ, t) , w (r, t) = ε (t)L (t) Ω (ξ, t) . (6.9)

where γ (t) ∼ 1 is the dimensionless radius, Π (ξ, t) ∼ 1 is the dimensionless net pres-

sure, Ω (ξ, t) ∼ 1 is the dimensionless opening, Υ (ξ, t) ∼ 1 is the dimensionless leak-off

displacement function, Σ (ξ, t) is the dimensionless backstress, L (t) ∼ R (t) is the char-

acteristic size of the fracture, U (t) ∼ υ (r, t) is the characteristic value of the fluid

displacement function, and ε (t) is a small time-dependent parameter. Note that in con-

trast to the previous chapter here we have three undefined time-dependent parameters

L (t), U (t), and ε (t), which we will use to adjust our scaling to a given propagation

regime (see Chapter 5).

In terms of the introduced above scaling (6.9) our governing equations read

• Lubrication equation (6.1)

Gv

[
Ω̇t +

(
ε̇t

ε
+

L̇t

L

)
Ω−

(
L̇t

L
+

γ̇t

γ

)
ξ
∂Ω
∂ξ

]
+

+ Gc

[
Υ̇t +

U̇ t

U
Υ−

(
L̇t

L
+

γ̇t

γ

)
ξ
∂Υ
∂ξ

]
=
G−1

µ

γ2ξ

∂

∂ξ

(
ξΩ3 ∂Π

∂ξ

)
, (6.10)

• Boundary condition (6.2)

− 2π lim
ξ→0

ξΩ3 ∂Π
∂ξ

= Gµ, (6.11)

• Global volume balance equation (6.3)

1 = Gv2πγ2
∫ 1

0
Ω (ξ, t) ξdξ + Gc2πγ2

∫ 1

0
Υ (ξ, t) ξdξ, (6.12)
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• Elasticity equation (6.4)

Ω (ξ, t) =
8γ

π

∫ 1

0
[Π (ζ, t) + Σ (ζ, t)]G (ξ, ζ) ζdζ. (6.13)

• Leak-off displacement equation (6.6)

Υ (ξ, t) =
GdGS

γ (t)

∫ 1

0

L (t) γ (t)
L (ts) γ (ts)

ψ

[
L (t) γ (t)

L (ts) γ (ts)
ξ,Gd (t)

L2 (t)
L2 (ts)

1− s

γ2 (ts)

]
ds, (6.14)

• Backstress equation (6.7)

Σ (ξ, t) =
Gη

γ2 (t)
GcGdGS

Gv

∫ 1

0

[
L (t) γ (t)

L (ts) γ (ts)

]2

×

× Ξ
[

L (t) γ (t)
L (ts) γ (ts)

ξ,Gd (t)
L2 (t)
L2 (ts)

1− s

γ2 (ts)

]
ds, (6.15)

One can see that our dimensionless formulation depends on the following six time-

dependent dimnesionless groups:

• Viscosity group

Gµ (t) =
µ′Q0

ε4 (t)E′L3 (t)
, (6.16)

which characterizes energy dissipation associated with the viscosity of the fractur-

ing fluid. In the present chapter viscosity is the only dissipation mechanism there-

fore it is reasonable to put this dimensionless group to be equal to 1, Gµ (t) = 1.

As a result

ε (t) =
(

µ′Q0

E′

)1/4

L−3/4 (t) ; (6.17)

• Storage group

Gv (t) =
ε (t)L3 (t)

Q0t
=

(
µ′

Q3
0E

′

)1/4 L9/4 (t)
t

, (6.18)

which is proportional to the fraction of the injected fluid volume stored in the

fracture;
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• Leak-off group

Gc (t) =
U (t) L2 (t)

Q0t
, (6.19)

which characterize the amount of the fluid that has leaked into the formation;

• Diffusion group

Gd (t) =
c′t

L2 (t)
, c′ ≡ 4c, (6.20)

which is related to the diffusion process with
√
Gd proportional to the ratio of the

diffusion length scale to the fracture size. Thus this dimensionless group is small,

Gd ! 1, in the case of 1D diffusion and large in the case of 3D diffusion, Gd " 1;

• Filtrate storage group

GS (t) =
S (σ0 − p0)L (t)

U (t)
, (6.21)

which characterizes storage of the filtrate inside the poroelastic medium;

• Backstress group

Gη =
η

SE′
, (6.22)

which represents the poroelastic effect. In the previous chapter (see Section 5.4)

we have shown that this group is smaller than 1/4, Gη < 1/4.

The aim of our study is to define the dimensionless fracture radius γ (t), fracture opening

profile Ω (ξ, t), fluid displacement function profile Υ (ξ, t), and fracturing fluid pressure

profile Π (ξ, t).

6.3 Propagation regimes

The problem under study has three propagation regimes. Therefore it is convenient to

represent the fracture propagation by a trajectory curve lying inside the triangle shown

in Fig. 6.1 where
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Figure 6.1: Parametric space

• M -vertex represents the storage-dominated regime during which most of the in-

jected fluid is stored inside the fracture;

• M̃0-vertex is related to the leak-off-dominated regime with 1D diffusion;

• M̃∞-vertex is the pseudo steady-state (3D) diffusion version of the M̃0-vertex.

We summarize the definitions of different propagation regimes in terms of the di-

mensionless groups (6.18)-(6.22) in Table 6.1,where we also introduce the scalings that

are inherent to each of these propagation regimes [see Chapter 5]. Here the different

scalings can be introduced by fixing the length scale L (t) and the fluid displacement

scaling parameter U (t). The transition times between different propagation regimes are

given by
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ver- definition scaling
tex Gd Gη Gv/Gc definition L (t) U (t)

M0 – – " GSGd

min
h
G1/2

d ,1
i Gv = 1

(
Q3

0E′

µ′ t4
)1/9

–

M̃0 ! 1 0 ! GSG1/2
d Gc = 1,

GSG1/2
d = 1

[
Q0t1/2

√
c′S(σ0−p0)

]1/2 √
c′S (σ0 − p0) t1/2

M̃∞ " 1 – ! GSGd Gc = 1,
GSGd = 1

Q0
c′S(σ0−p0)

[c′S(σ0−p0)]2

Q0
t

Table 6.1: Propagation regimes and corresponding scalings

• MM̃0-edge

tMM̃0
=

[√
c′S (σ0 − p0)

]−18/7
(

µ′2Q3
0

E′2

)2/7

;

• MM̃∞-edge

tMM̃∞
=

[
c′S (σ0 − p0)

]−9/4
(

µ′Q6
0

E′

)1/4

;

• M̃0M̃∞-edge

tM̃0M̃∞
= c′−3

[
Q0

S (σ0 − p0)

]2

.

The case of an impermeable medium studied by Savitski and Detournay (2002) cor-

responds to our M -vertex, whereas the case of the Carter’s leak-off model studied by

Madyarova and Detournay (2008) corresponds to the MM̃0-edge.

The rest of the chapter is dedicated to a detailed study of the propagation regimes

and the development of an numerical scheme for a transient solution.

6.3.1 M-vertex: storage-dominated regime

In this case in terms of the intrinsic scaling [see Table 6.1] the lubrication equation (6.23)

reads

1
9
Ω− 4

9
ξ
∂Ω
∂ξ

+O
(
GcGSGd max

[
G−1/2

d , 1
])

=
1

γ2ξ

∂

∂ξ

(
ξΩ3 ∂Π

∂ξ

)
. (6.23)
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Since Σ ∼ GηO
(
GcGSGd max

[
G−1/2

d , 1
])
! 1 ∼ Π, the backstress effect is negligible,and

the elasticity equation (6.13) then reads

Ω (ξ, t) =
8γ

π

∫ 1

0
Π (ζ, t) G (ξ, ζ) ζdζ. (6.24)

Equations (6.23), (6.24) together with the boundary condition (6.11) were solved by

Savitski and Detournay (2002). Below we present only the final result

ΠM (ξ) =
∞∑

i=1

AMiΠ∗Mi (ξ) + BMΠ∗∗ (ξ) ,

ΩM (ξ) = γM

[ ∞∑

i=1

CMiΩ∗Mi (ξ) + BMΩ∗∗ (ξ)

]
. (6.25)

Here

Π∗∗ (ξ) = − ln ξ + ln 2− 1, Ω∗∗ (ξ) =
8
π

(
1− ξ2

)1/2 − 8
π

ξ arccos ξ,

Π∗Mi (ξ) = −Π̄∗Mi (ξ) +
∫ 1

0

Π̄∗Mi (ζ)√
1− ζ2

ζdζ,

Π̄∗Mi (ξ) =
(1− ξ)−1/3

h1/2
i−1 (4/3, 2)

Gi−1

(
4
3
, 2, ξ

)
, Ω∗Mi (ξ) =

(1− ξ)2/3

h1/2
i−1 (10/3, 2)

Gi−1

(
10
3

, 2, ξ

)
,

where Gi (p, k, ξ) is the Jacobi polynomial (Abramowitz and Stegun, 1972)

Gi (p, k, ξ) =
Γ (q + i)
Γ (p + 2i)

i∑

j=0

(−1)j i!
j! (i− j)!

Γ (p + 2i− j)
Γ (q + i− j)

ξi−j ,

hi (p, q) =
i!Γ (i + q) Γ (i + p) Γ (i + p− q + 1)

(2i + p) Γ2 (2i + p)
.

The coefficients AMi, BM , and CMi as well as the dimensionless fracture radius γM

were computed numerically. In the case of truncated sums in (6.25) (four terms for

the pressure and five terms for the opening) Savitski and Detournay (2002) found the

following numbers

γM = 0.697572, AM1 = 0.338609, AM2 = 0.011333, AM3 = 0.00235756,

AM4 = 0.000164632, BM = 0.0932001, CM1 = 0.678295, CM2 = 0.0686402,

CM3 = 0.00019302, CM4 = 0.000886672, CM5 = 0.000221234.
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6.3.2 M̃0-vertex: leak-off-dominated regime with 1D diffusion, Gd ! 1

Substitution of the small-time asymptote of the leak-off Green function ψ, given by

(4.33)

ψ0 (ξ, τ) =
1√
πτ

1 + sgn (1− ξ)
2

, (6.26)

into the expression for the dimensionless fluid displacement function Υ (6.14) yields

Υ (ξ, t) =
2√
π
GSG1/2

d

√
1− θ (ξ, t), (6.27)

where θ (ξ, t) = t0 [L (t) γ (t) ξ] /t, and t0 (r) is the time at which the crack has reached

point r.

In the M̃0-scaling [see Table 6.1] the backstress stress equation (6.15) reads

Σ (ξ, t) =
Gη

γ2 (t)
1
Gv

∫ 1

0

L (t) γ (t)
L (ts) γ (ts)

Ξ(0)
ξ

[
L (t) γ (t)

L (ts) γ (ts)
ξ

]
ds. (6.28)

Here Ξ(0)
ξ (ξ) ≡ τ1/2Ξ0 (ξ, τ) [see (4.35)]

Ξ(0)
ξ (ξ) = − 1

π3/2

{
(1− ξ)−1 E

[
4ξ

(1 + ξ)2

]
+ (1 + ξ)−1 K

[
4ξ

(1 + ξ)2

]}
, (6.29)

where K (x) and E (x) are the complete elliptic integrals of the first and second kind

respectively (Abramowitz and Stegun, 1972).

We see that Σ ∼ Gη/Gv, whereas by the scaling definition Gv ! 1 [see Table 6.1].

According to the previous chapter the fracture volume change due to the poroelas-

tic material dilation V bs
crack is related to the leak-off volume Vleak by V bs

crack/Vleak =

−4Gη. At the same time the fracture volume should be positive, Vcrack > 0 (recall

that
(
Vcrack − V bs

crack

)
/Vleak ∼ Gv). This means that in the case of leak-off-domination

with 1D diffusion when Gv ! 1, a self-similar solution exists only if Gη = 0. Hereafter

in this subsection we assume that Gη = 0, in other words the backstress is equal to zero,

Σ (ξ, t) = 0.
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Since in the inherent scaling the dimensionless fracture radius γ does not depend on

time, then θ = ξ4, and the global volume balance equation (6.12) yields,

γM̃0
=

21/2

π3/4
. (6.30)

The lubrication equation (6.35) transforms to

arccos
(
ξ2

)
+O (Gv) = −π2ξΩ3 ∂Π

∂ξ
, (6.31)

This equation together with the boundary condition (6.11) and the elasticity equation

(6.13) (where we assume Σ =0 ) gives the full set of the governing equations for the

leak-off-dominated regime with 1D diffusion. Similarly to the storage-dominated regime

we solve this set of the governing equations using the procedure developed by Savitski

and Detournay (2002)

ΠM̃0
(ξ) =

∞∑

i=1

AM̃0iΠ
∗
M̃0i

(ξ) + BM̃0
Π∗∗ (ξ) ,

ΩM̃0
(ξ) =

∞∑

i=1

CM̃0iΩ
∗
M̃0i

(ξ) + BM̃0
γM̃0

Ω∗∗ (ξ) . (6.32)

Here

Π∗
M̃0i

(ξ) = −Π̄∗
M̃0i

(ξ) +
∫ 1

0

Π̄∗
M̃0i

(ζ)
√

1− ζ2
ζdζ,

Π̄∗
M̃0i

(ξ) =
(1− ξ)−3/8

h1/2
i−1 (5/4, 2)

Gi−1

(
5
4
, 2, ξ

)
, Ω∗

M̃0i
(ξ) =

(1− ξ)5/8

h1/2
i−1 (13/4, 2)

Gi−1

(
13
4

, 2, ξ

)
,

AM̃01 = 0.273806, AM̃02 = 0.0231315, AM̃03 = 0.00216872,

AM̃04 = 0.000211575, BM̃0
= 0.107441, CM̃01 = 0.454113, CM̃02 = 0.0409774,

CM̃03 = −0.0009154, CM̃04 = 0.00036471, CM̃05 = 0.000052578.
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6.3.3 M̃∞-vertex: leak-off-dominated regime with pseudo steady-state

(3D) diffusion, Gd " 1

Substitution of the large-time asymptote of the leak-off Green function ψ, given by (4.50)

ψ∞ (ξ, τ) =
1

π
√

1− ξ2

1 + sgn (1− ξ)
2

,

into the expression for the dimensionless fluid displacement function Υ (6.14) yields

ΥM̃∞
=

1
πγM̃∞

1√
1− ξ2

, (6.33)

where we have used the inherent scaling [see Table 6.1].

Substitution of this equation into the global volume balance equation (6.12) and into

the lubrication equation (6.10) yields

γM̃∞
= 1/2, (6.34)

√
1− ξ2 +O (Gv) = −2πξΩ3 ∂Π

∂ξ
. (6.35)

The backstress equation (6.15) reads

ΣM̃∞
= − Gη

GdGv
, (6.36)

where we have used the large-time asymptote of the backstress Green function Ξ, given

by (4.52)

Ξ∞ (ξ, τ) = −δ (τ)






1, ξ ≤ 1

2
π arctan

(
1√

ξ2−1

)
, ξ > 1

. (6.37)

The solution of (6.35), (6.11), (6.13) is given by

ΠM̃∞
(ξ) =

∞∑

i=1

AM̃∞iΠ
∗
M̃0i

(ξ) + BM̃∞
Π∗∗ (ξ)− ΣM̃∞

,

ΩM̃∞
(ξ) =

∞∑

i=1

CM̃∞iΩ
∗
M̃∞i

(ξ) + BM̃∞
γM̃∞

Ω∗∗ (ξ) . (6.38)
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Here

Π∗
M̃∞i

(ξ) = −Π̄∗
M̃∞i

(ξ) +
∫ 1

0

Π̄∗
M̃∞i

(ζ)
√

1− ζ2
ζdζ,

Π̄∗
M̃∞i

(ξ) =
(1− ξ)−3/8

h1/2
i−1 (5/4, 2)

Gi−1

(
5
4
, 2, ξ

)
, Ω∗

M̃∞i
(ξ) =

(1− ξ)5/8

h1/2
i−1 (13/4, 2)

Gi−1

(
13
4

, 2, ξ

)
,

AM̃∞1 = 0.323853, AM̃∞2 = 0.0242777, AM̃∞3 = 0.00271007,

AM̃∞4 = 0.000219905, BM̃∞
= 0.118428, CM̃∞1 = 0.444079, CM̃∞2 = 0.0405383,

CM̃∞3 = −0.000785927, CM̃∞4 = 0.000366025, CM̃∞5 = 0.0000601663.

Figure 6.2: Fracture radius γ vs time τ : Gv = 1

6.4 Transient solution

To obtain a general trajectory of the system starting at the M -vertex and ending at

the M̃∞-vertex, we developped an implicit numerical algorithm which solves our set of

governing equations (6.10)-(6.15). From a numerical point of view it is convenient to

introduce a new, time-independent scaling which is based on the leak-off-dominated,
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Figure 6.3: Fracture opening at the injection point Ω (0) vs time τ : Gv = 1

pseudo steady-state diffusion scaling

γ (τ) =
R (t)
LM̃∞

, τ =
t

T
, U = S (σ0 − p0)LM̃∞

, T =
L2

M̃∞

c′
. (6.39)

The governing equations (6.10)-(6.15) transform to

• Lubrication equation (6.10)

Gv

(
Ω̇− γ̇

γ
ξ
∂Ω
∂ξ

)
+

(
Υ̇− γ̇

γ
ξ
∂Υ
∂ξ

)
=

1
γ2ξ

∂

∂ξ

(
ξΩ3 ∂Π

∂ξ

)
, (6.40)

• Boundary condition (6.11)

− 2π lim
ξ→0

ξΩ3 ∂Π
∂ξ

= 1, (6.41)

• Global volume balance equation (6.12)

τ = Gv2πγ2
∫ 1

0
Ω (ξ, τ) ξdξ + 2πγ2

∫ 1

0
Υ (ξ, τ) ξdξ, (6.42)

• Elasticity equation (6.13)

Ω (ξ, τ) =
8γ

π

∫ 1

0
[Π (ζ, τ) + Σ (ζ, τ)]G (ξ, ζ) ζdζ. (6.43)
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Figure 6.4: Fracturing fluid displacement function at the injection point Υ (0) vs time
τ : Gv = 1

• Leak-off displacement equation (6.28)

Υ (ξ, τ) =
∫ τ

0
γ−1 (τ̄) ψ

[
γ (τ)
γ (τ̄)

ξ,
τ − τ̄

γ2 (τ̄)

]
dτ̄ , (6.44)

• Backstress equation (6.15)

Σ (ξ, τ) =
Gη

Gv

∫ τ

0
γ−2 (τ̄) Ξ

[
γ (τ)
γ (τ̄)

ξ,
τ − τ̄

γ2 (τ̄)

]
dτ̄ , (6.45)

where Gv = Gv

(
t = T, L = LM̃∞

)
.

In this scaling the found above asymptotes have the following form:

• M -vertex:

γ0 = G−4/9
v τ4/9γM , Ω0 = G−1/9

v τ1/9ΩM ,

Π0 = G1/3
v τ−1/3ΠM , Υ(1D)

0 =
2τ1/2

π1/2

√
1− ξ9/4,

Υ(3D)
0 =

9G4/9
v

8πγM
τ5/9ξ5/4

[
π1/2Γ (−5/8)

Γ (−1/8)
−B

(
ξ2,−5/8, 1/2

)
]

,
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Figure 6.5: Fracture radius γ vs time τ : Gv = 10−10

• M̃0-vertex:

γ̃0 = τ1/4γM̃0
, Ω̃0 = τ1/16ΩM̃0

,

Π̃0 = τ−3/16ΠM̃0
, Υ̃0 =

2τ1/2

π1/2

√
1− ξ4,

• M̃∞-vertex:

γ̃∞ = γM̃∞
, Ω̃∞ = ΩM̃∞

, Π̃∞ = ΠM̃∞
, Υ̃∞ =

2τ

π

1√
1− ξ2

.

Here B(x, p, q) is the incomplete Euler beta function.

As indicated earlier at the beginning of this chapter we are not able to incorporate

the backstress effect into the numerical scheme. This is the result of very complicated

structure of the backstress Green function Ξ (ξ, τ). In fact, this Green function has very

strong singularity at small times, Ξ0 (ξ, τ) ∼ τ−1/2/ (1− ξ) [see (6.29)], whereas at large

times it behaves as the Dirac delta function, Ξ∞ (ξ, τ) ∼ δ (τ) [see (6.37)]. During the

numerical simulations we assume that Gη = 0. As a result the backstress is equal to

zero, Σ (ξ, τ) = 0.
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Figure 6.6: Fracture opening at the injection point Ω (0) vs time τ : Gv = 10−10

In contrast to the backstress Green function Ξ (ξ, τ), the leak-off Green function

u (ξ, τ) has slightly weaker singularities [see (6.26) and (6.33)]. This fact allows us to

perform numerical integration of the leak-off displacement equation (6.44).

One more challenge here is the absence of a tip asymptote. As it was shown in Chap-

ter 3, where we have studied the propagation of a semi-infinite fracture, the standard

approach to model the tip region by a semi-infinite fracture is not applicable to the case

of large scale 3D diffusion. In fact this approach can be used only at early times when the

diffusion length scale is small compared to the fracture size, i.e.,
√

ct/R (t)! 1. At the

same time, the solution of the problem in the tip region is always singular whether the

diffusion length scale is small or large. This means that in order to develop an efficient

numerical scheme one has to have an appropriate tip asymptote.

Looking at the reduced lubrication equation in different scaling (6.23), (6.31), and

(6.35) one can observe that all these equations have the same structure in the tip region.

Moreover, this structure is similar to the one of the classical Carter’s leak-off model.
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Figure 6.7: Fracturing fluid displacement function at the injection point Υ (0) vs time
τ : Gv = 10−10

During the numerical simulations we assume that the structure of the lubrication equa-

tion in the tip region is always of this simple form. The implementation of this idea is

described in Appendix D.3.

The numerical algorithm itself is based on the control volume method adopted to

the fracture propagation problem by Kovalyshen and Detournay (2009). The details of

the algorithm are described in Appendix D.

The results of the numerical simulations are shown in Figs 6.2-6.19. The simulations

were conducted for different values of the dimensionless parameter Gv. We see that in

all these cases the trajectory of the system starts at the M -vertex and arrives to the

M̃∞-vertex. Sometimes the system can go through the third vertex M̃0 (see Figs 6.5-

6.16). We would like to note here that, strictly speaking, the M -vertex can be split into

two limiting cases: i) the case of 1D diffusion, and ii) the case of pseudo steady-state

(3D) diffusion in which the fracture growth is so slow that the pore pressure around it

is always in equilibrium. The difference between these two cases can be observed in the

fracturing fluid displacement functions’ time dependence and spacial distribution (see
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Figure 6.8: Fracture opening profile: M -vertex, Gv = 10−10

Figs 6.7, 6.10, 6.18, 6.19).

6.5 Summary of the chapter results

In this chapter we have performed a detailed study of the propagation of a penny-shaped

hydraulic fracture driven by a viscous Newtonian fluid through a poroelastic medium

with zero toughness. The study relies on scaling and asymptotic analyses. In fact, we

have shown that the problem has three self-similar propagation regimes (see Section 6.3).

We have found semi-analytical solutions for each of these propagation regimes. Also

we have developed a numerical algorithm, which is able to build a transient solution

connecting these asymptotes.
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Figure 6.9: Fracturing fluid pressure profile: M -vertex, Gv = 10−10

Figure 6.10: Fracturing fluid displacement function profile: M -vertex, 1D diffusion,
Gv = 10−10
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Figure 6.11: Fracture opening profile: M̃0-vertex, Gv = 10−10

Figure 6.12: Fracturing fluid pressure profile: M̃0-vertex, Gv = 10−10
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Figure 6.13: Fracturing fluid displacement function profile: M̃0-vertex, Gv = 10−10

Figure 6.14: Fracture opening profile: M̃∞-vertex, Gv = 10−10
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Figure 6.15: Fracturing fluid pressure profile: M̃∞-vertex, Gv = 10−10

Figure 6.16: Fracturing fluid displacement function profile: M̃∞-vertex, Gv = 10−10
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Figure 6.17: Fracture radius γ vs time τ : Gv = 106

Figure 6.18: Fracturing fluid displacement function at the injection point Υ (0) vs time
τ : Gv = 106
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Figure 6.19: Fracturing fluid displacement function profile: M -vertex, 3D diffusion,
Gv = 106



Chapter 7

Conclusions

7.1 Main results

During the course of this research we have studied the propagation of a penny-shaped hy-

draulic fracture within a poroelastic medium. We put the emphasis on the investigation

of the 3D diffusion and related poroelastic effects. Instead of developing a straightfor-

ward numerical solution of the general problem as was done for example by Boone and

Ingraffea (1990) and Boone et al. (1991), we aimed at grasping a physical understanding

of the processes under consideration using simplified models. In this study, we used scal-

ing and asymptotic analyses adopted to the hydraulic fracturing problem by Detournay

(2004).

We believe that the present research is the first rigorous study on the influence of

large scale diffusion together with the associated poroelastic effects on the propagation

of a hydraulic fracture.

The problem of the fluid fracture propagation is challenging, in particular due to the

singular behaviour of the solution at the moving front. Usually in order to undestand

this behaviour, the tip region is modeled by a semi-infinite fracture propagating at

153
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a constant velocity [see Desroches et al. (1994); Lenoach (1995); Carter et al. (2000);

Detournay et al. (2002); Garagash and Detournay (2005), and Garagash et al. (2009)]. As

a result, the terms “tip region” and “semi-infinite fracture” are often used interchangeably,

nowadays.

We started our research by studying the propagation of a semi-infinite fracture. We

have shown that the semi-infinite model and the tip region are equivalent only at early

times R "
√

ct, when the characteristic diffusion length scale
√

ct is small compared

to the fracture size R. Assuming that this criterion is satisfied, we have found a semi-

analytical solution for this problem (see Section 3). In particular we have shown that the

far-field solution can be described by the classical Carter’s leak-off model. Additionally

we have shown that if the confining stress σ0 is large compared to the far-field pore

pressure p0, σ0 " p0, then the solution of the problem is of the same form as in the

Carter’s leak-off model. We would like to stress that in this case the diffusion is not

necessarily one dimensional.

In Chapter 4 we have studied the so-called auxiliary problem, which consists in the

determination of a poroelastic medium response to a unit impulse of pressure applied

from inside of a stationary penny-shaped fracture of radius R. As a result we have defined

the fluid exchange rates between the fracture and the medium as well as the generated

backstress, which embodies the response of the poroelastic medium to the change in the

pore pressure field caused by the pressure pulse in the fracture. The solution to the

auxiliary problem is a key element of this research as it helps significantly simplify the

formulation and treatment of the hydraulic fracture propagation problem.

We then developed the solution of the propagation problem. We restricted our-

selves to the cases of toughness-dominated regimes (Chapter 5) and viscosity-dominated

regimes with σ0 " p0 (Chapter 6). We have shown that compared to the classical
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case with the Carter’s leak-off (Adachi and Detournay, 2008; Madyarova and Detour-

nay, 2008), the problem under consideration has a series of stationary vertices when

the fracture does not propagate. These vertices exist only due to well developed 3D

diffusion.

7.2 Practical applications

Let us consider the results from an application point of view. In the Table 7.1 we list

parameters of a production water re-injection (Longuemare et al., 2001).

low porosity reservoir
(LPR)

mean porosity reservoir
(MPR)

porosity φ (%) 10 20
permeability k (md) 10 100
Young’s modulus E (GPa) 30 15
Poisson’s ratio ν 0.2 0.25
rock toughness KIc

(MPa ·m1/2)
1.0

water bulk modulus Kf (GPa) 2.2
water viscosity µ (mPa · s) 1.0
Biot coefficient α 0.6
diffusion coefficient c (m2/s) 0.212 1.04
storage coefficient S (Pa−1) 4.65× 10−11 9.49× 10−11

poroelastic stress modulus η 0.225 0.2
reservoir thickness H (m) 50 5
confining stress σ0 (MPa) 55
initial pore pressure p0 (MPa) 30
injection rate Q0 (m3/day) 750
treatment time T (days) 100

Table 7.1: Characteristic parameters during production water re-injection (Longuemare
et al., 2001)

Here, in order to calculate values for S and c, we have assumed that Kf/E ! 1 and

have used equations provided by Detournay and Cheng (1993).

To characterize the propagation of a fracture we compute the transition times, found
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current possible transitions vertex
vertex vertex transition time LPR, sec MPR, sec choice

Mµ K0 tMµK0 =
√

µ′5Q3
0E′13

K18
Ic

2.1× 106 2.7× 104

M tMµM = µ′E′2

(σ0−p0)3 7.5×10−4 2.0× 10−4

M̃µ0 tMµM̃µ0
= Q6

0
c′9S18µ′2E′16 1.5×1010 1.1× 103

M̃µ∞ tMµM̃µ∞
= Q6

0
c′9S9µ′2E′7 4.4×1011 4.7× 104 M

M K0 tMK0 =
√

µ′5Q3
0E′13

K18
Ic

2.1× 106 2.7× 104

M̃0 tMM̃0
=

1

[
√

c′S(σ0−p0)]18/7

(
µ′2Q3

0
E′2

)2/7

5.9×10−2 1.8× 10−3

M̃∞ tMM̃∞
= 1

[c′S(σ0−p0)]9/4

(
µ′Q6

0
E′

)1/4
3.7 2.4× 10−2 M̃0

M̃0 K̃σ0 tMK̃σ0
= c′S2(σ0−p0)2µ′4Q2

0E′12

K16
Ic

1.2×1012 1010

M̃∞ tM̃0M̃∞
= c′−3

[
Q0

S(σ0−p0)

]2
91.1 0.19 M̃∞

Table 7.2: Crack propagation

in the present research. To describe the transitions between the viscosity- and toughness-

dominated regimes we introduce the following dimensionless group [known as the dimen-

sionless viscosity (Savitski and Detournay, 2002)]

Gm (t) =
µ′Q0E′3

K4
IcL (t)

, (7.1)

where L (t) is the characteristic fracture size. If the fracture propagates in a viscosity-

dominated regime, then Gm (t) " 1. In the case of toughness domination we have

Gm (t) ! 1. Using this property, one can easily estimate transition times between dif-

ferent viscosity- and toughness-dominated regimes. For the storage-dominated regimes,

for example, the transition time from the M -vertex into the K0-vertex can be estimated

after one substitutes L (t) for the M -vertex, see Table 6.1, into (7.1).

Also, during the examination of the fracture propagation through a rock with zero

toughness (see Chapter 6), we assumed that p− σ0 ! σ0 − p0. In general, on can have
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a situation whenthis assumption is not applicable. In order to study validity of this

assumption we introduce the following dimensionless group

Gµ (t) ! p (t)− σ0

σ0 − p0
∼ E′

σ0 − p0

(
µ′Q0

E′

)1/4

L−3/4 (t) , (7.2)

where the subscript µ indicates that the difference p− σ0 occurs due to the viscous flow

of the fracturing fluid. [We believe that there should not be any confusion with the

dimensionless group Gµ introduced by (6.16).] To derive (7.2) we used the definition of

the viscosity-dominated scaling (6.9), (6.18)-(6.22). It is clear that if Gµ (t) ! 1 then

the assumption p− σ0 ! σ0 − p0 is quite accurate.

The results of the analysis of the fracture propagation are presented in Table 7.2.

Obviously, at the beginning of the fracture propagation, when the aperture is very small,

the viscous flow of the fracturing fluid leads to large fluid pressure p, p−σ0 ! σ0−p0. We

denote this storage-dominated regime by Mµ. We see that the fluid pressure decreases

quite rapidly and the system moves to the M -vertex. Note that the vertices M̃µ0 and

M̃µ∞ are analogous to K̃κ0 and K̃κ∞ in the sense that these are leak-off-dominated

regimes in the case of 1D and 3D diffusion respectively with high fracturing fluid pressure

p, p−σ0 " σ0−p0, generated by the viscous flow. Recall that in the case of the K̃κ0- and

K̃κ∞-vertices this high pressure is due to the rock toughness. To calculate the transition

times tMµM̃µ0
and tMµM̃µ∞

we follow the general procedure of calculating the transition

times (see Section 5.4). Namely, we introduce the scalings GµGSG1/2
d = 1 and Gc = 1 for

the M̃µ0-vertex and GµGSGd = 1 and Gc = 1 for the M̃µ∞-vertex (cf. Table 6.1). Then,

for each scaling we define the length scale L (t) and estimate the transition times using

the inequality Gv ! 1.

We would like to stress that in the present example all time scales are well separated.

As a result, the fracture follows the edges with the shortest transition time passing

through the M̃0-vertex and ending up at the M̃∞-vertex. Note that at the M̃∞-vertex

the dimensionless groups Gm and Gµ are equal to Gm = 3.6 × 102 and Gµ = 5.9 × 10−2
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in the case of the low porosity reservoir, and Gm = 4.9× 102 and Gµ = 0.2 for the mean

porosity reservoir. Therefore our model is still applicable there.

We see that the fracture almost immediately reaches its steady state. This occurs

within a few minutes compared to the 100 day length of the total treatment time. From

a modeling point of view this means that in order to build a more general (e.g. case

of general fracture geometry) model of the described above treatment, one can study

only a stationary fracture. Note that during the analysis performed above we used only

general results of the scaling analysis, without involving explicit asymptotic solutions.

At the M̃∞-vertex the poroelastic effects do not have any influence on the fracture

redius R. In the case of LPR R = 4.4 m whereas in the case of MPR R = 0.44 m. It

is also interesting to see what is the influence of the poroelastic effects on the net fluid

pressure. At the M̃∞-vertex in the case of LPR with η = 0 the net pressure is of order

p − σ0 ∼ εE′ = 1.5 MPa whereas in the case of MPR p − σ0 = 5.0 MPa (η = 0). The

poroelastic effects lead to an increase of the net pressure by ∆p = −εE′ΣM̃∞
, which in

the case of LPR is equal to ∆p = 5.6 MPa, whereas in the case of MPR, ∆p = 5.0 MPa.

7.3 Further development

We see that as we add more and more physical processes into consideration the paramet-

ric space of the problem grows quite fast. Therefore we believe that it is inefficient to

build a general solution, which takes into account everything. It seems more reasonable

to take a particular case (as it was done in the previous section), define which part of

the parametric space corresponds to this case and then adopt/develop a solution only

for this particular case.

Another direction of research could be the incorporation of large scale diffusion into

2D models of fluid-driven fracture, e.g., into the KGD and PKN models which are

very important in practical applications (Economides and Nolte, 2000). A significant
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difference between a penny-shaped and 2D fractures is in the propagation speeds. Indeed,

we have shown that the size of a penny-shaped fracture depends on time as R (t) ∼ tα(t),

where α (t) < 1/2 and dα/dt < 0. As a result at early times when R (t)" &d (t) ∼
√

ct

the diffusion process is one dimensional, whereas at large times when R (t) " &d (t) it is

three dimensional. In contrast, in the 2D case & (t) ∼ tβ(t), where & (t) is the length of the

fracture, 1/2 ≤ β (t) < 1, and dβ/dt < 0 (Adachi and Detournay, 2008; Bunger et al.,

2005; Kovalyshen and Detournay, 2009). Moreover β = 1/2 in the leak-off-dominating

regime (the Carter’s leak-off model). As a result diffusion is two dimensional at early

times but not necessarily one dimensional for large times. Preliminary scaling analysis

shows that at large times when the leak-off dominates over the storage, the fracture

length evolves as a square root of time, thus & (t) /&d (t) = const. Therefore the diffusion

process can be either one or two dimensional. Moreover, the problem does not have a

stationary solution.

Let us consider an example of the PKN model with the Carter’s leak-off model.

In the leak-off-dominating regime the fracture length is given by & = Q0t1/2/ (πCH),

where C is the Carter’s coefficient and H is the fracture height which is equal to the

thickness of the reservoir (Kovalyshen and Detournay, 2009). Using 1D solution of the

fluid displacement function (6.27) one can find the following expression for the Carter’s

coefficient: C = 2π−1/2√cS (σ0 − p0). Substitution of the data from the previous section

into these expressions yields & (t) /&d (t) ∼ 0.25 for both LPR and MPR. Therefore the

Carter’s leak-off model is not applicable to these cases. In similar way one can check

applicability of the Carter’s leak-off to 2D models. If & (t) /&d (t) " 1 then the Carter’s

leak-off model is an appropriate choice (note that in the case of low permeability cake

build-up one should use the results of Chapter 3 to calculate the Carter’s coefficient C).
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Appendix A

Semi-infinite fracture

A.1 Approach of Entov et al. (2007)

Here we would like to make clear distinguish between our model and the one developed

by Entov et al. (2007), who have examined the tip behavior of a fluid-driven fracture

propagating in a high-permeability rock. In their approach a finite fracture was divided

into two parts: the tip region and the channel. The tip region was modeled by a finite

fracture propagating through a permeable medium. The analysis of the tip region was

based on the assumptions: i) the cavity is fully filled with the pore fluid, ii) the tip region

is stationary, i.e., the size of the tip region, the tip velocity, and the fluid lag length are

constant, iii) both the infiltration of the fracturing fluid and reinjection of the pore fluid

from the cavity region into the porous medium lead to a low permeability cake build up

on the fracture walls, iv) all fluids have the same viscosity, v) the walls of the channel

are impermeable, vi) the fluid pressure in the channel is uniform and small compared to

the fluid pressure in the tip, and vii) the fluid pressure in the channel and the length of

the tip region are input parameters.
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The third assumption leads to the following cake build-up equation [cf. (3.12)]

pin − pout|z=0 =
1 + sign (g)

2
βv

κc
g. (A.1)

The fifth assumption yields the following pore pressure field [cf. (3.10)]

pout − p0 =
∫ Ltip

0
g (s) p(V ) (x− s) ds, (A.2)

where Ltip is the length of the tip region.

To derive the elasticity equation used by Entov et al. (2007) we first write the elas-

ticity equation for a finite plane strain fracture of length 2& and then use the sixth

assumption. Thus, we have the following chain of transformations

w (X) =
4

πE′

∫ &

0
B (X, s) [pin (s)− σ0] ds,

w (X) =
4

πE′

∫ &

&−Ltip

B (X, s) [pin (s)− pch − σ0] ds +
4

πE′

∫ &

0
B (X, s) (pch − σ0) ds,

(A.3)

where X is the axis which originates at the fracture center and runs along the fracture,

pch is the fluid pressure in the channel which is uniform, B (X, s) is the elasticity kernel

given by

B (X, s) = ln

∣∣∣∣∣

√
&2 −X2 +

√
&2 − s2

√
&2 −X2 −

√
&2 − s2

∣∣∣∣∣ .

The last step consist of the evaluation of the second integral in (A.3), the evaluation

of the limits X, s → &, pin " pch in the first integral, and the change of coordinate

x = X − &

w (x) =
4

πE′

∫ Ltip

0
ln

∣∣∣∣∣
x1/2 + s1/2

x1/2 − s1/2

∣∣∣∣∣ [pin (s)− σ0] ds + C∞
√

x, (A.4)

where

C∞ = 25/2&1/2 pch − σ0

E′
.
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However, Entov et al. (2007) did not use the last expression. Instead, C∞ was one more

input parameter.

Finally Entov et al. (2007) arrive to the following set of equations: (3.2), (3.3),

(3.4), (3.9), (A.1), (A.2), and (A.4). Then the authors perform one more change of

variable u ∼ x1/2 and solve the resultant set of equations numerically using an uniform

discretization mesh. We would like to stress here that the set of governing equation

derived by Entov et al. (2007) does not contain a propagation criterion.

A.2 Uniform pressure

Here we show that

Πd (ξ) =
Aconst

Υ θ

4π

∫ ∞

0
ξ̄−1/2eξ−ξ̄K0

(∣∣ξ − ξ̄
∣∣) dξ̄ =

π1/2

25/2
Aconst

Υ θ = const. (A.5)

To do this we use the following representation of the Bessel function (Cleary, 1978)

K0 (z) =
∫ ∞

1

exp (−zt)√
t2 − 1

dt. (A.6)

Substitution of this representation into (A.5) yields

Πd (ξ) ∼
∫ ∞

1

dt√
t2 − 1

[∫ ξ

0
ξ̄−1/2e(ξ̄−ξ)(t−1)dξ̄ +

∫ ∞

ξ
ξ̄−1/2e−(ξ̄−ξ)(t+1)dξ̄

]
, (A.7)

dΠd

dξ
∼

∫ ∞

1

[
−

√
t− 1
t + 1

∫ ξ

0
ξ̄−1/2e(ξ̄−ξ)(t−1)dξ̄ +

√
t + 1
t− 1

∫ ∞

ξ
ξ̄−1/2e−(ξ̄−ξ)(t+1)dξ̄

]
dt,

(A.8)

dΠd

dξ
∼

∫ ∞

1




−
e−ξ(t−1)erfi

[√
ξ (t− 1)

]

√
t + 1

+
eξ(t+1)erfc

[√
ξ (t + 1)

]

√
t− 1




 dt, (A.9)

where erfc (z) = 1 − erf (z) and erfi (z) = erf (iz) /i, erf (z) are the error functions.

Integration by parts of the first term yields

∫ ∞

1

e−ξ(t−1)erfi
[√

ξ (t− 1)
]

√
t + 1

dt = π1/2 e2ξ

√
ξ

erf
[√

ξ (t + 1)
]
erfi

[√
ξ (t− 1)

]∣∣∣
∞

t=1
−
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−
∫ ∞

1

eξ(t+1)erf
[√

ξ (t + 1)
]

√
t− 1

dt. (A.10)

Substitution of this equation into (A.9) followed by the evaluation of the integral in the

left-hand side of the resultant equation leads to

dΠd

dξ
∼ erfc

[√
ξ (t + 1)

]
erfi

[√
ξ (t− 1)

]∣∣∣
∞

t=1
. (A.11)

Simple investigation shows that erfc (z) erfi (z) → π−1z−2 as z → ∞, thus dΠd/dξ = 0.

Therefore, we have that Πd is uniform. In order to find the exact value of it, one can

simply evaluate the integral in (A.5) at ξ = 0.

A.3 Far-field asymptote

Here we evaluate the diffusion part of the pressure Πd [see (3.26)] in the case Υ∞ (ξ) =

A∞Υ ξaΥ , 0 < aΥ < 1, and ξ →∞

Πd (ξ) =
θ

2π
A∞Υ aΥ

∫ ∞

0
ξ̄aΥ−1eξ−ξ̄K0

(∣∣ξ − ξ̄
∣∣) dξ̄. (A.12)

Let us rewrite this equation in the following form

2Πd

θA∞Υ aΥ
≡ I = I1 + I2, (A.13)

where

I1 =
1
π

∫ ξ

0
ξ̄aΥ−1eξ−ξ̄K0

(∣∣ξ − ξ̄
∣∣) dξ̄, (A.14)

I2 =
1
π

∫ ∞

ξ
ξ̄aΥ−1eξ−ξ̄K0

(∣∣ξ − ξ̄
∣∣) dξ̄. (A.15)

Assuming that the far-field asymptote,
√

π/ (2x), of the diffusion kernel, exK0 (|x|), is

accurate enough for x > ∆ (∆ ∼ 1 for the accuracy within 10%, and ∆ ∼ 10 for the

accuracy within 1%) we can split I1 into I11 and I12 given by

I11 =
1
π

∫ ξ−∆

0
ξ̄aΥ−1eξ−ξ̄K0

(∣∣ξ − ξ̄
∣∣) dξ̄, (A.16)
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I12 =
1
π

∫ ξ

ξ−∆
ξ̄aΥ−1eξ−ξ̄K0

(∣∣ξ − ξ̄
∣∣) dξ̄. (A.17)

The first integral I11 can be evaluated using the far-field asymptote of the kernel

I11 =
1√
2π

∫ ξ−∆

0

ξ̄aΥ−1dξ̄√
ξ − ξ̄

= −
√

2
π

ξaΥ−1
√

ξ − ξ̄ 2F1

(
1
2
, 1− aΥ;

3
2
; 1− ξ̄

ξ

)∣∣∣∣∣

ξ−∆

ξ̄=0

,

I11 =
ξaΥ−1/2

√
2

Γ (aΥ)
Γ (aΥ + 1/2)

[
1 +O

(√
∆
ξ

)]
, (A.18)

where 2F1 (a, b; c;x) is the hypergeometric function and Γ (x) is the Euler gamma func-

tion (Abramowitz and Stegun, 1972). We assume here that ∆! ξ.

To estimate I12 we use the fact that
√

π/ (2x) > exK0 (|x|)

I12 <
1√
2π

∫ ξ

ξ−∆

ξ̄aΥ−1dξ̄√
ξ − ξ̄

<
(ξ −∆)aΥ−1

√
2π

∫ ξ

ξ−∆

dξ̄√
ξ − ξ̄

=
√

2∆
π

(ξ −∆)aΥ−1 ,

I12 < ξaΥ−1/2O
(√

∆
ξ

)
= I11O

(√
∆
ξ

)
. (A.19)

Similarly, one can estimate I2

I2 <
1√
2π

∫ ∞

ξ

ξ̄aΥ−1e2(ξ−ξ̄)
√

ξ̄ − ξ
dξ̄ <

ξaΥ−1

√
2π

∫ ∞

ξ

e2(ξ−ξ̄)dξ̄√
ξ̄ − ξ

=

=
ξaΥ−1

√
2π

(∫ ξ+1

ξ
+

∫ ∞

ξ+1

)
e2(ξ−ξ̄)dξ̄√

ξ̄ − ξ
<

ξaΥ−1

√
2π

(∫ ξ+1

ξ

dξ̄√
ξ̄ − ξ

+
∫ ∞

ξ+1
e2(ξ−ξ̄)dξ̄

)
=

=
ξaΥ−1

√
2π

(
2 +

1
2e

)
,

I2 < ξaΥ−1/2O
(
ξ−1/2

)
= I11O

(
ξ−1/2

)
. (A.20)

Compilation of (A.13), (A.18), (A.19), and (A.20) yields

Πd =
ξaΥ−1/2

23/2

Γ (aΥ)
Γ (aΥ + 1/2)

θA∞Υ aΥ

[
1 +O

(√
∆
ξ

)]
, (A.21)

where we have assumed that ∆ > 1.
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A.4 Numerical scheme

Inspired by Garagash and Detournay (2000), we introduce a so-called interpolation mesh

ξi, i = 0, 1, . . . n, such that for ξ ≤ ξ0 the solution has the shape of the near-field

asymptote, and for ξ ≥ ξn the solution has the shape of the far-field asymptote, i.e.,

Π (ξ ≤ ξ0) = const, Π (ξ ≤ ξ0) + Σ (ξ ≤ ξ0) = const, Σ (ξ ≤ ξ0) = const, Υ (ξ ≤ ξ0) ∼

ξ1/2 and Π (ξ ≥ ξn) ∼ ξ−1/3, Π (ξ ≥ ξn) + Σ (ξ ≥ ξn) ∼ ξ−1/3, Σ (ξ ≥ ξn) ∼ ξ−5/6,

Υ (ξ ≥ ξn) ∼ ξ1/2. Also, we introduce two adjacent meshes ξ(0)
i , i = 0, 1, . . . , n(0), and

ξ(∞)
i , i = 0, 1, . . . , n(∞), such that, ξ(0)

0 = 0, ξ(0)
n(0) = ξ0, and ξ(∞)

0 = ξn. During the

simulations we also use ξ(∞)
n(∞) ≈ 2ξn. The general philosophy of this scheme is the

following: the fluid pressure Π, the backstress Σ, and the fluid displacement function

Υ are discretized on the interpolation mesh. Then, by means of using the shapes of

the near- and far-field asymptotes, these parameters are extrapolated onto the adjacent

meshes. At the same time, all governing equations are discretized on the joint mesh

(the two adjacent meshes and the interpolation mesh). The resultant set of algebraic

equations, which has more equations than unknowns, is solved using the least-squares

minimization.

A.4.1 Elasticity equation

Following Garagash and Detournay (2000) we use the following inversion of the elasticity

equation (3.25)

Ω = kξ1/2 +
4
π

∫ ∞

0
K

(
ξ, ξ̄

) [
Π

(
ξ̄
)

+ Σ
(
ξ̄
)]

dξ̄, (A.22)

where

K
(
ξ, ξ̄

)
= ln

∣∣∣∣∣
ξ1/2 + ξ̄1/2

ξ1/2 − ξ̄1/2

∣∣∣∣∣− 2
(

ξ

ξ̄

)1/2

.
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The fluid pressure and the backstress distributions are approximated by

Π (ξ) + Σ (ξ) =






Π0 + Σ0, ξ ≤ ξ0

ai + biξ−1/3, ξ ∈ [ξi, ξi+1]

b∞ξ−1/3, ξ ≥ ξn

, (A.23)

where

ai =
(Πi + Σi) ξ−1/3

i+1 − (Πi+1 + Σi+1) ξ−1/3
i

ξ−1/3
i+1 − ξ−1/3

i

, bi =
Πi+1 + Σi+1 −Πi − Σi

ξ−1/3
i+1 − ξ−1/3

i

,

b∞ =
Πn + Σn

ξ−1/3
n

, Πi + Σi ≡ Π (ξi) + Σ (ξi) .

Substitution of (A.23) into (A.22) yields the following discretization of the elasticity

equation

Ω (ξ) = kξ1/2 +
4
π

(Π0 + Σ0) Fa
(
ξ, ξ̄

)∣∣ξ0
ξ̄=0

+
4
π

b∞ Fb

(
ξ, ξ̄

)∣∣∞
ξ̄=ξn

+

+
4
π

i=n−1∑

i=0

[
aiFa

(
ξ, ξ̄

)
+ biFb

(
ξ, ξ̄

)]∣∣ξi+1

ξ̄=ξi
, (A.24)

where the functions Fa
(
ξ, ξ̄

)
and Fb

(
ξ, ξ̄

)
are defined by

Fa
(
ξ, ξ̄

)
=

∫ ξ̄

0
K (ξ, ζ) dζ, Fb

(
ξ, ξ̄

)
=

∫ ξ̄

0
ζ−1/3K (ξ, ζ) dζ.

Substitution of the elasticity kernel K
(
ξ, ξ̄

)
into these definitions leads to

Fa
(
ξ, ξ̄

)
= −ξ

[
2ζ +

(
1− ζ2

)
ln

∣∣∣∣
1 + ζ

1− ζ

∣∣∣∣

]
, ζ =

√
ξ̄

ξ
,

Fb

(
ξ, ξ̄

)
= −3

4
ξ2/3

[
4ζ + 2

√
3 arctan

(
1 + 2ζ√

3

)
− 2
√

3 arctan
(

1− 2ζ√
3

)
+

+ ln

[
1− ζ3

1 + ζ3

(
1 + ζ

1− ζ

)3
]
− 2ζ4 ln

∣∣∣∣
1 + ζ3

1− ζ3

∣∣∣∣

]
, ζ =

(
ξ̄

ξ

)1/6

.
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A.4.2 Leak-off equation

Integration of the leak-off equation (3.26) over ξ leads to
∫ ζ

0
Π (ξ) dξ + ζ =

χθ

2
1 + sign (Υ)

2
Υ2 +

θ

2π

∫ ∞

0
Υ

(
ξ̄
)
eξ−ξ̄K0

(∣∣ξ − ξ̄
∣∣) dξ̄

∣∣∣∣
ζ

ξ=0

. (A.25)

During the numerical simulations we evaluate this equation only at the midpoints of our

joint mesh, i.e., at ξ(0)
i+1/2, ξi+1/2, and ξ(∞)

i+1/2.

To calculate the first term in the left-hand side of (A.25) we use similar to (A.23)

representation of the fluid pressure

Π (ξ) =






Π0, ξ ≤ ξ0

ai + biξ−1/3, ξ ∈ [ξi, ξi+1]

b∞ξ−1/3, ξ ≥ ξn

, (A.26)

where

ai =
Πiξ

−1/3
i+1 −Πi+1ξ

−1/3
i

ξ−1/3
i+1 − ξ−1/3

i

, bi =
Πi+1 −Πi

ξ−1/3
i+1 − ξ−1/3

i

, b∞ =
Πn

ξ−1/3
n

.

To compute the integral in the right-hand side of (A.25), we approximate the fluid

leak-off function by

Υ (ξ) = υ0ξ
1/2 + Υ(r) (ξ) , (A.27)

where

Υ(r) (ξ) =






0, ξ ≤ ξ0

Υ(r)
i+1/2, ξ ∈ [ξi, ξi+1]

(υ∞ − υ0) ξ1/2, ξ ≥ ξn

,

and Υ(r)
i+1/2 ≡ Υ

(
ξi+1/2

)
− υ0ξ

1/2
i+1/2. Substitution of this expansion into the integral

yields
∫ ∞

0
Υ

(
ξ̄
)
eξ−ξ̄K0

(∣∣ξ − ξ̄
∣∣) dξ̄

∣∣∣∣
ζ

ξ=0

=
[
υ0

∫ ∞

0
ξ̄1/2eξ−ξ̄K0

(∣∣ξ − ξ̄
∣∣) dξ̄+

+ (υ∞ − υ0)
∫ ∞

ξ
(∞)

n(∞)

ξ̄1/2eξ−ξ̄K0
(∣∣ξ − ξ̄

∣∣) dξ̄ +
∫ ξ

(∞)

n(∞)

ξ0

Υ(r)
(
ξ̄
)
eξ−ξ̄K0

(∣∣ξ − ξ̄
∣∣) dξ̄

]ζ

ξ=0

.
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The first term of the right-hand side is equal to
∫ ∞

0
ξ̄1/2eξ−ξ̄K0

(∣∣ξ − ξ̄
∣∣) dξ̄ =

(π

2

)3/2
(

ξ +
1
4

)
;

the second term is of order of e−2ξ
(∞)

n(∞) ! 1, thus it can be dismissed; and the third term

can be calculated using
∫ ξi+1

ξi

Υ(r)
(
ξ̄
)
eξ−ξ̄K0

(∣∣ξ − ξ̄
∣∣) dξ̄ ≈ Υ(r)

(
ξi+1/2

) ∫ ξi+1

ξi

eξ−ξ̄K0
(∣∣ξ − ξ̄

∣∣) dξ̄,

∫ ξ

eξ̄K0
(∣∣ξ̄

∣∣) dξ̄ = eξ [ξK0 (|ξ|) + |ξ|K1 (|ξ|)] .

The last two formulae are used to perform the integration over ξi and ξ(∞)
i meshes.

A.4.3 Backstress equation

Here we follow the procedure as we did for the leak-off equation. Thus, the integration

of the backstress equation (3.27) leads to
∫ ζ

0
Σ (ξ) dξ =

ηθ

2π

∫ ∞

0
Υ

(
ξ̄
) ∂

∂ξ̄

[
ln

(∣∣ξ − ξ̄
∣∣) + eξ−ξ̄K0

(∣∣ξ − ξ̄
∣∣)

]
dξ̄

∣∣∣∣
ζ

ξ=0

. (A.28)

We evaluate this equation numerically only at ξ(0)
i+1/2, ξi+1/2, and ξ(∞)

i+1/2.

To calculate the left-hand side of (A.28) we approximate the backstress by

Σ (ξ) =






Σ0, ξ ≤ ξ0

ai + biξ−5/6, ξ ∈ [ξi, ξi+1]

b∞ξ−5/6, ξ ≥ ξn

, (A.29)

where

ai =
Σiξ

−5/6
i+1 − Σi+1ξ

−5/6
i

ξ−5/6
i+1 − ξ−5/6

i

, bi =
Σi+1 − Σi

ξ−5/6
i+1 − ξ−5/6

i

, b∞ =
Σn

ξ−5/3
n

.

To calculate the right-hand side of (A.28) we use (A.27) to approximate the fluid dis-

placement function Υ. Substitution of this approximation into the backstress equation
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yields
∫ ∞

0
Υ

(
ξ̄
) ∂

∂ξ̄

[
ln

(∣∣ξ − ξ̄
∣∣) + eξ−ξ̄K0

(∣∣ξ − ξ̄
∣∣)

]
dξ̄

∣∣∣∣
ζ

ξ=0

=

[
(υ∞ − υ0)

∫ ∞

ξ
(∞)

n(∞)

ξ̄1/2dξ̄

ξ̄ − ξ
+

+
∫ ξ

(∞)

n(∞)

ξ0

Υ(r)
(
ξ̄
) ∂

∂ξ̄

[
ln

(∣∣ξ − ξ̄
∣∣) + eξ−ξ̄K0

(∣∣ξ − ξ̄
∣∣)

]
dξ̄

]ζ

ξ=0

, (A.30)

where we have used the fact that a square root fluid displacement function does not

generate any backstress (see Subsection 3.5.1.2). Also, in the first term of the right-

hand side, we have neglected the Bessel function term which is of order of e−2ξ
(∞)

n(∞) ! 1.

To evaluate the right-hand side of (A.30) we use the following formulae

∫ ∞

ξ
(∞)

n(∞)

ξ̄1/2dξ̄

ξ̄ − ξ

∣∣∣∣∣

ζ

ξ=0

= −
√

ζ ln

∣∣∣∣∣∣

√
ξ(∞)
n(∞) −

√
ζ

√
ξ(∞)
n(∞) +

√
ζ

∣∣∣∣∣∣
,

∫ ξi+1

ξi

Υ(r)
(
ξ̄
) ∂

∂ξ̄

[
ln

(∣∣ξ − ξ̄
∣∣) + eξ−ξ̄K0

(∣∣ξ − ξ̄
∣∣)

]
dξ̄ ≈

≈ Υ(r)
(
ξi+1/2

) [
ln

(∣∣ξ − ξ̄
∣∣) + eξ−ξ̄K0

(∣∣ξ − ξ̄
∣∣)

]∣∣∣
ξi+1

ξ̄=ξi

.

A.4.4 Lubrication equation

The lubrication equation (3.23) is discretized in a standard way [cf. Garagash and

Detournay (2000)]

Ωi+1/2 +Υi+1/2 =
1

mMΩ3
i+1/2

Πi+1 −Πi

ξi+1 − ξi
, m =





µout/µin, Υi+1/2 < 0

1, Υi+1/2 > 0
. (A.31)

A.4.5 Closing remarks

After the discretization we get a set of nonlinear algebraic equations

F
(
Π0,Π1, . . . ,Πn; υ0,Υ1/2,Υ3/2, . . . ,Υn−1/2, υ∞

)
= 0.

Note that the are more equations than unknowns.
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To solve this set of equations we use a Newton-method-like linearization of the equa-

tions around the input guess. The resultant set of linear equations is then solved using

the least-squares minimization. The main difference between the numerical scheme pre-

sented here and the one which was developed by Garagash and Detournay (2000) is that

the former scheme “knows” only the shapes of the asymptotic solutions, whereas the

latter scheme uses the exact asymptotes. In this respect, our scheme is more flexible

and, as a result, more stable.

The algorithm was implemented in Mathmatica 6.0. We used a logarithmic interpo-

lation mesh and homogeneous adjacent meshes.



Appendix B

Auxiliary problem

B.1 Small-time and tip asymptotes

Here we give the details of the derivation of (4.19), (4.20), (4.31), and (4.32).

Substitution of the singular solutions (4.10) and (4.12) into (4.9) and (4.11) yields

Π =
1√
π

∫ τ

0

dτ̄

(τ − τ̄)5/2

∫ 1

0
ξ̄ψ

(
ξ̄, τ̄

)
exp

(
−ξ2 + ξ̄2

τ − τ̄

)
×

×
{

2
τ − τ̄

[(
ξ2 + ξ̄2

)
I0

(
2ξξ̄

τ − τ̄

)
− 2ξξ̄I1

(
2ξξ̄

τ − τ̄

)]
− 3I0

(
2ξξ̄

τ − τ̄

)}
dξ̄, (B.1)

Ξ =
2
π

∫ 1

0
ξ̄ψ

(
ξ̄, τ

) E

[
4ξξ̄

(ξ+ξ̄)2

]

(
ξ − ξ̄

)2 (
ξ + ξ̄

)dξ̄+

+
4√
π

∫ τ

0

dτ̄

(τ − τ̄)5/2

∫ 1

0
ξ̄ψ

(
ξ̄, τ̄

)
exp

(
−ξ2 + ξ̄2

τ − τ̄

)
×

×
{

I0

(
2ξξ̄

τ − τ̄

)
− 1

τ − τ̄

[(
ξ2 + ξ̄2

)
I0

(
2ξξ̄

τ − τ̄

)
− 2ξξ̄I1

(
2ξξ̄

τ − τ̄

)]}
dξ̄, (B.2)

where E (x) is the complete elliptic integral of the second kind and Iν (x) is the modified

Bessel function of the first kind (Abramowitz and Stegun, 1972). The Bessel function
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has the following large argument asymptote

Iν (x) - exp (x)√
2πx

(
1 +

1− 4ν2

8x

)
. (B.3)

In the case of small times the argument of the Bessel functions in (B.1), (B.2) is large.

Therefore we can write

Π0 =
1
2π

∫ τ

0

dτ̄

(τ − τ̄)2

∫ 1

0

√
ξ̄

ξ
ψ0

(
ξ̄, τ̄

)
exp

[
−

(
ξ − ξ̄

)2

τ − τ̄

]
×

×
[
2
(
ξ − ξ̄

)2

τ − τ̄
+

ξ2 + ξ̄2 − 18ξξ̄

8ξξ̄

]
dξ̄, (B.4)

Ξ0 =
2
π

∫ 1

0
ξ̄ψ

(
ξ̄, τ

) E

[
4ξξ̄

(ξ+ξ̄)2

]

(
ξ − ξ̄

)2 (
ξ + ξ̄

)dξ̄+

+
2
π

∫ τ

0

dτ̄

(τ − τ̄)2

∫ 1

0

√
ξ̄

ξ
ψ0

(
ξ̄, τ̄

)
exp

[
−

(
ξ − ξ̄

)2

τ − τ̄

] [
10ξξ̄ − ξ2 − ξ̄2

16ξξ̄
−

(
ξ − ξ̄

)2

τ − τ̄

]
dξ̄.

(B.5)

The exponents in the above equations are non-vanishing only in a very narrow neigh-

borhood ξ̄ - ξ, therefore we can move the integration limits to infinity. Evaluation of

the integrals in (B.4) and (B.5) leads to (4.31) and (4.32).

To obtain the tip region equations (4.19) and (4.20), we eliminate the curvature effect

in (B.4) and (B.5), assuming ξ̄ - ξ - 1 everywhere except in the terms that include

ξ − ξ̄. From here we apply the Laplace transform.

B.2 Numerical solution of the tip region problem (4.19),

(4.21)

The numerical algorithm is similar to the one we used in Chapter 3 (see Appendix A.4).

Similarly, we introduce an interpolation mesh ζi, i = 0, 1, . . . N , such that φ (ζ < ζ0) ∼
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ζ−1/2 (the shape of the near-field asymptote) and φ (ζ > ζN ) = const (the shape of the

far-field asymptote). Then we approximate the flux distribution function φ by

φ (ζi ≤ ζ ≤ ζi+1) - φ̂i (ζ) ≡ ai√
ζ

+ bi, (B.6)

where ai and bi are unknown constants which can be related to the values of the flux

distribution function in the nodes of the interpolation mesh φi ≡ φ (ζi)

ai =
φi+1 − φi

ζ−1/2
i+1 − ζ−1/2

i

, bi =
φi+1ζ

1/2
i+1 − φiζ

1/2
i

ζ1/2
i+1 − ζ1/2

i

. (B.7)

Substitution of the interpolation (B.6) into the governing equation (4.19) yields the

following linear algebraic equation

π = φ0

√
ζ0

∫ ζ0

0

K0
(∣∣ζ − ζ̄

∣∣)
√

ζ̄
dζ̄ + φN

∫ ζi+1

ζi

K0
(∣∣ζ − ζ̄

∣∣) dζ̄+

+
N−1∑

i=0

[
ai

∫ ζi+1

ζi

K0
(∣∣ζ − ζ̄

∣∣)
√

ζ̄
dζ̄ + bi

∫ ζi+1

ζi

K0
(∣∣ζ − ζ̄

∣∣) dζ̄

]
. (B.8)

Here the unknowns are the values of the flux distribution function in the nodes of the

interpolation mesh φi. This equation can be solved using a fitting procedure. Note that

the only assumptions we make here are φ (ζ < ζ0) ∼ ζ−1/2 and φ (ζ > ζN ) = const, i.e.,

we assume only the general shapes of the asymptotes and do not force the numerical

algorithm to follow any exact asymptotic solutions.

During this study we developed the following fitting procedure. First we enrich the

interpolation mesh ζi by i) an interval [0, ζ0) discretized with an uniform step equal to

ζ1−ζ0, and ii) an interval (ζN , 2ζN ] discretized with an uniform step equal to ζN−ζN−1.

We denote the resulting mesh by ζ̌i. Here we use a logarithmic interpolation mesh. For

collocation we use the geometric mean
√

ζ̌iζ̌i+1 , and for fitting we use the least-squares

minimization.

The algorithm was implemented in Mathematica 6.0. Although we used standard

Mathematica functions to evaluate the integrals in (B.8), we treated all singularities ana-

lytically by means of an analytical series expansion and integration of the corresponding
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expansions. The results shown in this paper were obtained using the following set of

parameters: ζ0 = 10−8, ζN = 20, and N = 100.

B.3 Numerical algorithm for the transient solution

First we introduce a homogeneous spatial mesh ξi, i = 0, 1, . . . N , where ξ0 = 0 and

ξN = 1. Then we approximate the flux distribution function ψ̃ by

ψ̃ (ξi ≤ ξ ≤ ξi+1) - ψ̂i (ξ) ≡
ai√

1− ξ2
+ bi, (B.9)

where ai and bi are unknown constants which can be related to the values of the flux

distribution function in the nodes of the mesh ψ̃i ≡ ψ̃ (ζi)

ai =
ψ̃i+1 − ψ̃i

(
1− ξ2

i+1

)−1/2 −
(
1− ξ2

i

)−1/2
, bi =

ψ̃i+1

√
1− ξ2

i+1 − ψ̃i

√
1− ξ2

i
√

1− ξ2
i+1 −

√
1− ξ2

i

. (B.10)

In other words, we use a linear combination of the small- and large-time asymptotes to

approximate the flux distribution function ψ̃ at each interval [ξi, ξi+1]. To describe our

flux distribution function ψ̃ at the interval [ξN−1, ξN ], instead of ψ̃N , which is equal to

infinity, we use the singularity strength, 9ψ ≡ lim
ξ→1

ψ̃ (ξ)
√

1− ξ2. In other words instead

of (B.10) we have

aN−1 = 9ψ, bN−1 = ψ̃N−1 −
9ψ√

1− ξ2
N−1

. (B.11)

Using the approximation (B.9) the problem (4.14), (4.15), (4.18) can be reduced to

1 =
2
π

N−1∑

i=0

∫ ξi+1

ξi

ξ̄

(
ai√

1− ξ̄2
+ bi

)∫ π

0

exp
[
−2s1/2

√
ξ2 + ξ̄2 − 2ξξ̄ cos (ϕ)

]

√
ξ2 + ξ̄2 − 2ξξ̄ cos (ϕ)

dϕdξ̄,

(B.12)

where 0 ≤ ξ ≤ 1. This equation represents the discretized analog of (4.14). Writing

this equation for N different ξ and solving the resultant set of equations we can find



182

the unknowns ψ̃i, i ∈ [0, N − 1], and 9ψ. During this study we evaluated (B.12) at the

midpoints of ξi and at ξ = 0. The only problem here is the computation of the integrals

in the right-hand side of (B.12). Let us consider the following integral

I =
∫ ξ2

ξ1

ξ̄f
(
ξ̄
) ∫ π

0

exp
[
−2s1/2

√
ξ2 + ξ̄2 − 2ξξ̄ cos (ϕ)

]

√
ξ2 + ξ̄2 − 2ξξ̄ cos (ϕ)

dϕdξ̄, (B.13)

where f (ξ) is a non-singular function, and 0 < ξ1 < ξ < ξ2 < 1. The standard approach

in calculating this integral is through the regularization procedure

I = Ir + Is, (B.14)

where Ir (ξ) is the regular part of the integral

Ir =
∫ ξ2

ξ1

ξ̄f
(
ξ̄
) ∫ π

0

exp
[
−2s1/2

√
ξ2 + ξ̄2 − 2ξξ̄ cos (ϕ)

]
− 1

√
ξ2 + ξ̄2 − 2ξξ̄ cos (ϕ)

dϕdξ̄, (B.15)

and Is (ξ) is the singular part, which can be simplified analytically

Is =
∫ ξ2

ξ1

∫ π

0

ξ̄f
(
ξ̄
)
dϕdξ̄

√
ξ2 + ξ̄2 − 2ξξ̄ cos (ϕ)

= 2
∫ ξ2

ξ1

ξ̄f
(
ξ̄
)

ξ + ξ̄
K

[
4ξξ̄

(
ξ + ξ̄

)2

]
dξ̄. (B.16)

The problem here is that when the Laplace transform parameter s is large, s " 1,

the integral (B.13) is small compared to both integrals (B.15) and (B.16). As a result,

the usage of the regularization (B.14) leads to a significant error. Indeed, the left-hand

side of (B.14) contains a subtraction of two large numbers. To avoid this problem we

divide the entire integration domain, {ξ1 < ξ < ξ2, 0 < ϕ < π}, into three regions (see

Fig. B.1): i) the near-field domain
√

ξ2 + ξ̄2 − 2ξξ̄ cos (ϕ) < ρ0 where we can use

the regularization technique (B.14); ii) the far-field domain
√

ξ2 + ξ̄2 − 2ξξ̄ cos (ϕ) >

ρ∞ ∩ ξ1 < ξ < ξ2 where the under integral function is vanishingly small, thus the

integration over this domain is also vanishingly small; and iii) the transient region ρ0 <
√

ξ2 + ξ̄2 − 2ξξ̄ cos (ϕ) < ρ∞ where the integral is not singular anymore and can be

calculated straightforwardly. From a numerical point of view the shapes of the near-
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Figure B.1: Sketch of numerical integration

and far-field domains are quite inconvenient. In their place, we introduce the following

simple ones (see Fig.B.1):
{
ξ−0 < ξ < ξ+

0 , 0 < ϕ < ϕ0
}

as the near-field domain, and

{ξ1 < ξ < ξ−∞, 0 < ϕ < π}∪{ξ+
∞ < ξ < ξ2, 0 < ϕ < π} as the far-field domain. Here ξ±0 =

ξ ± ρ0/
√

2, ϕ0 = ρ0/
(√

2ξ+
0

)
, and ξ±∞ = ξ ± ρ∞. Therefore we compute the integral

(B.13) by means of the following representation (see Fig. B.1)

I =
∫ ξ2

ξ1

∫ π

0
(. . .) dϕdξ̄ =

∫ ξ+
0

ξ−0

∫ ϕ0

0
(. . .) dϕdξ̄+

+

[∫ ξ+
0

ξ−0

∫ π

ϕ0

(. . .) dϕdξ̄ +
∫ ξ+

∞

ξ+
0

∫ π

0
(. . .) dϕdξ̄ +

∫ ξ−0

ξ−∞

∫ π

0
(. . .) dϕdξ̄

]
+

+

[∫ ξ−∞

ξ1

∫ π

0
(. . .) dϕdξ̄ +

∫ ξ2

ξ+
∞

∫ π

0
(. . .) dϕdξ̄

]
, (B.17)

where the first integral we calculate using the regularization technique (B.14). The

integrals in the first square brackets are not singular and we calculate them straightfor-

wardly. The last square brackets are equal to zero. Note that this simplification of the

integration domains significantly increases the efficiency of the scheme.

We conclude this Appendix with simple estimations for the near- and far-field domain
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sizes ρ0 and ρ∞. To estimate ρ0 we impose an acceptable smallness of the ratio I(0) to

min
[
I(0)
r , I(0)

s

]
equal to ε0, i.e., I(0)/min

[
I(0)
r , I(0)

s

]
! ε0. Here superscript (0) means

that we integrate over the near-field domain,
√

ξ2 + ξ̄2 − 2ξξ̄ cos (ϕ) < ρ0. Now it is

easy to estimate the size ρ0

e−2
√

sρ0 ! ε0 ⇒ ρ0 = − ln ε0
2
√

s
. (B.18)

To estimate ρ∞ we impose the truncation error ε∞ defined by I(∞)/I01 " ε∞, where

I(∞) is the integration over the far-field domain,
√

ξ2 + ξ̄2 − 2ξξ̄ cos (ϕ) > ρ∞∩0 < ξ <

1, and I01 is the integration over the whole disc, 0 < ξ < 1. The far-field integration

domain is non-empty only for large values of the Laplace transform parameter s, therefore

we can substitute I01 by I∞, where I∞ is the integration over the infinite plane, 0 < ξ <

∞. The estimation of the size ρ∞ thus can be done as it follows

I01 ∼ I∞ ∼ 2
∫ ∞

0

∫ π

0
e−2

√
sξ̄dϕdξ̄ =

π√
s
,

I(∞) " 2πe−2
√

sρ∞ ,

ρ∞ =
1

2
√

s
ln

(
2
√

s

ε∞

)
. (B.19)

B.4 On numerical inversion of the Laplace transform

The Laplace transform is introduced by (Sneddon, 1951)

f̃ (s) =
∫ ∞

0
f (t) exp (−st) dt. (B.20)

The inverse Laplace transform is given by

f (t) =
1

2πi

∫ ν+i∞

ν−i∞
f̃ (s) exp (st) ds, (B.21)

where ν > 0, such that all singularities of f̃ (s) are to the left of the line Re (s) = ν.
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Lopez-Fernandez and Palencia (2004) have shown that in the case when all singu-

larities of f̃ are inside a sector arg (−s) < δ < π/2 the inversion formula (B.21) for

t0 < t < t1 can be approximated by

fn (t) =
1

2πi

ln (n)
n

n∑

k=−n

exp [tT (xk)] f̃ [T (xk)]T ′ (xk) . (B.22)

Here xk = kln (n) /n,

T (x) = λ [1− sin (α− ix)] , α + d + δ < π/2, d < min (α, π/2− α) , (B.23)

α, d, and λ are numerical constants.

It was shown that the error of this approximation is

||f (t)− fn (t)|| ≤ 2M

π
Fn (x, α, d) , (B.24)

where x = λt0, M is a constant such that
∣∣∣
∣∣∣f̃ (s)

∣∣∣
∣∣∣ ≤M/ |s|, and

Fn (x, α, λ) =

√
1 + sin (α + d)
1− sin (α + d)

[
1 +

∣∣∣ln
(
1− e−xsin(α−d)

)∣∣∣
]
×

× eΛx

(
1

e2πdn/lnn − 1
+

1
esinαxn/2

)
, (B.25)

where Λ = t1/t0.

The parameters α, d, and λ can be found by the error minimization

min {Fn (x, α, λ) |x, αd > 0, d < min (α, π/2− α) , α + d + δ < π/2} . (B.26)

In our case δ = 0, and we take Λ = 10. Thus α = 0.79, and x = 3.27.



Appendix C

Zero viscosity case: numerical

scheme

C.1 Temporal integration

Here we consider in detail only the backstress intensity factor equation (5.45). Let us

introduce two times, τ0 and τ∞, such that for τ < τ0 the backstress intensity factor is

given by the small-time asymptote (5.29), and for τ > τ∞ the backstress stress intensity

factor is given by the large-time asymptote (5.35). Let us also assume that we know

the solution of our governing equation on mesh τ (g)
i , where i = 1, . . . , N , τ (g)

1 = τ0,

τ (g)
N = τ∞, and the superscript (g) stands for “global”. The backstress intensity factor at

moment τ (g)
i , Kbs

(
τ (g)
i

)
, is given by

Kbs

(
τ (g)
i

)
=

η

ρ1/2
(
τ (g)
i

)
∫ τ

(g)
i

0

1 + Π (τ̄)
ρ (τ̄)

kbs




ρ

(
τ (g)
i

)

ρ (τ̄)
,
τ (g)
i − τ̄

ρ2 (τ̄)



 dτ̄ , (C.1)
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To evaluate the integral in the right-hand side of (C.1) we introduce the convolution

mesh τ (c)
j , j = 1, . . . , n, τ (c)

1 = 0, and τ (c)
n = τ (g)

i . Hence we can write

Kbs

(
τ (g)
i

)
=

η

ρ1/2
(
τ (g)
i

)
n−1∑

j=1

∫ τ
(c)
j+1

τ
(c)
j

1 + Π (τ̄)
ρ (τ̄)

kbs




ρ

(
τ (g)
i

)

ρ (τ̄)
,
τ (g)
i − τ̄

ρ2 (τ̄)



 dτ̄ , (C.2)

The problem with the evaluation of the integrals in the last equation is related to the

small time singularity of the backstress Green function [see (4.35)]. Therefore we intro-

duce the following function kI
bs (R, τ) which is regular with respect to time

kI
bs (R, τ) ≡

∫ τ

0
kbs (R, τ̄) dτ̄ . (C.3)

Simple transformations lead to

d

dτ̄

{[
ρ (τ̄)
ρ (τ)

]α

kI
bs

[
ρ (τ)
ρ (τ̄)

,
τ − τ̄

ρ2 (τ̄)

]}
= α

ρ̇ (τ̄)
ρ (τ̄)

[
ρ (τ̄)
ρ (τ)

]α

kI
bs−

− ρ̇ (τ̄)
ρ (τ̄)

[
ρ (τ̄)
ρ (τ)

]α−1 ∂kI
bs

∂R −
[
ρ (τ̄)
ρ (τ)

]α 1
ρ2 (τ̄)

[
1 + 2

ρ̇ (τ̄)
ρ (τ̄)

(τ − τ̄)
]

kbs,

kbs

[
ρ (τ)
ρ (τ̄)

,
τ − τ̄

ρ2 (τ̄)

]
=

αρ2 (τ̄) u (τ̄)
τ̄ + 2u (τ̄) (τ − τ̄)

kI
bs −

ρ (τ) ρ (τ̄)u (τ̄)
τ̄ + 2u (τ̄) (τ − τ̄)

∂kI
bs

∂R −

− ρ2 (τ̄) τ̄

τ̄ + 2u (τ̄) (τ − τ̄)

[
ρ (τ)
ρ (τ̄)

]α d

dτ̄

{[
ρ (τ̄)
ρ (τ)

]α

kI
bs

[
ρ (τ)
ρ (τ̄)

,
τ − τ̄

ρ2 (τ̄)

]}
, (C.4)

where u (τ) ≡ τ ρ̇ (τ) /ρ (τ), and α is a number yet to be defined. The spatial derivative

∂kI
bs (R, τ) /∂R can be found using

∂

∂R

∫ R

0

ξΞI (ξ, τ)√
R2 − ξ2

dξ = R



 ΞI (R, τ)√
R2 − ξ2

∣∣∣∣∣
ξ=R

−
∫ R

0

ξΞI (ξ, τ)
(R2 − ξ2)3/2

dξ



 =

= R
{
−

∫ ξ1

0

ξΞI (ξ, τ)
(R2 − ξ2)3/2

dξ −
∫ R

ξ1

ξ
[
ΞI (ξ, τ)− ΞI (R, τ)

]

(R2 − ξ2)3/2
dξ +

ΞI (R, τ)√
R2 − ξ2

1

}
, (C.5)

where ξ1 ∈ [0,R), and

ΞI (ξ, τ) ≡
∫ τ

0
Ξ (ξ, τ̄) dτ̄ . (C.6)
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Substitution of (C.4) into the integral of (C.2) yields

1
ρ1/2 (τ)

∫ τj+1

τj

1 + Π (τ̄)
ρ (τ̄)

kbs

[
ρ (τ)
ρ (τ̄)

,
τ − τ̄

ρ2 (τ̄)

]
dτ̄ =

=
α

ρ1/2 (τ)

∫ τj+1

τj

ρ (τ̄)u (τ̄) [1 + Π (τ̄)]
τ̄ + 2u (τ̄) (τ − τ̄)

kI
bs

[
ρ (τ)
ρ (τ̄)

,
τ − τ̄

ρ2 (τ̄)

]
dτ̄−

−ρ1/2 (τ)
∫ τj+1

τj

ρ (τ) u (τ̄) [1 + Π (τ̄)]
τ̄ + 2u (τ̄) (τ − τ̄)

∂

∂RkI
bs

[
ρ (τ)
ρ (τ̄)

,
τ − τ̄

ρ2 (τ̄)

]
dτ̄−

−
∫ τj+1

τj

τ̄ ρ1/2 (τ̄) [1 + Π (τ̄)]
τ̄ + 2u (τ̄) (τ − τ̄)

[
ρ (τ)
ρ (τ̄)

]α−1/2 d

dτ̄

{[
ρ (τ̄)
ρ (τ)

]α

kI
bs

[
ρ (τ)
ρ (τ̄)

,
τ − τ̄

ρ2 (τ̄)

]}
dτ̄ . (C.7)

We introduce the parameter α in order to have a finite limit as τ̄ → 0 of the expression

in the curved brackets in the last integral of (C.7). In order to have a finite limit as

τ̄ → 0 of ρ1−α (τ̄) [1 + Π (τ̄)] we set α = 1/2. Now it is natural to introduce the following

descretization of the integral (C.7)

1
ρ1/2 (τ)

∫ τj+1

τj

1 + Π (τ̄)
ρ (τ̄)

kbs

[
ρ (τ)
ρ (τ̄)

,
τ − τ̄

ρ2 (τ̄)

]
dτ̄ ≈

=
∆τj

2ρ1/2 (τ)

{
ρ (τ̄) u (τ̄) [1 + Π (τ̄)]
τ̄ + 2u (τ̄) (τ − τ̄)

kI
bs

[
ρ (τ)
ρ (τ̄)

,
τ − τ̄

ρ2 (τ̄)

]}

τ̄=τj+1/2

−

−ρ1/2 (τ) ∆τj

{
ρ (τ) u (τ̄) [1 + Π (τ̄)]
τ̄ + 2u (τ̄) (τ − τ̄)

∂

∂RkI
bs

[
ρ (τ)
ρ (τ̄)

,
τ − τ̄

ρ2 (τ̄)

]}

τ̄=τj+1/2

−

−
{

τ̄ ρ1/2 (τ̄) [1 + Π (τ̄)]
τ̄ + 2u (τ̄) (τ − τ̄)

}

τ̄=τj+1/2

{√
ρ (τ̄)
ρ (τ)

kI
bs

[
ρ (τ)
ρ (τ̄)

,
τ − τ̄

ρ2 (τ̄)

]}∣∣∣∣∣

τ̄=τj+1

τ̄=τj

, (C.8)

where ∆τj ≡ τj+1 − τj and τj+1/2 ≡ (τj + τj+1) /2.

To evaluate ρ (τ) and Π (τ) we use piece-wise linear interpolation in log-log space.

To calculate u
(
τj+1/2

)
we use

u (τj+1) =
ρ (τj+1)− ρ (τj)

τj+1 − τj

τj+1/2

ρ
(
τj+1/2

) .
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C.2 Spatial integration

Here we consider integrals of the following form

I (R, τ) ≡
∫ R

0
f (R, ξ) ΞI (ξ, τ) dξ, (C.9)

where ΞI (ξ, τ) is a numerical function, defined by (C.6), known on mesh ξi < R, and

continuous with respect to time, and f (R, ξ) = ξ
(
R2 − ξ2

)h, h = {1/2,−1/2,−3/2}.

The small- and large-time asymptotes of ΞI (ξ, τ) are given by [see (4.35), (4.52)]

ΞI
0 (ξ, τ ! 1) = −2τ1/2

π3/2
Σ0 (ξ) ,

ΞI
∞ (ξ, τ " 1) = −Σ∞ (ξ) , (C.10)

where

Σ0 (ξ) ≡ (1− ξ)−1 E

[
4ξ

(1 + ξ)2

]
+ (1 + ξ)−1 K

[
4ξ

(1 + ξ)2

]
,

Σ∞ (ξ) ≡






1, ξ ≤ 1

2
π arctan

(
1√

ξ2−1

)
, ξ > 1

. (C.11)

One can see that the small-time asymptote is singular at ξ = 1,

Σ0 (ξ) ≈ 1
1− ξ

+
1
2

ln
(

8
|1− ξ|

)
. (C.12)

Therefore in order to avoid difficulties during the numerical integration we decompose

our numerical ΞI (ξ, τ) into Σ0 (ξ) and Σ∞ (ξ)

ΞI (ξ, τ) = ai (τ) Σ0 (ξ) + bi (τ) Σ∞ (ξ) , ξ ∈ [ξi, ξi+1] , (C.13)

ai (τ) =
ΞI (ξi, τ) Σ∞ (ξi+1)− ΞI (ξi+1, τ) Σ∞ (ξi)

Σ0 (ξi) Σ∞ (ξi+1)− Σ0 (ξi+1) Σ∞ (ξi)
,

bi (τ) =
ΞI (ξi, τ) Σ0 (ξi+1)− ΞI (ξi+1, τ) Σ0 (ξi)
Σ∞ (ξi) Σ0 (ξi+1)− Σ∞ (ξi+1) Σ0 (ξi)

. (C.14)
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Substitution of this decomposition into the integral (C.9) yields

Ii (R, τ) ≡
∫ min[ξi+1,R]

ξi

f (R, ξ) ΞI (ξ, τ) dξ = ai (τ) I(0)
i (R) + bi (τ) I(∞)

i (R) , (C.15)

where

I(j)
i (R) ≡

∫ min[ξi+1,R]

ξi

f (R, ξ) Σj (ξ) dξ. (C.16)

The decomposition (C.15) takes into account the singularity and gives correct small-

and large-time asymptotes of the left-hand side integral. The integral I(∞)
i (R) can

be calculated analytically. We do not give here the explicit expression of this integral

because of its expansive size. At the same time the integral I(0)
i (R) can be evaluated

only numerically, which is expensive from a computational point of view. To save some

computational time we adopt one more decomposition of (C.7)

I (R, τ) ≡
(∫ min[2,R]

0
+

∫ R

min[2,R]

)
f (R, ξ) ΞI (ξ, τ) dξ, (C.17)

where the first integral is evaluated using the decomposition described above (C.15),

and the second integral is calculated via linear interpolation of ΞI (ξi, τ), i.e., Σ0 (ξ) = 1

and Σ∞ (ξ) = ξ. Further improvement can be achieved by replacing Σ0 (ξ) during the

evaluation of the first integral by

Σ∗0 (ξ) ≡ 1
1− ξ

+
1
2

ln
(

16
|1− ξ2|

)
, (C.18)

which has the same singularity as Σ0 (ξ), but allows an analytical evaluation of I(0)
i .

C.3 The end of the story

Using the integration algorithms described above we can reduce our set of governing

equations (5.42)-(5.44) to a set of two nonlinear equations

F i (ρ1, ρ2, . . . , ρi; Π1,Π2, . . . ,Πi) = 0, (C.19)
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where ρk ≡ ρ
(
τ (g)
k

)
, Πk ≡ Π

(
τ (g)
k

)
. The unknowns are the radius ρi and the pressure

Πi at the current time τ (g)
i . To solve this set of equations we use the following algorithm:

• Using an input guess for ρi we solve the part of (C.19) related to the propagation

criterion (5.43) employing the standard Newton method. As a result, we get

Πi = Πi (ρ1, ρ2, . . . , ρi; Π1,Π2, . . . ,Πi−1) ;

• Substituting this equation into the volume balance part of (C.19) we obtain a

nonlinear equation of the form

F̃i (ρ1, ρ2, . . . , ρi; Π1,Π2, . . . ,Πi−1) = 0,

where the only unknown is ρi. We solve this equation using the secant method.

The results presented in this work were obtained using a homogeneous convolution mesh

with n = 50 nodes for the cases of η = 0 and η = 0.25, and with n = 100 nodes for the

case of η = 0.5, and a logarithmic global mesh such that τ (g)
i+1 − τ (g)

i = (n− 1)−1 τ (g)
i .

The algorithm was implemented in Mathematica 6.0.



Appendix D

Zero toughness case: numerical

scheme

We divide the fracture into n control volumes of equal length. The center of a volume is

denoted by ξi, i = 1, . . . , n. Note that ξ1/2 = 0, and ξn+1/2 = 1. All governing quantities

are evaluated at the centers of these volumes. In other words, our discretized governing

quantities are Ωi ≡ Ω (ξi), Πi ≡ Π (ξi). Also we assume that the opening into the last

two control volumes Ωn−1 and Ωn is governed by the tip asymptote (see Appendix D.3).

D.1 Elasticity equation

Here instead of the elasticity equation (6.43) we use the inverted version of it given by

(2.5). In the numerical scaling (6.39) this elasticity equation has the following form

Π (ξ, τ) = −1
γ

∫ 1

0
M (ξ, ζ)

∂Ω (ζ, τ)
∂ζ

dζ. (D.1)

Integration by parts yields

Π (ξ, τ) =
1
γ

∫ 1

0

∂M (ξ, ζ)
∂ζ

Ω (ζ, τ) dζ. (D.2)
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Now we discretize this equation as follows

Πi =
1
γ

AijΩj , (D.3)

where

Aij = M
(
ξi, ξj+1/2

)
−M

(
ξi, ξj−1/2

)
. (D.4)

D.2 Lubrication equation

D.2.1 Channel

Here we integrate the lubrication equation (6.40) over space from ξi−1/2 to ξi+1/2

∫ ξi+1/2

ξi−1/2

(
Ω̇− γ̇

γ
ξ
∂Ω
∂ξ

)
ξdξ =

∫ ξi+1/2

ξi−1/2

Ω̇ξdξ − γ̇

γ

(
ξ2Ω

∣∣ξi+1/2

ξi−1/2
− 2

∫ ξi+1/2

ξi−1/2

Ωξdξ

)
≈

≈ ξi
Ωi − Ω(old)

i

∆τ
∆ξi −

γ̇

γ

(
ξ2Ω

∣∣ξi+1/2

ξi−1/2
− 2Ωiξi∆ξi

)
≈

≈ ξi
Ωi − Ω(old)

i

∆τ
∆ξi −

γ̇

γ

ξ2
i+1/2Ωi+1 − 2ξiΩi∆ξi − ξ2

i−1/2Ωi−1

2
.

We apply the same discretization to the leak-off term. The right hand side of the

lubrication equation (6.40) is discretized as follows

1
γ2

∫ ξi+1/2

ξi−1/2

∂

∂ξ

(
ξΩ3 ∂Π

∂ξ

)
dξ ≈

≈
ξi+1/2

γ2

(
Ωi+1 + Ωi

2

)3 Πi+1 −Πi

∆ξi+1/2
−

ξi−1/2

γ2

(
Ωi + Ωi−1

2

)3 Πi −Πi−1

∆ξi−1/2
.

Here we use the following approximations

Ωi+1/2 ≈
Ωi + Ωi+1

2
, Υi ≈

∫ ξi+1/2

ξi−1/2
Υξdξ

ξi∆ξi
, γ̇ ≈ γ − γ(old)

∆τ
.
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D.2.2 Tip

Instead of writing a discretized lubrication equation into the tip region we use the global

volume balance equation (6.42). As a result we have the following expression for the

dimensionless fracture length γ

γ =

{
2π

τ

[(
n−1∑

i=1

Ωiξi∆ξi + vtip

)
+ Vleak

]}−1/2

, (D.5)

where vtip is the volume of the last control volume calculated from the tip solution, and

Vleak =
∫ 1

0
Υ (ξ, τ) ξdξ.

D.3 Tip solution

The scaled lubrication equations (6.31) and (6.35) indicate that in the tip region we can

use the approximation
∫ 1

ξ

(
Υ̇− γ̇

γ
ζ
∂Υ
∂ζ

)
ζdζ ≈ CΥ

√
1− ξ2. (D.6)

In practice, in order to find the coefficient CΥ, we evaluate the left-hand side of this

equation at ξn−1 using
∫ 1

ξn−1

(
Υ̇− γ̇

γ
ξ
∂Υ
∂ξ

)
ξdξ =

∫ 1

ξn−1

ξΥ̇dξ +
γ̇

γ

(
ξ2
n−1Υn−1 + 2

∫ 1

ξn−1

ξΥdξ

)
,

and then we divide the result by
√

1− ξ2
n−1.

Under the assumption that ξ → 1, substitution of the approximation (D.6) into the

lubrication equation (6.40) yields

Gv
γ̇

γ
Ω +2 1/2GcCΥ

√
1− ξ = − 1

γ2
Ω3 ∂Π

∂ξ
. (D.7)

At the same time, the elasticity equation (D.1) transforms to

Π (ξ, τ) =
1

4πγ

∫ ∞

0

∂Ω (ζ, τ)
∂ζ

dζ

ξ − ζ
. (D.8)
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Now we introduce the following scaling

1− ξ = &̂ξ̂, Ω = Ŵ Ω̂, Π = P̂ Π̂, (D.9)

where

&̂ =
8γ2

γ̇8

G6
cC

6
Υ

G8
v

, Ŵ =
4γ2

γ̇5

G4
cC

4
Υ

G5
v

, P̂ =
γ̇3

2γ

G3
v

G2
cC

2
Υ

. (D.10)

The governing equations (D.11) and (D.12) transform to

Ω̂ + ξ̂1/2 = Ω̂3 dΠ̂
dξ̂

, (D.11)

Π̂
(
ξ̂
)

=
1
4π

∫ ∞

0

∂Ω̂ (ζ)
∂ζ

dζ

ξ̂ − ζ
. (D.12)

These equations have been well studied [e.g. see (Adachi and Detournay, 2008)]. Note

that these equations do not depend on any parameters, therefore one can solve them

only once and then tabulate the solution. Throughout this research we use the simplified

version of our algorithm developed in Chapter 3.

D.4 Evaluation of leak-off displacement function (6.44)

D.4.1 Temporal integration

Let us introduce two times, τ0 and τ∞, such that for τ < τ0 the leak-off displacement

function is given by the small-time asymptote ΥM , and for τ > τ∞ the leak-off dis-

placement function is given by the large-time asymptote ΥM̃∞
(for the asymptotes see

Section 6.3). Also let us assume that we know the solution of our governing equations

on mesh τ (g)
i , where i = 1, . . . , ng, τ (g)

1 = τ0, τ (g)
ng = τ∞, and the superscript (g) stands

for “global”. The leak-off displacement function at moment τ (g)
i , Υ

(
ξ, τ (g)

i

)
, is given by

Υ
(
ξ, τ (g)

i

)
=

∫ τ

0
γ−1 (τ̄) ψ




γ

(
τ (g)
i

)

γ (τ̄)
ξ,

τ (g)
i − τ̄

γ2 (τ̄)



 dτ̄ , (D.13)
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To evaluate the integral in the right-hand side of (D.13) we introduce the convolution

mesh τ (c)
j , j = 1, . . . , nc, τ (c)

1 = 0, and τ (c)
nc = τ (g)

i . Hence we can write

Υ
(
τ (g)
i

)
=

nc−1∑

j=1

∫ τ
(c)
j+1

τ
(c)
j

γ−1 (τ̄) ψ




γ

(
τ (g)
i

)

γ (τ̄)
ξ,

τ (g)
i − τ̄

γ2 (τ̄)



 dτ̄ , (D.14)

The problem with the evaluation of the integrals in the last equation is related to the

square root singularity of the leak-off Green function [see (4.33)]. Therefore we perform

the following transformations

γ−1 (τ̄) ψ




γ

(
τ (g)
i

)

γ (τ̄)
ξ,

τ (g)
i − τ̄

γ2 (τ̄)



 =
1√

τ (g)
i − τ̄






√
τ (g)
i − τ̄

γ (τ̄)
ψ




γ

(
τ (g)
i

)

γ (τ̄)
ξ,

τ (g)
i − τ̄

γ2 (τ̄)










(D.15)

Now we can approximate the expression in the curly brackets by a polynomial and

perform an analytical integration. In this research we used the first order polynomial.

D.4.2 Spatial integration

Here we consider integrals of the following form

I (ξ1, ξ2, τ) ≡
∫ ξ2

ξ1

ξψ (ξ, τ) dξ, (D.16)

where ψ (ξ, τ) is a numerical function known on mesh ξ̃i < 1. The small- and large-time

asymptotes of ψ (ξ, τ) are given by (4.33) and (4.50) respectively. As in the auxiliary

problem, here we approximate ψ (ξ, τ) by

ψ
(
ξ̃i ≤ ξ ≤ ξ̃i+1

)
- ψi (ξ) ≡

ai√
1− ξ2

+ bi, (D.17)

where ai and bi are unknown constants which can be related to the values of the flux

distribution function in the nodes of the mesh ψi ≡ ψ
(
ξ̃i

)

ai =
ψi+1 − ψi

(
1− ξ̃2

i+1

)−1/2
−

(
1− ξ̃2

i

)−1/2
, bi =

ψi+1

√
1− ξ̃2

i+1 − ψi

√
1− ξ̃2

i√
1− ξ̃2

i+1 −
√

1− ξ̃2
i

. (D.18)
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In other words, we use a linear combination of the small- and large-time asymptotes

to approximate the flux distribution function ψ at each interval
[
ξ̃i, ξ̃i+1

]
. We then

substitute this decomposition into the integral (D.16) and evaluate it.

D.5 The end of the story

As a result of the discretization described above we get a set of non-linear algebraic

equations

F j (γ1, γ2, . . . , γj ;Ωj−1,Ωj ;Υj−1,Υj ;Πj) = 0, (D.19)

where Aj ≡ {A1 (τj) , A2 (τj) , . . . , An (τj)}. Note that Πj and Ωj are connected through

the discretized elasticity equation (D.3), and that Υj depends only on the dimensionless

fracture length {γ1, γ2, . . . , γj}. Therefore the set of equations (D.19) can be reduced to

F̄ j (γ1, γ2, . . . , γj ;Ωj−1,Ωj) = 0. (D.20)

The unknowns here are {γj ,Ωj}.

To solve this set of equations we use an algorithm which is similar to the one we have

developed for the toughness-dominated case:

• Using an input guess for γj we solve the part of (D.20) related to the lubrication

equation discretized in the channel by employing the standard Newton method.

As a result, we get

Ωj = Ωj (γ1, γ2, . . . , γj ;Ωj−1) ;

• Substituting this equation into the discretized global volume balance equation

(D.5) we obtain the following nonlinear equation

F̃j (γ1, γ2, . . . , γj ;Ωj−1) = 0,

where the only unknown is γj . We solve this equation using the secant method.
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The results presented in this work were obtained using a homogeneous convolution mesh

with 300 nodes, and a logarithmic global mesh such that τ (g)
i+1 − τ (g)

i = 0.05τ (g)
i . The

algorithm was implemented in Mathematica 6.0.
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