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ABSTRACT

We studied nonlinear electrical transport in high-mobility 2D electron gas (2DEG) form-

ing in modulation-doped GaAs/AlGaAs quantum wells. Transport nonlinearities in-

duced by a pure dc electric field as well as by coexisting dc and microwave fields were

studied at very high Landau level filling factors. It was observed that a pure dc electric

field could induce transport nonlinearities phenomenologically similar to those previ-

ously discovered in microwave-irradiated 2DEG. New phenomena in magnetotransport

emerged when a 2DEG was under the simultaneous influences of a dc electric field and a

microwave field. The experimental observations were compared to the numerical simu-

lations which were carried out based on a recently proposed theory. Generally speaking,

good agreement between the experimental data and the numerical results was obtained.

This suggested that the rich transport nonlinearities we have observed so far could all

be coherently understood within this theoretical work.
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Chapter 1

Introduction

1.1 Classical diffusive transport

In this section, we will briefly review the classical theories of diffusive transport in the

presence of an in-plane electric field ~E and an out-of-plane magnetic field ~B based on the

treatment in Ref. [1]. The goal is to derive the longitudinal and transverse components

of the conductivity/resistivity tensor. The mathematical equations will be a little dense,

but each step should follow naturally and logically from the previous step.

1.1.1 Drude approach

Let us start out by writing down the classical equation of motion for an electron under

the influence of Lorentz force:

m∗~̇v = −e( ~E + ~v × ~B). (1.1)

Assuming that ~E ⊥ ~B, a coordinate system can be set up such that ~E = Eî and

~B = Bk̂. Electron scatterings in the presence of impurity can be taken into account by

incorporating a phenomenological term in Eq. (1.1) to describe momentum-relaxation

processes:

m∗~̇v +
m∗~v

τ
= −e( ~E + ~v × ~B). (1.2)

τ is the phenomenological momentum-relaxation time. According to Ohm’s law,

~j = σ · ~E (1.3)

1
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where σ is the conductivity tensor. Using the basic relation ~j = −ene~v (where ne is the

electron density), one can relate ~E to ~v:

~v = − σ

ene
· ~E. (1.4)

We look for the steady-state solution to Eq. (1.2) in the form of Eq. (1.4). In matrix

representation, Eq. (1.2) takes the following form (in 3D) in the steady state:

m∗

τ









vx

vy

vz









+ e









E

0

0









+ e









Bvy

−Bvx
0









= 0, (1.5)

or equivalently,








m∗

τ eB 0

−eB m∗

τ 0

0 0 m∗

τ

















vx

vy

vz









= −e









E

0

0









. (1.6)

Eq. (1.6) is in the form of A · ~v = −e ~E with

A ≡









m∗

τ eB 0

−eB m∗

τ 0

0 0 m∗

τ









.

By comparing such form with Eq. (1.4), one immediately sees the relation between

the conductivity tensor σ and the matrix A:

σ = e2neA
−1. (1.7)

Using the formula A−1 = [cof(A)]T /|A| (where cof(A) is the cofactor matrix of A), one

obtains σ in its matrix form:

σ =
σ0

1 + (ωcτ)2









1 −ωcτ 0

ωcτ 1 0

0 0 1 + (ωcτ)
2









(1.8)

where σ0 = e2neτ/m
∗ and ωc = eB/m∗ (the cyclotron frequency). Since the resistivity

tensor ρ is the inverse of the conductivity tensor σ, one can easily derive that

ρ =
1

e2ne
A (1.9)
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and

ρ =









1
σ0

B
ene

0

− B
ene

1
σ0

0

0 0 1
σ0









. (1.10)

The corresponding 2D results (2×2-matrices) can be obtained by crossing out the third

row and the third column in Eq. (1.8) and in Eq. (1.10).

From Eq. (1.8), one first notices that σzz = σ0. This is expected because the force

associated with ~B = Bk̂ is perpendicular to the z-direction. Second, one notices that

the classical Hall effect manifests naturally in σxy and σyx. The signs of σxy and σyx also

correctly account for the polarity of the Hall voltage (or the direction of the Hall electric

field). With ~B = Bk̂, the Hall electric field is directed towards +x (−y)-direction if the

current is passed in the +y (+x)-direction. Third, one notices an apparent relation

between σxx and σyx:

σxx + ωcτσyx = σ0

⇒ σyx = ene/B − σxx/ωcτ
. (1.11)

Supposing that we can adjust electron density such that ne = ieB/h (here i being

a positive integer) for a given magnetic field B, this will make the filling factor ν ≡
neh/eB = i, i.e., exactly i Landau levels are filled (Landau levels will be introduced in

Section 1.2). In such scenario, σxx → 0 as T → 0 because the Fermi level lies within

a band of localized (insulating) states. In the mean time, momentum-relaxation time

τ grows with decreasing temperature. As a result, σxy → ie2/h as one continuously

lowers the temperature. One can also populate exactly i Landau levels by adjusting the

magnetic field such that B = neh/ie at a given electron density ne.

1.1.2 Boltzmann approach

In order to describe the average behavior of electrons, a function f(~k,~r, t) (so-called

“distribution function”) was introduced. (2π2)−1f(~k,~r, t) has the meaning of electron

density in the (~k,~r)-space (assuming two spatial dimensions). For simplicity, let us

assume that only the electronic states in the ground subband are occupied and the

dispersion relation is parabolic (ε = ~
2~k2/2m∗). Areal electron density (in real space)

can be calculated as

ne(~r, t) =
2

(2π)2

∫

f(~k,~r, t)d~k, (1.12)
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and the local electrical current density can be calculated as

~j(~r, t) = −e 2

(2π)2

∫

~v(~k)f(~k,~r, t)d~k. (1.13)

~v(~k) = ~
−1∇~k

ε = ~~k/m∗ is the group velocity of electrons in the conduction band. The

distribution function has to satisfy the following (Boltzmann) equation:

∂f

∂t
+ ~v · ∇~rf +

1

~

~F · ∇~kf =

(

∂f

∂t

)

c

(1.14)

where ~F = −e( ~E+~v× ~B) is the Lorentz force, (∂f/∂t)c accounts for the rate of change

of f due to all kinds of collision processes (such as, electron-electron, electron-impurity,

electron-phonon, etc.), ∇~r = (∂/∂x, ∂/∂y) and ∇~k
= (∂/∂kx, ∂/∂ky) in Cartesian coor-

dinates.

To proceed, we introduce the relaxation-time ansatz :

(

∂f

∂t

)

c

= −(f − f (0))

τ
. (1.15)

f0 is the Fermi-Dirac distribution. The relaxation time τ is assumed to be energy-

dependent. To simplify the problem, we further assume that f is homogeneous.

We look for the steady-state solution to Eq. (1.14) in the form: f(~k) = f0(ε) + g(~k)

with g(~k) linear in the electric field ~E. To first order in ~E, Eq. (1.14) becomes:

− e~

m∗
( ~E · ~k)∂f

0(ε)

∂ε
− e

m∗
(~k × ~B) · ∇~k

g(~k) = −g(
~k)

τ
. (1.16)

It can be shown that ~k× ~B ·∇~kg(
~k) = − ~B ·~k×∇~kg(

~k) = −B∂g(~k)/∂ϕ with ϕ being the

angle between ~k and ~E. In the absence of a magnetic field ~B, a small electric field ~E

will cause a small change δ~k = eτ ~E/~ in the electron wave vector and f(~k) = f0(ε+ δε)

with δε being the energy change associated with δ~k. Performing Taylor series expansion

on f0(ε+ δε) to the first order in ~E, we obtains:

f0(ε+ δε) ≈ f0(ε) +
∂f0(ε)

∂ε
~k

eτ

m∗
| ~E| cosϕ (1.17)

where ϕ is the same angle as defined above. It is therefore rational to assume g(~k) to

be in the following form in the presence of ~B:

g(~k) =
∂f0(ε)

∂ε
~k

eτ

m∗
| ~E|ḡ(ϕ). (1.18)
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ḡ(ϕ) is a function to be determined.

With Eq. (1.18), Eq. (1.16) can then be transformed into

cosϕ− ωcτ
∂ḡ(ϕ)

∂ϕ
= ḡ(ϕ). (1.19)

Expanding ḡ(ϕ) in Fourier series: ḡ(ϕ) =
∑

l ḡ
(l) exp(ilϕ), one finds that ḡ(±1) = [2(1±

iωcτ)]
−1 and ḡ(l) = 0 otherwise. With a little algebra, it can be shown that

ḡ(ϕ) =
cos(ϕ− θ)
√

1 + ω2
cτ

2
(1.20)

where θ is the Hall angle defined by tan θ = ωcτ . One therefore finds the solution to

Eq. (1.14) as

f(~k) = f0(ε) +
∂f0(ε)

∂ε
~k

eτ

m∗

cos(ϕ− θ)
√

1 + ω2
cτ

2
| ~E|. (1.21)

With Eq. (1.13) and Eq. (1.21), the steady-state current densities can then be calculated

as

j‖ = − 2e

~(2π)2

∫

kg(~k) cosϕdϕdε

j⊥ = − 2e

~(2π)2

∫

kg(~k) sinϕdϕdε. (1.22)

j‖ (j⊥) is the component along (perpendicular to) ~E. Since f0 is isotropic, it does not

contribute to the current densities. Using the following relations:

j‖ = σxx| ~E|

j⊥ = σyx| ~E| (1.23)

and

sin θ =
ωcτ

√

1 + ω2
cτ

2

cos θ =
1

√

1 + ω2
cτ

2
, (1.24)

one obtains the longitudinal and transverse conductivities:

σxx =

∫ (

−∂f
0(ε)

∂ε

)

ne(ε)e
2τ(ε)

m∗

1

1 + ω2
cτ

2(ε)
dε

σyx =

∫
(

−∂f
0(ε)

∂ε

)

ne(ε)e
2τ(ε)

m∗

ωcτ(ε)

1 + ω2
cτ

2(ε)
dε. (1.25)
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ne(ε) = m∗ε/π~2 has the meaning of areal electron density at T = 0 supposing εF = ε.

In the limit T → 0, Eq. (1.25) is reduced to

σxx → ne(εF)e
2τ(εF)

m∗

1

1 + ω2
cτ

2(εF)

σyx → ne(εF)e
2τ(εF)

m∗

ωcτ(εF)

1 + ω2
cτ

2(εF)
. (1.26)

The conductivities thus take exactly the same forms as those obtained from Drude

model (cf. Eq. (1.8)). At a finite temperature and in a weak magnetic field (such that

ωcτ(ε) ≪ 1), Eq. (1.25) is reduced to

σxx ≈ ne(εF)e
2〈τ〉

m∗

σyx ≈ ne(εF)e
2〈τ〉

m∗
· ωc〈τ〉 ·

〈τ2〉
〈τ〉2 (1.27)

with the ”average” of the nth power of τ defined as

〈τn〉 =
∫
(

−∂f
0(ε)

∂ε

)

ε

εF
τn(ε)dε. (1.28)

Using the following general relation in 2D:

ρxx =
σxx

σ2xx + σ2xy

ρxy =
σyx

σ2xx + σ2xy
, (1.29)

the longitudinal and transverse components of ρ are obtained:

ρxx ≈ m∗

ne(εF)e2〈τ〉

ρxy ≈ B

ene(εF)

〈τ2〉
〈τ〉2 . (1.30)

The ρxy obtained here thus differs from the Drude result (cf. Eq. (1.10)) by a factor of

〈τ2〉/〈τ〉2.

1.2 Landau quantization

The eigenvalue problem we are trying to solve is the following:
[

(~p + e ~A)2

2m∗
+ V (z)

]

Ψ(x, y, z) = εΨ(x, y, z). (1.31)
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V (z) is a confinement potential in the z-direction and ~A is the vector potential which

produces an out-of-plane magnetic field ~B = Bk̂. By choosing ~A = (−By, 0, 0) and

assuming Ψ(x, y, z) = ψ(1)(x, y)ψ(2)(z), Eq. (1.31) becomes:

1

2m∗

[

(px − eBy)2 + p2y
]

ψ(1)(x, y) = ε(1)ψ(1)(x, y)
[

p2z
2m∗

+ V (z)

]

ψ(2)(z) = ε(2)ψ(2)(z) (1.32)

with ε(1)+ε(2) = ε. Due to the confinement potential V (z), bound states arise from the

z-equation with discrete energy spectrum ε(2) = εi (i = 1, 2, 3, . . .). The bound state

energy εi is usually called the subband energy.

To proceed, we assume that ψ(1)(x, y) = exp(ikxx)η(y). After a little algebra, the

xy-equation can be cast into:

[

p2y
2m∗

+
1

2
m∗ω2

c (y −
~kx
eB

)2

]

η(y) = ε(1)η(y). (1.33)

Eq. (1.33) is in the form of an 1D quantum harmonic oscillator and thus the solution is

obtained:

ηn(y) =
1√

2n · n!

(

1

πλ2B

)1/4

exp

[

−(y − λ2Bkx)
2

2λ2B

]

Hn(
y − λ2Bkx

λB
)

ε(1)n = ~ωc

(

n+
1

2

)

where n = 0, 1, 2, . . . (1.34)

λB ≡
√

~/eB is the magnetic length and Hn is the Hermite polynomial of order n.

Although ηn(y) depends on kx, ε
(1)
n does not. Thus, these energy levels (so-called

Landau levels) are all highly degenerate. It can be shown that each Landau level hosts

eB/h states per unit area (in the xy-plane). The number of Landau levels that are

populated by electrons is therefore given as ν = ne/(eB/h) = neh/eB.

If the spin degrees of freedom are taken into account, each Landau level will be split

into two branches. Due to Zeeman effect, the Landau ladder of one spin species will

have an energy shift (which is equal to twice the Zeeman energy) relative to that of

the other. The energy spectrum of a 2D electron in an out-of-plane magnetic field is
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therefore quantized as

εi,n,s = εi + ~ωc

(

n+
1

2

)

+ sµBg
∗B

where i = 1, 2, 3, . . . ; n = 0, 1, 2, . . . ; s = ±1

2
(1.35)

s is the spin quantum number, µB ≡ e~/2m0 ≃ 5.79× 10−5 eV/T is the Bohr magneton

(m0 being the bare electron mass), and g∗ is the effective g-factor in the host material

(g∗ ≈ −0.44 in GaAs). Assuming that only the ground subband ε1 is occupied by

electrons, the 2D density of states (DoS) per unit area in the presence of an out-of-

plane ~B thus takes the form:

ν(ε,B) =
eB

h

∑

n,s

δ(ε − ε1,n,s). (1.36)

Here δ is the Dirac delta function.

1.3 Quantum ~E × ~B-drift without scattering

If an in-plane electric field ~E = Eĵ (associated with an electrostatic potential V (y) =

−Ey) is present in addition to an out-of-plane magnetic field ~B = Bk̂, Eq. (1.33) is

modified as
[

p2y
2m∗

+
1

2
m∗ω2

c

(

y − ~kx +m∗vD
eB

)

+

+

(

~kx +m∗vD
eB

)

eE +
1

2
m∗v2D

]

η(y) = ε(1)η(y). (1.37)

vD is the group velocity of the electron wave packet. It does not take long before one

realizes that Eq. (1.37) is still in the form of an 1D quantum harmonic oscillator. Thus,

its solution can be readily written as

ηn(y) =
1√

2n · n!

(

1

πλ2B

)1/4

exp

[

−(y − λ2Bkx − vD/ωc)
2

2λ2B

]

×

×Hn

(

y − λ2Bkx − vD/ωc

λB

)
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ε(1)n (kx) = ~ωc

(

n+
1

2

)

+ eE

(

λ2Bkx +
vD
ωc

)

+
1

2
m∗v2D

where n = 0, 1, 2, . . . (1.38)

According to Eq. (1.38), Landau level degeneracy is completely lifted in the presence of

an in-plane electric field ~E.

Since ηn(y) is the eigenstate of 1D quantum harmonic oscillator Hamiltonian, the

expectation value of the y-momentum is zero. The electron wave packet propagates in

the x-direction with velocity vD = ~
−1∂ε

(1)
n (kx)/∂kx = E/B which is exactly equal to

the classical drift velocity in an ~E × ~B field. As a result, the current density along

~E is zero (j‖ = 0) and that perpendicular to ~E is finite (j⊥ = enevD). According to

Eq. (1.23), one can conclude that

σxx = 0

σyx = ene
vD
E

=
ene
B
. (1.39)

Using Eq. (1.39) and Eq. (1.29), the corresponding result in the resistivity reads:

ρxx = 0

ρxy =
B

ene
. (1.40)

However fascinating, such result is not realistic. A very important ingredient, namely,

scattering processes, has been left out from the very beginning. To properly understand

electrical transport in real physical systems, it is necessary to take electron scatterings

into account.

1.4 Landau level broadening by scattering

A perturbation in the Hamiltonian can lift energy level degeneracy. Such perturbation

can be caused by spatial potential fluctuations due to, for instance, random positioning

of the background impurity. Electrons experience scatterings in such potential and as a

result acquire finite transition probability between different quantum states. According

to the energy-time uncertainty relation (∆ε∆t ∼ ~), a mean scattering time τq is asso-

ciated with an energy broadening ~/τq. The infinitely narrow DoS spikes in Eq. (1.36)

are thus broadened into peaks with finite widths.



10

To model Landau level broadening theoretically, several forms of DoS have been

proposed. The semi-elliptic DoS was first derived in Ref. [2]. It takes the following

form:

ν(ε,B) =
eB

h

∑

n,s

1

πΓ

√

1−
(

ε− ε1,n,s
Γ

)2

Γ =

√

1

2π
~ωc

~

τ0
. (1.41)

ε1,n,s is the energy level defined in Eq. (1.35) and τ0 is the quantum scattering time at

B = 0. One drawback of such form of DoS is that levels become unphysical in their

tails.

The second proposal is to assume Lorentzian-shape broadening [1][3]:

ν(ε,B) =
eB

h

∑

n,s

1

π

Γ

(ε− ε1,n,s)2 + Γ2

Γ =
~

2τq
. (1.42)

τq is the quantum scattering time in the presence of a magnetic field and τq = τ0 at

B = 0. Notice that ~/τq is not solely determined by the scattering potential. It also

depends on ν(ε,B) and therefore Γ is not a B-independent parameter in Eq. (1.42).

Using the first-order perturbation theory, it was derived that

~

τq
= Cν(ε,B) (1.43)

where C is a quantity determined by the scattering potential and is independent of ε

and B [1]. By combining Eq. (1.42) with Eq. (1.43), one can show that the semi-elliptic

DoS is actually recovered.

The third proposal is to assume Gaussian-shape broadening [4][5]:

ν(ε,B) =
eB

h

∑

n,s

1√
2πΓ

exp

[

−(ε− ε1,n,s)
2

2Γ2

]

Γ = ~

√

ωc

2πτq
. (1.44)

TheB-dependence of Γ is actually more complicated than that is suggested by Eq. (1.44).

Extensive theoretical work on this subject can be found in Ref. [6]. We will not go into

any of those details. For the numerical simulations we are going to present in Chapter 3

and Chapter 6, we adopt Gaussian-shape broadening, i.e. Eq. (1.44).
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1.5 Thermodynamic density of states

The three different forms of the DoS introduced above can be summarized in the fol-

lowing general expression:

ν(ε,B) =
2eB

h

∑

n

L

[

ε− ~ωc

(

n+
1

2

)]

. (1.45)

Here, we ignore Zeeman splitting and shift the energy origin to the minimum of the

occupied subband. L denotes the functional form of a single Landau level. By applying

Poisson’s summation formula [7][8], Eq. (1.45) can be expanded as

ν(ε,B) =
m∗

π~2

[

1 + 2

∞
∑

s=1

(−1)sL̃

(

2πs

~ωc

)

cos

(

2πsε

~ωc

)

]

with L̃

(

2πs

~ωc

)

≡
∫ ∞

−∞
L(ξ) cos

(

2πsξ

~ωc

)

dξ. (1.46)

Notice that L̃ is the Fourier cosine transform of L.

The so-called thermodynamic density of states is defined as [1]:

∂ne
∂εF

=
∂

∂εF

∫ ∞

0
ν(ε,B)f (0)(ε)dε

=

∫ ∞

0
ν(ε,B)

∂f (0)(ε)

∂εF
dε

= −
∫ ∞

0
ν(ε,B)

∂f (0)(ε)

∂ε
dε. (1.47)

f (0), as before, denotes the Fermi-Dirac distribution. ∂ne/∂εF has the meaning of

density of occupied states at the Fermi energy εF. With the help of the following

analytical result [9]

∫ ∞

−∞

(

−∂f
(0)(ε)

∂ε

)

cos

(

2πsε

~ωc

)

=
Xs

sinhXs
cos

(

2πsεF
~ωc

)

with Xs ≡
2π2skBT

~ωc
, (1.48)

one obtains the thermodynamic density of states associated with the DoS defined in

Eq. (1.46):

∂ne
∂εF

=
m∗

π~2

[

1 + 2

∞
∑

s=1

(−1)sL̃

(

2πs

~ωc

)

Xs

sinhXs
cos

(

2πsεF
~ωc

)

]

. (1.49)
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At a given magnetic field, the modulation in ∂ne/∂εF diminishes with increasing tem-

perature due to the damping factor Xs/ sinhXs. At a given temperature, the oscilla-

tions in ∂ne/∂εF are dampened by both L̃(2πs/~ωc) and Xs/ sinhXs as the magnetic

field decreases. One can show that L̃(2πs/~ωc) = exp(−πs/ωcτq) for Lorentzian-shape

broadening and L̃(2πs/~ωc) = exp(−πs2/ωcτq) for Gaussian-shape broadening.

1.6 Shubnikov-de Haas oscillations (SdHOs)

It has been known for decades that many thermodynamic and transport properties

in solids oscillate periodically with the reciprocal of the applied magnetic field. Such

phenomenon was discovered by Shubnikov and de Haas in bulk bismuth samples where

the Hall coefficient was measured [10]. Extensive theoretical work on such effect in

metals was carried out by Dingle [8][9]. In 2DEG, Shubnikov-de Haas effect was first

observed by Fowler et al. in Si MOS structures where the longitudinal conductance was

measured [11]. The first attempt of developing a theory for the magneto-oscillations in

2DEG was made by Ando et al. [12]. Further theoretical investigations were reported

in Refs. [13][14][15][16][17]. Fig. 1.1 shows the typical Subnikov-de Haas oscillations

(SdHOs) observed in our high-mobility 2DEG samples.

In the case of a long-range scattering potential and in the regime of a weak magnetic

field (Γ/~ωc ≫ 1 or equivalently ωcτq ≪ 1), the following expressions for the longitudinal

and transverse components of the conductivity tensor were derived [17]:

σxx =
e2neτtr
m∗

1

1 + (ωcτtr)2

[

1 + 2 · 1− (ωcτtr)
2

1 + (ωcτtr)2
exp

(

− π

ωcτq

)

×

× 2π2kBT/~ωc

sinh(2π2kBT/~ωc)
cos

(

2πεF
~ωc

)

]

(1.50)

σyx =− e2ne
m∗

ωcτ
2
tr

1 + (ωcτtr)2

[

1 +
4

1 + (ωcτtr)2
exp

(

− π

ωcτq

)

×

× 2π2kBT/~ωc

sinh(2π2kBT/~ωc)
cos

(

2πεF
~ωc

)

]

. (1.51)

τtr is the transport relaxation time (which is associated with momentum relaxation)
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Figure 1.1: Subnikov-de Haas oscillations (SdHOs) in the longitudinal magneto-
resistance in a high-mobility GaAs/AlGaAs quantum well sample. The data was taken
at T ≃ 250mK.

and τq is the quantum scattering time (which is related to the lifetime broadening of

Landau levels as introduced above).

The longitudinal and transverse components of the resistivity tensor were also ob-

tained [17]:

ρxx =
m∗

e2neτtr

[

1− 2 exp

(

− π

ωcτq

)

2π2kBT/~ωc

sinh(2π2kBT/~ωc)
cos

(

2πεF
~ωc

)]

ρxy =
m∗

e2neτtr
ωcτtr =

B

ene
. (1.52)

The quantum correction to ρxy on the order of exp(−π/ωcτq) is zero and thus the Hall

resistivity is identical to the classical Drude result. Comparing ρxx with Eq. (1.49) (ig-

noring terms with s > 1), one realizes that they are identical up to a scaling factor

independent of the magnetic field. Therefore, SdHOs faithfully reflect how thermody-

namic density of states ∂ne/∂εF varies in responding to a changing magnetic field or a

changing Fermi energy.

The periodicity SdHOs exhibiting in 1/B has been employed as an alternative way of

determining areal electron density ne (another way being measuring the Hall resistivity

at low B). The period of SdHOs ∆(1/B) is related to the areal electron density by
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∆(1/B) = 2e/hne. The quantum scattering time τq can be extracted by examining the

B-dependence of the SdHO amplitudes at a given temperature [16][18]. The electron

effective mass m∗ can be determined from the T -dependence of the SdHO amplitudes

at a given magnetic field [19].

1.7 Integer Quantum Hall Effect (IQHE)

1.7.1 Phenomenology

Integer quantum Hall effect (IQHE) was discovered by von Klitzing et al. in a metal-

oxide-semiconductor field-effect transistor (MOSFET) [20]. They observed plateaus

in the Hall voltage accompanied by zeros in the longitudinal voltage at high magnetic

fields and low temperatures. The Hall resistivity was found to be quantized according to

ρxy = h/ie2 (here i being a positive integer) with stunning accuracy. Their original data

is shown in Fig. 1.2. In terms of the components of the conductivity tensor, such results

imply a quantized σxy = ie2/h which is accompanied by a vanishing σxx. Subsequent

studies confirmed the accuracy of such quantization and established the fact that IQHE

is universal regardless of the details of the devices in which it is observed. The value

RK ≡ h/e2 ≈ 25813Ω (called the von Klitzing constant) has been adopted as the

international standard for electrical resistance. Since the fine structure constant is

related to the von Klitzing constant by α = µ0c/2RK , the ability to measure RK with

high accuracy provides a way to determine α with high accuracy. Activated transport

in IQHE was observed over a wide temperature range [21][22]. Both the widths of the

ρxy plateaus and the widths of the ρxx zeros shrink in elevated temperatures [22].

1.7.2 Theoretical explanation

Soon after the discovery of IQHE, Laughlin gave an elegant argument showing that σxy

is quantized exactly as integral multiples of e2/h under appropriate conditions [23]. At

roughly the same time, Thouless came to the same conclusion from a quite different

theoretical approach [24]. The important role the edge states play in IQHE was first

recognized and advocated by Halperin [25]. A theory combining the edge-state pictures

with the Landauer-Büttiker formalism was proposed by Büttiker [26]. In this section,
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Figure 1.2: The original data showing integer quantum Hall effect (IQHE). The Hall
voltage UH and the longitudinal voltage Upp were measured as a function of gate voltage
Vg. The measurement was performed at B = 18T and at T = 1.5K. The inset shows
the top view of the device. The length and width of the device were 400µm and 50µm
respectively. The distance between the potential probes was 130µm. The figure was
taken from Ref. [20].
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Figure 1.3: The eigenenergies obtained from solving Eq. (1.53) plotted as a function
of y0 ≡ λ2Bkx. y0 can be interpreted as the ”y-position” of the wavefunction. The
boundaries of the 2DEG are located at y1 and y2. The figure was taken from Ref. [26].

we will briefly discuss the physics behind IQHE based on this theory.

Let us again consider the eigenvalue problem in Eq. (1.33), but with a little twist:

[

p2y
2m∗

+
1

2
m∗ω2

c (y −
~kx
eB

)2 + U(y)

]

η(y) = ε(1)η(y). (1.53)

U(y) is a confinement potential in the y-direction. For simplicity, we assume that U(y)

is zero in the interior of the 2DEG and it rises steeply when the boundaries are ap-

proached. In the interior region, Eq. (1.53) represents nothing but an 1D quantum

harmonic oscillator and the solution is given by Eq. (1.34). When the boundaries are

approached, Landau level degeneracy is lifted and the eigenenergies increase monotoni-

cally [25]. The resulting eigenenergies as a function of the ”y-positions” (y0 ≡ λ2Bkx) of

the wavefunctions are shown in Fig. 1.3. Such dispersion relation suggests that the edge

states have larger group velocities than the interior states do. At integer filling factors,

there will be no extended states in the interior region and the electrical conduction will

be completely carried out by the edge states.

To proceed, let us consider the Hall bar geometry depicted in Fig. 1.4. Here, we

assume that the filling factor is equal to an integer i. Terminal 1,2 serve as the current

source and drain respectively. Terminal 2,3,5,6 serve as the potential probes. Let us
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further assume that the transmission between the adjacent terminals in the clockwise

sense by edge-state channels is perfect and the transmission is zero otherwise. According

to the Landauer-Büttiker formalism,


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


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(1.54)

where Ij (Vj) denotes the net current into (the potential at) terminal j (with j = 1 ∼ 6).

Based on the function we assigned to each terminal, the net current into each terminal

should be: I1 = I, I4 = −I, and I2 = I3 = I5 = I6 = 0.

From Eq. (1.54), one can then derive that

V1 = V2 = V3

V4 = V5 = V6 (1.55)

and

I =
ie2

h
(V1 − V6). (1.56)

The longitudinal and the Hall resistances are then determined as

Rxx =
V2 − V3

I
= 0

Rxy =
V2 − V6

I
=
V1 − V6

I
=

h

ie2
. (1.57)

Eq. (1.57) are consistent with the experimental observations.

In a weakly disordered 2DEG at low temperatures and under strong magnetic fields,

scattering processes will not affect Eq. (1.57) because the edge states reside on the

opposite edges of the Hall bar have negligible overlap [26]. When the Fermi level lies at

a maximum of the DoS, the extended states in the interior region will also contribute to

the electrical conduction. Electrons will then have finite probabilities to percolate from

one edge to the other and thus reverse their propagation directions. The consequence of

this is a modification of the transmission matrix in Eq. (1.54). As a result, Rxx becomes
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Figure 1.4: Edge-state transport in a typical Hall bar geometry. A magnetic field is
applied perpendicular to the 2DEG. A current I is driven from terminal 1 to terminal
4. Edge states are depicted as the arrows that go around the corners. Here, we assume
that the filling factor is equal to an integer and so all the interior states are localized.

finite and Rxy deviates from its quantized values. Recently, Hashimoto et al. probed

the local DoS in a 2DEG using scanning tunneling microscopy and provided very strong

evidence to this physics picture [27].

1.8 Fractional Quantum Hall Effect (FQHE)

1.8.1 Phenomenology

Quantum Hall plateaus occurring at non-integer values of the Landau level filling factors

were first observed by Tsui et al. in GaAs/AlGaAs heterostructures at ν = 1/3 and 2/3

[28]. The accompanying ρxx minima exhibited activated behaviors [29]. As the crystal

growth techniques were continuously improved, more and more quantum Hall plateaus

and the concomitant longitudinal resistivity valleys were revealed. Earlier experiments

showed only fractional quantum Hall effect (FQHE) at odd-denominator filling factors.

Willet et al. discovered a FQH state at ν = 5/2 [30] which remains the only even-

denominator FQH state ever known in single-layer 2D electron systems [31].

Willet et al. also observed that the features appearing (both in ρxx and ρxy) at

around ν = 1/2 looked strikingly similar to those appearing at around zero field (cf.
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Fig. 1.5). Pan et al. verified the genuineness of this even-denominator FQH state by

showing that ρxy at ν = 5/2 was quantized to h/(5/2)e2 with extremely high accuracy

(to within 2 ppm) which was accompanied by a vanishing ρxx [32]. Eisenstein et al.

observed that the ν = 5/2 FQH state collapsed rapidly as the magnetic field was tilted

away from the normal to the 2D electron plane [33]. In conjunction with the activation

energy data in tilted magnetic fields, the evidence seemed to suggest that ν = 5/2 FQH

state is not spin-polarized [34].

1.8.2 Theoretical explanation

The experimental discovery of FQHE spurred a huge amount of theoretical work. It

was first pointed out by Laughlin that FQHE signifies a strongly correlated state of in-

teracting electrons underneath [35]. Laughlin identified incompressibility (a gap in the

excitation spectrum) as the origin of FQHE, recognized the importance of Jastrow-type

correlations, constructed trial wavefunctions for the fundamental ν = 1/(2m+1) (m be-

ing a positive integer) FQH states, and showed that the quasi-particle excitations carry

fractional charge [35]. By generalizing Laughlin’s concept, Haldane [36] and Halperin

[37] showed that the entire sequence of FQH states at ν = p/(2mp ± 1) (where m

and p are both positive integers) can be generated according to quasi-particle hierarchy

schemes.

Jain proposed that the FQHE of electrons can be viewed as the IQHE of a new

type of particles called the composite fermions (CFs) [38]. A CF is a bound state

formed between an electron and an even number of vortices of the many-body quantum-

mechanical wavefunction [31]. In the FQH regime, Coulomb interaction becomes the

dominant effect driving the dynamics of electrons. It was found that electrons can avoid

each other most efficiently by capturing an even number of vortices of the wavefunction.

The strongly correlated liquid of interacting electrons can thus be mapped onto a gas

of noninteracting (or weakly interacting) CFs. An important property of these CFs is

that they experience a reduced magnetic field rather than the true external field. This

is because the phases generated by the vortices while the CFs are winding around one

another would partially cancel the Aharonov-Bohm phases originating from the external

magnetic field.
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Figure 1.5: Experimental data showing fractional quantum Hall effect (FQHE). The
measurements were made in a GaAs/AlGaAs heterostructure with µ ≃ 1.3×106 cm2/Vs
and ne ≃ 3×1011 cm−2. The figure was composed of four different traces with the break
at B ≈ 12T. The temperatures were ≈ 150mK except for the high-B ρxy data which
was taken at T ≈ 85mK. The high-B ρxx data was scaled down by a factor of 2.5 for
clarity. Here, N denotes the Landau level index and ν denotes the filling factor. The
even-denominator FQH state at ν = 5/2 cannot be clearly seen without blowing up the
region enclosed by the dashed box. The figure was taken from Ref. [30].



21

A CF can also be viewed as an electron carrying an even number of fictitious mag-

netic flux quanta (arising from the Chern-Simons gauge transformation) [31]. Due to

partial cancellation between the Chern-Simons flux and the external flux, CFs experi-

ence an effective magnetic field B∗ = B− 2mneφ0 (where φ0 ≡ h/e is the magnetic flux

quantum and m is an positive integer). The CF filling factor ν∗ ≡ neh/e|B∗| is then

related to the electron filling factor ν = neh/eB by

ν∗

ν
= ± B

B∗
= ± B

(B − 2mneφ0)
= ± 1

(1− 2mν)
(1.58)

where the + (−) sign corresponds to the case whereB∗ is in the same (opposite) direction

of B. From Eq. (1.58), one can easily show that

ν =
ν∗

2mν∗ ± 1
. (1.59)

Thus, the CF IQH states at ν∗ = p (with p = 1, 2, 3, . . .) generate the entire sequence

of electron FQH states at ν = p/(2mp ± 1).

Jain’s CF theory explains the odd-denominator FQH states beautifully (but the

“outcasts” have also been found [39]). To explain the even-denominator FQH states

seems to be more difficult. After Willett et al.’s discovery of the ν = 5/2 FQH state [30],

Haldane et al. proposed a specific spin-singlet trial wavefunction which they thought

may be responsible for the observed effect at ν = 5/2 [40]. Not encouragingly, the exact

diagonalization studies in finite systems in the limit of no Landau level mixing showed

that this trial wavefunction is only a poor representation of the spin-singlet ground

states [41]. Within the fermion Chern-Simons theory, it was postulated that an energy

gap in the spin-singlet ground state occurs due to BCS (Bardeen-Cooper-Schrieffer)

pairing of CFs of opposite spins which could result in the observed ν = 5/2 FQH state

[42][43]. The genuineness of such scenario has yet to be proved.

1.9 Microwave-induced resistance oscillations (MIROs)

1.9.1 Discovery of MIROs and ZRS

Earlier work on microwave-irradiated 2DEG revealed a single positive photoresponse

peak near cyclotron resonance (CR) condition: ω = ωc (where ω = 2πf is the angular



22

Figure 1.6: Microwave-induced resistance oscillations (MIROs) observed in a
GaAs/AlxGa1−xAs heterostructure with µ > 3 × 106 cm2/Vs. The traces were ver-
tically offset for clarity. The figure was taken from Ref. [46].

frequency of the microwave radiation) [44]. Later, similar experiments performed in

GaAs-AlxGa1−xAs heterostructures with mobility µ > 3 × 106 cm2/Vs (about 3 times

that in the earlier samples) showed pronounced oscillatory photoresponse with both

positive and negative values [45][46] (cf. Fig. 1.6). It was observed that the magnitude

of photoresponse grew with increasing MW power and it was diminished by raising tem-

perature. The temperature effect on photoresponse, however, was less severe than the

thermal damping in Subnikov-de Hass oscillations. These oscillations in photoresponse

are periodic in 1/B with a period e/2πfm∗ depending on the MW frequency f . Pairs

of photoresponse peak and trough appear near harmonics of CR: ǫac ≡ ω/ωc = j with

j = 1, 2, 3, . . ., etc. The positions of peaks+ and troughs− (in terms of dimensionless

parameter ǫac) are roughly described by ǫ±ac = j ∓ 1/4 [47]. An analysis showed that

this 1/4-cycle phase shift is reduced at lower-order (j . 4) peaks and troughs [3].

Not long after the observations of microwave-induced resistance oscillations (MIROs),
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two separate groups reported discovery of MW-induced dissipationless/zero-resistance

states (ZRS) in ultra-clean 2DEG with µ > 1.5 × 107 cm2/Vs [48][49] (cf. Fig. 1.7).

Temperature dependence of these ZRS showed activated behavior with activation en-

ergy roughly an order of magnitude larger than the Landau-level spacing ~ωc as well as

MW quantum energy ~ω [49]. Further investigations on ZRS revealed that the longitu-

dinal voltages were not necessarily all zeros around the 2DEG perimeter and they could

even have negative values [50]. Substantial voltage drops between the internal contacts

and the contacts on the sample periphery were also detected when the 2DEG was irra-

diated by microwave but without any applied driving current [50]. These observations

seem to be consistent with the theoretical work which postulates that ZRS are formed

due to the instability of local absolute negative resistivity/conductivity [51].

The appearance of MIROs/ZRS looks strikingly similar to the longitudinal resistivity

in the quantum-Hall regime. The resemblance between the two, nevertheless, is perhaps

only cosmetic. Despite the drastic features observed in longitudinal resistivity, Hall

resistivity was only weakly affected by MW irradiation and it essentially followed the

classical Drude model in this weak magnetic field regime (cf. Fig. 1.7). It was shown that

MW photoresponse could also appear in Hall resistivity with a magnitude comparable

to that in the longitudinal resistivity (at least under certain conditions) [52]. This effect

was usually masked by the large value of dark (w/o MW irradiation) Hall resistivity.

Soon after the observations of ZRS in Hall-bar samples, MW-induced zero-conductance

states (ZCS) were observed in Corbino samples [53]. By comparing the conductivity

measured in Corbino samples with that converted from the measured resistivity in

Hall-bar samples, it was shown that the generic relation σxx ≈ ρxx/ρ
2
xy holds in MW-

irradiated 2DEG [53].

1.9.2 Effect of in-plane magnetic fields

Two different settings have been employed in studying the effect of magnetic fields

lying in the 2DEG plane. In the first setting, in-plane magnetic fields (B‖) are created

by rotating the normal of a 2DEG away from the magnet axis. Since MW radiation

propagates down the waveguide along the cryostat axis, its incident angle changes as

the 2DEG plane is tilted. In the second setting, the 2DEG plane is fixed. In-plane and

out-of-plane magnetic fields are independently provided by a two-axis magnet. MW
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Figure 1.7: Microwave-induced zero-resistance states (ZRS) observed in a
GaAs/AlxGa1−xAs quantum well with µ ≈ 2.5 × 107 cm2/Vs. Hall resistivity was only
weakly affected by MW irradiation. The figure was taken from Ref. [49].

radiation always impinges on the sample normally in this setting.

So far, the experiments performed in these two different settings did not reveal

consistent results. In the first setting, it was observed that MIROs and ZRS were

only weakly affected by a tilted magnetic field up to a tilt angle of θ = 80◦ with

0.6T < B‖ < 1.2T [54]. In the second setting, it was reported that MIROs and

ZRS were strongly suppressed at B‖ ≈ 1T [55]. It is not totally clear whether the

observations made in the first setting were related to the increase of B‖ or the decrease

of MW flux (as postulated by Mani in Ref. [54]) or both. The observations made in the

second setting did not have such complication. Yang et al. suspected that the observed

suppression and quenching of MIROs/ZRS in the presence of B‖ could be related to

the spin degrees of freedom through Zeeman and/or spin-orbit interactions [55]. Later

theoretical analysis by Joas showed that spin-splitting due to in-plane magnetic fields

does not account for these observations [56].
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1.9.3 Polarization dependence

It has been demonstrated experimentally that MIROs are completely insensitive to the

polarization state of the incident microwave except at magnetic fields near CR [57].

The polarization dependence near CR is attributed to resonant heating in which active

cyclotron resonance absorption (CRA) only occurs in one sense of circular polarization

with respect to the magnetic field. These experimental results are particularly important

because they immediately rule out those theories which cannot be reconciled with the

observed polarization dependence. For instance, the model proposed in Ref. [58] based

on the consideration of a non-parabolic dispersion relation of conduction-band electrons

can only produce oscillatory photoconductivity in the situation where microwave is

linearly polarized. This is apparently in discord with the experimental observations.

Even the most widely accepted theories such as the one based on modification of

impurity scattering rates in the presence of MW radiation [59] and the one based on

formation of MW-induced non-equilibrium electron energy distribution [60] cannot es-

cape the critical test. They both predict that the correction to the dark dc conductivity

in the presence of MW radiation is polarization dependent. In the case where MW

power is not too high, the correction to the dark dc conductivity induced by the CRA

polarization sense is expected to be larger than that induced by the CRI (cyclotron

resonance mode inactive) polarization sense by a factor of (ω + ωc)
2/(ω − ωc)

2. This

factor is 9 at ω/ωc = 2 and it’s 4 at ω/ωc = 3. Nevertheless, such dramatic difference in

MW photoconductivity between the two circular polarization states was not observed

in experiments.

1.9.4 Bichromatic photoresistance

Transport measurements in 2DEG under simultaneous MW irradiation of two different

frequencies (ω1, ω2) provide indirect evidence of absolute negative resistivity. It has been

observed that bichromatic MW photoresistance is related to its individual monochro-

matic components through a linear combination except at magnetic fields where one

component shows ZRS but the other doesn’t or at magnetic fields where one component

shows a resonance peak due to multi-photon processes [61]. In terms of total resistance

(i.e. the sum of dark resistance and photoresistance), the experimental observations
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were summarized as:

Rω1ω2

exp = max{αRω1 + (1− α)Rω2 , 0} (1.60)

The weighting, α, is determined by the power (or more precisely, the intensity) ratio of

the two frequency components. In the case where the two individual monochromatic

components saturate at roughly the same intensity of MW irradiation, α ≈ 1/2.

Experimental data showed that Rω1ω2

exp was significantly smaller than the average

of the observed Rω1 and Rω2 when one of them turned out to be zero (i.e. at ZRS).

This suggests that a negative contribution to total resistance could come from one

of the frequency components at certain magnetic fields when a 2DEG is subjected to

bichromatic MW irradiation. It is natural to postulate that this negative contribution

comes from the frequency component which exhibits ZRS when the 2DEG is under its

irradiation alone. Assuming equal contribution from the two frequency components (i.e.

α = 1/2), it was suggested that a quantitative estimation of negative resistance can be

obtained from Eq. (1.60):

Rω1(ω2) = 2Rω1ω2

exp −Rω2(ω1) (1.61)

The quantities appear on the right-hand side of Eq. (1.61) are measured (positive) values.

The quantity appears on the left-hand side is the hypothetical negative resistance.

1.9.5 Theoretical explanations of MIROs/ZRS

Experimental observations of MIROs/ZRS in high-mobility 2DEG have triggered a vast

amount of theoretical work surrounding this subject. Currently, two microscopic mech-

anisms are most widely accepted as being responsible for these transport phenomena.

The first mechanism involves indirect inter-Landau-level scatterings in which electrons

absorb/emit MW quanta and are elastically scattered by impurity. The second mech-

anism stems from MW-induced non-equilibrium electron energy distribution in which

inverted occupation of electronic states can occur under appropriate conditions. In this

section, we will only focus on these two mechanisms. Other less popular (or less rele-

vant) mechanisms, such as photo-assisted quantum tunneling [62] and non-parabolicity

effects [58] etc, will not be discussed here.



27

Figure 1.8: Illustration of indirect inter-Landau-level scattering. In this diagram, ~ is
set to equal unity and the constant energy shift ~ωc/2 in the Landau ladder is omitted.
The figure was taken from Ref. [65].

1.9.5.1 Indirect inter-Landau-level scattering

The theoretical considerations along this line can be traced all the way back to Ryzhii

et al. [63][64]. The first attempt to develop a theory for MIROs/ZRS based on such a

picture was made in Ref. [65]. This work was followed by a series of similar theoretical

efforts (see, for instance, Refs. [66][67][68][69][70]). The most comprehensive theory was

presented in Ref. [59].

This mechanism can be intuitively understood as follows (cf. Fig. 1.8). A dc electric

field Edc creates a spatial gradient in the energy spectrum: εn = (n+1/2)~ωc + eEdcx.

Energy levels are depicted as thick slanted lines in Fig. 1.8. Supposing that a microwave

quantum with energy ~ω slightly larger than 2~ωc is absorbed by an electron in the nth

Landau level. This electron would not be able to make a transition to the (n + 2)th

Landau level unless it is spatially displaced by a distance ∆x. Since the DoS to the right

of this excited electron is larger than that to its left, its preferential displacement is to

the right. Notice that the displacement here is referred to the spatial shift of electron

guiding center (i.e., the center of the electron cyclotron orbit). This action results in a
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Figure 1.9: Illustration of the displacement of electron guiding center. The circles
depict cyclotron orbits. The direction of initial (final) momentum is denoted by nϕ
(nϕ′). ∆Rϕ→ϕ′ denotes the guiding center displacement. The figure was taken from
Ref. [71].

photocurrent flowing against the dark dc current.

The decrease of total current through the sample reflects on the decrease of sample

conductivity. If instead, ~ω is slightly smaller than an integral multiple of ~ωc, the

displacement of guiding center will result in a photocurrent flowing with the dark dc

current and therefore the detected conductivity of the sample will increase. The dis-

placement of electron guiding center is achieved by momentum transfer between the

electron and impurity through elastic scattering process (cf. Fig. 1.9).

MW photoconductivity originating from this mechanism was given as [72]:

σ(ph)

σD
= −4δ2

[

sin2 πǫac + πǫac sin 2πǫac
] τtr
2τ∗

∑

±

E2
± (1.62)

σD = e2ν0v
2
F/2ω

2
cτtr is the Drude conductivity, ν0 is the DoS at B = 0, vF is the Fermi

velocity, τtr is the transport relaxation time, δ = exp(−π/ωcτq) is the Dingle factor and

1/τ∗ = 3/τ0− 4/τ1+1/τ2 where τn is the nth harmonic of elastic scattering rate τ(θ)−1

(with θ being the scattering angle):

1

τ(θ)
=

+∞
∑

n=−∞

einθ

τn
. (1.63)
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Dimensionless parameter E± is proportional to microwave electric field Eω:

E± = s±
evFEω

~ω(ω ± ωc)
(1.64)

s± = ±1 parametrizes the polarization state of the incident microwave.

1.9.5.2 MW-induced non-equilibrium energy distribution

This mechanism was first proposed in Ref. [73]. The theory was further developed in

Refs. [74][75][60]. It was shown, by solving a kinetic equation, that in the presence

of MW radiation the modulation in the DoS (due to Landau quantization) can in-

duce a modulation in the electron energy distribution. A small modulation in the

electron energy distribution could result in a dramatic change in the dc conductivity:

σ =
∫

dε
(

−∂f(ε)
∂ε

)

σ(ε) (where f(ε) is the electron energy distribution and σ(ε) is the

contribution of electrons with energy ε to dissipative transport) [60].

In the energy interval(s) where population inversion occurs, ∂f(ε)/∂ε becomes pos-

itive and therefore these electrons (with ε within such interval(s)) give a negative con-

tribution to the dc conductivity. As illustrated in Fig. 1.10, the inverted occupation

of electronic states occurs when the incident MW quantum has energy ~ω larger than

the cyclotron energy ~ωc. Redistribution of electron energy will still take place when

~ω < ~ωc, but there will be no population inversion in this case and all the electrons

will give positive contribution to the dc conductivity. MW photoconductivity stems

from this mechanism was given as [72]:

σ(ph)

σD
= −4δ2 [πǫac sin 2πǫac]

2τin
τtr

∑

±

E2
± (1.65)

where τin is the inelastic relaxation time. At low temperatures, it is mainly determined

by electron-electron collisions.

1.9.5.3 Current domains

Both mechanisms predict that MW photoconductivity σ(ph) grows with increasing MW

intensity (cf. Eq. (1.62) and Eq. (1.65)). The magnitude of σ(ph) can exceed the dark dc

conductivity at sufficiently high MW intensity and thus the minima of the dc conduc-

tivity could become negative. The instability associated with absolute negative conduc-

tivity has been acknowledged since the work in Ref. [76]. It was shown by Andreev et
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Figure 1.10: Illustration of electron energy redistribution induced by MW radiation.
Vertical axis is the energy (ε). Horizontal axis is the DoS (D(ε)). Population inversion
occurs when the incident MW quantum has energy greater than the cyclotron energy
(~ω2 > ~ωc). In the case where MW quantum has energy smaller than the cyclotron
energy (~ω1 < ~ωc), redistribution of electron energy will still take place but there will
be no population inversion. The figure was taken from Ref. [73].

al. that the existence of a local negative dc conductivity (regardless of the underlying

microscopic mechanism) is sufficient to explain the observed ZRS [51]. Their analysis

led to the following conclusions: 1.) a homogeneous time-independent current carrying

state with absolute negative conductivity is unstable under perturbation (e.g. inhomo-

geneous current fluctuation); 2.) the only possible stationary state is one in which the

magnitude of local current density is equal to certain finite value j0 everywhere except

for isolated points (vortex cores) or lines (domain walls). The dissipative component

of the local electric field (Ex) is zero at j0 under the assumption that MW-irradiated

2DEG exhibits a generic N -shape field-current (Ex-jx) characteristic (in which dissi-

pative resistivity ρd = Ex/jx < 0 when |jx| < j0). A homogeneous current state with

|jx| < j0 will break into current domains and as a result electrical transport becomes

dissipationless. Similar analyses were also carried out in Refs [62][77][78][79][59].

1.9.6 Effect of MW radiation on SdHOs

The presence of MW radiation could strongly suppress SdHOs [73][80][81]. It was re-

ported that SdHOs in MW-irradiated 2DEG were pinched at around CR [82]. Since

MW photoresponse is null at CR (ω/ωc = 1), such a node suggests that the resistiv-

ity/conductivity at CR is not simply the algebraic sum of MW-induced change and the
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dark value. Based on this fact, it was inferred that electron scatterings in 2DEG must

have been modified by the presence of MW fields [82]. Although MIROs/ZRS were

usually studied at magnetic fields below the onset of SdHOs, it has been experimentally

shown that they could also occur when the 2DEG exhibited SdHOs [80]. It was ob-

served that SdHOs were dampened significantly at MIRO minima and they completely

disappeared (at the MIRO minima) once ZRS have developed [80].

At radiation frequencies (ω) below a certain characteristic frequency (ω0 = 2Γ/~

with Γ being the half width of a broadened Landau level), it was reported that MW

radiation not only suppressed SdHOs but also reduced the average magnetoresistivity

over a substantial range of magnetic field [54][81]. When ω > ω0, the experimental

data showed that there existed a narrow range of magnetic field (around ωc = 2 ·ω and

ωc = 2/3 · ω) within which SdHOs were essentially unaffected by MW radiation [81]. It

has been shown numerically that the observations made at ω < ω0 could be attributed

to formation of non-equilibrium electron energy distribution [81]. Population inversion

occurs in the highest occupied Landau level due to MW-induced intra-Landau-level

scatterings. The inverted population results in a negative contribution to magnetore-

sistivity. The existence of a window of magnetic field within which SdHOs were very

much immune to MW radiation was also reproduced in numerical simulations [81]. Such

window signifies a regime where inter-Landau-level scatterings (occurring at lower B)

have subsided and intra-Landau-level scatterings (occurring at higher B) have not set

in. Thus, MW quanta could only be weakly absorbed within such window.

1.10 This Thesis

In this thesis, we present our studies on nonlinear electrical transport in high-mobility

2DEG. Experimental data and numerical results will be presented following the dis-

cussion of experimental details in Chapter 2. The transport nonlinearity under our

investigation here arises from a pure dc-current bias as well as from simultaneous MW

irradiation and a dc-current bias. The basic motivation behind a series of research along

this line is to search for a critical current density predicted by a current-domain model

regarding the formation of ZRS in MW-irradiated 2DEG [51].

First, we will focus on the transport nonlinearity purely induced by a dc-current bias.
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In Chapter 3, we discuss Hall-field induced resistance oscillations (HIROs). Phenomeno-

logically, HIROs in dc-current biased 2DEG are similar to MIROs in MW-irradiated

2DEG. A dc-current bias not only can induce periodic oscillations in differential re-

sistivity, but it also has the ability to induce zero differential resistance state (ZdRS)

which is analogous to ZRS forming in 2DEG under MW irradiation. We discuss ZdRS

in Chapter 4.

The rest of the thesis will be devoted to the transport nonlinearity occurring in

2DEG under simultaneous MW irradiation and a dc-current bias. In Chapter 5, we

discuss oscillations in differential resistivity with the applied dc-current bias at vari-

ous values of ǫac. The oscillations show non-monotonic dependence on parameter ǫac.

MIRO-like feature not only occurs near CR and its harmonics, but it also appears near

subharmonics of CR. In Chapter 6, we discuss a peculiar ”synchronization” behavior

between the MIRO-like features near CR and its second subharmonic as the dc-current

bias is varied.

As MW intensity increases, additional resonance peaks and troughs appear near CR

and its harmonics. The positions (in terms of parameter ǫac) of these peaks and troughs

are strongly dependent on the power of the microwave that irradiates the 2DEG. We

discuss these observations in Chapter 7. Finally, a conclusion will be given in Chap-

ter 8. In order to get better understanding on the observed transport nonlinearity, we

compare experimental data with the existing theories throughout the thesis. Most of

the numerical results are obtained using the theoretical work put forth by Khodas et

al. [71].
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Experimental details

2.1 High mobility 2DEG samples

Our samples were cleaved from symmetrically doped GaAs/Al0.24Ga0.76As quantum

wells grown by Loren Pfeiffer and Ken West at Bell Labs, Alcatel Lucent. Fig. 2.1

shows the sample structure. The quantum well was 30 nm wide. The spacer separating

the Silicon δ-doping layer from the well is 80 nm thick. Electron density (ne) was

determined from the periodicity of Shubnikov-de Haas oscillations and/or low-field Hall

resistivity. Electron mobility (µ) was determined from zero-field sheet resistance as

well as ne using the simple Drude model. The post-sample processing ne and µ were

3.7 ∼ 3.8 × 1011 cm−2 and 1.0 ∼ 1.3 × 107 cm2/Vs, respectively. These values were

obtained at T ≃ 1.5K after briefly illuminating the samples with visible light.

To understand how 2DEG was formed in such structures and why these structures

were engineered in this way, let us start out by considering two pieces of semiconduc-

tor materials: one of them is a piece of n-doped AlGaAs and the other is a piece of

undoped GaAs. The band-edge diagram immediately after these two pieces of materi-

als are brought together (before charge redistribution takes place) is shown in Fig. 2.2.

The valence electrons originally bound to the donors can be thermally excited into the

conduction band of AlGaAs. These electrons will then flow into the conduction band

of GaAs because there they have access to lower energy states. Due to the spatial sep-

aration of these electrons from their ionized donors, an electric field will build up in the

transition region and the Coulomb attraction will ensure that electrons can only move

33
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Figure 2.1: Sample structure.
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Figure 2.2: Band-edge diagram of a GaAs-AlGaAs heterojunction before new equi-
librium is established. AlGaAs is n-doped and GaAs is undoped. Ec and Ev denote
conduction and valence band-edge energy, respectively. Valence electrons originally
bound to the donors can be thermally excited to the conduction band of AlGaAs. They
will then be swept into the conduction band of GaAs. Ultimately, the chemical poten-
tials of these two materials have to be at the same level. The diagram was taken from
Ref. [83].

near the heterojunction interface. Since these electrons are now at lower energy level,

they won’t be able to overcome the barrier and recombine with their donors. Thus, a

thin sheet of electrons is formed. Fig. 2.3 shows the band-edge diagram after charge

redistribution has taken place and a new equilibrium is reached. The band-bending

near the heterojunction interface is due to charge accumulation on both sides of the

interface. Chemical potential is equilibrated in the entire structure.

It was discovered that two main factors affect electron mobility in the 2DEG: in-

terface roughness and scattering by ionized donors in the barrier material. Interface

roughness can be minimized by employing epitaxial techniques (MBE or MOCVD) in

crystal growth. The perfection of GaAs-AlGaAs interface makes it an excellent material

system when very high electron mobility is demanded. Scattering due to ionized donors

can be reduced by inserting a ”spacer” between the doped region and the heterojunc-

tion interface. If δ-doping is implemented, the scattering due to ionized donors can be

further reduced. This is because all the free charge in the barrier material would now

be tightly bound to the donor sheet. The Coulomb potential due to random positioning

of ionized donors will then be screened out and a more uniform charge distribution

will be seen by the 2DEG [83]. Implementing δ-doping also maximizes the number of

carriers that could actually go into the 2DEG and reduces the risk of inducing parasitic

conduction channels in the doped region.

If a back barrier does not exist, electrons might travel along undesired paths within
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Figure 2.3: Band-edge diagram of a GaAs-AlGaAs heterojunction after charge redis-
tribution has taken place and new equilibrium is reached. The diagram was taken from
Ref. [83].

the substrate (cf. Ipar in Fig. 2.4(a)). This problem can be solved in two different

ways: introducing a p-type layer or a wider bandgap layer into the substrate. The

resulting band-edge diagrams after introducing these two types of buffer layers are

shown in Fig. 2.4(c)(d). The reason a p-type layer can provide a back barrier is because

a negative space-charge region will be formed adjacent to the 2DEG when this p-type

layer is fully depleted. Practically, using a wider bandgap layer to avoid the back barrier

to substrate injection is the preferred design for GaAs-based structures. Finally, it is

known that carrier freeze-out occurs at low temperatures in doped semiconductors. This

issue is avoided in modulation-doped heterostructures. This is because the 2D electrons

in these structures are at lower energy level than that of the donors’. The superior

low temperature performance ensures that devices fabricated from these structures can

function properly at low temperatures.
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Figure 2.4: A MODFET (modulation-doped field-effect transistor) structure. (a) With-
out a back barrier, a parasitic leakage current Ipar might flow within the substrate. (b)
A MODFET structure which incorporates a back barrier. (c) Conduction band-edge
profile for the structure depicted in (b) if the back barrier is provided by a p-type ma-
terial. (d) Same as (c) except that the back barrier is provided by a wider bandgap
material. The diagrams were taken from Ref. [84].
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Figure 2.5: Band-edge profile of an Ohmic contact. The semiconductor region right next
to the metal is heavily doped. Farther away from the metal-semiconductor interface,
the doping concentration is lower. The diagram was taken from Ref. [85].

2.2 Sample processing

2.2.1 Hall bar structures

Samples were shaped into Hall bar bridges by photolithography and chemical etching.

The whole procedure could be divided into two major steps: 1.) Transferring mesa

pattern onto 2DEG; 2.) Making Ohmic contacts. Ordinarily, a top gate will also be

incorporated into the Hall bar bridge to allow control over the 2D electron density. In

our case, however, the top gate was not fabricated because our experiments required

2DEG to be exposed to MW radiation.

2.2.2 Ohmic contacts

In principle, Ohmic contacts can be realized in two different ways: 1.) lowering the

Schottky barrier height; 2.) creating a heavily doped region in the semiconductor right

next to the metal. In III-V compound semiconductors, however, the Schottky barrier

height cannot easily be reduced by choosing the metal that is used in contact with them

due to Fermi level pinning at the semiconductor surface [84]. Because of such constraint,

making Ohmic contacts to III-V compound semiconductors are usually achieved through

the second approach. Fig. 2.5 shows the band-edge profile of an Ohmic contact that is

realized in this way.

Many different techniques have been developed to fabricate Ohmic contacts on III-V
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compound semiconductors. Here we only discuss the alloy regrowth technique which is

the technique we were actually using. We chose Au-Ge eutectic mixture (i.e. 88wt%

Au and 12wt% Ge) as contact material [85]. Our recipe is given below:

• The multi-component contact material was deposited onto the semiconductor sur-

faces under reduced atmospheric pressure according to the following order and

thickness:

Ni/Au/Ge/Au/Ni/Au=5 nm/100 nm/100 nm/100 nm/70 nm/20 nm

• Annealing was carried out according to the following temperature profile:

1. Flowing of forming gas (a mixture of hydrogen and nitrogen gas with 1-

5.7mol% of hydrogen) with heat off to purge the chamber (4 minutes)

2. Heating at 370◦C (120 seconds)

3. Heating at 440◦C (50 seconds)

4. Ramping down temperature with forming gas on to cool the chamber below

100◦C (at least 2 minutes)

The bottom Ni thin layer was deposited for increasing the wetting of the eutectic Au-Ge

film. The top Au layer mainly served the purposes of bonding and interconnection. The

rapid heating procedure was to reduce the irregular penetration of Ni-As-Ge grains into

the GaAs layer.

The metallurgical behavior of alloying Au-Ge/Ni with GaAs has been studied exten-

sively (see, for instance, Ref. [86][87][88]). The role each component plays in the alloying

process is summarized below:

• Ge occupies Ga sites in GaAs and is used as an n+ dopant.

• Au acts as a selective getter for Ga.

• Ni serves as a catalyst for the chemical reactions between Au and GaAs. It also

provides the driving force for Ge diffusion.

The proportion of the components in the contact material is important. Excess Au can

create too much Ga vacancies which cannot be completely filled by available Ge. Such

non-stoichiometric condition can result in a high resistivity region at the surface layer

of GaAs. It has been observed that excess Ni can also degrade the Ohmic contacts.
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2.3 Mounting samples

The processed samples were mounted onto 8-pin or 16-pin headers. The connections

between the contact pads and the header pins were established through gold bonding

wires. Wire bonding was achieved by soldering using pure indium solder. Pure indium

was chosen because of its low melting point (156.6◦C) and high ductility. Indium and

gold form intermetallic compounds which provide mechanically strong bonds with low

resistivity. The robustness of the bonding is very important because it can minimize

the risk of bonding wires detaching from contact pads during cooled-down process.

Another important reason for choosing soldering as bonding technique was that it

did not impose mechanical stresses on the contacts during wire bonding. It is known that

mechanical stresses on heterostructures can easily induce electrically active structural

defects. These structural defects act as acceptors. Once they are induced in the regions

directly beneath the contacts, they will capture electrons and thus increase contact

resistance. At low temperatures, contacts could even cease to carry currents due to the

underlying structural defects [89].

Samples were secured to the headers by tying them down using strands of PTFE

(polytetrafluoroethylene, alias Teflon) tape. This simple technique has an added advan-

tage. Since no adhesive substances were used, removing a sample from its header is very

straightforward if there is any need to do so. A homemade socket (16 pins) was made

to host the header and connect it to the circuitry of the cryostat top loading probe.

2.4 Transport measurements

2.4.1 Checking Ohmic contacts

The quality of Ohmic contacts could potentially affect experimental outcomes. Thus,

it is necessary to check them before making any measurement. Usually, we checked

pairs of Ohmic contacts both at room temperature and at liquid helium temperature.

The typical room-temperature 2-terminal resistance was between 10 kΩ and 100kΩ in

our samples. The corresponding value at liquid helium temperature was between 100Ω

and 1 kΩ. Comparing the 2-terminal resistance to the 4-terminal resistance (typically,

several tens of ohms at ∼ 4.2K), we estimated that the resistance due to the Ohmic
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contacts and the rest of the circuitry was several hundreds of ohms.

2.4.2 Precision electronic measurement

4-terminal resistance was measured by standard phase-sensitive detection. The setup is

schematically shown in Fig. 2.6. A sine wave with a known frequency (typically a few

Hz) and a known amplitude (typically 1V) was generated by the internal oscillator of a

lock-in amplifier (SRS Model SR830 DSP or SIGNAL RECOVERY Model 7265 DSP).

This low-frequency oscillating voltage was applied across a 1MΩ or 10MΩ resistor and

as a result a small ac current (with an amplitude typically 1µA) was produced. This ac

current was sent down to the sample and the response (a small ac voltage) of the 2DEG

was detected by a lock-in amplifier. The ratio of the measured voltage to the input

current gave the absolute resistance in the linear response regime. Sheet resistance was

computed by the data acquisition software in real time.

To explore the territory beyond the linear response regime, a dc bias was generated

by a current source (Keithley Model 2400 SourceMeter) and was added to the small ac

current. In such setup, the small ac current served as a ”fast modulation” to the dc

(current) bias and therefore the output of the phase-sensitive detection was proportional

to the slope of the I − V characteristic (i.e. the differential resistance). dV/dI profile

was obtained by continuously varying the dc bias and at the same time measuring the

small signal response of the 2DEG. The I−V characteristic and the absolute resistance

could be reconstructed by numerical integration during post-data processing. During

experiments, the sample was sitting at the bottom of a cryostat at low temperatures.

An out-of-plane magnetic field could be applied to the sample which allowed the studies

of magnetotransport. Microwave radiation could be sent down to the sample through a

rectangular waveguide which allowed observations of MW photoresponse.

2.5 Microwave system

2.5.1 Microwave sources

Gunn oscillators were chosen as our MW sources. One of our Gunn oscillators covers

frequency range 27–38GHz (Ka band) with power output 60–100mW. The other Gunn
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Figure 2.6: Transport measurement setup. We measured linear response resistance and
dV/dI profile using this setup.
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oscillator covers frequency range 80–110 GHz (W band) with power output 2–8mW.

With a passive frequency doubler on, the low-frequency Gunn oscillator can cover V

band (54–76 GHz) with power output 1–3mW. Frequency tunning is accomplished me-

chanically by using a micrometer pre-installed on the Gunn resonator. The bias voltage

is 5.5V for the low-frequency Gunn diode and 4.3V for the high-frequency Gunn diode.

Basically, a Gunn oscillator consists of two components—a Gunn diode and a res-

onator. An appropriately biased Gunn diode will radiate out electromagnetic wave in

the microwave band due to the Gunn effect. The Gunn diode is coupled to a cavity (res-

onator). The resonant frequency is then determined by the frequency of the microwave

generated by the Gunn diode as well as the cavity geometry. Practically, a dielectric

or metal screw is inserted into the cavity to allow tuning of one of its dimension. The

amount of insertion is usually adjusted by a micrometer.

2.5.2 Microwave transmission

Microwaves are transmitted through rectangular waveguides. To gain control over the

microwave power, the output of the Gunn oscillator is fitted into a microwave attenuator.

The attenuation can be tuned between 0 and 60 dB with 0.1 dB resolution. Selection of

TE10 propagation mode is accomplished by employing appropriate waveguide transition

between the Gunn oscillator and the attenuator. To connect the high-frequency Gunn

oscillator to the attenuator, a WR-10 (0.100′′ × 0.050′′) to WR-28 (0.280′′ × 0.140′′)

waveguide transition has to be used. To connect the low-frequency Gunn oscillator to

the attenuator, only a short WR-28 waveguide is needed. A waveguide transition from

WR-15 (0.148′′ × 0.074′′) to WR-28 is necessary when the frequency doubler is on.

When the cryostat top loading probe is at position, the attenuated microwave can

be guided into the probe waveguide through a bend. If two Gunn oscillators are to be

used at the same time, a magic tee can be employed to achieve this goal. One of the

ports of the magic tee is connected to the top of the probe waveguide and the other two

ports are connected to the two attenuators through two short waveguides. In this thesis,

however, we will only present the results obtained in 2DEG under monochromatic MW

irradiation and will not touch the subject of bichromatic experiments.

Fig. 2.7 schematically shows the waveguide section embedded in the cryostat top

loading probe with a magic tee attached to the top. The composite construction of
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Figure 2.7: Schematic drawing of the waveguide section incorporated in our cryostat
top loading probe. The blue piece on the top is a magic tee. It can be replaced by
a bend if only one microwave source is to be used. The thickness of the waveguide
wall is 0.040′′ in the copper section and is 0.010′′ in the stainless steel section. The
composite construction was designed to minimize heat load and microwave transmission
loss. Radiation baffles are to block out thermal radiation from above. The drawing was
taken from Ref. [90].



45

Figure 2.8: A rectangular waveguide with coordinate system setup. z is the propagation
direction. The long edge of the cross section is along x-direction and the short edge is
along y-direction. If no dielectric material fills the waveguide, µ = µ0 and ǫ = ǫ0.

the waveguide was designed to minimize the heat load and microwave transmission loss

[90][91]. The top 2′ of the waveguide is made of copper. This part remains at room

temperature while the system is running. The rest of the waveguide (5′ long) is made

of stainless steel (SS). This part is inside the cryostat when the top loading probe is at

position. The microwave transmission loss in such a waveguide is estimated as follows.

In a rectangular waveguide (cf. Fig. 2.8), the attenuation of TE10 mode due to the

non-ideal waveguide walls is given as [92]:

αc =
2Rs

bη′
√

1− (fc10/f)2

[

1

2
+
b

a

(

fc10
f

)2
]

Rs =

√

πfµ

σ

η′ =

√

µ

ǫ

fc10 =
1

2a
√
µǫ

(2.1)

a (b) is the long (short) dimension in the waveguide cross section, fc10 is the cutoff

frequency of the TE10 mode, f is the microwave frequency, Rs and σ are the surface re-

sistivity and electrical conductivity of the waveguide walls respectively, η′ is the intrinsic

impedance of the dielectric material (if there is any) that fills the waveguide.

Our waveguide is hollow, so µ = µ0 and ǫ = ǫ0. We thus have η′ ≈ 376.7Ω and
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fc10 ≈ 21.077 GHz for a WR-28 waveguide (with a = 0.280′′ and b = 0.140′′). We looked

up the values of σ for copper and stainless steel from Ref. [93]:

• At T = 293K

– Cu: σ ≈ 5.8× 107 S/m

– SS: σ ≈ 1.1 × 106 S/m

• At T = 4K

– Cu: σ ≈ 5.0× 1010 S/m

– SS: σ ≈ 3.1 × 106 S/m

Here, σ of stainless steel at 4K was estimated using Wiedemann-Franz law (κ ≈
0.3W/m ·K at 4K). Fig. 2.9 shows the attenuation coefficients (αc) of copper and

stainless-steel waveguides at both 293K and 4K as a function of microwave frequency.

As the cutoff frequency is approached, the attenuation increases rapidly.

To proceed, let us pick a microwave frequency, say, f = 60GHz. The attenuation

coefficients at this frequency are

• At T = 293K

– Cu: αc ≈ 0.5 dB/m

– SS: αc ≈ 3.61 dB/m

• At T = 4K

– Cu: αc ≈ 0.017 dB/m

– SS: αc ≈ 2.16 dB/m

During system operation, there is a temperature gradient in the stainless-steel section.

The largest temperature gradient occurs in the upper part of the stainless-steel section

[91]. Since we only intend to make a rough estimation here, let us assume that the

whole stainless-steel section is at 4K. Given the attenuation coefficients, we estimated

that the power loss is roughly 3% in the 2′-long copper section (at room temperature)

and is close to 38% in the 5′-long stainless-steel section (at 4K). Microwave propagating
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Figure 2.9: Attenuation coefficients calculated using Eq. (2.1) for the frequency range
covered by our Gunn oscillators. The transmission loss in a stainless-steel waveguide is
significantly higher than that in a copper waveguide. Transmission loss becomes infinite
at the waveguide cutoff frequency.

from the top of the copper section all the way down to the bottom of the stainless-steel

section thus suffers about 40% of power loss.

For the rectangular waveguide depicted in Fig. 2.8, the nonzero field components for

TE10 mode over the waveguide cross section are given as [92]:

Ey ∝ −i sin πx
a

Hx ∝ i sin
πx

a

Hz ∝ cos
πx

a
(2.2)

The field strength (Ey and Hx only) over the wave guide cross section is shown in

Fig. 2.10. The sample is positioned in such a way that the Hall bar bridge lies completely

in the region confined by the box (2mm×2mm in dimensions) (cf. Fig. 2.10). The field

strength at the left and right boundaries of the box is roughly 90% of its maximum

value.

The fields impinging on the sample will partially get transmitted and partially get

reflected due to the transition in dielectric constant. We estimated the relative strength
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Figure 2.10: The distribution of fields over a cross section of a rectangular waveguide
calculated using Eq. (2.2). Only Ey and Hx are shown. They are both strongest in the
middle and decay to zero toward left and right edges. The box (2mm × 2mm) near
the center defined the region where the Hall bar bridge was situated. The electric field
drops to about 90% of its maximum value at the left and right edges of the box.

of the electric field transmitted into the GaAs layer as [94]:

E′
0

E0
=

2
√

µǫ′

µ′ǫ + 1
(2.3)

E0 is the impinging field and E′
0 is the transmitted field. µ and ǫ are the vacuum values

in our case. µ′ and ǫ′ are the values in GaAs. Using the dielectric constant of GaAs at

4K (ǫr ≈ 12.9), we estimated that E′
0/E0 ≈ 0.44.

2.6 Cryogenic system

Our cryogenic system is an Oxford HelioxTL top-loading 3He refrigerator. Samples are

mounted onto the top-loading probe and are inserted into liquid 3He during experiments.

Operation temperatures at ≈ 1.5K are readily maintained by pumping on 1K pot

(which contains liquid 4He drawn from the main 4He bath) above the 3He pot (where the

samples are immersed in). By reducing the 3He vapor pressure in the 3He pot, samples

can be cooled to temperatures below 1K. With the help of a sorption pump (which is

integrated in the cryostat insert), temperatures down to 250mK can be achieved when

experimental heat load is sufficiently low. By using a pre-installed heater in proximity

to the samples, experiments can be performed at temperatures higher than 4.2K. The
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temperature at the sorption pump is monitored by a carbon (Allen-Bradley) resistor.

RuO2 sensors are fitted on the 1K pot and the 3He pot for sensing temperatures below

7K. For higher temperatures (up to 300K), the temperatures at the 3He pot is monitored

using a Cernox sensor instead. Magnetic field along the cryostat axis is provided by a

superconducting magnet. The maximum central magnetic field produced by its main coil

is about 10T at 4.2K and is about 12T at 2.2K. Magnetic field-dependent thermometry

errors |∆T |/T (%) at 2.5T are given below [95][96]:

Table 2.1: Thermometry errors at 2.5T

sensor type T (K) |∆T |/T (%)

Allen-Bradley 20 < 1
RuO2 2 1.4
Cernox 2 1.3



Chapter 3

2DEG under dc excitation

3.1 Introduction

The dc-current induced nonlinearity in the longitudinal resistivity was first observed by

Yang et al. in a high-mobility 2DEG [97]. Fig. 3.1 shows their original data. To in-

crease sensitivity, differential resistance (r) was measured instead of absolute resistance

(R). The analysis by Yang et al. showed that ∂r/∂B exhibited 1/B periodicity. This

new oscillation in magnetoresistivity persisted to ≈ 4K without being smeared out by

elevated temperatures. Yang et al. proposed that Zener tunneling between Hall-field

tilted Landau levels could be the mechanism behind this new phenomenon. An attempt

to develop a rigorous theory along this line was made by Lei [98]. Further experimental

investigation on this subject was carried out a few years later by A. A. Bykov et al. [99].

They confirmed Yang et al.’s assertion that ∂r/∂B was periodic in 1/B. In addition

to the 1/B-periodic oscillations in magnetoresistivity, dc-current induced suppression

of longitudinal resistivity was observed [100][101]. This phenomenon was linked to the

dc-current induced non-equilibrium electron energy distribution [100]. A theory which

encompasses both phenomenons was developed by Vavilov et al. within the framework

of standard Boltzmann equation [102]. In this chapter, we present our experimental

data as well as numerical simulations on this subject.

50
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Figure 3.1: First observation of HIRO in a high-mobility 2DEG. From Ref. [97].

3.2 Experimental results

The experiments were performed at constant coolant temperature T ≃ 1.5K. Before

taking measurements, the sample was briefly illuminated with visible light. Differential

resistivity r was measured while sweeping B (the out-of-plane magnetic field) at a con-

stant I (the applied dc-current) as well as while sweeping I at a constant B. Fig. 3.2(a)

plots r vs B at I = 80µA. The numbers (1, 2, 3, 4) in the graph label the HIRO peaks.

Up to the fifth-order of HIRO peaks was resolved in this sample. It was previously

discovered that the peaks of these oscillations occur whenever the following condition

is satisfied: l∆Y = γRc (here ∆Y = ~ωc/eEH with EH being the Hall electric field,

l = 1, 2, 3, . . ., and γ ≃ 2) [97]. This condition states that a geometrical resonance occurs

whenever the cyclotron diameter matches an integral multiple of the spatial separation

between adjacent Landau levels. This spatial separation (∆Y ) is the direct consequence

of the spatial gradient of energy levels created by Hall electric field (EH). We took this

concept one step further and mapped the two length scales (∆Y and γRc) onto two

associated energy scales: ~ωH (≡ γeEHRc) and ~ωc. The energy scale ~ωH is the work
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Figure 3.2: (a) r vs B at I = 80µA. (b) ∆r extracted from (a) plotted against ǫdc.
Red (gray) curves are plotted using γ = 1.9 (2.0).

associated with the Hall electric field across the cyclotron diameter. For a given sample

(with a certain carrier density ne and a certain Hall-bar width w), ~ωH is simply tuned

by the applied dc-current: ~ωH = γ~(2π/ne)
1/2I/ew with γ being a fitting parameter.

We defined ǫdc ≡ ωH/ωc which serves as a natural parameter for a dc-driven 2DEG.

Phenomenologically, we consider dc-current induced correction to differential resistiv-

ity as: ∆r ≡ r(I 6= 0) − r(I = 0). Fig. 3.2(b) plots ∆r vs ǫdc for the data shown in

Fig. 3.2(a). The red and gray curves were plotted using different values of γ (γ = 1.9

for the red curves and γ = 2.0 for the gray curves). With γ = 1.9, the peaks (troughs)

of ∆r hit the integer (half-integer) ǫdc fairly nicely. With γ = 2.0, however, the peaks

(troughs) gradually drift away from the integer (half-integer) values as ǫdc increases. In

contrast to previous observations, our data shows 1/B-periodicity in r itself instead of

in ∂r/∂B.

In Fig. 3.2(a)(b), the amplitudes of oscillations diminish rapidly with decreasing B.

The decay is governed by the Dingle factor δ = exp(−π/ωcτq). Therefore, it is difficult to

resolve higher order resonances by sweeping B at a fixed I. Since the parameter relevant

to the dc-driven 2DEG is ǫdc, which is proportional to I/B, a very simple solution to
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this problem is simply performing I-sweep at a fixed B instead of performing B-sweep

at a fixed I. The only concern regarding I-sweep being that Joule heating might be an

issue when I is sufficiently large. Practically, we only stayed at low B and so increasing I

up to a few hundreds micro-Amp is sufficient to resolve enough higher order resonances

for our analysis purposes. Generally speaking, Joule heating in our samples at this level

of dc-currents did not cause drift of lattice temperature.

Fig. 3.3 presents I-sweep data at two different B: (a) 416G; (b) 732G. As we did in

Fig. 3.2(b), ∆r was plotted against ǫdc using both γ = 1.9 (the red curves) and γ = 2.0

(the gray curves). The positions of the resonant peaks drift with increasing ǫdc when

we assumed γ = 2.0 just like what is demonstrated in Fig. 3.2(b). The amplitudes of

the oscillations decay slower than the data obtained from B-sweeps (cf. Fig. 3.2(b)).

Nevertheless, the decay is still evident. So far, no theoretical investigation regarding

HIROs has taken such behavior into account. We constructed the Dingle plot using

the I-sweep data at eight different B values (cf. Fig. 3.3(c)). The solid red (open blue)

circles correspond to the first four maxima (minima) of ∆r. The slope of the lines give

us τq ≃ 20 ps which is consistent with the decay shown in Fig. 3.2.

We now focus our attention on the regime of small dc-current. Fig. 3.4(a) compares

differential magnetoresistivity at zero dc-current to that at a finite dc-current I = 20µA.

The vertical downward arrow in the graph indicates the position of the HIRO peak at

ǫdc = 1. On the right side of this first order peak (where ǫdc < 1), r is significantly

reduced compared to the linear response resistivity (i.e. at zero dc-current). Fig. 3.4(b)

presents ∆r extracted from I-sweep data at different fixed B values (0.75 ∼ 1.75 kG in

steps of 0.25 kG). The first minimum gets deeper and also moves to lower ǫdc values as

B increases. The physics behind this observation is more transparent when one looks

at absolute resistivity. Fig. 3.4(c) is the normalized absolute resistivity numerically

reconstructed using the data in Fig. 3.4(b). At B = 1.75 kG, the absolute resistivity

is reduced by a factor of 5 at the first minimum. The width of the zero-bias peak

decreases with increasing B and it appears to saturate at sufficiently high B. These

observations can be qualitatively understood by comparing the Landau-level width in

real space (∆Y ) to the cyclotron diameter (2Rc). Theoretically, it has been shown that

electrical transport in a dc-driven 2DEG is governed by electron backscattering from

impurity. Whenever an electron undergoes backscattering, its guiding center (the center
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of its cyclotron orbit) shifts (or hops) by 2Rc. At a fixed B, the “hopping distance” is

fixed. Increasing dc-current increases Hall electric field and that in turn reduces ∆Y .

As ∆Y decreases, the chance for an electron to undergo 2Rc-hopping within a Landau-

level also decreases. The decrease of available scattering channels results in the dramatic

reduction of resistivity at small dc-current. The vertical dashed line in Fig. 3.4(c) marks

the crossover point where 2Rc = 2Γ/eEH (here 2Γ = ~/τq being the full width of a

Landau level and 2Γ/eEH being its spatial width). This scenario is pictorially shown

in Fig. 3.5(a). The position of this vertical line roughly corresponds to the half-width

of the zero-bias peak. Looking at Fig. 3.4(d), we see that the first minimum gets deeper

and wider as B gets stronger. The minimum gets wider because Landau-level spacing

increases as B increases. The middle point of the troughs remain roughly centered at

ǫdc ≃ 1/2 regardless of B. This is a region where 2Γ/eEH . 2Rc . ∆Y − 2Γ/eEH , i.e.,

the chances that an electron can undergo either 2Rc-hopping within a Landau level or

between adjacent Landau levels are both restricted. Fig. 3.5(b) depicts such situations.

When Hall electric field is further increased, electrons would ultimately be able to hop to

the next higher Landau level and the resistivity starts to rise again due to the open-up

of the scattering channels.

3.3 Numerical results

According to the theory developed by Vavilov et al. [102], the nonlinearity in electrical

transport in a dc-driven 2DEG originates from two sources: 1.) formation of non-

equilibrium electron energy distribution; 2.) modulation of electron scattering rates by

the Hall electric field (EH). At small EH , the first mechanism dominates. It results

in the sharp drop of resistivity at low dc-current. As EH increases, electron energy

distribution gets smoothed out and the second mechanism takes over. This reflects on

the oscillation in differential resistivity with the dc-current.

The curves generated using Vavilov et al.’s theory are plotted in Fig. 3.6 for three

different B (416G, 732G, and 1.75 kG) and two different χ (0.04 and 0.01). The physical

parameters that are required to generate these curves include τq, τtr, τin, χ, B and T .

τq ≃ 20 ps and τtr ≃ 435 ps are extracted from experimental data. τin is the energy
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Figure 3.4: (a) Dramatic suppression of differential magnetoresistivity due to a finite dc-
current I = 20µA. (b) ∆r extracted from I-sweeps at different B (from 0.75 to 1.75 kG
in steps of 0.25 kG). (c) Normalized absolute resistivity reconstructed from the data in
(b). The vertical dashed line corresponds to a Landau-level width 2Γ = ~/τq = 380mK.
(d) The vertical downward arrow marks the first minimum at ǫdc ≃ 1/2 and the vertical
upward arrow marks the first maximum at ǫdc ≃ 5/4.

relaxation time and it is estimated as [60]:

τin ≃ 0.822τee(0, T )

~

τee(ε, T )
=
ε2 + π2k2BT

2

4πεF
ln

κvF

max
[

kBT/~, ωc
√
ωcτtr

] (3.1)

τ−1
ee is the electron-electron scattering rate and κ = 4πkee

2ν0 (≃ 2.4 × 109 m−1) is the

inverse screening length (ke being the Coulomb constant and ν0 = m∗/2π~2 being the

DoS at B = 0 per spin degree of freedom). Using Eq. (3.1), we estimate that (at T =

1.5K) τin ≃ 86 ps at B = 416G; 98 ps at 732G; 126 ps at 1.75 kG. χ is a dimensionless

parameter determined by the ratio of Fermi wavelength λF to the correlation length of

the disorder potential. It can be estimated in two different ways: 1.) χ = (λF/2πd)
2
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Figure 3.5: An electrons undergoes 2Rc-hopping in a dc-driven 2DEG. The left-pointed
arrows denote the 2Rc-hopping. Laudau levels (dark stripes) are tilted by the Hall
electric field. (a) 2Rc = 2Γ/eEH (b) 2Rc ≃ ∆Y/2

(where d is the spacer width) [72]; 2.) using the following relations [71]:

1

τq
=

1

τsh
+

1

τsm
1

τtr
=

1

τsh
+

1

τsm

χ

1 + χ

1

τπ
=

1

τsh
+

1

τsm

2π√
χ
exp

(

− π√
χ

)

(3.2)

τ−1
sh (τ−1

sm ) is the scattering rate associated with the short (long) -range disorder and τ−1
π

is electron backscattering rate. τπ can be extracted from the amplitudes of Hall-field

induced resistivity oscillations based on the following expression [71]:

∆r

r0
=

16δ2τtr
πτπ

cos(2πǫdc), πǫdc ≫ 1 (3.3)

By constructing the Dingle plot, it was found that τtr/τπ ≃ 0.18 [103]. With all the

information in our hands, Eq. (3.2) can then be solved numerically. The χ value we

obtain from the first approach is ≈ 0.01 and that from the second approach is ≈ 0.04.

Comparing the theoretical curves with the experimental data (cf. Fig. 3.3(a)(b)),

it’s clear that the set of curves generated using χ = 0.01 more closely resembles the

actual data. With χ = 0.04, the ǫdc ≃ 1 peak is depressed substantially compared to

higher other peaks. This apparently is not what the experimental data shows. The

red curve (B = 416G) and the blue curve (B = 732G) in Fig. (3.6)(b) (χ = 0.01), on

the other hand, do reasonably capture most of the features of the actual data including

the amplitude and the phase of the oscillations. The main difference being that the
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Figure 3.6: Theoretical curves generated using the theory developed by Vavilov et
al.. Physical parameters corresponding to the experiments are used. (a) χ = 0.04 (b)
χ = 0.01

theoretical curves do not show decay of oscillations with increasing ǫdc (or the dc-

current). It was hypothesized by Vavilov et al. that the decay might come from heating

which results in τq (which enters the Dingle factor δ) drifting with the dc-current. This

is still an open question.

Since Vavilov et al.’s theory assumes that Landau levels are overlapped, it is expected

that more significant deviations between the theory and the experiments would emerge

at higher B when Landau levels are well-separated. This can be seen by comparing

the green curve in Fig. 3.6(b) with the bottom trace in Fig. 3.4(b) (B = 1.75 kG). In

addition to a narrower zero-bias peak, the actual data develops a basin-shape trough

at ǫdc < 1 which does not reproduce by the theory. To see how separation of Landau

levels affects the theoretical results, we performed numerical computation following the

formalisms in Ref. [102]. The dissipative current density (which is parallel to EH) can
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be calculated as:

jd = 2evF

∫ ∞

0
dεν(ε)

∫ 2π

0
cosϕf(ε, ϕ)

dϕ

2π

= 2evF

∫ ∞

0
dεν(ε)

∫ 2π

0
sinϕ

(

−∂f(ε, ϕ)
∂ϕ

)

dϕ

2π
(3.4)

ν(ε) is the DoS. ϕ is the angle the electron momentum makes with EH before scattering.

f(ε, ϕ) is the electron energy distribution. Ignoring energy relaxation, f(ε, ϕ) needs to

satisfies the following equation:

− ∂f(ε, ϕ)

∂ϕ
=

1

ωc

∫ 2π

0

ν(ε+Wϕϕ′)

ν0

f(ε+Wϕϕ′ , ϕ′)− f(ε, ϕ)

τ(ϕ− ϕ′)

dϕ′

2π

Wϕϕ′ = eEHRc(sinϕ
′ − sinϕ) (3.5)

Wϕϕ′ is the work associated with EH in the course of guiding center displacement. ϕ′

is the angle the electron momentum makes with EH after scattering. τ(ϕ−ϕ′)−1 is the

elastic scattering rate in the absence of electric and magnetic fields. It can be expanded

in harmonics τ−1
n and is modeled for mixed disorder as

1

τ(ϕ− ϕ′)
=

+∞
∑

n=−∞

ein(ϕ−ϕ′)

τn
, τn = τ−n

1

τn
=

1

τsm

1

1 + χn2
+
δn,0
τsh

, χ ≪ 1 (3.6)

δn,0 is the Kronecker delta. Differential resistivity is calculated as

r =
∂[ρHjd(j)]

∂j
= ρ2H

∂jd(EH)

∂EH

ρH =
B

ene

EH = ρHj (3.7)

ρH is the Hall resistivity and j is the applied dc-current density.

Within the lowest-order approximation, Eq. (3.5) can be solved by replacing the

f(ε, ϕ) that appears under the integral sign by the Fermi-Dirac distribution function.

An expression which allows us to compute jd is obtained by combining Eq. (3.4) and
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Eq. (3.5). The DoS is modeled as

ν(ε) =
2eB

h

+∞
∑

n=0

1√
2πΓ

exp

[

−(ε− εn)

2Γ2

]

εn =

(

n+
1

2

)

~ωc, n = 0, 1, 2, 3, . . .

Γ = ~

√

eB

2πm∗τq
(3.8)

The pre-factor 2eB/h is the Landau-level degeneracy (ignoring Zeeman splitting). 2Γ

is the full width of a Landau level at the -2.17 dB point (i.e. at ≈ 60.6% the peak

value). It turns out that the integrand in this form is highly oscillatory and so it’s

difficult to get any convergent numerical results out of it. The problem was overcome

by replacing the sinϕ (cf. the second line in Eq. (3.4)) with (sinϕ − sinϕ′)/2. It can

be shown analytically that this substitution gives exactly the same result. The benefit

for doing so being that the integrand becomes more well-behaved and the convergent

numerical results can be obtained. Monte Carlo strategy was employed to speed up

numerical integration. The noise introduced in the process was subsequently reduced

by a Savitzky-Golay smoothing filter. The numerical results are presented in Fig. 3.7

for both χ = 0.01 (a) and χ = 0.04 (b). The numerical results for χ = 0.04 bear

little similarity to Fig. (3.4)(b). The set of curves for χ = 0.01, however, qualitatively

resemble the actual data. The basin-shape valley indeed is developed at higher B

(cf. the 1.75 kG trace). The zero-bias peak gets narrower and appears to saturate at

sufficiently high B which are also consistent with the experimental data. The widths

of the zero-bias peaks are not quantitatively captured by these numerical results. This

suggests that the separation of Landau levels (which is not considered in Vavilov et al.’s

theory) itself is not sufficient to produce the sharp drop in longitudinal resistivity at

small dc-current. To numerically reproduce the observed width of the zero-bias peak in

the regime of separated Landau levels, the energy relaxation term will also need to be

taken into account.
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Figure 3.7: Numerical simulation of the nonlinearity in electrical transport induced by
a small dc-current. B increases from 0.75 kG to 1.75 kG in steps of 0.25 kG. Landau
levels are modeled by a series of Gaussian functions. (a) χ = 0.01 (b) χ = 0.04

3.4 Summary

Under a weak out-of-plane magnetic field, a high-mobility 2DEG driven by a dc-current

exhibits nonlinearity in its electrical transport. Oscillations in the longitudinal differ-

ential resistivity were observed as the dc-current was continuously varied. At very low

dc-current, longitudinal resistivity was dramatic suppressed. Vavilov et al. developed

a theory within the framework of the standard Boltzmann equation. The low ǫdc non-

linearity is attributed to the formation of non-equilibrium electron energy distribution.

The oscillations in differential resistivity, on the other hand, originates from Hall-field

modulated electron scattering rate. The mechanism behind the decay of HIRO with

increasing dc-current is still unknown.



Chapter 4

Zero-differential resistance state

in a dc-driven 2DEG

4.1 Introduction

Zero-differential resistance state (ZdRS) in a dc-driven 2DEG has been previously ob-

served in the regime where Shubnikov-de Haas oscillations (SdHOs) occur [104][5][105]

as well as in the regime where microwave-induced resistance oscillations (MIROs) emerge

[106]. In the first case, it was observed that the harmonic content of SdHOs changes

with the applied dc-current. The small-signal response measured at a magnetic field

corresponding to a SdHO peak was suppressed by the dc-current and was reduced to

zero above some threshold current Ith. In the second case, similar phenomenon oc-

curred in a MW-irradiated 2DEG. When a dc-current was applied, it was observed that

a MIRO peak can evolve into a ZdRS. In this chapter, we present our observation of a

ZdRS which emerges from a minimum of Hall-field induced resistance oscillations (HI-

ROs) [107][108]. The physical mechanism behind the experimental observation will be

explained based on the model of current domains [51].

4.2 Experimental results

Fig. 4.1 presents differential magnetoresistivty measured at T = 1.5K for two different

dc-currents: (a) I = 10µA and (b) I = 20µA. For comparison, the linear response
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Figure 4.1: Differential magnetoresistivity measured at (a) I = 10µA and (b) I = 20µA.
Together plotted is the linear response magnetoresistivity (i.e. at I = 0).

resistivity (i.e. at I = 0) is also plotted. The linear response resistivity shows a fairly

pronounced negative magnetoresistivity at very low B followed by a flat portion be-

fore the onset of SdHOs at B ≃ 2.5 kG. The data with a finite dc-current also shows

the same negative magnetoresistivity at very low B. It has been suggested that the

observed negative magnetoresistivity could arise from classical localization (see, for in-

stance, Ref. [109]). Since it is beyond the scope of this chapter, we will not further

discuss it here. At B higher than this classical localization regime, the nonlinearity in-

duced by the applied dc-current starts to emerge. The shoulder/peak indicated by the

downward arrows in Fig. 4.1(a)(b) mark the ǫdc ≃ 1 HIRO peaks. On the right side of

this peak (where ǫdc < 1), differential resistivity is strongly suppressed by the dc-current.

The mechanism behind this phenomenon is linked to the formation of non-equilibrium

electron energy distribution which has been discussed in Chapter 3. Remarkably, as B

continues to increase, the differential resistivity can be depressed all the way to zero.

This ZdRS even penetrates into the regime where SdHOs starts to be observed when

there is no dc-current.

In contrast to the ZdRS reported previously, this “new” ZdRS does not rely on

MW irradiation; nor is it related to SdHOs. The ZdRS emerges from the maxima of
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Figure 4.2: (a) Differential resistivity measured at B = 1.3 kG and T = 1.5K. The two
vertical lines bound the I range where the ZdRS appears. The dark red curve is the
Gaussian fit described in the text. (b) The I-V curve numerically reconstructed using
the data in (a). Ohm’s law is plotted as the dashed line.

SdHOs only occurs within small and discontinuous intervals of B. The “new” ZdRS

sets in at a magnetic field much lower than the onset of SdHOs and it extends over a

substantial and continuous range of B. Moreover, the formation of this “new” ZdRS is

not accompanied by a precursor negative spike or any temporal resistivity oscillations

previously reported in Ref. [104].

To investigate the range of dc-current within which the ZdRS can be sustained, we

turn to I-sweeps at fixed B. Fig. 4.2(a) presents such data measured at B = 1.3 kG and

T = 1.5K. A ZdRS develops after a initial sharp drop of differential resistivity. Differ-

ential resistivity stays at zero over a finite range (between I1 ≃ 10µA and I2 ≃ 23µA)

and rises again when I > I2. The zero-bias peak can be nicely fitted with a Gaussian

function: rxx(I) = rxx(0) exp(−I2/∆2
1). rxx(0) is the linear response resistivity and ∆1

characterizes the width of the zero-bias peak. We estimate the ZdRS onset dc-current

as I1 ≃ 2∆1. Such a fit is also shown in Fig. 4.2(a) (between −20µA and +20µA, the

dark red curve). We obtain ∆1 ≃ 4.5µA from this fit.

Fig. 4.2(b) is the I-V characteristic obtained by numerical integration using the
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Figure 4.3: Differential resistivity measured at three different B: (a) 1.7 kG; (b) 2.1 kG;
(c) 2.5 kG and three different T : 1.5K (solid curves); 2.0 K (dotted curves); 3.0K
(dashed curves). The two vertical lines bound the zero-bias peaks. ǫdc ≃ 1 peaks are
indicated by the upward arrows.

data in Fig. 4.2(a). A plateau in longitudinal voltage Vxx develops following an initial

rising phase. Vxx stays at a constant value within the B interval in which ZdRS shows.

Together plotted is the I-V relation dictated by Ohm’s law (the dashed line). At very

low dc-current, the I-V characteristic follows Ohm’s law fairly closely. As I increases,

nonlinearity emerges. When I > I2, Vxx starts to increase again due to the enhancement

of inter-Landau level scattering.

Elevated temperature could destroy ZdRS. This is shown in Fig. 4.3 for three different

B: (a) 1.7 kG; (b) 2.1 kG; (c) 2.5 kG. At T = 1.5K (the solid lines), ZdRS are well-

developed for all three B. At T = 2.0K (the dotted lines), the range of dc-current

which is able to sustain a ZdRS shrinks significantly. At T = 3.0K (the dashed lines),
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ZdRS are completely gone. The temperature broadening of the zero-bias peak and the

destruction of ZdRS by elevated temperature might be related to the enhancement of

energy relaxation through electron-electron collisions. Stronger energy relaxation could

result in a smoother electron energy distribution and therefore reduces the nonlinearity.

So far, temperature dependence has not been considered in any theoretical work dealing

with dc-driven 2DEG [102][98].

Examining Fig. 4.3, we see that both rxx(0) and the onset current (I1) of ZdRS

are insensitive to B. Since the longitudinal voltage Vxx at ZdRS is equal to half the

area below the zero-bias peak, it too is only weakly dependent on B. For the data

taken at T = 1.5K, we fit the zero-bias peaks with Gaussian functions. These fits

are shown as the dark curves in Fig. 4.3. We obtained ∆1 ≃ 4.0µA from these fits.

This value is slightly lower than what we get from fitting the B = 1.3 kG data. At

B . 1 kG, ZdRS does not develop in our sample. This might be attributed to the fact

that the modulation in the DoS decreases as B gets weaker and as a result reduces the

modulation in electron energy distribution.

The range of I which can sustain ZdRS increases with increasing B. ZdRS is de-

stroyed when inter-Landau level scattering starts to set in. The maximum dc-current

I2 for ZdRS to exist at a certain B is therefore closely related to the position of the

ǫdc ≃ 1 HIRO peak (indicated by the upward arrows in Fig 4.3). The ǫdc ≃ 1 peak

occurs at IH = jHw ≃ ene(ωc/2kF) ∝ B (where kF =
√
2πne). Thus, I2 increases as B

gets stronger. We find that the ǫdc ≃ 1 peaks can also be fitted reasonably well with

Gaussian functions: rxx(I) = rxx(IH) exp[−(I−IH)2/∆2
2]. The fitting result shows that

∆2 ≃ 18 ∼ 22µA which is only weakly dependent on B. We estimate the upper critical

current of ZdRS as I2 ≃ IH − 2∆2.

Our experimental observations are summarized in Fig. 4.4. The ∆1 and IH − ∆2

obtained from fitting experimental data are plotted as red solid squares and blue solid

circles, respectively. Together plotted are the positions (IH(B)) of the ǫdc ≃ 1 peaks.

The shaded area roughly bounded by the solid squares and the solid circles indicates

the region (in the I-B space) where ZdRS appears.
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4.3 Phenomenological explanation of ZdRS

It was suggested by Bykov et al. that the ZdRS observed in a dc-driven 2DEG could be

understood phenomenologically in terms of the formation of current domains [104]. This

idea, however, is by no means new. It is actually borrowed from a current-domain model

originally proposed by Andreev et al. for explaining the MW-induced zero-resistance

states (ZRS) [51][110][111]. Bykov et al. postulate a generic N -shaped local Ex-jx

characteristic as depicted in inset (b) of Fig. 4.4. It can be shown that the system is

unstable unless the following conditions hold:

ρxx(~jx
2
) =

Ex

jx
≥ 0

rxx(~jx
2
) =

∂Ex

∂jx
≥ 0 (4.1)

ρxx (rxx) is the absolute (differential) resistivity. The first condition is apparently always

true for the postulated Ex-jx characteristic. The second condition immediately tells us
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that the local current density cannot assume any values between the two critical points

(where the slope becomes negative). Since Ex has to be continuous across the domain

wall (cf. inset (a) of Fig. 4.4), the local current density within each domain cannot be

arbitrary. They can only assume the values corresponding to the same longitudinal

electric field. The clamped field is determined by an “equal-area rule” which dictates

that the areas bounded by the Ex-jx characteristic above and below the clamped field

(represented by a horizontal line segment in inset (b) of Fig. 4.4) have to equal to each

other [104]. The lower and upper critical current density (j1 and j2) for ZdRS are simply

the two current densities corresponding to the clamped field.

Inset (a) of Fig. 4.4 depicts the simplest pattern in which only two current domains

exist in the 2DEG. By adjusting the position of the domain wall, any applied current

density j between j1 and j2 can be accommodated:

jw = j1w1 + j2(w − w1)

⇒ w1

w
=

j2 − j

j1 − j2
(4.2)

For our sample at B = 1.5 kG, we estimate that I1 ≃ 10µA and I2 ≃ 43µA. With an

input dc-current I = 20µA, the domain wall would be adjusted such that w1/w ≃ 0.7.

Since the Hall electric field is discontinuous across the domain wall (because j1 6= j2),

space charge must accumulate around the domain wall. Due to the ~E × ~B drift, the

domain wall would not be stationary and will propagate across the Hall bar. It has

been suggested that the periodic creation and annihilation of domain wall should result

in current pulses with repetition rate roughly equal to inverse the transit time of the

domain wall [104]. Experimentally, it’s not been verified yet.

4.4 Summary

We observed a new ZdRS in a dc-driven 2DEG. It emerges from a minimum of HIROs.

This ZdRS extends over a substantial and continuous range of magnetic field. We

identify the lower and upper critical currents for the formation of this ZdRS. According

to the simplest current-domain model, these two critical currents are associated with

the two allowed local current densities corresponding to the clamped longitudinal field.



Chapter 5

2DEG under simultaneous ac and

dc excitations

5.1 Introduction

The study of electrical transport in 2DEG under simultaneous MW irradiation and

a dc-current bias is motivated by a current-domain model put forth by Andreev et al.

[51]. So far, direct detection of current domains has not been achieved. According to the

model, Microwave-induced zero-resistance state (ZRS) cannot exist above certain critical

current density. If this critical current density could be identified in experiments, it will

provide stronger evidence to the formation of current domains while ZRS is formed. In

this chapter, we present our experimental effort along this line [112].

5.2 Experimental results

Previously, Zhang et al. have discovered that the resonance peaks in the small-signal

response of a high-mobility 2DEG under simultaneous MW irradiation and a dc-current

bias could roughly be described by the following empirical rule [106]:

ǫdc + ǫac ≃ n, n = 1, 2, 3, . . . (5.1)

As we will show in a moment, Eq. (5.1) is not complete. A closer examination of the data

revealed another resonance condition. We will discuss what these resonance conditions
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mean.

The experiments were performed at constant coolant temperature T ≃ 1.5K un-

der continuous MW irradiation. The data we are going to present was taken at MW

frequency f = 69GHz at maximum available power. All the other frequencies showed

similar results. Fig. 5.1 presents differential magnetoresistivity at different dc-current

bias (from I = 0 to I = 22µA in 2µA steps). Several MIRO peaks and a well-developed

ZRS were observed at I = 0 (cf. the thick black curve). As I increased, MIRO peaks

evolved into troughs and vice versa. A series of nodes which were only weakly affected

by I were also observed.

To have a closer look at the data, we plotted it in a different way. Fig. 5.2(a) presents

r vs ǫdc at different ǫac (from ǫac = 2 to ǫac = 3.5 in steps of 0.05). Since MW frequency

was fixed, each curve corresponds to a certain magnetic field. B decreases from bottom

(smaller ǫac) to top (larger ǫac). I increases from left to right (because ǫdc ∝ I/B).

The first thing we immediately notice is that the amplitude of r depends on ǫac in a

non-monotonic way. At ǫac ≃ n ± 1/4, it has the largest amplitude. r appears to be

featureless at ǫac ≃ n+ 1/2. The amplitudes for different ǫac at ǫdc . 1 were extracted.

The result is shown in Fig. 5.2(b). It confirms the observation we made in Fig. 5.2(a).

At integer ǫac, r essentially takes the form of HIROs (cf. ǫac = 2, 3). At ǫac ≃ n±1/4,
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r shifted in opposite directions along ǫdc-axis by about 1/4 of the period relative to

HIROs (cf. ǫac = 3 − 1/4 and ǫac = 3 + 1/4). This observation is consistent with

Eq. (5.1). Systematic deviation from Eq. (5.1) occurs at the intermediate values of ǫac

(e.g. 3 . ǫac . 3 + 1/4). To demonstrate this point, we traced the position of the

resonance peak at (ǫac, ǫdc) ≃ (3, 1) as ǫac is varied. The result is plotted in Fig 5.2(c).

The solid circles are the experimental data and the slope line is predicted by Eq. (5.1).

They only agree with each other at the end points (ǫac = 3 − 1/4, 3 + 1/4) and the

middle point (ǫac = 3).

To facilitate visualizing our data, we created gray-scale maps. Fig. 5.3(a) presents

r at around (ǫac, ǫdc) = (3, 1). Light patches correspond to the resonance peaks and

the dark ones correspond to the troughs. Their positions (peaks (ǫac, ǫdc)
+; troughs
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Figure 5.3: (a) r map at around (ǫac, ǫdc) = (3, 1). (b) r map at around (ǫac, ǫdc) =
(7/2, 1/2). The blue+ (red−) dashed lines correspond to ǫac ± ǫdc = n. The yellow
vertical dashed lines pass through resonance peaks and troughs.

(ǫac, ǫdc)
−) could be roughly described by

(ǫac, ǫdc)
+ ≃ (n± 1/4,m ∓ 1/4)

(ǫac, ǫdc)
− ≃ (n± 1/4,m ± 1/4) (5.2)

From the first line of Eq. (5.2), we obtain the complete set of resonance conditions:

ǫac + ǫdc ≃ n

ǫac − ǫdc ≃ m− 1/2 (5.3)

Fig. 5.3(b) presents the gray-scale map of r at around (ǫac, ǫdc) = (7/2, 1/2). The overall

landscape looks similar to that at around (ǫac, ǫdc) = (3, 1). The main difference being

that both the light and dark patches are closer to the image center in Fig. 5.3(a) than

in Fig. 5.3(b). This is because the MIRO phase in this case (≃ 0.15) is smaller than the

theoretical prediction (≃ 1/4).

The physical significance of Eq. (5.3) will become more transparent in a moment.

Very briefly, the first (second) condition is associated with absorption (emission) of MW

quanta by current carrying electrons. The pictorial illustrations of these two processes

are presented in Fig. 5.4 for (ǫac, ǫdc) = (3 − 1/4, 1 + 1/4). The scenario depicted in

(a) would result in increasing of resistivity (due to the vast amount of available states

existing at the center of a Landau band which electrons can be scattered into). The

scenario depicted in (b), on the other hand, would result in decreasing of resistivity
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Figure 5.4: Illustrations of characteristic electron transitions at (ǫac, ǫdc) = (3−1/4, 1+
1/4). Thick slope lines (yellow) represent Hall-field tilted Landau bands. Vertical arrows
(black) represent absorption/emission of a MW quantum. Horizontal arrows (gray)
represent electron backscattering (2Rc-hopping). The combined result is depicted as
the slanted arrows (red or blue). (a) An electron absorbing a MW quantum. (b) An
electron emitting a MW quantum.

(due to limited available states in the gaps). As we will see in a moment, the observed

differential resistivity is (roughly speaking) the difference between these two contribu-

tions. For the example depicted in Fig. 5.4, it’s a positive contribution minus a negative

contribution. This results in a peak in r.

5.3 Theoretical predictions

Extensive theoretical work about nonlinear transport in 2DEG under simultaneous ac

and dc excitations has been carried out by Khodas et al. [71]. They derived that

r − rD
rD

=
(4δ)2τtr
πτπ

[

cos 2πǫdcJ0(4
√

Pω sinπǫac)

− 2ǫac
ǫdc

sin 2πǫdc cos πǫac
√

PωJ1(4
√

Pω sinπǫac)

]

(5.4)

rD = (e2ν0v
2
Fτtr)

−1 is the Drude resistivity and Pω is a dimensionless parameter propor-

tional to MW power. Strictly speaking, Eq. (5.4) is only valid when ǫdc is sufficiently

large. It leaves out the contribution from MW-induced non-equilibrium electron en-

ergy distribution which is believed to be important when ǫdc is small. Nevertheless, we

found that Eq. (5.4) generally provides fairly reasonable (at least) qualitative predictions
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Figure 5.5: Theoretical r vs ǫdc generated using Eq. (5.4) for different ǫac at Pω = 1
(a) and Pω = 10 (b).

to what we have observed in experiments. The theoretical predictions are plotted in

Fig. 5.5 for Pω = 1 (a) and Pω = 10 (b). Comparing theoretical curves to experimental

data (cf. Fig. 5.2(a)), we notice the striking resemblance between the two.

The theoretical curves show that the oscillations in r at ǫac = n + 1/2 and ǫac = n

are out-of-phase (in-phase) when Pω = 1 (Pω = 10). Since the experimental data is

almost completely featureless at ǫac = n + 1/2, it’s relatively hard to tell which case

(out-of-phase or in-phase) reflects the reality. Despite its surprising success, Eq. (5.4) is

not particularly transparent in physics. Let us look at its asymptotic form in the limit

of low MW power (Pω ≪ 1):

r − rD
rD

≃ (4δ)2τtr
πτπ

[

(1− 2Pω) cos 2πǫdc

+ 2Pω

(

cos 2πǫdc cos 2πǫac −
ǫac
ǫdc

sin 2πǫdc sin 2πǫac

)

]

(5.5)
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It’s straightforward to show that Eq. (5.5) can be cast into the following form:

r − rD
rD

≃ (4δ)2τtr
πτπ

[

(1− 2Pω) cos 2πǫdc

+
Pω

ǫdc
(ǫac + ǫdc) cos 2π(ǫac + ǫdc)

− Pω

ǫdc
(ǫac − ǫdc) cos 2π(ǫac − ǫdc)

]

(5.6)

The first term in Eq. (5.6) comes from “virtual” processes involving electrons interacting

with MW fields. These processes are not accompanied by actually absorbing/emitting

MW quanta. The second (third) term comes from “real” processes in which electrons

actually absorb (emit) MW quanta.

At this point, it becomes clear that the empirical rule (cf. Eq. (5.3)) we obtained

earlier is directly related to electrons absorbing/emitting MW quanta. If only “real”

processes are taken into account, it can be shown that

(ǫac, ǫdc)
+ ≃ (m/2,m/2) or (m± 1/4, n ∓ 1/4)

(ǫac, ǫdc)
− ≃ (m± 1/4, n ± 1/4)

(ǫac, ǫdc)
s ≃ (m/2, n/2) withm 6= n (5.7)

(ǫac, ǫdc)
s denotes the saddle point. m,n are positive integers. The first line of Eq. (5.7)

reproduces the empirical resonance conditions (cf. Eq. (5.3)). The second and third

lines reasonably predict the troughs and saddle points in Fig. 5.3. The effect of “virtual”

processes on Eq. (5.7) is to move resonance peaks (troughs) slightly toward (away from)

integer ǫdc.

The non-monotonic evolution in r with changing ǫac is the consequence of differ-

ent degrees of cancellation/enhancement between “virtual” and “real” processes. The

miraculous partial cancellation between them at integer ǫac completely nullifies the ef-

fect of MW irradiation and results in pure HIROs. The suppression of oscillations at

half-integer ǫac can be understood from Eq. (5.4). At half-integer ǫac, it is reduced to

the following form:
r − rD
rD

=
(4δ)2τtr
πτπ

J0(4
√

Pω) cos 2πǫdc (5.8)

This is a HIRO-like oscillation with its amplitude modulated by a MW-power dependent

factor. Since J0(4
√
Pω) decays away as Pω increases, r becomes practically featureless.
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Depending on the actual MW power, the oscillation could be either in-phase or out-of-

phase with HIROs.

5.4 Summary

We studied the nonlinear transport in a high-mobility 2DEG under simultaneous ac and

dc excitations. We found a complete set of resonance conditions in differential resistivity.

Theoretical work by Khodas et al. suggests that the non-monotonic behavior in r is the

manifestation of cancellation/enhancement between processes involving “virtual” and

“real” processes.



Chapter 6

Nonlinear transport at the

second subharmonic of CR

6.1 Introduction

In addition to the MIROs occurring at around integral multiples of cyclotron resonance

(CR), similar phenomenon has also been observed near fractional values of ~ωc. MIRO-

like features at around ǫac = 1/2, 3/2, 5/2, 1/3, 2/3 have be reported [3][50][113][114].

These “fractional MIROs” were originally explained by a multi-photon displacement

mechanism [115]. Later, it was argued that in the regime of separated Landau levels, an

inelastic multi-photon mechanism dominates [116]. At the crossover from separated to

overlapped Landau levels, two single-photon inelastic mechanisms become important.

The first mechanism arises from a resonant series of consecutive single-photon transitions

[117]. The second mechanism is linked to the MW-induced sidebands in the DoS [116].

In this chapter, we present our experimental observation on the electrical transport at

ǫac = 1/2. [118]. We observed that the differential resistivity at ǫac = 1/2 oscillates

with twice the frequency (in terms of ǫdc) compared to that at ǫac = 1. By performing

numerical simulations, we found that this “frequency-doubling” phenomenon could be

understood within the theoretical work put forth by Khodas et al. [71].
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6.2 Experimental results

Our experiments were performed at constant coolant temperature T ≃ 1.5K. The 2DEG

was under continuous MW irradiation at f = 27GHz. Differential magnetoresistivity

was measured at various dc-current bias. Fig. 6.1 presents the experimental data. The

I = 0 trace clearly shows pairs of resonance peak and trough occurring at around B

corresponding to integer (1, 2, 3) and fractional (1/2, 1/3) values of ǫac. The signal is the

strongest at CR. The strength of the signal diminishes very quickly as we move towards

the higher order harmonics of CR. Similar situation also occurs at the subharmonics of

CR, but the signal strength appears to decay much slower.

As we have discussed in Chapter 5, a dc-current can turn a MIRO peak into a

trough and vice versa. Such evolution goes on with the applied dc-current in a periodic

fashion. For instance, the MIRO peak (at I = 0) just below the CR evolved into a

trough at I ≃ 20µA. As we increased I, this trough became a peak again at I ≃ 40µA.

Similar peak-to-trough/trough-to-peak evolutions were also observed near harmonics

and subharmonics of CR.

Based on the resonance conditions Eq. (5.3), the influence of a dc-current on a MW-

irradiated 2DEG is through the dimensionless parameter ǫdc. Since ǫdc ∝ I/B, signals

appearing at different harmonics of CR are not expected to evolve in a synchronous way

as I is varied. This is evident for CR and its harmonics. For instance, the dc-current

required to flip the MIRO peak at ǫac ≃ 2 is only roughly half the corresponding value

required to flip the peak at ǫac ≃ 1.

This naive argument, however, does not seem to apply to the subharmonics of CR.

The data clearly shows that the signal at ǫac ≃ 1/2 is roughly synchronized with the

signal at CR as I is tuned. This observation is more clearly shown in Fig. 6.2 in which we

plot differential resistivity against ǫdc at ǫac = 1 (a) and ǫac = 1/2 (b). Since B ≃ 0.6 kG

at CR and B ≃ 1.2 kG at ǫac = 1/2, the synchronization behavior results in the observed

doubling (halving) of oscillation frequency (period) at ǫac = 1/2. This is not expected

because the data at ǫac ≥ 1 all seems to suggest that the period (in terms of ǫdc) of

oscillations in rxx is not strongly dependent on ǫac.

Using experimental data, we constructed gray-scale maps of differential resistivity

in the (ǫac, ǫdc)-plane. Fig. 6.3 shows the map at around (ǫac, ǫdc) = (1, 1) (a) and
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(1/2, 1/2) (b). Despite a difference by a factor of 2 in both axes, the landscapes in both

images resemble each other at a fairly high degree. For instance, they both show two

peaks along the diagonal, two troughs along the anti-diagonal, 3 saddle points along

the central vertical line (the middle point and the two quarter-points). The positions of

peaks, troughs, and saddle points at around (ǫac, ǫdc) = (1/2, 1/2) can all be reasonably

predicted simply by scaling down the coordinates of the corresponding features at around

(ǫac, ǫdc) = (1, 1).

6.3 Numerical results

To see how the observed “frequency doubling” at ǫac = 1/2 came about, we first turned

to Eq. (5.4). With ǫac = 1/2, it is immediately reduced to Eq. (5.8). Thus, Eq. (5.4)

does not predict the observed phenomenon. However, Eq. (5.4) was derived under the

assumption that Landau levels are strongly overlapped and so the DoS could be modeled

as

ν(ε) = ν0

(

1− 2δ cos
2πε

~ωc

)

(6.1)

When Landau levels get separated (as B gets stronger), Eq. (6.1) no longer adequately

represents the reality. We estimated that ~ωc ≃ 6.8~/τq at ǫac = 1/2, which suggests

that Landau levels are already well-separated at this point. It is conceivable that addi-

tional higher-frequency Fourier components that will enter Eq. (6.1) could in principle

modify Eq. (5.4) and perhaps give rise to the observed frequency-doubling behavior. To

verify this conjecture, we performed numerical computations based on the formalisms

outlined in Ref. [71].

For a 2DEG under simultaneous MW irradiation and a dc-current bias, the dissipa-

tive current density (which is parallel to the Hall electric field) jd = j1 + j2 consists of

two parts:

j1 =
2e

ν0

∫

dϕdϕ′

(2π)2

∫

dεν(ε)ν(ε +Wϕϕ′)∆Xϕϕ′

(

1

τϕϕ′

− Pω

τ̄ϕϕ′

)

×

× [f(ε)− f(ε+Wϕϕ′)] (6.2)
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and

j2 =
2e

ν0

1

2

∑

±

∫

dϕdϕ′

(2π)2

∫

dεν(ε)ν(ε +Wϕϕ′ ± ~ω)∆Xϕϕ′×

× Pω

τ̄ϕϕ′

[f(ε)− f(ε+Wϕϕ′ ± ~ω)] (6.3)

∆Xϕϕ′ = Rc(sinϕ
′ − sinϕ) is the guiding center displacement, ϕ (ϕ′) is the angle

electron momentum makes with the Hall electric field before (after) a scattering event,

Wϕϕ′ = eEH∆Xϕϕ′ is the work associated with the Hall electric field in the course of

displacement ∆Xϕϕ′ , ~ω is the energy of a MW quantum, Pω is proportional to MW

power as we have mentioned in Chapter 5 and τ−1
ϕϕ′ is the elastic scattering rate in the

absent of electric and magnetic fields as defined in Eq. (3.6). τ̄−1
ϕϕ′ is associated with

momentum relaxation and is related to τ−1
ϕϕ′ by

1

τ̄ϕϕ′

=
1− cos(ϕ′ − ϕ)

τϕϕ′

. (6.4)

j1 comes from the processes in which electrons do not actually absorb or emit MW

quanta. It includes a term describing the effect due to a pure dc electric field and

a term describing “virtual” processes in which momentum relaxation rate is modified

due to electrons interacting with MW fields. j2 arises from “real” processes in which

absorption and/or emission of MW quanta by electrons actually takes place. DoS was

modeled by a series of Gaussian functions as in Eq. (3.8). Strictly speaking, f(ε) is a non-

equilibrium electron energy distribution. As the lowest-order approximation, however,

we simply replaced it with the Fermi-Dirac distribution as we did in Chapter 3. Once

the dissipative current density was obtained, differential resistivity was computed using

Eq. (3.7).

The numerical results are presented in Fig. 6.4. Following parameters were used in

the simulations: τq = 20 ps; τtr = 435ps; χ = 0.01; T = 1.5K. At experimental MW

frequency (f = 27GHz), ǫac = 1/2 corresponds to B ≃ 1.2 kG which gives ωcτq ≃ 6.8.

The simulations at this B do show “frequency doubling” within certain range of MW

power (cf. the blue trace in Fig. 6.4(a)), although the oscillations are less pronounced

compared to the experimental data (cf. Fig. 6.2(b)). At lower MW power (cf. the

gray trace in Fig. 6.4(a)), the resonance peak at ǫac = 1/2 does not show up and the

oscillations simply take the form of ordinary HIROs. At higher MW power (cf. the red
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trace in Fig. 6.4(a)), oscillations appear to become 180◦ out-of-phase relative to ordinary

HIROs.

To see how the degree of separation between Landau levels affects the numerical

results, we performed simulations at B = 5kG (cf. Fig. 6.4(b)). Notice that ǫac = 1/2

at this B requires MW frequency f ≃ 110GHz. At the intermediate MW power (cf. the

blue trace in Fig. 6.4(b)), we obtained fairly pronounced oscillations in rxx with twice

the ordinary HIRO frequency. The peak at ǫac = 1/2 grows stronger with increasing

MW power. It does not disappear at Pω as low as 0.1.

The numerical simulations at experimental B (≃ 1.2 kG) do not show double-

frequency oscillations with amplitudes as pronounced as the real data. Perhaps it is

because the non-equilibrium electron energy distribution was not taken into account.

Non-equilibrium electron energy distribution has the effect of narrowing resonance peaks

and therefore could result in more pronounced double-frequency oscillations at lower B.

The range of MW power within which frequency doubling can occur might also be

expanded after non-equilibrium electron energy distribution is taken into account.

Another plausible explanation to the observed frequency-doubling phenomenon is

to assume formation of additional energy bands within Landau-quantization gaps. This

idea was originally developed to explain the MIRO-like features at around subharmonics

of CR (i.e fractional values of ǫac) [116]. According to this theory, MW-irradiation can

induce “sidebands” above and below an ordinary Landau level at energies equal to

εN ± ~ω (where εN = ~ωc(N + 1/2)). At ǫac = 1/2, sidebands from adjacent Landau

levels overlap exactly in the mid-gap. The period of DoS is thus reduced by a factor of

2. This means the increment of Hall electric field that is required for an electron to be

scattered into the next higher energy level is also reduced by a factor of 2. As a result,

rxx oscillates with ǫdc at twice the ordinary HIRO frequency.

6.4 Summary

We observed frequency doubling at the second subharmonic of CR. The period (in

terms of ǫdc) of oscillations in rxx at ǫac = 1/2 is only half the corresponding value at

ǫac = 1. By performing numerical simulations, we concluded that this is a phenomenon

which could be understood within the theory recently developed by Khdoas et al.. An
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Figure 6.4: Differential resistivity at ǫac = 1/2 computed using Khodas et al.’s theory
[71]. DoS was modeled by a series of Gaussian functions. Three different MW powers
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alternative explanation is to assume formation of MW-induced sidebands within the

Landau-quantization gaps.



Chapter 7

Nonlinear transport in 2DEG

under intense MW irradiation

7.1 Introduction

The possibility that multi-photon processes might be involved in producing the trans-

port nonlinearity in MW-irradiated 2DEG is suggested by a series of experimental ob-

servations in which MIRO-like features appear near certain fractional values of ω/ωc

[73][114][3][113][118]. Theoretical work aims at explaining such observations based on

the idea of multi-photon-assisted transport has been put forth by Lei et al. [115][119]

and Dmitriev et al. [116]. As we have discussed in Chapter 5, differential resistivity

in a 2DEG under simultaneous MW irradiation and a dc-current bias oscillates with

ǫac ± ǫdc. Such combinations of parameters suggest that the observed nonlinearity in

transport originates from single-photon processes [71]. As MW power increases, addi-

tional features appear near CR and its harmonics [120]. In this chapter, we will present

our experimental results on this subject as well as their physical implications.

7.2 Experimental results

The experiments were performed at constant coolant temperature T ≃ 1.5K. The 2DEG

was continuously irradiated by MW at frequency f = 27GHz. Differential resistivity

was measured at various dc-current bias. Data was presented in Fig. 7.1 for I = 0 (a)
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and I 6= 0 (b). Without a dc-current bias, exactly one peak and one trough appear

near CR (ǫac = 1) and its harmonics (cf. the signal at around ǫac = 2). The peak

and the trough are roughly positioned symmetrically about integer ǫac (the vertical

lines). When a finite dc-current is applied to the 2DEG, multiple peaks and troughs

are observed near CR and its harmonics. For instance, the I = 64µA trace shows three

peaks (indicated by ↑) and three troughs (indicated by ↓) at around CR. We estimated

that 2πǫdc & 10 and EH & 0.5V/cm at CR (B ≃ 0.6 kG) for the data presented in

Fig. 7.1(b). The signal gets much weaker at the second harmonic but multiple peaks

and troughs could still be discerned. As we will discuss in the next section, this new

phenomenon manifests the importance of multi-photon-assisted electrical transport in

a 2DEG under intense MW irradiation as well as a strong dc-current bias.

7.3 Theoretical predictions

The theoretical differential resistivity was derived by Khodas et al. [71][120]. The

expression has been given in Eq. (5.4). In Chapter 5, we only stated that Pω is a dimen-

sionless parameter proportional to the power of unpolarized MW. In full details, it is

defined as

Pω = P+
ω + P−

ω

P±
ω =

P(0)
ω

(ω ± ωc)2τ2em + 1
, P(0)

ω =
e2E2

acv
2
Fτ

2
em

2ǫeff~2ω2
(7.1)

P+
ω (P−

ω ) is the dimensionless power for left (right)-circularly polarized MW, Eac is

the MW electric field, τem = 2ǫ0
√
ǫeffm

∗c/nee
2 is the electromagnetic damping time

(τem ≃ 7.2 ps in our sample) and 2
√
ǫeff =

√
ǫ+ 1 with ǫ ≃ 12.8 (the dielectric constant

of GaAs).

Two different methods were suggested by Khodas et al. regarding how P(0)
ω could

be extracted from experimental data. The first method is by using the position of the

peak closest to CR. At ǫdc = n+ 1/4 (n is a positive integer), Eq. (5.4) is reduced to

r − rD
rD

=
(4δ)2τtr
πτπ

(

− 2
√
Pω

n+ 1/4

)

ǫac cos(πǫac)J1(4
√

Pω sinπǫac) (7.2)

Numerical investigation shows that when Pω is sufficiently large (say, Pω & 1) the ǫac

coordinate of such a peak at this specific ǫdc coordinate (i.e. n + 1/4) can be fairly
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Figure 7.1: Magnetotransport in a high-mobility 2DEG under intense MW irradiation
at frequency f = 27GHz. (a) Linear-response magnetoresivitity. (b) Differential mag-
netoresistivity measured at various dc-current bias (from I = 48µA to 78µA in steps of
4µA). The traces have been vertically offset for clarity. The vertical lines mark the B
values corresponding to CR (i.e. ǫac = 1) and its second harmonic (i.e. ǫac = 2). The
three upward (downward) arrows next to the I = 64µA trace indicate the positions of
its three peaks (troughs) at around CR.
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Figure 7.2: Magnetoresistivity at around CR plotted against dimensionless parameter

ǫac. (a) Experimental data at I = 54µA. (b) Theoretical curve generated using P(0)
ω =

7.7.

accurately determined by the first (nontrivial) zero of J1(x). The first nontrivial zero

of J1(x) is at x ≃ 1.84, so the ǫac coordinate of such a peak should satisfy the following

relation:

4
√

Pω sinπǫac ≃ 1.84 (7.3)

From our data, we found that at ǫdc ≃ 1.25 such a peak has coordinates (ǫac, ǫdc) ≃
(0.95, 1.25). Using this ǫac coordinate and Eq. (7.3) together with Eq. (7.1), we obtained

P(0)
ω ≃ 7.7.

The second method is by directly comparing the theoretical curve with the exper-

imental data. P(0)
ω is adjusted until the theoretical predicted features at around CR

closely match up the actual observed features. Fig. 7.2(a) shows experimental data

measured at I = 54µA and (b) shows the curve generated using Eq. (5.4) at the same

dc-current bias. Here we used τq ≃ 15 ps and τtr/τπ ≃ 0.18 [103]. With P(0)
ω = 7.7,

the predicted positions of the peaks and troughs at around CR reasonably match up

the actual ones. The predicted amplitude of these oscillations also agree well with the

experimental data (in both cases (r − rD)/rD ≃ 0.1).

The data taken at various MW power is presented in Fig. 7.3(a) (with the dc-current
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Figure 7.3: MW power dependence of differential magnetoresistivity at I = 54µA. (a)
Experimental data. The numbers indicate how much the Gunn oscillator output was

attenuated. (b) Theoretical predictions. The numbers indicate the P(0)
ω values that

were used in generating these curves.

bias fixed at I = 54µA). The numbers mark the attenuation applied to the output of the

Gunn oscillator. The “period” of the oscillatory features decreases with increasing MW

power. With full MW power, four peaks (↑) appear at around CR. At 8 dB below the

full power, only two peaks (↑) remain in the window. The theoretical curves are plotted

in Fig. 7.3(b). The numbers indicate the P(0)
ω values. The P(0)

ω value of each trace

relative to the highest power (i.e. P(0)
ω = 7.0) reflects the actual power ratio shown in

Fig. 7.3(a). The theory reasonably captures the observed MW power dependence.

Khodas et al. pointed out that the phase of the electron wave function would

change periodically due to intense MW irradiation. As a result, the electron wave

function acquires components which have energies ε, ε± ~ω, ε± 2~ω,. . ., etc. (ε being

the electron eigenenergy in the absence of MW fields). Effectively, Floquet bands of

levels separated by ~ω are formed in the electron energy spectrum. Electrons can be

scattered between Floquet bands. The scattering probability is proportional to the

overlap between the initial and the final Floquet bands. The overlap is given by the

following parameter:

α
(N)
θ = J2

N [
√

2Pω(1− cos θ)] (7.4)

JN (x) is the Nth order Bessel function of the first kind. θ is the scattering angle.

Eq. (7.4) describes scattering accompanied by absorption/emission of |N | MW quanta.
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π = J2

N (2
√
Pω) describes the overlap between

the initial and the final Floquet bands in which an electron undergoes backscattering
accompanied by absorbing or emitting |N | MW quanta.

In strong dc electric fields, the main contribution to the dissipative current density

comes from electrons backscattered (θ = π) off impurity. Under such condition, Eq. (7.4)

becomes α
(N)
π = J2

N (2
√
Pω). Fig. 7.4 plots α

(N)
π vs N for Pω = 4.4. α

(N)
π strongly peaks

at N = 0 and |N | = 3. It decays away rapidly when |N | > 3. Mathematically, JN (x)

diminishes quickly as |N | increases beyond x. Therefore, the number of MW quanta

that can be absorbed/emitted by an electron is limited by:

|N | ≤ Nm ≈ 2
√

Pω (7.5)

Nm is the maximum number of MW quanta that can be absorbed/emitted by an electron

for a given power Pω.

Under the condition that Pω & 1, Eq. (5.4) asymptotically approaches the following

form at around CR:

r − rD
rD

∝
∑

±

(ǫdc ± 2
√

Pωǫac) cos[2π(2
√

Pωǫac ± ǫdc) + ϑ]

with ϑ = π/4− 4π
√

Pω (7.6)

According to Eq. (7.6), processes involving |N | photons give rise to a resonance peak in
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differential resistivity when the following conditions are satisfied:

|N |ǫac + ǫdc ≃ n

|N |ǫac − ǫdc ≃ m− 1/2 (7.7)

m,n are positive integers. Eq. (7.7) is apparently the high MW-power version of Eq. (5.3).

Close to CR, once the resonance conditions are met for Nm MW quanta they will auto-

matically hold for the rest of |N | < Nm. Thus, their contributions to electrical transport

would be constructive.

Under typical experimental conditions, the dominant contribution to r comes from

the “+” term in Eq. (7.6). As a result, oscillations in r at around CR is roughly periodic

in 2
√
Pωǫac + ǫdc. At fixed dc-current bias and MW frequency, the ratio η ≡ ǫdc/ǫac ∝

I/ω is a constant (it does not depend on magnetic field B). Since 2
√
Pωǫac + ǫdc =

(2
√
Pω + η)ǫac, r vs ǫac at around CR shows roughly periodic oscillations with the

period given by (2
√
Pω + η)−1. For the data in Fig. 7.2(a) Pω ≈ P(0)

ω ≃ 7.7 at around

CR and η = 1.65, the theory predicts that (2
√
Pω + η)−1 ≃ 0.14. This value agrees

reasonably well with the observed separation between the resonance peaks in Fig. 7.2(a).

7.4 Summary

We observed multiple resonance peaks and troughs at around CR and its harmonics

in differential resistivity of a high-mobility 2DEG under intense MW irradiation and

a strong dc-current bias. The positions of these resonance peaks and troughs strongly

depend on the MW intensity. Theoretically, the observed features are understood as the

manifestation of multi-photon processes in which electrons are backscattered between

Floquet bands of levels accompanied by absorption/emission of multiple MW quanta.



Chapter 8

Conclusion

In this thesis, we have presented our studies on nonlinear electrical transport in high-

mobility 2DEG at very high Landau levels (with filling factor ν > 50). Under a pure

dc-current bias, differential resistivity of a 2DEG shows features similar to those pre-

viously observed in MW photoresistance. A dc-current bias can induce dramatic oscil-

latory structure in differential magnetoresistivity just like MW irradiation can induce

giant oscillatory structure in linear-response magnetoresistivity. The minima of these

dc-driven oscillations can reach down to zero forming ZdRS just like ZRS can arise

from the minima of MIRO. The phenomenological similarity between a dc-driven and a

MW-driven 2DEG suggests that the physical mechanisms responsible for the observed

transport nonlinearity in both cases are closely related.

The initial motivation of introducing a dc-current bias into a MW-irradiated 2DEG

is to search for a hypothetical critical current density above which ZRS is expected to

breakdown. Although such investigations have not unambiguously identified this critical

current density, unexpected nonlinear transport phenomena in 2DEG were observed due

to the coexistence of MW radiation and a dc-current bias. For instance, oscillations in

differential resistivity are almost completely suppressed at half-integer ǫac and the effect

of MW radiation appears to be nullified at integer ǫac. The MIRO-like signal at the

second subharmonic of CR evolves in a synchronous fashion with that at CR as the

applied dc-current bias is varied. Such synchronization results in differential resistivity

at the second subharmonic of CR oscillating with parameter ǫdc with twice the frequency

as compared to that at CR. Under high intensity MW irradiation as well as a strong

94
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dc-current bias, multiple resonance peaks and troughs appear at around CR and its

harmonics. The separation between these resonance peaks is strongly dependent on the

MW intensity.

At first sight, the observed nonlinear transport phenomena in 2DEG under simul-

taneous MW irradiation and a dc-current bias are quite complicated and diverse. They

appear to be not particularly connected to each other. It turns out that they can all

be understood (at least qualitatively) within the theoretical work recently put forth by

Khodas et al. [71]. Their analysis is built on a quantum Boltzmann equation derived

for a weakly disordered 2DEG. They showed that the observed nonlinearity in electri-

cal transport stems from two coexisting effects: formation of non-equilibrium electron

energy distribution and modulation of electron scattering rate due to the presence of dc

and ac electric fields.

We compared Khodas et al.’s theory with our experimental data both in the regimes

of overlapped and separated Landau levels. In the regime of overlapped Landau levels,

their analytical results readily explain why r vs ǫdc is essentially featureless at half-

integer ǫac and why it looks like ordinary HIROs at integer ǫac despite the presence

of MW radiation. In essence, they are the consequence of “magical” full/partial can-

cellation between the contributions coming from “virtual” (in the sense that electrons

interacting with MW fields without actually absorbing/emitting MW quanta) and “real”

(in the sense that absorption/emission of MW quanta actually takes place) processes.

The theory also recreates the observed multiple resonance peaks and troughs at around

CR when the 2DEG is subjected to intense MW irradiation and a strong dc electric

field. It is understood that these features arise from electrons backscattered between

Floquet bands of levels accompanied by absorption/emission of multiple MW quanta.

The observed “frequency-doubling” behavior at the second subharmonic of CR can-

not be readily explained by the analytical results which are derived assuming overlapped

Landau levels. By modeling the DoS with a series of Gaussian functions and perform-

ing numerical simulations, we found that the “frequency-doubling” behavior could also

arise naturally from Khodas et al.’s theory. The effect of higher order harmonics in the

DoS when Landau levels get separated also manifests on nonlinear transport in purely

dc-driven 2DEG in which a flat-bottom valley is developed right after an initial sharp

drop of differential resistivity at low dc-current bias (ǫdc < 1).
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The resemblance between ZRS and ZdRS was proved to be more than simply cos-

metic. Theoretically, both of them could be explained in terms of formation of current

domains in responding to the instability associated with local absolute negative resis-

tivity [51][104]. Despite its theoretical ingenuity, the existence of current domains has

yet to be proved experimentally.
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