FILTERED DIFFERENTIAL ALGEBRAS ARE COMPLETE INVARIANTS OF STATIC FEEDBACK

By

Bronislaw Jakubczyk

IMA Preprint Series # 1114

March 1993
Filtered Differential Algebras are Complete Invariants of Static Feedback

Bronislaw Jakubczyk

Institute of Mathematics
Polish Academy of Sciences
00-950 Warsaw, Śniadeckich 8, Poland

February 19, 1993

Abstract

To any control system

\[\dot{x} = f(x, u) \]

we we associate an algebraic object which is a filtered differential algebra. We prove that two systems are globally static feedback equivalent if and only if the corresponding filtered differential algebras are isomorphic. As a consequence of this result it follows that a control system is globally static feedback linearizable if and only if its filtered differential algebra is free.

Keywords
Static feedback, equivalence, nonlinear systems, linearization, differential algebras, filtrations

1 Introduction

In this paper we introduce a filtered differential algebra associated to any control system. Our main result says that two systems are globally static feedback equivalent if and only if their filtered differential algebras are isomorphic. As a consequence of this result we prove that a system is globally static feedback linearizable if and only if its filtered differential algebra is free. As another consequence one can easily show that global dynamic feedback linearizability implies global static feedback linearizability. (The local result was proved in [3] and [17].)
The feedback equivalence problem was studied since early 80-ties and the main early results concerned feedback linearizable systems (cf. [8], [14]) for references. Only special classes of nonlinear systems were classified so far (cf. [1], [2], [7], [11]). A Hamiltonian approach was proposed to construct covariants of static feedback [1] and microlocal feedback invariants [10]. This approach seems very promising. An alternative approach using Frenet formulas was proposed by I. Kupka [13], R. Gardner and G. Wilkens [].

In the present paper we propose a completely different approach to construct feedback invariants. This approach is inspired by the work of M. Fliess and his coworkers on differential fields in control theory (cf. e.g. [5], [6]). By changing differential fields to differential algebras, and purely algebraic constructions into geometric-algebraic constructions, we are able to construct a complete covariant of global static feedback equivalence. More precisely, our main result reduces the feedback classification problem to the problem of classification of isomorphism classes of a class of filtered differential algebras.

This paper follows the author's earlier work on dynamic feedback equivalence problem [9]. In this paper it was proved that, under mild assumptions, two systems are dynamic feedback equivalent if and only if their differential algebras are isomorphic. The additional structure needed for constructing complete invariants of static feedback is a natural filtration defined by each system.

We restrict our attention to the global problem. However, our results have natural counterparts for the local feedback equivalence, too.

2 Static feedback equivalence and static equivalence

Consider two control systems of the form

\[\Sigma : \quad \dot{x} = f(x, u), \quad x \in M, \ u \in \Omega, \]

and

\[\tilde{\Sigma} : \quad \dot{\tilde{x}} = \tilde{f}(\tilde{x}, \tilde{u}), \quad \tilde{x} \in \tilde{M}, \ \tilde{u} \in \tilde{\Omega}. \]

For simplicity we will assume that \(M = \mathbb{R}^n = \tilde{M} \) and \(\Omega = \mathbb{R}^m = \tilde{\Omega} \), but our results are also valid on differential manifolds.

In our considerations we will fix a category \(k = \text{pol} \) (polynomial), \(\omega \) (real analytic), or \(\infty \) (smooth).

We will assume that \(f \) and \(\tilde{f} \) are of class \(C^k \). For the aim of this paper we will assume that the controls belong to a class of admissible controls \(\mathcal{U} \). We will assume that \(\mathcal{U} \) satisfies the following axioms:

(a) \(\mathcal{U} \) contains all smooth functions \(u(\cdot) : I_u \longrightarrow U \), where \(I_u \) is any open subinterval of \(\mathbb{R} \) (depending on a function),

(b) \(\mathcal{U} \) is contained in the class of all bounded, piecewise absolutely continuous functions \(u(\cdot) : I_u \longrightarrow U, \ I_u \subset \mathbb{R} \).
By a trajectory of the system Σ we mean any pair $(x(\cdot), u(\cdot))$ defined on a subinterval I_u which satisfies the system equations, with the control $u(\cdot) \in U$.

The set of all trajectories of system Σ will be called the behavior of system Σ and will be denoted by \mathcal{B}_Σ. This terminology is in agreement with the one used by Willems [15] (in fact, his trajectories and behaviors are usually defined for all $t \in \mathbb{R}$ which would be to restrictive for us as it would exclude systems with escape to infinity in finite time).

We recall the usual definition of global static feedback equivalence.

Definition 1 Two control systems of class C^k are called static feedback equivalent if there exist transformations (called static feedback transformations) of class C^k

$$(SFT) : \quad x = \phi(\tilde{x}), \quad u = \psi(\tilde{x}, \tilde{u}),$$

$$(SFT) : \quad \tilde{x} = \tilde{\phi}(x), \quad \tilde{u} = \tilde{\psi}(x, u),$$

such that

(i) $\chi = (\phi, \psi)$ and $\tilde{\chi} = (\tilde{\phi}, \tilde{\psi})$ are mutually inverse one with respect to the other (and so they are global diffeomorphisms of $M \times \Omega$ and $\tilde{M} \times \tilde{\Omega}$),

(ii) the induced maps on pairs $(x(\cdot), u(\cdot))$ and $(\tilde{x}(\cdot), \tilde{u}(\cdot))$ preserve behaviors $\mathcal{B}_\Sigma, \tilde{\mathcal{B}}_\Sigma$.

We also introduce a definition of global static equivalence.

Definition 2 Two control systems of class C^k are called static equivalent if there exist transformations (called static transformations) of class C^k

$$(ST) : \quad x = \phi(\tilde{x}, \tilde{u}), \quad u = \psi(\tilde{x}, \tilde{u}),$$

$$(ST) : \quad \tilde{x} = \tilde{\phi}(x, u), \quad \tilde{u} = \tilde{\psi}(x, u),$$

such that

(i) $\chi = (\phi, \psi)$ and $\tilde{\chi} = (\tilde{\phi}, \tilde{\psi})$ are mutually inverse one with respect to the other (and so they are global diffeomorphisms of $M \times \Omega$ and $\tilde{M} \times \tilde{\Omega}$), and

(ii) the induced maps on pairs $(x(\cdot), u(\cdot))$ and $(\tilde{x}(\cdot), \tilde{u}(\cdot))$ preserve behaviors $\mathcal{B}_\Sigma, \tilde{\mathcal{B}}_\Sigma$.

As we see, the only difference is that in the second definition we allow a seemingly larger class of transformations (we will use this definition later). In fact, both definitions coincide.

Proposition 1 Two systems Σ and $\tilde{\Sigma}$ are static feedback equivalent if and only if they are static equivalent.

Proof. Only one implication requires a proof. Suppose that the two systems are static equivalent via the static transformations (ST). Differentiating the
relations (ST) and taking into account the system equations we obtain the relation
\[f(\phi(\tilde{x}, \tilde{u}), \psi(\tilde{x}, \tilde{u})) = \frac{\partial \phi}{\partial \tilde{x}}(\tilde{x}, \tilde{u}) \tilde{f}(\tilde{x}, \tilde{u}) + \frac{\partial \phi}{\partial \tilde{u}}(\tilde{x}, \tilde{u}) \dot{\tilde{u}}. \]

Let us fix the time instant \(t = 0 \) and consider all trajectories at \(t = 0 \). As the derivative of the control does not appear on the left hand side of the above equality, while it can take arbitrary values on the right hand side, it follows that
\[\frac{\partial \phi}{\partial \tilde{u}}(\tilde{x}, \tilde{u}) \equiv 0. \]

This means that our static transformations are in fact static feedback transformations and so the systems are static feedback equivalent. □

3 Differential algebras

In this paper we mean by a differential algebra (A, D) a commutative and associative algebra A over \(\mathbb{R} \) (with identity) with a linear operator \(D : A \rightarrow A \), called derivation, which satisfies the Leibnitz identity
\[D(ab) = (Da)b + a(Db). \]

A homomorphism of differential algebras \(h : A \rightarrow B \) is a homomorphism of algebras which commutes with the derivations,
\[Dbh = hDa. \]

For more information on differential algebras we refer the reader to [12] and [16].

In order to assign a differential algebra to our system we introduce the following notation. Let us denote by \(J(m) \) the space of infinite sequences
\[J(m) = \{ \{u^{(i)}\}_{i \geq 0}, \ u^{(i)} \in \mathbb{R}^m \}. \]

We denote
\[U = \{u^{(i)}\}_{i \geq 0}. \]

In the terminology of jets the space \(J(m) \) is the space of jets at \(t = 0 \) of functions \(\mathbb{R} \rightarrow \mathbb{R}^m \) (in the usual jet notation \(J(m) = J^\infty_0(\mathbb{R}; \mathbb{R}^m) \)), and the elements \(U \in J(m) \) are called (infinite) jets.

We introduce the algebra of real valued functions of \(x \) and \(U \) of class \(C^k \),
\[A^k(n, m) = C^k(\mathbb{R}^n \times J(m); \mathbb{R}), \]
where by definition each such function depends on a finite jet of \(u \) (the order of this jet depends on a function). In other words, any element \(a \in A^k \) is a function of class \(C^k \),
\[a = a(x, u, u^{(1)}, \ldots, u^{(p)}), \]
where \(p \geq 0 \) depends on \(a \). In particular, \(x_s \) and \(u^{(i)}_j \) are elements of \(A^k(n, m) \) (treated as linear functions on \(\mathbb{R}^n \times J(m) \)). Usually, \(n \) and \(m \) will be fixed and we will usually write \(A^k(n, m) = A^k \).

We define the derivation of \(A^k \) corresponding to the system \(\Sigma \) by

\[
D_\Sigma = \sum_{1 \leq s \leq n} f_s(x, u) \frac{\partial}{\partial x_s} + \sum_{i, j} u^{(i+1)}_j \frac{\partial}{\partial u^{(i)}_j},
\]

where the second sum is treated as an infinite formal sum over all \(j = 1, \ldots, m \) and \(i \geq 0 \). Even if this sum is infinite, there is no problem of defining \(D_\Sigma a \) for \(a \in A^k \) as \(a \) depends on a finite number of the variables \(u^{(i)}_j \) only.

The pair \((A^k, D_\Sigma) \) will be called the differential algebra of system \(\Sigma \). This algebra depends on the choice of the category \(k \) (we assume that this category is fixed during our considerations).

We define the following filtration of subalgebras of the algebra \(A \). Let

\[
\mathcal{F}_j = C^k(X \times J^j(m); \mathbb{R}),
\]

where \(J^j(m) \) denotes the space of \(j \)-th jets of \(u \), that is this is the space of finite sequences

\[
\{u^{(i)}\}_{i=0, \ldots, j} \in J^j(m).
\]

In other words, elements \(a \in \mathcal{F}_j \) are all functions of class \(C^j \)

\[
a = a(x, u^{(0)}, \ldots, u^{(j)}).
\]

Clearly, we have that

\[
\mathcal{F}_0 \subset \mathcal{F}_1 \subset \mathcal{F}_2 \cdots,
\]

and

\[
\bigcup_{j \geq 0} \mathcal{F}_j = A^k.
\]

\(\mathcal{F}_j \) are subalgebras, but not differential subalgebras, of the algebra \(A \).

Note that

\[
D_\Sigma \mathcal{F}_j \subset \mathcal{F}_{j+1}.
\]

Let us denote by \(\mathcal{A} \) the following triple

\[
\mathcal{A} = (A, \mathcal{F}, D_\Sigma).
\]

We will call this the filtered differential algebra of system \(\Sigma \).

A homomorphism (respectively, isomorphism) of filtered differential algebras \((A, \mathcal{F}_A, D_A) \) and \((B, \mathcal{F}_B, D_B) \) is a homomorphism (isomorphism) of differential algebras \(h : (A, D_A) \longrightarrow (B, D_B) \) which preserves the filtrations, i.e. it satisfies the condition

\[
h(\mathcal{F}_A)_j \subset (\mathcal{F}_B)_j, \quad (\text{respectively,} \quad h((\mathcal{F}_A)_j) = (\mathcal{F}_B)_j).
\]
With our definition of the derivation corresponding to the system we can define jets of elements of our differential algebra. Namely, given an element $a \in A^k(n,m)$ we define its jet as the infinite sequence $Ja = (a, D_1a, D_2^2a, \ldots)$.

Remark 1 The algebra A^k is an integral domain, if $k = \omega$, or $k = \text{pol}$. This follows from the fact that the product of two nonzero analytic functions is a nonzero function. It follows that the field of quotients can be defined, corresponding to our algebra A^k, if $k = \omega$, pol, and it will have a natural structure of a differential field, isomorphic to the field introduced in [4]. Our filtration F induces a filtration of the differential field of quotients. In the case of $k = \text{pol}$ this field coincides with the field used in the approach used by M. Fliess.

4 Main result

Now we are in a position to state our main result.

Theorem 1 Two systems Σ and $\overline{\Sigma}$ of class C^k, $k = \text{pol}$, ω or ∞, are static feedback equivalent if and only if their filtered differential algebras (A,F,D_Σ) and $(\overline{A},\overline{F},\overline{D}_\overline{\Sigma})$ are isomorphic as filtered differential algebras.

Proof. We will reduce the proof to the main result in [9].

"If" Suppose that (A,F,D_Σ) and $(\overline{A},\overline{F},\overline{D}_\overline{\Sigma})$ are isomorphic as filtered differential algebras and $h : A \rightarrow \overline{A}$ is an isomorphism. Then h is also an isomorphism of differential algebras $h : (A,D_\Sigma) \rightarrow (\overline{A},\overline{D}_\overline{\Sigma})$. It follows that we can use the result in [9], Theorem 3, which says that there exists a map $\eta = \eta(x,\overline{U})$ with

$$\eta = (\eta^1,\eta^2), \quad \eta^1 = (\eta_1,\ldots,\eta_n), \quad \eta^2 = (\eta_{n+1},\ldots,\eta_{n+m}),$$

such that

$$h = \eta^*, \quad \text{where} \quad \hat{\eta}^*(a) = a \circ \hat{\eta} \quad \text{and} \quad \hat{\eta} = (\eta^1, J\eta^2).$$

Here $J\eta^2$ denotes the jet extension of η^2,

$$J\eta^2 = (\eta^2, D_x^1\eta^2, D_x^2\eta^2, \ldots).$$

Additionally, from Theorem 3 in [9] we conclude that η satisfies the condition

$$D_x^1\eta^1 = f \circ \eta.$$

This implies that the induced map (by η) transforms trajectories into trajectories (see the proof of Theorem 2 in [9]) (the same happens for the map induced by the inverse isomorphism h^{-1}). Additionally, we have that

$$\eta_j = h(x_j), \quad \text{for} \quad j = 1,\ldots,n.$$
\[\eta_j = h(u_{j+n}) \quad \text{for} \quad j = n+1, \ldots, n+m. \]

From this and the fact that \(h \) preserves the filtrations we deduce that \(\eta_j \in \mathcal{F}_0 \), that is
\[\eta = \eta(\tilde{x}, \tilde{u}). \]

As the map induced by \(\eta \) on the trajectories preserves the behaviors, it follows that the transformation \(\chi = \eta \) establishes static equivalence of both systems.

"Only if" Suppose that both systems are static feedback equivalent. This means that there exist diffeomorphisms
\[\chi = (\phi, \psi), \quad \chi^{-1} = \tilde{\chi} = (\phi, \tilde{\psi}) \]
which transform behaviors into behaviors. We will show that the maps \(\chi \) and \(\tilde{\chi} \) define homomorphisms of our filtered differential algebras (as they will be inverse one with respect to the other, they will be isomorphisms). It is enough to show this for \(\chi \), only.

Let us define
\[\tilde{\chi} = (\phi, J\psi), \]
where \(J\psi \) denotes the infinite jet of \(\psi \). We define the map \(\tilde{\chi}^* : A^k \rightarrow A^k \) as the pull-back
\[\tilde{\chi}^*(a) = a \circ \tilde{\chi}. \]

It is easy to see that this map is a homomorphism of algebras and preserves the filtrations.

In order to see that this is an isomorphism of differential algebras we use the chain condition and check that the homomorphism \(h = \tilde{\chi}^* \) commutes with the derivations. We first prove that
\[
\begin{align*}
\tilde{\chi}^*(D\Sigma a) &= (D\Sigma a) \circ \tilde{\chi} = (\sum_s f_s \frac{\partial a}{\partial x_s}) \circ \tilde{\chi} + \sum u_j^{(i+1)} \frac{\partial a}{\partial u_j^{(i)}} \circ \tilde{\chi} \\
&= \sum_s f_s \circ \chi \frac{\partial a}{\partial x_s} \circ \tilde{\chi} + \sum u_j^{(i)} D_{\Sigma}^i (\chi_{n+j}) \frac{\partial a}{\partial u_j^{(i)}} \circ \tilde{\chi}.
\end{align*}
\]

From the fact the map \(\chi \) preserves the trajectories it follows that
\[D\Sigma \phi = \frac{\partial \tilde{\phi}}{\partial \tilde{\xi}} \tilde{f} = f \circ \chi. \]

Thus, we can replace the first sum in the expression for \(\tilde{\chi}^*(D\Sigma a) \) and obtain
\[
\begin{align*}
\tilde{\chi}^*(D\Sigma a) &= \sum_s \frac{\partial a}{\partial x_s} \circ \tilde{\chi} + \sum u_j^{(i)} D_{\Sigma}^i (\chi_{n+j}) \frac{\partial a}{\partial u_j^{(i)}} \circ \tilde{\chi} \\
&= \sum_s \frac{\partial a}{\partial x_s} \circ \chi \circ \tilde{\chi} + \sum u_j^{(i)} D_{\Sigma}^i (\chi_{n+j}) \frac{\partial a}{\partial u_j^{(i)}} \circ \chi.
\end{align*}
\]
It follows that $\bar{\chi}^*$ is a homomorphism differential algebras and so the proof is complete.

5 Static feedback linearization

We end the paper with a formulation of a result on static feedback linearization which is a consequence of our results in the preceding sections. We call a system Σ static feedback linearizable if it is (globally) static feedback equivalent to a controllable linear system

$$A: \quad \dot{z} = Az + Bu.$$

In order to formulate a criterion for global static feedback linearizability we introduce the following definition.

Definition 3 A differential algebra (A, D) of real valued functions is called free (in C^k category) if there exists a finite number of elements $w_1, \ldots, w_r \in A$ such that the following two conditions are satisfied (we denote $w = (w_1, \ldots, w_r)$ and $W = Jw = \{D^iw_i \}_{i \geq 0}$).

(a) For any function $h \in C^k(J(r); \mathbb{R})$ (depending on a finite jet only) we have that

$$h \circ W \equiv 0 \implies h \equiv 0.$$

(b) For any element $a \in A$ there exists a function $h \in C^k(J(r); \mathbb{R})$ (depending on a finite jet only) such that

$$a = h \circ W.$$

A filtered differential algebra (A, F, D) is called free if the differential algebra (A, D) is free, with a set of free generators w_1, \ldots, w_r, and the filtration F is given by

$$F_j = \{ a \in A \mid \exists g \in C^k(J(r); \mathbb{R}) \text{ such that } a = g \circ W^j \},$$

where

$$W^j = \{D^i w_i \}_{i=1, \ldots, r, i=1, \ldots, j}.$$

A filtration G_0, G_1, G_2, \cdots of A is called a refinement of a filtration F if

$$G_j \subset F_j.$$

Theorem 2 A system Σ of class C^k, $k = \text{pol}$, ω, or ∞, is static feedback linearizable if and only if there is a refinement G of the natural filtration F of the system Σ such that the filtered differential algebra (A^k, G, D_Σ) is free (in the C^k category).
This theorem follows from Theorem 1, and the following lemma.

Lemma 1 For a controllable linear system Λ there exists a refinement G of the natural filtration of Λ such that the corresponding filtered differential algebra (A^k, G, D_G) is free (in each of the categories $k = \text{pol, } \omega, \infty$).

A more detailed description of this problem will be provided in another paper.

Acknowledgement This work was done when the author was visiting Institute of Mathematics and its Applications, University of Minnesota, in February 1993. The author would like to acknowledge the hospitality during his stay.

References

<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1041</td>
<td>Neerchal K. Nagaraj and Wayne A. Fuller</td>
<td>Least squares estimation of the linear model with autoregressive errors</td>
</tr>
<tr>
<td>1042</td>
<td>H.J. Sussmann & W. Liu</td>
<td>A characterization of continuous dependence of trajectories with respect to the input for control-affine systems</td>
</tr>
<tr>
<td>1043</td>
<td>Karen Rudie & W. Murray Wonham</td>
<td>Protocol verification using discrete-event systems</td>
</tr>
<tr>
<td>1044</td>
<td>Rohan Abeyaratne & James K. Knowles</td>
<td>Nucleation, kinetics and admissibility criteria for propagating phase boundaries</td>
</tr>
<tr>
<td>1045</td>
<td>Gang Bao & William W. Symes</td>
<td>Computation of pseudo-differential operators</td>
</tr>
<tr>
<td>1046</td>
<td>Srdjan Stoianovic</td>
<td>Nonsmooth analysis and shape optimization in flow problem</td>
</tr>
<tr>
<td>1047</td>
<td>Miroslav Tuma</td>
<td>Row ordering in sparse QR decomposition</td>
</tr>
<tr>
<td>1048</td>
<td>Onur Toker & Hitay Özbay</td>
<td>On the computation of suboptimal H^∞ controllers for unstable infinite dimensional systems</td>
</tr>
<tr>
<td>1049</td>
<td>Hitay Özbay</td>
<td>H^∞ optimal controller design for a class of distributed parameter systems</td>
</tr>
<tr>
<td>1050</td>
<td>J.E. Dunn & Roger Fosdick</td>
<td>The Weierstrass condition for a special class of elastic materials</td>
</tr>
<tr>
<td>1051</td>
<td>Bei Hu & Jianhua Zhang</td>
<td>A free boundary problem arising in the modeling of internal oxidation of binary alloys</td>
</tr>
<tr>
<td>1052</td>
<td>Eduard Feireisl & Enrique Zuazua</td>
<td>Global attractors for semilinear wave equations with locally distributed nonlinear damping and critical exponent</td>
</tr>
<tr>
<td>1053</td>
<td>I-Heng McComb & Chjan C. Lim</td>
<td>Stability of equilibria for a class of time-reversible, $D_x x O(2)$-symmetric homogeneous vector fields</td>
</tr>
<tr>
<td>1054</td>
<td>Ruben D. Spies</td>
<td>A state-space approach to a one-dimensional mathematical model for the dynamics of phase transitions in pseudoelastic materials</td>
</tr>
<tr>
<td>1055</td>
<td>H.S. Dumas, F. Golse, and P. Lochak</td>
<td>Multiphase averaging for generalized flows on manifolds</td>
</tr>
<tr>
<td>1056</td>
<td>Bei Hu & Hong-Ming Yin</td>
<td>Global solutions and quenching to a class of quasilinear parabolic equations</td>
</tr>
<tr>
<td>1057</td>
<td>Zhangxin Chen</td>
<td>Projection finite element methods for semiconductor device equations</td>
</tr>
<tr>
<td>1058</td>
<td>Peter Guttorp</td>
<td>Statistical analysis of biological monitoring data</td>
</tr>
<tr>
<td>1059</td>
<td>Wensheng Liu & Héctor J. Sussmann</td>
<td>Abnormal sub-Riemannian minimizers</td>
</tr>
<tr>
<td>1060</td>
<td>Chjan Lim</td>
<td>A combinatorial perturbation method and Arnold's whiskered Tori in vortex dynamics</td>
</tr>
<tr>
<td>1061</td>
<td>Yong Liu</td>
<td>Axially symmetric jet flows arising from high speed fiber coating</td>
</tr>
<tr>
<td>1062</td>
<td>Li Qiu & Tongwen Chen</td>
<td>H_2 and H_∞ designs of multirate sampled-data systems</td>
</tr>
<tr>
<td>1063</td>
<td>Eduardo Casas & Jongmin Yong</td>
<td>Maximum principle for state-constrained optimal control problems governed by quasilinear elliptic equations</td>
</tr>
<tr>
<td>1064</td>
<td>Suzanne M. Lenhart & Jongmin Yong</td>
<td>Optimal control for degenerate parabolic equations with logistic growth</td>
</tr>
<tr>
<td>1065</td>
<td>Suzanne Lenhart</td>
<td>Optimal control of a convective-diffusive fluid problem</td>
</tr>
<tr>
<td>1066</td>
<td>Enrique Zuazua</td>
<td>Weakly nonlinear large time behavior in scalar convection-diffusion equations</td>
</tr>
<tr>
<td>1067</td>
<td>Caroline Fabre, Jean-Pierre Puel & Enrike Zuazua</td>
<td>Approximate controllability of the semilinear heat equation</td>
</tr>
<tr>
<td>1068</td>
<td>M. Escobedo, J.L. Vazquez & Enrike Zuazua</td>
<td>Entropy solutions for diffusion-convection equations with partial diffusivity</td>
</tr>
<tr>
<td>1069</td>
<td>M. Escobedo, J.L. Vazquez & Enrike Zuazua</td>
<td>A diffusion-convection equation in several space dimensions</td>
</tr>
<tr>
<td>1070</td>
<td>F. Fagnani & J.C. Willems</td>
<td>Symmetries of differential systems</td>
</tr>
<tr>
<td>1071</td>
<td>Zhangxin Chen, Bernardo Cockburn, Joseph W. Jerome & Chi-Wang Shu,</td>
<td>Mixed-RKDG finite element methods for the 2-D hydrodynamic model for semiconductor device simulation</td>
</tr>
<tr>
<td>1072</td>
<td>M.E. Bradley & Suzanne Lenhart</td>
<td>Bilinear optimal control of a Kirchhoff plate</td>
</tr>
<tr>
<td>1073</td>
<td>Héctor J. Sussmann</td>
<td>A cornucopia of abnormal subriemannian minimizers. Part I: The four-dimensional case</td>
</tr>
<tr>
<td>1074</td>
<td>Marek Rakowski</td>
<td>Transfer function approach to disturbance decoupling problem</td>
</tr>
<tr>
<td>1075</td>
<td>Yuncheng You</td>
<td>Optimal control of Ginzburg-Landau equation for superconductivity</td>
</tr>
<tr>
<td>1076</td>
<td>Yuncheng You</td>
<td>Global dynamics of dissipative modified Korteweg-de Vries equations</td>
</tr>
<tr>
<td>1077</td>
<td>Mario Taboada & Yuncheng You</td>
<td>Nonuniformly attracting inertial manifolds and stabilization of beam equations with structural and Balakrishnan-Taylor damping</td>
</tr>
<tr>
<td>1078</td>
<td>Michael Böhm & Mario Taboada</td>
<td>Global existence and regularity of solutions of the nonlinear string equation</td>
</tr>
<tr>
<td>1079</td>
<td>Zhangxin Chen</td>
<td>BDM mixed methods for a nonlinear elliptic problem</td>
</tr>
<tr>
<td>1080</td>
<td>J.J.L. Velázquez</td>
<td>On the dynamics of a closed thermosyphon</td>
</tr>
<tr>
<td>1081</td>
<td>Frédéric Bonnans & Eduardo Casas</td>
<td>Some stability concepts and their applications in optimal control problems</td>
</tr>
<tr>
<td>1082</td>
<td>Hong-Ming Yin</td>
<td>$L^{2,n}(Q)$-estimates for parabolic equations and applications</td>
</tr>
<tr>
<td>1083</td>
<td>David L. Russell & Bing-Yu Zhang</td>
<td>Smoothing and decay properties of solutions of the Korteweg-de Vries equation on a periodic domain with point dissipation</td>
</tr>
<tr>
<td>1084</td>
<td>J.E. Dunn & K.R. Rajagopalan</td>
<td>Fluids of differential type: Critical review and thermodynamic analysis</td>
</tr>
<tr>
<td>1085</td>
<td>Mary Elizabeth Bradley & Mary Ann Horn</td>
<td>Global stabilization of the von Kármán plate with boundary</td>
</tr>
</tbody>
</table>
feedback acting via bending moments only

Mary Ann Horn & Irena Lasiecka, Global stabilization of a dynamic von Kármán plate with nonlinear boundary feedback

Vilmos Komornik, Decay estimates for a petrovski system with a nonlinear distributed feedback

Jesse L. Barlow, Perturbation results for nearly uncoupled Markov chains with applications to iterative methods

Jong-Shenq Guo, Large time behavior of solutions of a fast diffusion equation with source

Tongwen Chen & Li Qiu, H_{∞} design of general multirate sampled-data control systems

Satyanad Kichenassamy & Walter Littman, Blow-up surfaces for nonlinear wave equations, I

Nahum Shimkin, Asymptotically efficient adaptive strategies in repeated games, Part I: certainty equivalence strategies

Caroline Fabre, Jean-Pierre Puel & Enrique Zuazua, On the density of the range of the semigroup for semilinear heat equations

Robert F. Stengel, Laura R. Ray & Christopher I. Morrison, Probabilistic evaluation of control system robustness

H.O. Fattorini & S.S. Sritharan, Optimal chattering controls for viscous flow

Kathryn E. Lenz, Properties of certain optimal weighted sensitivity and weighted mixed sensitivity designs

Gang Bao & David C. Dobson, Second harmonic generation in nonlinear optical films

Avner Friedman & Chaoceng Huang, Diffusion in network

Xinfu Chen, Avner Friedman & Tsuyoshi Kimura, Nonstationary filtration in partially saturated porous media

Walter Littman & Baisheng Yan, Rellich type decay theorems for equations $P(D)u = f$ with f having support in a cylinder

Satyanad Kichenassamy & Walter Littman, Blow-up surfaces for nonlinear wave equations, II

Nahum Shimkin, Extremal large deviations in controlled I.I.D. processes with applications to hypothesis testing

A. Narain, Interfacial shear modeling and flow predictions for internal flows of pure vapor experiencing film condensation

Andrew Teel & Laurent Praly, Global stabilizability and observability imply semi-global stabilizability by output feedback

Karen Rudie & Jan C. Willems, The computational complexity of decentralized discrete-event control problems

John A. Burns & Ruben D. Spies, A numerical study of parameter sensitivities in Landau-Ginzburg models of phase transitions in shape memory alloys

Gang Bao & William W. Symes, Time like trace regularity of the wave equation with a nonsmooth principal part

Lawrence Markus, A brief history of control

Richard A. Brualdi, Keith L. Chavez & Bryan L. Shader, Bipartite graphs and inverse sign patterns of strong sign-nonsingular matrices

A. Kersch, W. Morokoff & A. Schuster, Radiative heat transfer with quasi-monte carlo methods

Jianhua Zhang, A free boundary problem arising from swelling-controlled release processes

Walter Littman & Stephen Taylor, Local smoothing and energy decay for a semi-infinite beam pinned at several points and applications to boundary control

Srdjan Stojanovic & Thomas Svobodny, A free boundary problem for the Stokes equation via nonsmooth analysis

Bronislaw Jakubczyk, Filtered differential algebras are complete invariants of static feedback

Boris Mordukhovich, Discrete approximations and refined Euler-Lagrange conditions for nonconvex differential inclusions

Bei Hu & Hong-Ming Yin, The profile near blowup time for solution of the heat equation with a nonlinear boundary condition

Jin Ma & Jiongmin Yong, Solvability of forward-backward SDEs and the nodal set of Hamilton-Jacobi-Bellman Equations

Chaoceng Huang & Jiongmin Yong, Coupled parabolic and hyperbolic equations modeling age-dependent epidemic dynamics with nonlinear diffusion

Jiongmin Yong, Necessary conditions for minimax control problems of second order elliptic partial differential equations

Eitan Altman & Nahum Shimkin, Worst-case and Nash routing policies in parallel queues with uncertain service allocations

Nahum Shimkin & Adam Shwartz, Asymptotically efficient adaptive strategies in repeated games, part II: Asymptotic optimality

M.E. Bradley, Well-posedness and regularity results for a dynamic Von Kármán plate

Zhangxin Chen, Finite element analysis of the 1D full drift diffusion semiconductor model

Gang Bao & David C. Dobson, Diffractive optics in nonlinear media with periodic structure

Steven Cox & Enrique Zuazua, The rate at which energy decays in a damped string

Anthony W. Leung, Optimal control for nonlinear systems of partial differential equations related to ecology

H.J. Sussmann, A continuation method for nonholonomic path-finding problems