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ADDITION ~~ e %y

The following paragraph ghould be inserted between para. ) [ending'"...to the
flat plate."] amd para. 5 [beginning "A rotating carbon pressure seal..."]:

A limited number of average velocity measurements have shown the same
upward or downward shifts of the logarithmic velocity profile with the addi-

tion of polymer to the water or roughness to the surface, respectively, as
observed in a pipe [5].
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ABSTRACT

Experimental measurements were made of radiated noise
from a rough surface moving in water and from the same surface
moving in a dilute water solution of a drag reducing polymer.
Roughly 10 dB of noige reduction was observed for a concentra-
tion of 100 ppmw Polyox 301.
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carried out in the period from October 1970 to November 1971 and
were sponsored by the Naval Ship Research and Development Center,
Department of the Navy, Bethesda, Maryland, under Contract NOOO1L~
67-A-011%-002);. Appreciation is expressed to John Almo and
Thomas Dostal for their part in collecting the data, to Frank
Schiebe and Edward Silberman for reviewing the report, and to

Mrg. Shirley Kii for preparing the manuscript.






THE INFLUENCE OF DRAG REDUCING POLYMER
ON RADIATED NOISE FROM ROUGH SURFACES

I. INTRODUCTION

The work presented here was directed at showing experimentally the
effect of water soluble polymers on radiated flow noise from moving rough
surfaces. The method involved making comparisons with radiated flow mnoise

from the same surfaces moving in tap water without polymer.

The ability of certain water soluble polymers to reduce the drag
force of flowing water is well known. The precise manner in which this
effect is produced is not clearly understood. In a general sense, it would
not be unreasonable to assume that this drag reduction results from a modi-

fication of the turbulent structure of the flow.

The original work of Lighthill [1]* and its extension to boundary
layers by Curle [3] show an intimate relationship between the radiated flow
noise and the internal stresses of the fluid. The internal stresses are
assumed to arise from a particular turbulence structure and its interaction
with mean motions of the fluid. If the turbulence structure is a common
denominator for both flow noise and drag, the addition of a drag reducing
polymer shquld affect flow noise as well. TUnfortunately, available est;-
mates of turbulence and its interaction with drag or noise provide little
help with regard to predicting or correlating the effects of the presence
of polymers. '

II. EXPERIMENTAL APPARATUS

The generation of radiated flow noise is an inefficient process
[1,2,3,4]. BExperimental measurements reported in Ref. [4] give a ratio of
acoustic power to friction power loss of 3 x 10—7 for a smooth surface;
consequently, the noise levels to be measured are quite low except at high
velocities. These conditions require that a test facility have a low

ambient noigse level and in addition be capable of high velocities.

The rotating tank facility shown in Fig. 1 was selected for the
measurements. It was chosen in preference to a water tummel or towing tank

for the following reasons: It has the smallest moving mass for the active

m :
Numbers in brackets refer to references listed on page 9.




area; it has a minimum of moving parts to generate unwanted noise; and it
has a naturally rigid structural form. The facility consisted of a hollow
rofating cylinder pogitioned on the axis of a'steel tank 6 ft in diameter
and 6—1/? £t high. The tank was supported on three I-beams. A cork pad
was installed between the I-beams and the concrete floor of the labora-
tory for sound isolation. Sandbags were placed against the exterior walls
of the tank to provide additional damping of the tank wall as well as some
isolation from sound transmitted through the air.

The tank capacity was 1260 gallons. It was filled directly from the
municipal water supply or from the St. Anthony Falls Hydraulic Laboratoxry
, 6-inch water tumnel; this tummnel is also filled from the municipal water
supply, which is processed river water. The water tummel is equipped with
an air separator and pressure control, and thus provides a simple and rapid
means of removing dissolved_and free air from the water to the concentration
level required; Diversion of water from the water tummel to the tank
enabled tests to be conducted with various dissolved air contents. A
steam heat exchanger was also installed in the tank to permit adjustment

~or control of the water temperature.

The rotating cylinder was supported on a hollow stainless steel shaft
mounted in water-lubricated rubber bearings. The cylinder itself was 1 ft
long with an external diameter of 1 ff. Its top was submerged 2 £t Below
the static water surface in the tank. The cylinder was hollow to provide
space for instruments and was constructed of a synthetic wood material
(Renwood) with brass end plates 1/) in. ﬁhick. ‘A wall thickness of 3 in.
was selected to reduce cylinder wall vibrations. This type of construction
has proved to be free of any detectable resonant peak in the noise spectrum.
The cylinder was finished with a heavy cdat of epoxy paint. The surface
‘was machined to a 0.001 in. "runout" and?the end cones were polished to a
high gloss. Surface roughness was produced by spraying the cylinder sur-
face with lacquer and dusting glass beads on the surface while the lacquer

was still tacky. Glass beads 0.018 inches in diameter were used.

The cylinder shaft was supported'by a wood framework attached to the
laboratory floor and wall, avoiding contact with the tank. A water-lubri-
cated bearing and thrust washer connected the cylinder, drive shaft, and
pulleys to the support frame. A second rubber guidé)bearing mounted on a

cross frame inside the tank was necessary to hold the cylinder in an axial



position. The cylinder was driven by a 20 hp, 3500 rpm induction motor
through a "V" belt drive. Speed changes were effected using various com-

binations of pulleys on the motor and sylinder shaft.

Congiderable difficulty was experienced in finding bearings suffici-
ently quiet for the purpose. Many types of bearing surfaces were tried,
including ball bearings and sleeve bearings of both plastic and metal. All
these bearing materials were found to give troublesome "spikes'" in the
measured flow noise spectrum, particularly for the high frequencies. The
rubber bearings were found to contribute relatively few of these spikes.
The noise level was still unsatisfactory for the lower frequencies (below
500 HZ), which was attributable in part to drive belt vibration and irregu-

larities.

A set of strain gages was mounted on the drive shaft of the rotating
cylinder. They were calibrated to measure torque at various speeds. Slip
rings mounted on the shaft conducted the signal from the strain gages to
the recording instrument. Slip rings were removed during noise measurements.

The velocity profile and drag coefficients of the flow system are given ‘in

Ref. [5].

The cylinder rotating in a large tank gives rise to two dominant mo-

tions: (1) a free vortex where the product of velocity and radius equals

a constant (Vr = C) and (2) an approximately logarithmic velocity distri-
bution near the cylinder. The motion of the fluid around a rotating
cylinder was investigated for water by Skudrzyk and Haddle [6] and in

air by Wilson [h]. Their data show a logarithmic velocity distribution

similar to the flat plate. (NG

A rotating carbon pressure seal was fitted below the upper rubber
bearing. A rubber hose connected the rotating seal and the tank cover to
provide sound isolation. Pressures of near zero to 2 atmospheres absolute
could be imposed on the test water. A small water line to an auxiliary

water tank supplied pressure or vacuum.

The acoustic pressure on the tank was sensed by a Cevite CHLA hydro-
phone. The hydrophone was supported on a strut mounted midway between the
rotating cylinder and the tank wall. Its active surface was located on a
horizontal plane passing through the lower edge of the rotating cylinder.

The calibrations supplied by the manufacturer were used as a reference.




The signal from the hydrophone was amplified by a Roveti Model 600B
preamplifier. A Quan-Tech Model 303 frequency analyzer was used to meagure

sound intengity in discrete frequency bands.

ITT. EXPERIMENTAL PROCEDURE

The test tank was surveyed with a hydrophdne to determine the presence
of standing waves. These measurements indicated a nearly uniform pressure
field throughout the liquid in the tank when excited with a random noise
source or flow noise from the rotating cylinder. This fact made possible
the measurement of sound power from a pressure measurement at an arbitrary

point without providing a means for averaging the standing wave pressure.

To relate the power input to the tank to the pressure measured by the
hydrophone, a procedure similar to that of Ref. [7] was followed. A source
of acoustic energy was installed in the tank, and the proportionality constant
relating the aCouétic energy introduced into the tank to the resulting acoustic
. pressure in discrete frequencies was determined. The acoustic source referred
to above is an International Transducer Corporation Model 1002 calibrated
. spherical transducer. The intensity, P2/QC, can then be integrated over a
spherical surface surrounding the source to give the total acoustic energy
inputs; P is the pressure, o the densitj of water, and c¢ +the velocity of

sound in water at the temperature used in the tests.

It was known from previous work [8] that air would be released from the
water as tiny bubbles in regions of high shear near the rotating cylinder
surface. As an air bubble diffused away from the surface into the liquid
of the revefberant chamber, it WOuid préduce greater attenuation of the sound,
destroying the tank calibration. An effort was made to reduce this effect
by filling the tank with water of low dissolved air content so that the re-
leased air bubbles would redissolve guickly. The test water was deaerated
in the St. Anthony Falls Hydraulic Laboratory 6-inch water tummnel as described
previously. Air contents as low as 7 ppmw were used. The water was discarded
at approximately 15 ppmw. The total air content of the test water was moni-
tored by a Van Slyke apparatus. It was found to remain constant for several
days. In previous work [8] this procedure was found to eliminate the effect
of air bubbles on measurements. To reduce the possibility of cavitation on the
rough test surfaces, the tank was pressurized during operation at high rota-

tional speeds.



The total torque on the rotating cylinder was also measured at each
run. The torque readings served as a check on the quality of the polymer
solution with regard to drag reduction. A change in torque was assumed to
indicate degradation of the polymer, and a new solution was then introduced
into the test apparatus.

. IV. RESULTS

Figures 2 through 6 show spectrum data for radiated flow moise on rough
cylinder surfaces as indicated by the diffuse noise level in the tank for
five cyiinder speeds between L5 and 76 fps with various concentrations of
drag reducing polymer (Polyox 301). Data for water only are shown fqr both
rough and smooth surfaces. Pressures superimposed on the tank water ‘are in-
dicated in the figures. These are gage pressures imposedya“t mid-height of
the cylinder. Where no pressure is given, it is 2.2 in. of mercury; where

the symbol -- occurs, pressures were not recorded.

- The pressure level is given in relative units of dB beiow 1 m_ioi'obar.
Sound level difference with the addition of drag reducing po:lymer is the
significant factor in this study. Additional information onvéaii‘_brat'ion bf |
the tank is given in Appendix I. The background level in the tank is 'indicated
in Fig. 2. The vertical lines show the amount subtracted to correct the data

for background noise.

The effect of superimposed pressure on radiated noise at high speed
without polymer can be seen in Figs. 5 and 6. = The increase in radiated noise
with reduced pressure is probably due to cavitation, which can also be reduced
by adding a drag reducing polymer. At lower SPeeds., Figs. 2 and lj, lower

superimposed pressures apparently do not bring on cavitation.

Figure 7 is a cross plot of the variation of radiated noise with
speed for a frequency of 20 kiloHertz. It is shown in Refs. [3], [L4], and
[6] that the flow noise from a smooth surface varies approximately as the
sixth power of the velocity. The radiated noise for a rough surface was
found to vary as a higher power of velocity [)4,6]. The addition of a drag
reducing polymer produced a lower level of noise; however, it can be seen
that the slope of the curve of sound level with speed is nearly the same as

that for roughness-generated noise without polymer additive.



Figure 8 shows the level of radiated noise as a function of surface
shear for a range of surface speeds and with the addition of polymer. A line
with a slope dependent on ,1:3 has been superimposed.

V. DISCUSSION AND CONCLUSIONS

The inference that the radiated noise level measurements are dependent
upon the energy dissipation in the boundary layer requires further experi-
mental work to be completely justified. The most direct approach would require
changing the Reynolds number of the flow so that all turbulence was suppressed
and dissipation was entirely viscous whfie maintaining the same velocities and
friction. This could be accomplished by using a fluid of much higher vigcosity
and surrounding the rotating cylinder with é cloge-fitting stationary shell.

It was judged too difficult to do this within the time and funding of the test
program. '

Indirect evidence can be observed in the data which tends to support the
premise that the boundary layer is the primary source of the observed noise.
In Fig. T, which could be duplicated for any frequency between 10 and 100 kilo-
Hertz, the noise level increases nearly as the sixth power of the velocity as
would be expected from theory [3], while at the same time the power input to
the system increases approximately as the velocity cubed. Most mecha.nically
induced vibration would be expected to have the same velocity dependence as
the input power. The noise level dependence on the sixth or greater power was
used ‘as a criterion for accepting or réjecting a test run. Usually when a
lower veiocity exponent was observed it was possible to find loose mechanical
elements. Particularly troublesome in this regard was a small quantity of sand
which was on occagion carried into the test tank by the operator's shoes and
could be detected as it rolled around on the bottom. Less conclusive evidence
is also found in the "spiked" nature of the frequency spectrum which usually
accompanies noise from mechanical vibration and is not present in the part of

the spectrum reported on herein.

 The pressure-dependent part of the flow noise shown in Figs. 5 and 6 is
not easily explained. The velocity dependence and the pressure dependence sug-
gest some form of cavitation or gas release mechanism. However, a true cavi-
tation would be expected to give much broader noise spectra than those observed,

particularly at high frequencies. The possibility remains that a layer of gas



bubbles is released near the rotating cylinder which could increase the radiat-
ing efficiency of the boundary layer in the manmer proposed by Creighton and
Ffowes Williams [9].

In any event, radiated noise from a rough surface seems to have a part
which could be called independent of pressure and a "pressure-dependent!
part as can be seen in Figs. 5 and 6; the latter is most likely caused by
cavitation on the roughness elements. The addition of a drag reducing
polymer appears to reduce the "pressure-independent" part of the radiated
noige in proportion to the reduction of average shear on the surface as
shown in Fig. 8. The pressure-dependent part of the flow noise is also
reduced by the addition of drag reducing polymer, but no effort was made
to study this condition.
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Appendix I
CALIBRATION OF THE TANK

To relate the power input to the tank to the pressure measured by the
CHLA hydrophone, a spherical acoustic source (International Transducer 1002)
was used to excite the tank, A random noise genmerator supplied the power
in a given bandwidth as measured by a wave analyzer. The manufacturer's
calibration of the 1002 transmitter gives the equivalent sound pressure
at one meter. The total energy delivered by this small source (1 inch

diameter) was assumed to be unchanged by the tank.

This unit is alsgo calibrated as a receiver and as such is ideally
suited to receiving random incident sound. Comparison of the noise in the
tank as measured by the CHI1A hydrophone and as measured by the spherical
unit (1002) showed it to be the same within the resolution of the measure-
ment gystem. | '

Figure 1A gives the equivalent pressure input from a spherical source
and the resultant pressure level in the tank for both water alone and water
with 200 ppmw Polyox 301. No significant difference due to the presence of

Polyox can be noted.
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