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ADDITION -- ]age 2: 

The following paragraph should be inserted between para. 4 [ending".,. to the 
flat plate. It] and para. 5 [begirming "A rotating carbon pressure seaL •• " J: 

A limited number of average velocity measurements have shown the same 
upward or downward shifts of the logarithmic velooity profile with theaddi
tion of polymer to the water or roughness to the surfaoe, respectively, as 
observed in a pipe [5J. 
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.AJ3STRACT 

Experimental measurements were made of radiated noise 

from a rough surface moving in water and from the same surface 

moving in a dilute water solution of a drag reducing polymer. 

Roughly 10 dB of noise reduotion was observed for a oonoentra

tion of 100 ppmw Polyox ~Ol. 
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PREFAOE 

The work reported herein was an experimental effort to 

determine the effeot of polymer additive on radiated flow noise 

from a rough surfaoe moving in water. The studies reported were 

oarried out in the period from Ootober 1970 to November 1971 and 

were sponsored by the Naval Ship Researoh and Development O~nter, 

Department of the Navy, Betb..esda, Maryland, under Oontract N00014-

67-A-0113-0024. Appreoiation is expressed to John Almo and 

Thomas Dostal for their partin oolleoting the data, to Frank 

Schiebe and Edward Silberman for reviewing the report, and to 

Mrs. Shirley Kii for preparing the manuscript. 
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1. 

~ INFLUENCE OF DRAG REDUCING POLYMER 

ON RADIATED NOISE FROM ROUGH SURFACES 

I. INTRODUCTION 

The work presented here was directed at showing experimentally the 

effeot of water soluble polymers on radiated flow noise from moving rough 

surfaoes. The method involved making oomparisons with radiated flow noise 

from the srume surfaces moving in tap water without polymer. 

The ability of oertain water soluble polymers to reduce the drag 

foroe of flowing water is well known. The precise manner in whioh this 

effect is produoed is not clearly understood. In a general sense, it would 

not be unreasonable to assume that this drag reduction results from a modi

fication of the turbulent structure of the flow. 

The original work of Lighthill [lJ* and its extension to boundary 

layers by Curle [3J show an intimate relationship between the radiated flow 

noise and the internal stresses of the fluid,. The internal stresses are 

assumed to arise from a particular turbulence structure and its interaction 

with mean motions of the fluid. If the turbulence st~~cture is a common 

denominator for both flow noise and drag, the addition of a drag reducing 

polymer should affect flow noise as well. Unfortunately, available esti

mates of turbulence and its interaction with drag or noise provide little 

help with regard to predicting or correlating the effects of the presence 

of polymers. 

II. EXPERJ:MEN1lIAL APPARATUS 

The generation of radiated flow noise is an ineffioient prooess 

[1,2,3,4J. Experimental measurements reported in Ref. [4J give a ratio 'of 

aooustic power to friction power loss of 3 x 10-7 for a smooth surfaoe; 

oonsequently, the noise levels to be measured are quite low except at high 

velooities. These conditions require that a test facility have a low 

ambient noise level and in addition be oapable of high velocities. 

The rotating tank faoility shown in Fig. 1 was seleoted for the 

measurements. It was chosen in preferenoe to a water tunnel or towing tank 

for the following reasons: It has the smallest moving mass for the active 

* Numbers in brackets refer to references listed on page 9. 
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area; it has a minimum of moving parts to generate unwanted noise; and it 

has a naturally rigid struotural form. The faoility oonsisted of a hollow 

rotating oylinder positioned on the axis of a'steel tank 6 ft in diameter 

and 6-1/2 ft high. The tank was supported on three I-beams. A oork pad 

was installed between the I-beams and the oonorete floor of the labora

tory for sound isolation. Sandbags were plaoed against the exterior walls 

of the 'bank to provide additional damping of the tank wall as well as some 

isolation from sound transmitted through the air. 

The tank oapaoity was 1260 gallons. It was filled direotly from the 

municipal water supply or from the St. Anthony Falls Hydraulio Laboratory 

6-inoh water tunnel; this tUlmel is also filled from the munioipal water 

supply, whioh is prooessed river ~ater. The water tunnel is equipped with 

an ai~ separator and pressure oontrol, an~ thus provides a simple and rapid 

means of removing dissolved and free air from the water to the oonoentration 

level required. Diversion of water from the water tunnel to the tank 

enabled tests to be oonduoted with various dissolved air oontents. A 

steam heat exchanger was also installed in the tank to permit adjustIjlent 

or control of the water temperature. 

The rotating oylinder was supported on a hollow stainless steel shaft 

mounted in water-lubrioated rubber bearings. The oylinder itself was I ft 

long with an external diameter of I ft. Its top was submerged 2 ft below 

the statio water surfaoe in the tank. The cylinder was hollow to provide 

spaoe for instruments and was oonstructed of a synthetio wood material 

(Renwood) with brass end plates 1/4 in. ~hick. A wall thickness of 3 in. 

was selected to reduoe oylinder wall vibrations. This type of oonstruction 

has proved.to be free of any detectable. resonant peak in the noise spectrum. 

The cylinder was finished with a heavy coat of epoxy paint. The surface 

was machined to a 0.001 in. "runout" and the end oones were polished to a 

high gloss. Surface roughness was produced by spraying the cylinder sur

faoe with lacquer and dusting glass beads on the surface while the lacquer 

was still tacky. Glass beads 0.018 inches in diameter wer,e used. 

The cylinder shaft was supported by a wood framework attaohed to the 

laboratory floor and wall, avoiding contact with the tank. A water-lubri

cated bearing and thrust washer connected the cylinder, drive shaft, and 
) 

pulleys to the support frame. A second rubber guide bearing mounted on a 

cross frame inside the tank was necessary to hold the cylinder in an axial 



position. The cylinder was driven by a 20 hp, 3500 rpm induction motor 

through a "V" belt drive. Speed changes were effected using various com

binations of pulleys on the motor and ~ylinder shaft. 

Considerable difficulty was experienced ;Ln finding bearings suffici

enily quiet for the purpose. Many types of bearing surfaces were tried, 

including ball bearings and sleeve bearings of both plastic and metal. All 

these bearing materials were found to give troublesome "spikes" in the 

measured flow noise spectrum, particularly for the high frequencies. The 

ruober bearings were found to contribute relatively few of these spikes. 

The noise level was still unsatisfactory for the lower frequencies (below 

500 Hz), which was attributable in part to drive belt vibration and irregu

larities. 

A set of strain gages was mounted on the drive shaft of the rotating 

cylinder. They were calibrated to measure torque at various speeds. Slip 

rings mounted on the shaft conducted the signal from the strain gages to 

the recording instrument. Slip rings were removed during noise measurements. 

The velocity profile and drag coefficients of the flow system are given·· in 

Ref. [5J. 

The cylinder rotating in a large tank gives rise to two dominant mo

tions: (1) a free vortex where the product of velocity and radius equals 

a constant (Vr = C) and (2) an approximately logarithmic velocity distri

bution near the cylinder. The motion of the fluid around a rotating 

cylinder was investigated for water by Skudrzyk and Haddle [6J and in 

air by Wilson [4J. Their data show a logarithmic velocity distribution 

similar to the flat plate. 

A rotating carbon pressure seal was fitted below the upper rubber 

bearing. A rubber hose connected the rotating seal and the tank cover to 

provide sound isolation. Pressures of near zero to 2 atmospheres absolute 

could be imposed on the test water. A small water line to an auxiliary 

water tank supplied pressure or ·vacuum. 

The acoustic pressure on the tank was sensed by a Cevite CHlA hydro

phone. The hydrQphone was supported on a strut mounted midway between the 

rotating cylinder and the tank wall. Its active surface was located on a 

horizontal plane passing through the lower edge of the rotating cylinder. 

The calibrations supplied by the manufacturer were used as a reference. 

--- ------ - ---
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The signal from the hydrophone was amplified by a Roveti Model 600B 

preamplifier. A Quan-Teoh Model 303 frequenoy analyzer was used to measure 

sound intensity in disorete frequenoy bands. 

III. EXPERIMENT.A.L PROCEDURE 

The test tank was surveyed with a hydrophone to determine the presenoe 

of standing waves. These measurements indioated a nearly uniform pr.essure 

field throughout the liquid in the tank when exoited with a random noise 

souroe or flow noise from the rotating oylinder. This faot made possible 

the measurement of sound power from a pressure measurement at an arbitrary 

point without providing a means for averaging the standing wave pressure. 

To relate the power input to the tank to the pr.essure measured by the 

hydrophone, a prooedure similar to that of Ref. [7J was followed. A souroe 

of aooustic energy was installed in the tank, and the proportionality oonstant 

relating the acoustic energy introduoed into the tank to the resulting aooustio 

pressure in disorete frequenoies was determined. The aooustio souroe referred 

to above is an International Transducer Corporation Model 1002 calibrated 

spherical transducer. The intensity, p2/Qc, can then be integrated over a 

spherioal surface surrounding the source to give the total acoustic energy 

input; P is the pressure, Q the density of water, and c the velocity of 

sound in water at the temperature used in the tests. 

It was known from previous work [8J that air would be released from the 

water as tiny bubbles in regions of high shear near the rotating oylinder 

surface. As an air bubble diffused away from the surface into the liquid 

of the reverberant chamber, it would produce greater attenuation of the sound, 

destroying the tank calibration. An effort was made to reduce this effect 

by filling the tank with water of low dissolved air content so that the re

leased air bubbles would redissolve quickly. The test water was deaerated 

in the St. Anthony Falls Hydraulic Laboratory 6-inch water tunnel as described 

previously. Air contents as low as 7 ppmw were used. The water was discarded 

at approximately 15 ppmw. The total air content of the test water was moni

tored by a Van Slyke apparatus. It was found to remain constant for several 

days. In previous work [8J this procedure was found to eliminate the effect 

of air bubbles on measurements. To reduce the possibility of cavitation on the 

rough test surfaces, the tank was pressurized during operation at high rota

tional speeds. 



The total torque on the rotating cylinder was also measured at each 

run. The torque readings served as a check on the quality of the polymer 

solution with regard to drag reduction. A change in torque was assumed to 

indicate degradation of the polymer, and a new solution was then introduced 

into the test apparatus. 

. IV. RESULTS 

5 

Figures 2 through 6 show spectrum data for radiated flow noise on rough 

cylinder surfaces as indicated by the diffuse noise level in the tank for 

five cylinder speeds between 45 and 76 fps with various concentrations of 

drag reducing polymer (Polyox 301). Data for water only are shown for both 

rough and smooth surfaces. Pressures superimposed on the tank water are in

dicated in the figures. These are gage pressures imposed at mid-height of 

-the cylinder. Where no pressure is given, it is 2.2 in. of mercury; where 

the symbol -- occurs, pressures were not recorded. 

The pressure level is given in relative units of dB below 1 micrqbar. 

Sound level difference with the addition of drag reducing polymer is the 

significant factor in this study. Additional information on calibration pf 

the tank is given in Appendix 1. The background level in the tank is indicated 

in Fig. 2. The vertical lines show the amount subtracted to correct the data 

for background noise. 

The effect of superimposed pressure on radiated noise at high speed 

without polymer can be seen in Figs. 5 and 6 •. The increase in radiated noise 

with reduced pressure is probably due to cavitation, which can also be reduced 

by adding a drag reducing polymer. At lower speeds, Figs. 2 and 4, lower 

superimposed pressures apparently do not bring on cavitation. 

Figure 7 is a cross plot of the variation of radiated noise with 

speed for a frequency of 20 kiloHertz. It is shown in Refs. [3J, [4J, and 

[6J that the flow noise from a smooth surface varies approximately as the 

sixth power of the velocity. The radiated noise for a rough surface was 

found to vary as a higher power of velocity [4,6 J • The addition of a drag 

reducing polymer produced a lower level of noise; however, it can be seen 

that the slope of the curve of sound level with speed is nearly the same as 

that for roughness-generated noise without polymer additive. 
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Figure 8 shows the level of radiated noise as a function of surface 

shear for a range of surfaoe speeds and with the addition of polymer. A line 

with a slope dependent on ~3 has been superimposed. 

V. DISCUSSION AND CONCLUSIONS 

The inference that the radiated noise level measurements are dependent 

upon the energy dissipation in the boundary l~er requires further experi

mental work to be compl,etely justified. The most direct approach would require 

changing the Reynolds number of the flow so that all turbulenoe was suppressed 
~, 

and dissipation was entirely viscous while maintaining the same velocities and 

friction. This could be accomplished by using a fluid of muoh higher viscosity 

and surrounding the rotating cylinder with a close-fitting stationary shell. 

It was judged too difficult to do this within the time and funding of the test 

program. 

Indirect evidence can be observed in the data which tends to support the 

premise that the boundary layer is the primary source of the obs,erved noise. 

In Fig. 7, which could be duplicated for any frequency between 10 and 100 kilo

Hertz, the noise level increases nearly as the sixth power of the velocity as 

would be eXpected from theory [3], while at the same time the power i.nput to 

the system increases approximately as the velocity cubed. Most mechanically 

induced vibration would be expected to have the same velocity dependence as 

the input power. The noise level dependence on the sixth or greater power was 

used 'as a criterion for accepting or rejecting a test run. Usually when a 

lower velocity exponent was observed it was possible to find loose mechanical 

elements. Particularly troublesome in this regard was a small quantity of sand 

whioh was on occasion carried into the test tank by the operator's shoes and 

could be detected as it rolled around on the bottom. Less conclusive evidence 

is also found in the "spiked" nature of the frequency spectrum which usually 

accompanies noise from mechanical vibration and is not present in the part of 

the spectrum reported on herein. 

The pressure-dependent part of the flow noise shown in Figs. 5 and 6 is 

not easily explained. The velocity dependence and the pressure dependence sug

gest some fo:rm of cavitation or gas release mechanism. However, a true cavi

tation would be expected to give much broader noise spectra than those observed, 

particularly at high frequencies. The possibility remains that a layer of gas 
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bubbles is released near the rotating cylinder which could increase the radiat

ing efficiency of the boundary layer in the manner proposed by Creighton and 

Ffowcs Williams [9J. 

In allY event, radiated noise from a rough surface seems to have a Part 

whioh could be called independent of pressure and a "pressure-dependent" 

part as can be seen in Figs. 5 and 6; the latter is most likely caused by 

cavi tation on the roughnes,s elements. The addition of a drag reducing 

polymer appears to reduce the "pressure-independent" part of the radiated 

noise in proportion to the reduction of average shear on the surface as 

shown in Fig. 8. The pressure-dependent part of the flow noise is also 

reduced by the addition of drag reducing polymer, but no effort was made 

to study this condition. 
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Appendix I 

CALIBFL~TION OF THE TANK 

To relate the power input to the tank to the pressure measured by the 

CH1A hydrophone, a spherical acoustic source (International Transducer 1002) 

was used to excite the tank. A random noise generator supplied the power 

in a given bandwidth as measured by a wave analyzer. The manufacturer's 

calibration of the 1002 transmitter gives the equivalent sound pressure 

at one meter. The total energy delivered by this small source (1 inch 

diameter) was assumed to be unchanged by the tank. 

This unit is also calibrated as a receiver and as such is ideally 

suited to receiving random incident sound. Comparison of the noise in the 

tank as measured by the CH1A hydrophone and as measured by the spherical 

unit (1002) showed it to be the same within the resolution of the measure

ment system. 

Figure lA gives the equivalent pressure input from a spherical source 

and the resultant pressure level in the tank for both water alone and water 

with 200 ppmw Polyox 301. No significant difference due to the presence of 

Polyox can be noted. 
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