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SMALL SETS SUPPORTING
FARY EMBEDDINGS OF PLANAR GRAPHS

HUBERT DE FRAYSSEIX*, JANOS PACH{t aND RICHARD POLLACK}

Abstract. We show that every plane graph with n vertices has a Firy embedding (i.e., straight-line
embedding) on the 2n — 4 by n — 2 grid and provide an O(n) space, O(nlogn) time algorithm to effect
this embedding. The grid size is asymptotically optimal and it had been previously unknown whether one
can always find a polynomial sized grid to support such an embedding. On the other hand we show that
any set F, which can support a Fary embedding of every planar graph of size n, has cardinality at least
n + (1 — o(1))y/n which settles a problem of Mohar.

1. Introduction. The theorém of I. Fary [F] shows that every plane graph has an
embedding (drawing) in which the edges are straight line segments and the vertices are
points in the plane. An embedding of this sort will be called a Fdry embedding. Starting
with the paper of Tutte in 1963 there have been many algorithms offered for constructing
a Fary embedding ([T],[CYN],[Rd]). All present algorithms for Fary embedding a plane
graph exhibit several drawbacks. These drawbacks are: (1) that they require high precision
real arithmetic relative to the size of the graph and (2) vertices tend to bunch together
in the sense that the ratio of the smallest distance to the largest distance is unreasonably
small. This means that: (1) for a graph of moderate size it is not possible to execute the
algorithm and (2) even if it were, it would not be possible to view the resulting drawing
on a terminal screen.

In fact, it has been an open question whether or not every planar graph of size n has a
Fary embedding on a grid of side length bounded by n* for some fixed k& [RT]. Questions
, such as this, about how compactly graphs can be embedded on grids are related to the
problems of VLSI layout design ([L],[U],[V]). Theorem 1 gives a positive answer (which
is asymptotically sharp) to this question together with an algorithm providing-such an

embedding.

THEOREM 1. Any plane graph with n vertices has a Fary embedding on the 2n — 4
by n — 2 grid.

It can be shown that any Fary embedding of a nested sequence of ¥ triangles on a grid
requires a grid of size at least (2n — 1) x (3n —1).
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__ Since the Hopcroft-Tarjan planarity testing algorithm [HT] outputs a topological em-
bedding of a planar graph, we shall assume that any graph we look at has already passed
that filter and comes equipped with such an embedding. A mazimal plane graph is one
which cannot have any additional edges without destroying its planarity. Such a graph
is also called triangulated since all the faces are triangles. Since every planar graph can
be triangulated by adding additional (dummy) edges, it suffices to prove Theorem 1 for
maximal planar graphs.

We prove Theorem 1 in section 3 by presenting an algorithm which takes an arbitrary
maximal plane graph and an arbitrary triangular face and then outputs the embedding
with the given triangle as the exterior face. Our proof is based on a general construction
called the canonical representation of plane graphs (section 2), which provides a suitable
ordering of the vertices so that we can inductively Fary embed the graph induced by the
first k vertices on a grid and then by moving some of the vertices in this embedding in
a controlled way we are able to add' the next vertex and still have a Fary embedding.
On the face of it this algorithm has at least quadratic time complexity. The speedup to
O(nlogn) is obtained by not actually performing each embedding but instead storing all
the information needed in a single permutation which can be constructed in time O(n logn).
Then we will make O(n) queries of this permutation of the form; for indices 7 and j, how
many k, ¢ < k < 7 precede i in the permutation. The answers to the queries are then
used to find the coordinates of the embedded vertices. These queries can be interpreted
as rectangle range queries on a set of 2n points derived from the permutation and using a
data structure of Chazelle [C] which uses linear space, O(nlogn) preprocessing time, the

queries can each be executed in time O(logn).

The canonical representation of plane graphs is a useful tool to establish the existence of
Féary embeddings with special geometric properties by easy inductional arguments. Some

examples are propositions 1,2 and 3.

PROPOSITION 1. Given a maximal planar graph G and a face uvw, there is a labelling
of the vertices,v; = u, v = v, v3,...,V, = w and a Fary embedding f such that the convex
hull of { f(v1), f(v2), f(v3),... f(vk)} is the same as the convex hull of { f(v1), f(v2), f(vk)}
fork =4,...,n.

PROPOSITION 2. Given a maximal planar graph G and a face uvw, there is a la-
belling of the vertices, v{ = u, v2 = v, v3,...,v, = w and a Fary embedding f such
that the convex hull of {f(v1), f(v2), f(vs),... f(vk)} iIs the same as the convex hull of
{f(vk—-2), f(vk-1), f(ve)} for k =4,...,n.

PROPOSITION 3. Given a maximal planar graph G and a face uvw, there is a labelling
of the vertices, vi = u, v = v, v3,...,v, = w and a Fary embedding f such that the
boundary of the convex hull of {f(v1), f(v2), f(v3),... f(vk)} is a cycle in G and f(vi41)
is not contained in the convex hull of {f(vy), f(v2), f(vs),... f(vk)}.
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Theorem 1 gives an asymptotically sharp bound on the size of the smallest grid that
will support all planar graphs of size n. Even though a grid is a natural set on which
to embed graphs it also makes sense to drop the restriction to a grid and ask for bounds
on the size of a set which supports all planar graphs of size n. Last year Bojan Mohar
[M] asked whether or not there exists a set F' of n points in the plane which supports
every planar graph with n vertices (a set F' supports a simple planar graph if there exists
an injective map f : V(G)) — F such that the segments [f(a), f(b)] and [f(c), f(d)] are
openly disjoint if [a,b] and [c,d] are edges of G). F is called universal for a set of planar
graphs if it supports all graphs in the set. Thus R? is universal for all planar graphs by
the theorem of Fary and by Theorem 1 the n — 2 by 2n — 4 grid is universal for all planar
graphs with n vertices and Mohar is asking whether there is a universal set of size n for all
planar graphs with n vertices. We give a negative answer to this in section 5 by proving;

THEOREM 2. If F is universal for planar graphs with n vertices then |F| > n + (1 —

o( 1)) V.

2. The canonical representation of plane graphs. The aim of this section is to
describe a canonical way of constructing a plane graph, which will be a basic tool of our
investigations in the rest of this paper, and also provides easy proofs of generalizations of
Fary’s theorem (Propositions 1,2 and 3).

The following simple observation will be essential for our purposes.

LEMMA. Let G be a simple planar graph embedded in the plane and v = uy,us,... ,ﬁk =
v be a cycle of G. Then there exists a vertex w' (resp. w'') on the cycle different from u
and v and not adjacent to any inside chord (resp. outside chord).

Proof. If the cycle has no inside (resp. outside) chords, then there is nothing to
prove. Otherwise, let (u;,u;), j > 7 + 1 be an inside (outside) chord such that j — ¢ is
minimal. Then u;;; cannot be adjacent to any inside chord of the cycle u;,u;t1,...,u;j,

by minimality. Nor can it be adjacent to any other inside (outside) chord of the original
cycle, by planarity. [] )

Now we are in the position to establish the following

CANONICAL REPRESENTATION LEMMA FOR PLANE GRAPHS. Let G be a maximal
planar graph embedded in the plane with exterior face u,v, w. Then there exists a labelling

of the vertices vy = u,v; = v, v3,...,v, = w meeting the following requirements for every
4 <k <n.

(i) The subgraph Gy_1 C G induced by vy,vs,...,vr_1 is 2-connected, and the bound-
ary of its exterior face is a cycle Cx_, containing the edge uv;

(ii) vk is in the exterior face of Gk_1, and its neighbors in Gj_; form an (at least
2-element) subinterval of the path Cx_; — uv. (See Figure 1.)
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Figure 1.

Proof. The vertices v,,vn_1,...,v3 will be defined by reverse induction.

Set v, = w, and let G,—; denote the subgraph of G after deleting v,,. By the max-
imality of G, the neighbors of w form a cycle C',_; containing uv, and this cycle is the
boundary of the exterior face of G, _;.

Let 1 < n be fixed, and assume that v; has already been determined for every k > 12
such that the subgraph G,_; induced by V(G) \ {vk,vk+1,...,vn} satisfies conditions (i)
and (ii). Let Ck_; denote the boundary of the exterior face of Gx_;. Applying the Lemma
to the cycle C; in G;, we obtain that there is a vertex w' € C; different from u and v and not
adjacent to any chord of C;. (Observe that C; has no exterior chords.) Letting v; = w', the
subgraph G;_; induced by V(G) \ {vi,vit+1,...,vn} obviously meets the requirements. []

Proposition 1 now follows almost immediately.
Proof of Proposition 1. Let v; = u,v3 = v, v3,...,v, = w be the canonical labelling of
the vertices of G, as described above. We will define f(vi), 1 < k < n by induction on k.

Set f(v1) = (0,0), f(v2) = (2,0), f(v3) = (1,1). Assume that f(v;) has already been
determined for 2 = 1,2,...,k — 1 such that f is a Fary embedding of G\_; with

conv{f(v1), f(v2),., f(v:)} = conv{f(v1), f(v2), f(v:)},3 < i <k — 1.

We want to extend it to an embedding of Gy.

Let u = wy,w3,...,wy = v denote the vertices of Cy_; in the order as they appear
along the boundary of the exterior face of Gx_,. Let z(w;) and y(w;) denote the z-
coordinate and y-coordinate of f(wj), respectively. Suppose, by induction,

z(wr) < z(wz) < -+ < 2(Wm),

(iii)

y(wj) > 0 for 3 <3 <m.
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By property (ii) of the canonical labelling, vy is connected to wp,wpy1,... g for some
1<p<qg<m.

Let us fix any number z* between z(w;) and r(w,), and set f(vy) = (z*,y") for some
y* > 0. It is now clear that, if y* is sufficiently large, then we obtain a Fary embedding
of G with the desired properties. Furthermore, our auxiliary hypothesis (iii) will remain

true for the points of Cy.

Propositions 2 and 3 can be proved in a similar way.

3. Drawing a plane graph on a grid. It suffices to prove Theorem 1 for maximal
plane graphs. Let G be such a graph with exterior face u, v, w, and let v; = u, vy = v,
v3,...,V, = w be the canonical labelling of its vertices.

The idea of the proof is the following. Suppose that at step k of our algorithm G has
already been Fary embedded on the grid such that

(1) vy is at (0,0), v, is at (2k — 4,0);
(2) If vy = wy,wa,...,wm = v2 denote the vertices on the exterior face of G} (in the
order of their appearance), and z(w;) denotes the z-coordinate of w;, then

z(wy) < z(wz) < -+ < &(wm);

(3) The edges [w;,w;t+1], 1 < i < m, all have slopes +1 or —1.

Note that (3) implies that the Manhattan distance between any two vertices w; and w; of
the exterior face is even. (The Manhattan distance of (z,y) and (z',y') is |z —z'|+ |y —¥'].)
Hence, if ¢« < 7, then the intersection of the line with slope +1 through w; and the line
with slope —1 through wj is a lattice point P(w;,w;).

Let wp, wpt1,...,wq be the neighbors of vi41 in G4y (1 < p < g < m), (cf. part (ii) of
the Canonical Representation Theorem). Then P(w,,w,) is a good candidate for placing
vk+1, except that it may fail to see e.g., w, (see fig. 2). To make sure that P(w,,w,) sees
all the points wp,wpy1,...,w,, we shall deform the embedding (drawing) to guarantee
that the slope of the edge [w,,wp41]is < 1 and the slope of [wq_y1,wy] is > —1 while the
slopes of all other edges of the exterior face of G remain the same. One way to ensure this
is to move wyt1,Wp42,...,Wm one unit to the right and then to move wg,wgt1,...,wm
an additional unit to the right. However, to keep a Fary embedding, it may be necessary
to move some other vertices (not on the exterior face) as well. Though it is difficult to
know globally which set of points has to move together with a given exterior vertex, there
1s an elegant way to define such sets recursively at each step of our algorithm.

To realize this goal, assume that for each vertex w; on the exterior face of G} we have

already defined a subset M(k,w;) C V(G}) such that
(a) w; € M(k,w;)iff j > i;
(b) M(kawl) ) M(k?w2) DD M(kywm);
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P(W.R’,-WQ)

wm=v2=v

Figure 2.

(c) For any nonnegative numbers a, az, ..., an, if we sequentially translate all vertices
in M(k,w;) with distance «; to the right (: = 1,2,...,m), then the embedding of
G remains a Fary embedding. (Note that many vertices will move several times;
e.g., all points in M(k,w;) \ M(k,w;41) will be translated by a; + az + -+ + «;.)
For k = 3 these condition are met by the Fary embedding v; — (0,0), v2 — (2,0),
v3 — (1,1) and by the sets M(3,v1) = {v1,v2,v3}, M(3,v2) = {v2,v3}, M(3,v3) = {v3}.
Apply condition (c¢) with apy1 = ag = 1 and all other a; = 0 to find a new Fary
embedding of Gi. The Manhattan distance between w, and the new location of wy is still
even, thus we can place v,1; at the intersection of the lines with slope +1 and —1 through
w, and the new location of wg, respectively. Conditions (1), (2) and (3) will trivially
remain true for this new embedding of G41. (See fig. 3)
The vertices of the exterior face of G4 are u = wy,w2,...,Wp, Vkt1,Wqy- -+, Wm = V.
For each member z of this sequence we have to define a set M(k + 1,z) C V(Gr41). Let

M(k + 1,w;) = M(k,w;) U {vg41} for ¢ <p,
M(k +1,vk41) = M(k,wpt1) U {vis1},
Mk +1,w;) = M(k,w;) forj>q.

It is obvious, by induction, that these sets have properties (a) and (b).

To check that property (c) remains true as well, fix a sequence of nonnegative numbers
a(wy),...,a(wp),a(vit1), a(wg),...,a(wy). For all z on the exterior face of G4, trans-
late the sets M(k + 1,z) with distance a(z) to the right. Observe that after this motion
the part of G4, below the polygon wiw;...wm, (i.e., Gi) remains Fary embedded (by
condition (c) applied to G with a; = a(wy),...,ap = a(wy), apt1 = 1 + a(vet1),
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P(wp,wq)

wm=v2=V

Figure 3.

a, = 14 a(wy), agt1 = a(wgt1),...,am = a(wy) and every other o; = 0). On
the other hand, it is easy to see that the part of Gy41 above wyw,...w, (i.e., Vi1
and the upper contour of Gj) remains Fary embedded, too, since during the motion the
(shaded) subgraph induced by wpy1,wpt2,...,wq—1 and vi4; moves rigidly (to a distance
awr) + -+ + a(wy) + a(vrs1)).

The final output of our algorithm is a Fary embedding f of G, = G satisfying con-
ditions (1), (2) and (3) with & = n. This immediately implies that every point of G
is embedded in some lattice point of the triangle determined by f(v,) = f(u) = (0,0),
f(v2) = f(v) = (2n —4,0) and f(v,) = f(w) = (n —2,n — 2). This completes the proof of
Theorem 1. ]

4. Outline of an O(nlogn) algorithm for drawing a maximal planar graph
on a grid. Given a planar graph G we might as well assume that G is maximal, since, in
linear time dummy edges can be added to make it so [Rd]. We further label all vertices as
(a) not yet visited, (b) visited once or () visited more than once with i components. These
labels are updated after we choose vertex vigy;. We visit each neighbor of vj4;. Suppose
that v is such a vertex. If v has label (a), label () replaces label (a). If v has label (b)
and the edge from vi4; is adjacent to a previous edge, in the circular order of edges at v,
along which v was visited, label (1) replaces label (b) and if not, label (2) replaces label
(b). Finally if v has label (j) and the left and right neighbors of the edge from v41 to v
have already been traversed then label (7 — 1) replaces label j. If only one of these edges
has been traversed then the label is unchanged and if neither has been traversed then label
(7 + 1) replaces label (7). It is clear that the label (j) on v means that the edges already

* traversed and incident to v are composed of j intervals in the circular order of edges at v.

It is easy to see that any vertex with label (1) can be chosen as viy2. Since there are only
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a linear number of edges we find the order to insert vertices in linear time.

We define a sequence of permutations inductively as follows. m = (1,2) Suppose
7). is defined and the vertex vi4, is adjacent (in counter-clockwise order) to the vertices
ViyyVipy. -+, Vi, in Gg. Then we generate 71 by inserting k + 1 just to the left of i, and
n + k + 1 just to the left of i; in the permutation m. Clearly 7, can be constructed in
time O(nlogn). It is clear, identifying the vertex v; with the index j, that

M(k,v;) = {jlj <n,j does not precede i in m} = {j|i < j < n,j does not precede i in m,}.
Suppose that vy is placed at (zx(7),yx(j)) when v; is placed on the grid. Then yi(j) =
yr(k) and zx(7) = zk(k) + o(k,7) where
o(k,7) = [{ilk < i,t precedes k in m;}| = [{i|k < i < j,7 precedes k in 7, }|.
It follows that we can find (zx(k),yx(k)) in constant time given (z;(j),y;(7)) and o(7, k)
for v; the left-most neighbor of vy and for v; the right-most neighbor of vx in Gx_;. Then
in constant time we find the embedded coordinates of v, (zx(n),yx(n)). Thus, the entire
algorithm runs in time O(nT'), where T is the time to calculate any o(j, k). Finally, let S
be the set of points
(L0220~ 3} U{(k m (k) (ki (n + B))I3 < b < ],
It is evident that o(k,7) = |S N R(k,7)| where R(k, j) is the rectangle,
R(k,j) = {(z:y)lk + 1 <z <j,1 <y <m.'(k)}
Hence it follows from [C] that T' = logn.

5. Lower bounds on the size of a set which supports all planar graphs. Let
G be a fixed maximal planar graph with k vertices and 2k — 4 triangular faces. Given

any natural numbers n;, 1 <1 < 2k — 4 with S‘Zk 4 n; =n — k, let Ge(ni1,n2,...,n2k—4)
be a fixed maximal planar graph on the vertices {P;, Pz,...,P,} whose restriction to
{Py,P,,..., P} is G\ and has n; vertices in the face f;. Since G\ and Gi(n1,n2...,n2k-4)

are maximal, Steinitz’s theorem shows that they have unique planar maps. There are

(";;c’:.)s) of these graphs. Now suppose that F, a subset of R? supports all these graphs,

and fix an embedding fg : V(G) — F for each of them. There are at most |F|* ways to
embed (Py, P,..., P;), hence the embedding of at least (";;ck__ss)/]ﬂk of these graphs is
the same on the vertices { Py, Pz,..., P;}. On the other hand a given embedding of G on
|F|—n+2k—5
2k—5

|F| —n+2k -5 S n+k— >/| k)
2k —5 2k —

From this, by elementary calculations we obtain

(P () )

n we contradict |F| < n + (1 — ¢)y/n for n sufficiently large, and

F can be extended to at most ( ) of our graphs. Hence,

Now choosing k = §

Theorem 2 follows. '



6. Remarks. The algorithm implicit in the proof of theorem 1, as well as another
which introduces new edges on the exterior face which may be horizontal at the time of
insertion rather than insisting that they have slopes 1 or —1 has been implemented by
Nejia Assila. This second version, has the advantage that the graph may have a Fary

embedding on a considerably smaller grid. Figures 4a and 4b show the output of each

algorithm on the same graph.

Figures 4a. Figure 4b.

For f(n), the smallest cardinality of a set which supports all planar graphs, theorems
1 and 2 show that

n+ (1 -o(1))vn < f(n) < n’.

An interesting open problem is to tighten these bounds.

Finally, we suspect that a linear time algorithm exists to Fary embed any planar graph
on a linear sized grid. A weaker, but equally important, question is whether the algorithm
can be improved dynamically. Is it possible, given an embedding, to insert a new vertex
in linear time? i

7. Acknowledgement. We would like to thank Bernard Chazelle, Herbert Edels-
brunner and Micha Sharir for helpful discussions.
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