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Abstract

As electronic devices become increasingly interconnected and pervasive in people’s

lives, security, trustworthy computing, and intellectual property (IP) protection have

notably emerged as important challenges for the next decade. The assumption that

hardware is trustworthy and that security effort should only be focused on networks

and software is no longer valid given globalization of integrated circuits and systems

design and fabrication. In 2011, the Semiconductor Industry Association pegged the

cost of electronics counterfeiting at US $7.5 billion per year in lost revenue and tied

it to the loss of 11, 000 U.S. jobs [1]. From a national defense perspective, unsecured

devices can be compromised by the enemy, putting military personnel and equipment

in danger. Therefore, securing integrated circuit (IC) chips, in other words, hardware

security, is extremely important.

This dissertation considers the design of highly secure digital signal processing cir-

cuits by employing both authentication-based and obfuscation-based approaches. In the

first part of the dissertation, we focus on one emerging authentication-based solution:

Physical Unclonable Function (PUF). We present novel reconfigurable PUF designs

which could simultaneously achieve better reliability and security. We also present a

systematic statistical analysis to quantitatively evaluate the performances of various

multiplexer (MUX)-based PUFs. The statistical analysis results can be used to pre-

dict the relative advantages of various MUX-based PUF designs. These results can be

used by the designer to choose a proper type of PUF or appropriate design parameters

for a certain PUF based on the requirements of a specific application. Furthermore, a

lightweight PUF-based local authentication scheme is also proposed, which eliminates

the use of error correcting codes.
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In the next part of the dissertation, we consider another hardware protection method:

obfuscation. Hardware obfuscation is a technique by which the description or the struc-

ture of electronic hardware is modified to intentionally conceal its functionality, which

makes it significantly more difficult to reverse engineer. Unlike these prior works, We s-

tart to look at Digital Signal Processing (DSP) circuits. In the literature, security aspect

of DSP circuits has only attracted little attention. However, high-level transformations

of DSP circuit are intrinsically suitable for hardware obfuscation, as these techniques

only alter the structure of a circuit, while maintaining the original functionality. Based

on this finding, we present a novel design methodology for obfuscated DSP circuit-

s by hiding functionality via high-level transformations. The key idea is to generate

meaningful and non-meaningful design variations by using high-level transformations.

In the final part of the dissertation, we consider the design and analysis of True

Random Number Generator (TRNG), which is also an important topic in hardware se-

curity. We examine the modeling and statistical aspects of the proposed TRNG circuit.

According to our model, we show that the performance of the beat-frequency detector

based TRNG can be improved by appropriately adjusting design parameters. Motivat-

ed by the our analysis, we propose several alternate BFD-TRNG designs which could

achieve improved performance. Various post-processing methods which are specific to

the proposed designs are also studied.
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Chapter 1

Introduction

1.1 Introduction

Hardware security - whether for attack or defense - differs from software, network,

and data security in that attackers may find ways to physically tamper with devices

without leaving a trace, misleading the user to believe that the hardware device is

authentic and trustworthy. The fact that computing devices are becoming distributed,

unsupervised, and physically exposed, obviously aggravates the problem of hardware

security. General speaking, hardware security has emerged as an important field of

study aimed at addressing critical hardware-based security challenges, which include:

a) protect intellectual property from piracy,

b) prevent unauthorized access,

c) protect secrets from being stolen,

d) prevent fraud.

However, hardware security is very challenging. Due to the fact that adversary

can physically tamper with the device, there are massive, various types of post-silicon

attacking methods available, which include side-channel attacks, software attacks, fault

1
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generation, microprobing, reverse engineering, and so forth. Especially, invasive and

semi-invasive attacking methods provide more tools for the adversary to compromise

the devices. For example, the side-channel attacks, information is gained from the

hardware implementation rather than from the weakness of certain algorithm. In order

to design secure ICs, we need to take all of these attacking methods into considerations.

Furthermore, the advent of new attack modes, illegal recycling, and hard-to-detect

Trojans make hardware protection an increasingly challenging task.

Moreover, industry business model has shifted from vertical to horizontal, as IC

design and fabrication process becomes globalized. With the increasing complexity and

cost of modern design and fabrication, many designs involves a number of Intellectual

Property (IP) resellers, system on a chip (SOC) design houses, and fabrication houses

that span multiple countries. Many critical hardware components are manufactured in

foundries that are located in countries where the cost to build and run a foundry is

competitive. ICs that are outsourced for fabrication are especially vulnerable to piracy

from overproduction. For example, it is conceivable that a dishonest manufacturing

plant could create more chips than ordered and sell the additional chips at a lower cost,

subverting the profits of the legitimate owner.

There is no static definition of ”security” in hardware. The security is dependent on

the potential profit that an adversary can earn and the corresponding cost to compromise

a device. Nothing is 100% secure. Given enough time, motivation, resources, an attacker

can break any system. Therefore, what we can do to improve the security is essentially

to increase the cost for an adversary. So the question is: what we can do to increase

the attacking cost for the adversary?

The design of secure hardware ICs requires novel approaches for authentication that

are ideally based on multiple factors that is difficult to compromise. Equally important

is the need for protecting intellectual property and design of integrated circuits that

are harder to reverse engineer. In general, hardware protection methods can be broadly

classified as authentication-based approaches and obfuscation-based approaches. Another
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important field of hardware security is True Random Number Generator (TRNG), which

is a critical building block in systems that require high levels of security as it provides a

unique and unpredictable sequence of bits for encrypting messages or providing secrets

for other cryptographic applications.

1.2 Summary of Contributions

1.2.1 Authentication

Traditionally, secret keys, which are used as unique identifiers for devices, are em-

bedded into ICs in a ROM immediately after manufacturing process. Unfortunately,

digital keys stored in a non-volatile memory are vulnerable to physical attacks. Sever-

al invasive and semi-invasive physical tampering methods have been developed; these

include techniques such as reverse engineering, micro-probing (access to the silicon to

manipulate the internals of system), and power analysis (predict the secret keys from

power consumption analysis). These approaches have made it possible to learn the

ROM-based keys through attacks and compromise systems by using the keys from the

counterfeit copies. The fact that the devices should be inexpensive, mobile, and cross-

linked obviously aggravates the problem.

Physical Unclonable Function (PUF) is one emerging security primitive, which has

successfully addressed the problems faced by traditional ROM-based authentication

techniques. Contrary to standard digital systems, PUFs extract secrets from complex

properties of a physical material rather than storing them in a non-volatile memory.

PUFs are compact circuits that exploit inherent manufacturing process variations to

generate an output response that is unique to each chip. Analogous to human finger-

print, PUFs are powerful tools for authentication and cryptographic applications.

Given the advantages of PUFs, we are interested in how we can enhance the security

and reliability. A good PUF should be nearly impossible to predict, clone, or duplicate.

When a PUF is provided with an input (or challenge), the output (or response) should
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satisfy the following three properties: (i) unique output due to chip-to-chip variation,

(ii) random output that is impossible or difficult to model, and (iii) reliable output that

is consistent across temperature, voltage and aging conditions. In this dissertation, I

explore the multiplexer(MUX)-based PUFs in depth - both the practical implications

and the theoretical underpinnings.

On the practical front, we propose several novel reconfigurable PUF architectures,

where the challenge-response pairs are updatable. It is shown that these novel re-

configurable PUFs can embed more non-linearity into the challenge-response mapping

functions and lead to more secure PUFs without degrading reliability and robustness.

We also develop a novel modified feed-forward PUF structure to improve the reliability

of PUFs, while maintaining the same level of security. Unlike the standard feed-forward

PUF, the output of a feed-forward arbiter from an intermediate stage is input as the

challenge bit to two consecutive MUX stages in the modified feed-forward PUF struc-

ture. The non-linearity provided by multiple feed-forward paths in our design makes it

difficult for attackers to predict the PUF behavior. PUF chips are fabricated in 32nm

SOI IBM process that can be reconfigured as simple MUX PUF, feed-forward MUX

PUF, and modified feed-forward MUX PUF. Our experimental results show that us-

ing the proposed modified feed-forward path can achieve significantly better reliability

than using standard feed-forward path. Moreover, another contribution is the design

of a novel two-arbiter PUF structure. Redundancy is introduced to the response to

improve the reliability. These proposed PUF designs are extremely suitable for applica-

tions that mandate lightweight and cost-effective hardware with very secure and reliable

authentication.

On the theoretical front, we present a systematic statistical analysis to quantita-

tively evaluate the performances of various MUX-based PUFs for the first time in the

literature. The proposed statistical analysis approach is conceptually very general. The

statistical analysis results can be used to predict the relative advantages of various

MUX-based PUF designs. These results can be used by the designer to choose a proper
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type of PUF or appropriate design parameters for a certain PUF based on the require-

ments of a specific application. This eliminates the need for fabrication and testing of

many PUFs for selecting an appropriate PUF.

We also propose a novel lightweight PUF-based local authentication scheme. One

major issue for PUF-based local authentication is the robustness of the system, since

environmental variations (e.g., temperature, voltage and aging variations) will affect

the PUF response. In a server-based remote authentication system, this issue can be

easily resolved by tolerating certain number of bit errors. For example, the server could

authenticate a PUF response whose Hamming distance (HD) to the desired response

is less than a certain threshold. However, this cannot be used in a local authentica-

tion scheme due to the high overhead. Additionally, it is not feasible to store a large

amount of CRPs on chip. Error correcting codes such as BCH codes and fuzzy extrac-

tors have been incorporated into PUF-based authentication protocols to improve their

robustness, which could also be used in local authentication. However, the use of error

correcting techniques significantly increases the cost and design complexity. The pro-

posed novel lightweight finite-state machine (FSM) based local authentication scheme

could overcome these problems. The advantage is the inherent redundancy built in-

to the self-correcting FSM by contiguously entering the authentication key twice that

eliminates the need for an error correcting code.

1.2.2 Obfuscation

Digital Signal Processing (DSP) plays a critical role in numerous applications such as

video compression, portable systems/computers, multimedia, wired and wireless com-

munications, speech processing, and biomedical signal processing. However, the security

aspect for DSP applications has only attracted little attention in the literature. While

PUFs can be used as authentication-based methods to improve the security of DSP cir-

cuits, obfuscation-based approaches are also obliged to protect the intellectual property.

Design obfuscation is a technique that transforms an application or a design into one
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that is functionally equivalent to the original but is significantly more difficult to reverse

engineer.

In this dissertation, we propose a novel design methodology for obfuscated DSP

circuits by hiding functionality via high-level transformations. The DSP circuits are

obfuscated by introducing a finite-state machine (FSM) whose state is controlled by a

key. The FSM enables a reconfigurator that configures the functionality mode of the

DSP circuit. High-level transformations lead to many equivalent circuits and all these

create ambiguity in the structural level. High-level transformations also allow design of

circuits using same datapath but different control-flows. Different variation modes can

be inserted into the DSP circuits for obfuscation. While some modes generate outputs

that are functionally incorrect, these may represent correct outputs under different

situations, since the output is meaningful from a signal processing point of view. Other

modes would lead to non-meaningful outputs. The initialization key and the configure

data must be known for the circuit to work properly. Consequently, the proposed design

methodology generates a both structurally and functionally obfuscated DSP circuit.

While high-level transformations have been exploited for area-speed-power tradeoffs, our

work is the first work to exploit the security perspective of high-level transformations.

1.2.3 True Random Number Generator

Another important field of hardware security is True Random Number Generator

(TRNG), which is a critical building block in systems that require high levels of security

as it provides a unique and unpredictable sequence of bits for encrypting messages

or providing secrets (e.g., the challenges for a PUF) for cryptographic applications.

Similar to PUFs, TRNGs also extract randomness from physical phenomena. However,

manufacturing process variations are key to generating unique signatures in PUFs, while

environmental variations are key to creating truly random outputs in TRNGs.

Evaluating TRNGs is a difficult task. Clearly, it should not be limited to testing the

TRNG output bitstream. One important requirement in TRNG security evaluation is



7

the existence of a mathematical model of the physical noise source and the statistical

properties of the digitized noise derived from it. However, creating a model of a TRNG

is difficult as the model parameters are unknown. Thus, it is impossible to predict

performance of new TRNG designs as their models cannot be created. Furthermore, it

can be argued that TRNG performance can only be measured from fabricated chips.

Therefore, how good a new TRNG design can only be determined by measurements

from a fabricated design. We are interested in exploiting the synergy between a model

and the measurements of the real device. We present a rigorous analysis of the so-called

beat-frequency detector TRNG (BFD-TRNG). The key contribution of the proposed

approach lies in fitting the model to measured data, and the ability to use the model to

predict performance of BFD-TRNGs that have not been fabricated. Motivated by the

statistical analysis results, we propose several novel BFD-TRNG architectures, which

could achieve further improved performances.

1.3 Outline of the Dissertation

The dissertation is outlined as follows. Physical Unclonable Function (PUF) is

introduced in Chapter 2. Afterwards, we introduce several novel reconfigurable PUF

structures which could achieve better security. The key idea in our method is that the

challenge-response pairs can be updatable by pre-processing the challenge and response,

or altering the PUF circuit, without leaking security information to the adversary. Then

the methodology to simulate PUFs is described.

Chapter 3 introduces the design of a novel modified feed-forward PUF structure to

improve the reliability of PUFs, while maintaining the same level of security. Then a

systematic statistical analysis of various MUX-based PUFs is presented.

Chapter 4 introduces the idea of PUF-based local authentication. Afterwards, a

two-level finite-state machine (FSM) is proposed to correct erroneous bits generated by

environmental variations.
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In Chapter 5, we introduce the concept of hardware obfuscation. Afterwards, a novel

design methodology for obfuscated DSP circuits by hiding functionality via high-level

transformations is presented

Chapter 6 introduces the a novel BFD-TRNG design. The statistical modeling of

the BFD-TRNG is discussed.

Finally, Chapter 7 concludes with a summary of total contributions of this disserta-

tion and future research directions.



Chapter 2

Novel Reconfigurable Silicon

Physical Unclonable Functions

2.1 Introduction

In today’s world, as electronic devices become increasingly interconnected and per-

vasive in people’s lives, security, trustworthy computing, and privacy protection have

emerged over the past decade as hardware design objectives of great significance. It is

demanded that semiconductor devices be resistant not only to computational attack-

s, but also to physical attacks. Traditionally, secret keys, which are used as unique

identifiers, are embedded into integrated circuits (ICs) in a ROM immediately after

manufacturing. Unfortunately, digital keys stored in a non-volatile memory are vulner-

able to physical attacks. Several invasive and semi-invasive physical tampering methods

have been developed; these include techniques such as micro-probing (access to the sili-

con to manipulate the internals of system), power analysis (predict the secret keys from

power consumption analysis) and so forth. These approaches have made it possible to

9
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learn the ROM-based keys through attacks and compromise systems by using counter-

feit copies of the secret information. The fact that the devices should be inexpensive,

mobile, and cross-linked obviously aggravates the problem.

The described problem has become more intense recently, and this motivated the

idea of using intrinsic random features of physical objects for identification and authen-

tication. The concept of physical unclonable function (PUF) proposed in [2, 3, 4] has

successfully addressed the problems faced by traditional techniques. A PUF is a function

that exploits the unique intrinsic uncontrollable physical features by process variations

during manufacturing. Signatures generated by PUFs are determined by device manu-

facturing variations and the so-called external challenges. Contrary to standard digital

systems, physical unclonable functions enable significantly higher secure authentication

by extracting secrets from complex properties of a physical material rather than storing

them in non-volatile memory. Due to the uncontrollable random components, PUFs are

easy to measure but almost impossible to clone, predict, or reproduce. Furthermore, it

is infeasible for an adversary to mount an attack to counterfeit the secret information

without changing the physical randomness. Taking coating PUF as an example, which

is a function built in the top layer of an IC by filling the space between and above

the comb structure with an opaque material and randomly doping with dielectric par-

ticles, any physical attack on a coating PUF would damage the protective coating and

destroy the cryptographic key. Based on these advantages, PUFs can efficiently and

reliably generate volatile secret keys for cryptographic operations and enable low-cost

authentication of ICs.

The first PUF in the literature is the optical PUF [2], which utilizes the randomness

in the placement of the light scattering particles and the complexity of the interaction

between the laser and the particles. After that, several PUF hardware structures have

been proposed [3, 4, 5, 6, 7]. Most PUFs are built on conventional silicon techniques

so that they do not require any special fabrication and can be easily integrated into

IC chips, except a few types such as coating PUF and magnetic PUF. Among these
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PUFs, silicon PUFs are of the most interest, as these exploit manufacturing variability

of nanoscale silicon structure to generate a unique challenge-response mapping for each

IC. These unique properties of each IC are easy to measure through the circuits but

hard to copy without changing the challenge-response pairs (CRPs).

The delay-based silicon PUFs in previous work have always considered a static

challenge-response behavior. In those protocols, PUFs should always generate the same

or error tolerated response to a randomly selected challenge. Unfortunately, recent

analysis has demonstrated that those PUF structures are vulnerable to several securi-

ty attacks including emulation, replay (man-in-the-middle attack), reverse engineering

and modeling attack [8]. Moreover, updatable cryptographic keys are very attractive in

some applications [9]. Therefore, a dynamic PUF that can alter the CRPs every time

the data is modified to prevent the hidden information leaked out is very desirable.

In this chapter, we mainly focus on the design of reconfigurable silicon PUFs and

their analysis. We propose several novel reconfigurable PUFs and discuss their perfor-

mance. We also examine the reliability and the security of different PUF structures.

The key idea in our approach is that we try to make CRPs updatable. By doing this,

the challenge-response behavior of a PUF can be altered to generate a more secure

hardware system. Furthermore, we discuss the techniques to improve the reliability of

silicon PUFs.

2.2 Background

2.2.1 Silicon Physical Unclonable Function

There are several subtypes of PUFs, each with its own applications and security fea-

tures. A major type is the so-called silicon PUFs, which exploit the delay variations of

CMOS logic components to generate a unique signature for each IC. Silicon PUFs can be

integrated into chips very conveniently since there are implemented with standard dig-

ital logic and without any special fabrication. There are two main types of delay-based
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silicon PUFs: Ring Oscillator (RO) PUF [3] and Multiplexor (MUX) PUF [10]. How-

ever, MUX PUF has better performance than RO PUF from the security perspective,

as the frequencies of the ring oscillators can be relatively easily evaluated by attackers;

moreover, a MUX PUF is more suitable for resource-constrained applications. Instead

of duplicating the hardware N times, we can use N different challenges to obtain a N-bit

long response in a MUX PUF, as illustrated in Figure 2.1. Each challenge creates two

paths through the circuit that are excited simultaneously. The output is generated by

the delay difference between the two paths. The silicon MUX PUF consists of N stages

MUXs and one arbiter which connects the final stage of the two paths. MUXs in each

stage act as a switch to either cross or straight propagate the rising edge signals, based

on the corresponding challenge bit. Each MUX should be designed equivalently, while

the variations will be introduced only during the manufacturing process. For transis-

tors, manufacturing randomness exists due to variations in transistor length, width, gate

oxide thickness, doping concentration density, metal width, metal thickness, and ILD

(interlevel dielectric) thickness, etc [11]. These manufacturing variations show a signif-

icant amount of variability, which are sufficient to generate unique challenge-response

pairs for each IC by comparing the delays of two paths. Finally, the arbiter (always

simply a D filp-flop) translates the analog timing difference into a digital value. For

instance, if the rising edge signal arrives at the above input of the arbiter earlier than

the signal arriving at the bottom input, the output will be one, otherwise if the bottom

path is fast, the output will be zero otherwise. The output response depends on the

applied challenge bits and will be permanent for each IC or only vary in a small range

under different environmental conditions.

2.2.2 Feed-Forward Structure

Later on, in order to improving the security of silicon PUF, a feed-forward structure

has been proposed in [12] to prevent attacks by linear modeling. Figure 2.2 shows one
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Figure 2.1: Silicon MUX physical unclonable function.

basic structure of feed-forward MUX PUF, which uses the racing result of an interme-

diate stage as the select signal for a block of MUXs in a later stage. This structure

provides nonlinearity to the arbiter-PUF, which increases the complexity for numerical

modeling attacks. However, the reliability of the PUF has been degraded in this feed-

forward structure since an error in the output of an internal feed-forward arbiter caused

by environmental variation can increase the noise probability in the final response.

Figure 2.2: Feed-forward silicon MUX PUF structure.

2.2.3 Reconfigurable PUF

Recently, in order to satisfy the needs of updatable keys for PUF-based authenti-

cation systems, reconfigurable PUFs have emerged as a new class of PUFs. A good

example is the protection of sensitive data in untrusted non-volatile storage. The confi-

dentiality and integrity of such data can be protected with an encryption and authenti-

cation algorithm respectively, but a refresh mechanism is needed to protect the system

from the replay of old versions of the data. One possible solution is to alter the key
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material of the protection scheme every time that data is modified, which leads to the

use of reconfigurable PUFs. A reconfigurable PUF has the properties that it could

preserve the properties of original PUF but have unpredictable challenge-response be-

haviors after every reconfiguration. The first reconfigurable PUF [10] was presented in

2004, which is an arbiter PUF built with floating gate transistors. It was also shown

that the reconfigurability for a PUF is a very desirable characteristic.

Recently, two types of reconfigurable PUFs have been proposed in [13]: reconfig-

urable optical PUF and phase change memory based reconfigurable PUF. These two

types of PUF can be updated and can inherit the properties of the original PUF. How-

ever, these PUFs have certain limitations and constraints in practical use; for instance,

the reconfigurable optical PUF needs a special material, which is not as widely used as

silicon PUFs in industry.

Several implementations of reconfigurable silicon PUFs have also been published [9,

14, 15, 16]. However, all of these efforts are based on the reconfigurability of FPGA,

and most of them are built on the Ring Oscillator PUF. In these existing FPGA-based

solutions, many assumptions are required as significant amount of information regarding

the underlying VLSI layout of the reconfigurable fabric is lost. Moreover, many PUF

designs require a symmetrical routing that is difficult to implement on a FPGA platform

as a designer can only manipulate the higher level design blocks such as the LUTs, the

memory blocks, and the connection matrices. Additionally, it is possible to undo the

reconfigurations of contemporary FPGAs, which makes the reconfigurable PUF more

vulnerable to attacks.

Therefore, non-FPGA based architectures for reconfigurable silicon PUF are very

desirable. Our major contribution is to present several novel structures of silicon PUFs

which can be implemented on non-reconfigurable hardware, that is which can be de-

signed at transistor level and fabricated and integrated into chips. Moreover, we also

address the security and the reliability perspectives of the reconfigurable PUFs.
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2.2.4 PUF-based Key Generation and Authentication

Due to its complex and disordered structure, a PUF can avoid some of the shortcom-

ings associated with digital keys. For example, it is usually harder to read out, predict,

or derive its responses than to obtain the values of digital keys stored in non-volatile

memory. This fact has been exploited for various PUF-based security protocols. Promi-

nent examples include schemes for identification and authentication [2, 3], key exchange

or digital rights management purposes [4]. PUFs are often assumed to be evaluated on

a challenge c which is sent to the device. Upon receiving c, the response is computed as

r = PUF (c) and is assumed to be unpredictable to anyone without access to the device.

Schemes exist for use in different contexts (e.g., for protection of intellectual property

and authentication), where the inability to clone the function improves the properties

of a solution.

Although PUF-based authentication system is an efficient and powerful solution for

counterfeit IC prevention, this technique also suffers from several security drawbacks.

In a PUF-based authentication system, the challenge-response pairs of an authentic

IC are stored in the database of a trusted party. To check the authenticity of an IC

later, the chip needs to communicate with the trusted party, thus revealing a security

loophole to the adversary. Then the system can be compromised by some modeling

attack method when multiple CRPs are obtained by attackers. One possible solution

that still hasn’t been investigated is a novel PUF-based self-authenticated system, which

can avoid communications between the chip and server. As only one challenge-response

pairs will be needed in this kind of authentication protocol, therefore, the system would

be resistant to software model building attacks.

From another point of view, if the adversary is unable to create the model of the

underlying PUF or successfully predict the response for a challenge even with a large

number of CRPs, the authentication protocol could also remain strong and secure. Re-

configurable PUFs could be a suitable solution for this problem. In these reconfigurable
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PUF-based systems, the response will be computed as r = PUFd(c), where d is the

configure data. Therefore, the PUF model will be hard to model, as the PUF mapping

function is not deterministic but varies according to the configure data. Furthermore, the

reconfigurability also enables systems to use multiple CRPs for authentication, which

can increase the reliability and security.

2.3 Methodology

2.3.1 PUF Model

As shown in Figure 2.1, a MUX PUF consists of a sequence of N-stage MUXs and

an arbiter. The rising edge signal will excite the two parallel paths simultaneously.

The actual propagated paths will be determined by the external applied challenge bits.

After the last stage, the arbiter will generate the output bit by comparing the arrival

time of the two different paths. It has become standard to model the MUX PUF

via an additive linear delay model. According to the efforts in the field of Statistical

Static Timing Analysis (SSTA) [11], the manufacturing process parameter variations

for transistors can be modeled by a Gaussian distribution. Therefore, the variations of

delay will be also approximately Gaussian.

Process variations can be classified as follows: inter-die variations are the variations

form die to die, while intra-die variations correspond to variability within a single chip.

Inter-die variations affect all the devices on the same chip similarly, while intra-die

variations affect different devices differently on the same chip. A very widely used model

for delay spatial correlation is the ”Grid model” [11], which assume perfect correlations

among the devices in the same grid, high correlations among those in nearby grids and

low or zero correlations in faraway grids, since devices close to each other are more likely

to have more similar characteristics than those placed far away.

Additionally, experimental results have already shown that the inter-chip variation

across the wafers is similar to that within a single wafer. Thus, inter-chip variation is not
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strongly dependent on the location of dies on wafers. Moreover, the output of the arbiter

in silicon PUF is only based on the difference of two selected paths. Therefore, these

die-to-die, wafer-to-wafer, and lot-to-lot manufacturing variations will have minimum

effect on the output response of the silicon PUF.

For simplicity, as every MUX is design equivalently, we can model the delay of each

single MUX an i.i.d. random variable Di, which follows N(μ, σ2); therefore, the total

delay of the N stages will be N(Nμ,Nσ2). Since the output of arbiter only depends on

the delay difference between the two paths, thus the time difference will also follow a

Gaussian distribution Δ ∼ N(0, 2Nσ2).

We denote the delay in the top path of the i-th stage as Dti, the delay in the bottom

path of the i-th stage as Dbi, and the challenge bit for each stage as Ci. Thus the delay

difference of the i-th stage will be:

Dti −Dbi ∼ N(0, 2σ2)

Then if the challenge is 0, then the delay difference added into the whole path will

be Dti − Dbi, otherwise, if the challenge bit for the i-th stage is 1, the additive delay

difference will be Dbi −Dti. It can be expressed as:

Δi = (−1)Ci(Dti −Dbi) ∼ N(0, 2σ2)

As a result, the final arrival time difference into the arbiter is:

Δz =

N∑
i=1

(−1)Ci(Dti −Dbi) ∼ N(0, 2Nσ2)

Thus, the final output bit is:

r = sign(Δz)

where we make technical convention of saying that r = sign(a) = 0 when a < 0,

and r = sign(a) = 1 when a ≥ 0.



18

2.3.2 Simulation Model

In our experiment, we use simulation method to test and analyze the efficiency of

PUFs instead of real fabrication in our experiment. There are several advantages of using

simulation method: First, fabrication is expensive. Second, a good simulation method

can be used as a pre-fabrication test, which can predict the performance of a new PUF

design. Moreover, we can analyze all the possible performance and characteristics of the

PUFs by setting different environmental conditions. Additionally, it is also convenient

to follow the shrinking of technology scale.

In our simulation, we apply the Gaussian model which has already been described

above for manufacturing process variations. We set up the process parameters and

their max percentages of deviations based on the predictions from [17, 18]. For spatial

correlation, we assume perfect spatial correlation in one MUX. The process variations

will have the same effect on the PMOS and NMOS devices in each MUX, while the

parameters among the different stages of MUXs have no correlation.

In our simulation result, the total delay deviation of 100 stages is ≤ ±0.4%. Since

σz/μz =
√

(1/N)(σ/μ)

and μz increases linearly with N, we can conclude that our result conforms with other

published result of 65nm technology, according to the experimental results in [9] that

3σ/μ ≈ 5% for a single stage of MUXs. Furthermore, our simulation result of inter-chip

variation a Hamming distance from 22 to 59 bits for a total of 100 stages, while the

intra-chip variation is 5.8 bits on average, with a maximum value 13 bits. These results

are also in agreement with published results for fabricated chips. Thus, we believe

that our simulation delay model is consistent with the industrial manufacturing process

variations.
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2.4 Novel Reconfigurable PUFs

In order to add reconfigurable property into general MUX based silicon PUFs, we

must make the challenge-response pairs (CRPs) reconfigurable, which can be used to

update the identification database. The methods can be classified into two categories:

(a) Make the challenge-response pairs reconfigurable directly, by adding some extra

circuits into the structure, but without configuring the main PUF circuit. This

can be achieved by utilizing some techniques to pre-process the challenge before

applying to PUF or pre-process the response before using it for authentication.

(b) Make the PUF circuit reconfigurable, therefore the challenge-response pairs will

be reconfigurable as well.

We propose several novel non-FPGA reconfigurable PUFs implementations for the above

two categories, which would be more suitable for practical use comparing with FPGA-

based techniques. Furthermore, we address the reliability and the security of the PUF

performance, as some information of the hidden secrets that an adversary can take

advantage may leak out during reconfigurations.

2.4.1 Reconfigurable Challenge and/or Response Structure

The reconfigurable structures of PUFs are built on the prior work in Physical Un-

clonable Function, which can also be applied to various types of silicon PUFs as well

as other challenge-response based PUFs. Our goal is to develop a reconfigurable PUF

which is a PUF with a mechanism to transform it into a new PUF with a new unpre-

dictable and uncontrollable challenge-response behavior, even if the challenge-response

behavior of the original PUF is already known. Additionally, the new PUF inherits all

the security properties of the original one.

An early reconfigurable design PUF [10] in the literature treated some challenge

bits as configure data. As an example, the last 10 bits of a 100-bit challenge can be
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fixed as configure data, leaving only 90 bits for actual challenge. When a user wants to

update the CRPs, just apply another 10-bit stream to the last 10 stages of the PUF.

However, it is very clear that the reconfigured PUF will be have high correlation and will

be vulnerable to attacks, as this method is similar to adding a certain time difference

between the two paths or introducing an interval between the two rising edge signals.

Even worse, the performance of the PUF will be greatly degraded, if the cumulative

variations in the last 10 stages are relatively large. Due to these disadvantages, this

architecture of reconfigurable PUFs cannot generate unpredictable challenge-response

behaviors.

Intuitively, adding reconfigurable elements before the challenges are applied to the

PUF can definitely make the PUF reconfigurable. At the same time, the performance

of original PUF will be preserved. The main structure of this type of reconfigurable

PUF is shown in Figure 2.3.

Figure 2.3: Reconfigurable challenge and response PUF structure.

Challenge XOR and LFSR

We start from some very simple implementation of reconfigurable circuits to examine

the properties of MUX-based silicon PUF. Pre-process the challenge bits before applying

to the MUXs by exclusive-or operations with one certain bit stream is a very simple

method to reconfigure the challenge, as in Figure 2.4. To reconfigure this circuit, we
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can just XOR the challenge bits with a different bit stream. This is similar to applying

a different challenge to the MUXs; thus, we can expect that the characteristics and

performance will remain the same as the original MUX PUF.

Figure 2.4: Challenge XOR PUF structure.

However, this structure will not be reliable, since the correlation would be extreme-

ly high between the reconfigured challenge-response pairs. We can adopt other more

complex and secure circuits as the reconfigurable element, such as reconfigurable linear

feedback shift register (LFSR). Such a structure is shown in Figure 2.5. LFSR is an

important part of sequence cipher and be used to generate pseudo-random key stream.

In past years, several designs of reconfigurable linear feedback shift register have been

published in [19, 20]. A designer can apply various random patterns generated using

different seeds to the IC, or alter the generating polynomial. Furthermore, the length of

signatures can also be changed by applying different patterns. Such capability makes it

extremely difficult for adversaries to obtain PUF signature. It is important to point out

that we can improve the security of the PUF system, by benefiting from the property

of the LFSR in cryptography.
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Figure 2.5: PUF structure of using LFSR to configure the challenge.

Hash Function

The purpose of hash function is to produce a ”fingerprint” of a file message, or other

block of data. A cryptographic hash function is a deterministic procedure that takes

an arbitrary block of data and returns a fixed-size bit string, the (cryptographic) hash

value, such that an accidental or intentional change to the data will change the hash

value. The data to be encoded is often called the ”message”, and the hash value is

sometimes called the message digest or simply digest. Hash function is a kind of ”one-

way” function, which means it is easy to compute the hash value for any given message.

However, it is infeasible to find a message that has a given hash, and it is infeasible to

find two different messages with the same hash.

Due to the security property of hash function, we can employ a hash function as the

reconfigurable element in reconfigurable PUF. This structure can be reconfigured very

easily, such as by adding several different lengths of 0’s at the end of every challenge.

Additionally, the security of PUF can be increased, due to the ”one-way” property

of hash function. Many hash algorithms have been investigated and developed in the

last years. Currently, the SHA-1 algorithm is the National institute of Standards and
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technology (NIST) secure hash standard. Several hash function unit architectures have

been published in past years [21].

This structure has already been named as Control Physical Unclonable Function in

[22], which was described as using a strong PUF as a building block, but adding control

logic to prevent challenges from being applied freely to the PUF and hinder direct read

out of the response. Instead of performing a simple hash before the challenges are

applied to the PUF, we can consider adding another control logic, which would make

the CRPs updatable. We propose several reconfiguration methods:

(a) Adding different bit streams into the challenges, e.g., adding different numbers of

0’s at the end of the challenges.

(b) Reordering the challenge stream by certain rules.

(c) Reconfiguring the hash function, by using the reconfigurability of these reconfig-

urable Hash Function implementations.

Due to the property of hash function, it is extremely hard for adversary to model

the PUF, even after we configure it several times, as each output of the hash function

is unpredictable.

Output Recombination

Another idea is to add extra reconfigurable element to pre-process the output of

the arbiter before using it as an authentication key. One simple example is to use two

parallel MUX PUFs to update the CRPs, as shown in Figure 2.6. In this case, 4 paths

are selected by challenges through which the signal (rising edge) will propagate. Then

we can select two of the four paths using the configuration data and forward to the

arbiter to generate the response. We will have total 12 possible combinations if we

use a 2 level parallel structure. Therefore, we can reconfigurable this architecture 12

times. However, there will be very high correlation between some of these 12 different
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possible combinations. For example, if we know that path 1 is faster than path 2, and

path 2 is faster than path 3, we can know definitely that path 1 will be faster than

path 3. Therefore, there should be some constraint for the reconfiguration, and the

total possible reconfigurations will decrease. Actually, there are N ! possible cases for

ordering N paths based on their arrival time. Therefore, log2(N !) independent bits can

be produced by N paths.

Figure 2.6: Two parallel MUX PUF structure.

However, there will be a problem by employing this structure, since the pre-processing

component after the last stage also has variations, which will affect the performance of

the PUF. To solve this problem, we can pre-process the data after the arbiters, as in

structure of Figure 2.7.

If we use N MUX-based PUF circuits, we will need 2N-1 arbiters, while we only

compare the neighbor paths. This is a concept borrowed from ring oscillator PUF

which could ensure there will be no correlation between the output bits of the arbiters,

as the comparison pairs are non-cyclic. If we want to achieve the bits’ entropy limit, we

need to choose the output comparison pairs adaptively, which would increase the design

complexity and fabrication area significantly.
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Figure 2.7: MUX PUF structure of output recombination.
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2.4.2 Reconfigurable Circuit Structure

Instead of only making the CRPs reconfigurable by processing the challenge and

response directly, we can reconfigure the main circuit to update the challenge-response

behavior. This kind of reconfigurable PUFs will have better performance from security

perspective, since after reconfiguration, it leads to a different PUF circuit, while the

previous method only changes the CRPs.

The most important thing in these structures is that, we must ensure the extra

circuit will not affect the PUF performance, or more generally, the extra circuit will

have identical effect on the delay of different paths statistically.

Reconfigure Feed-Forward PUF

It has been shown that the security of the MUX PUF in Figure 2.2 can be improved

by adding feed-forward arbiters to it [12]. However, in previous literature, how to choose

the feed-forward startpoints and endpoints, or how many paths (sometimes referred as

feed-forward loop in the literature [8]) are chosen for feed-forward purpose have not been

clearly presented. One constraint is trivial: the signal produced by the feed-forward

arbiter should arrive earlier than the two signals propagating through the MUX paths.

Therefore, we should ensure that the feed-forward path has at least 3-5 stages between

the input and output of the feed-forward arbiter. We denote the stages from the input

of a feed-forward arbiter to the output of the feed-forward arbiter as a feed-forward

loop. We consider the following three feed-forward structures:

(a) Feed-forward Overlap (FFO): This structure has at least one stage overlap between

two feed-forward paths.

(b) Feed-forward Cascade (FFC): In this structure, the endpoint of a feed-forward

path will be the starting stage of another feed-forward path.
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(c) Feed-forward Separate (FFS): In this case, the different feed-forward paths will

be separated. Thus, there is no stage overlap between any two of the feed-forward

paths.

Figure 2.8: Feed-forward MUX PUF overlap structure.

Figure 2.9: Feed-forward MUX PUF cascade structure.

Figure 2.10: Feed-forward MUX PUF separate structure.

In our experimental results, the intra-chip variations are increased by adding non-

linearity to the circuits. Among the 3 different structures, the feed-forward cascade

structure has the largest intra-chip variation, with 10.7 bit Hamming distance on average

with response length of 100 bits, compared with 5.8 bits for non-feed-forward structure

(see Section 2.5).
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By utilizing this property, we propose the Reconfigurable Feed-forward MUX PUF

structure. A basic example that combines overlap and separate approaches is shown

in Figure 2.11. The structure can be configured among the 3 different structures ((a)

overlap, (b) cascade, (c) separate), which will make the PUF model more complex. By

configuring the PUF, the mathematical model for the PUF will be altered. This makes it

infeasible for attackers to break the PUF by only using one single uniform linear model.

The delay of MUXs connected after the feed-forward structure (normally just an arbiter)

may also affect the delay difference of the two paths. However, this time difference could

add into the total path delay difference both positively and negatively, depending on

the select signal. Therefore, the effect of these MUXs would be statistically equivalent

to the two paths of original MUX PUF, even if the delay of the added two MUXs vary

quite significantly. From above, we conclude that the MUX based PUF will be more

secure when feed-forward arbiter is reconfigurable.

Figure 2.11: Logic-reconfigurable feed-forward MUX PUF.

DeMUX and MUX PUF

The function of MUX is multiplexing; it selects one of many input signals and

forwards the selected signal into a single line. The DeMUX is a device that takes a single

input signal and distributes it over multiple output signals. Using DeMUX enables us

to select the direction of the propagating signal, and makes the PUF reconfigurable.
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The select signal applied to the DeMUX can also be regarded as the challenge, which

would be similar to the structure of reconfigurable feed-forward PUF.

A basic reconfigurable structure is shown in Figure 2.12. Instead of propagating the

rising edge signal successively, we can choose to skip some stages by adding DeMUX

components, which could make the challenge-response behavior reconfigurable and hard

to predict. This structure will be harder for attackers to model than the silicon PUF

only based on MUX.

Figure 2.12: MUX and DeMUX PUF structure.

2.5 Experimental Results

All of our experiments are carried out using SPICE simulations on a 65-nm technolo-

gy process. We use Monte Carlo method to simulate the effect of process variations and

environmental variations. In our simulation, we set up the transistor parameters and

process variations based on a major industrial standard model. Each proposed structure

has been simulated over at least 20 Monte Carlo runs in SPICE. The simulated MUX

based Physically Unclonable Functions all have 100 stages. Accordingly, we need to

apply a 100-bit challenge to the PUF to produce a 1-bit response, and we apply 100

different challenges to generate the final 100-bit digital signature for each IC.

Measuring inter-chip variations: The inter-chip variations were determined by

comparing the digital signature of each IC to each other and calculate the Hamming

Distance between the two signatures. Since we had 20 chip instances, we had 20*19/2,
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i.e., 190 possible digital signature comparisons. We use the maximum and the minimum

of these numbers as measures of the inter-chip variation.

Measuring intra-chip variations: The intra-chip variations were determined by

comparing the digital signal processing of the same IC under different environmental

conditions. In our case, we use temperature as the primary factor. We also simulated

the intra-chip variations under different voltages, from 1V to 1.2V . However, it is

shown that the intra-chip variations introduced by different temperatures from 0oC to

100oC were more significant compared to the intra-chip variations caused by voltage

variations. The digital signatures of the PUF at 0oC, 20oC, 40oC, 80oC, 100oC were

obtained; however, we only present the comparisons of Hamming Distance between 0oC

and 100oC, as those exhibit the largest variations. We simulated 10 different CRPs for

each IC, and simulated 20 different IC instances. Therefore we have 200 comparisons

in total. We provide the maximum and the average of the Hamming distances for the

intra-chip variations.

Simulation circuit structures: As presented in the previous section, we simulated

the digital signature for each proposed Physical Unclonable Function structure. We

add 10 feed-forward arbiters for each feed-forward PUF. For instance, the feed-forward

arbiters are from stage 1 to stage 11, from stage 11 to stage 21 ... from stage 91 to

stage 100 in a feed-forward cascade structure. The feed-forward arbiters are from stage

1 to stage 7, from stage 11 to stage 17 ... from stage 91 to stage 97 in feed-forward

overlap structure. In a feed-forward cascade structure, the feed-forward arbiters are

from stage 1 to stage 51, from stage 6 to stage 56 ... from stage 46 to stage 96.

For the reconfigurable feed-forward structure, we also add 10 such arbiters and MUX

structures into the original PUF circuit, which can switch among the 3 different feed-

forward structures. Moreover, we also simulated 10 DeMUX components in the MUX

and DeMUX PUF, the inputs and the outputs of the DeMUXs are from stage 3 to

stage 8, from stage 13 to stage 18 ... from stage 93 to stage 98. Finally, we simulated

20 parallel MUX PUFs for the output recombination structure. Therefore, we have 40



31

paths in total, and we derived the digital signature by comparing adjacent paths. In

other words, the delay of the first path was compared with that of the second path,

which is the same as a single PUF. The delay of the second path was compared with

that of the third path, and so on. Finally, the delay of the 39th path was compared

with that of the 40th path. Therefore, except for the first and the last paths, each path

was compared to two other paths.

Measuring reconfigurability: We randomly choose the configure data of the

different structures, and then fix the configure data when examining the inter-chip

variations and the intra-chip variations. However, when we add the reconfigurable

components into the circuits, the challenge-bit lengths are decreased; therefore, we

need to adjust the challenge bits when simulating these reconfigurable structures. To

test the reconfigurability, we simply fix the challenge bits, but change the configure

data to compare the digital signatures. All the simulations were carried out under the

environmental condition of 25oC and 1.1V .

Table 2.1 presents the inter-chip variations and intra-chip variations for different

MUX Physical Unclonable Function structures. First, it can be observed that the min-

imum inter-chip variation is larger than the maximum intra-chip variation for all of the

simulated structures. Thus, we can conclude that the variations caused by the random-

ness in manufacturing process are more significant than the variations under different

environmental conditions. Therefore, these PUFs can be used as reliable secret keys

with some error correcting techniques. Second, it can also be observed that by adding

feed-forward arbiters into the MUX PUF circuit, the inter-chip variations and intra-chip

variations are both increased, since the noise can have influence on the select signals

of some intermediate stages. By comparing the inter-chip variations and the intra-chip

variations, we conclude the feed-forward separate structure is the most reliable struc-

ture while the feed-forward cascade is the least reliable one among the 3 feed-forward

structures. The reconfigurable feed-forward structure has very close performance to

the 3 types of feed-forward structures, since its functionality is switching among the 3.
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Moreover, the reconfigurable DeMUX and MUX PUF has similar inter-chip variation as

the non-feed-forward structure, but the intra-chip variation is increased, as the number

of stages is reduced by some configurations. Therefore, the reliability of this structure

is decreased.

Table 2.1: Simulation Results: Variations
Inter-chip Variation Intra-chip Variation

Structures Max Min Max Avg
Non-feed-forward 59 22 13 5.8

Feed-forward Overlap 66 27 15 8.7
Feed-forward Cascade 64 25 20 10.7
Feed-forward Separate 65 26 17 9.9

Reconfigurable Feed-forward 65 25 19 10.3
MUX and DeMUX 57 23 16 7.1

Table 2.2 shows the reconfigurability of each reconfigurable structure. It can be seen

that the output recombination structure has the best reconfigurability, that is, by fixing

the challenge bits and only changing the configure data, the digital signature would

vary most significantly. In our simulation result, the average variation is 38.7 bits. The

MUX and DeMUX PUF exhibits the least reconfigurability; that is because the func-

tion of the DeMUX is only to determine whether to skip some stages or not. When the

process variations of other stages are relatively large, the difference of digital signatures

with two different configure data may only vary a little bit. For output recombination

structure, it is similar to comparing different paths with different configurations, so its

performance is close to the inter-chip variation of the non-feed-forward MUX PUF. It

also can be observed that although the challenge hash structure and the challenge LFSR

structure both pre-process the challenge before it is applied to the circuit, their recon-

figurability still have some difference. As the challenge LFSR appears to have better

reconfigurability, we can conclude that the number generated by the LFSR in our case

may have better randomness than that of the Hash Function. Finally, the proposed

reconfigurable feed-forward MUX PUF has the average Hamming distance 32.4 bits by
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different configurations, which will be sufficient to be used as a secure and reliable secret

key storage method, considering its complex and nonlinear functionality.

Table 2.2: Simulation Results: Reconfigurability
Variation

Structures Max Avg Min
Challenge LFSR 44 34.6 28
Challenge Hash 42 28.3 19

Output recombination 57 38.9 25
Reconfigurable Feed-forward 47 32.4 22

MUX and DeMUX 33 24.7 13

Overall, all the proposed reconfigurable structures have considerable reconfigurabili-

ty, and can be used for reliable authentication and identification within certain error tol-

erance, as the minimum of the inter-chip variations would be larger than the maximum

intra-chip variation. The output recombination structure has the best reconfigurable

ability; however, we consider the reconfigurable feed-forward MUX PUF to have the

best performance due to its security, as it is extremely hard to be modeled by certain

linear modeling methods.

2.6 Conclusion

We have presented several reconfigurable silicon MUX Physical Unclonable Function-

s based on two major approaches and demonstrated their effectiveness by experimental

results via inter-chip variation and intra-chip variation. We also have discussed the

reliability perspective of PUFs and proposed several methods to increase the security.



Chapter 3

Statistical Analysis of

MUX-based Physical Unclonable

Functions

3.1 Introduction

Physical Unclonable Functions (PUFs) [2, 22, 4] are novel security primitives which

store secret keys in physical objects by exploiting the uncontrollable randomness due

to manufacturing process variations. PUFs generate signatures based on the unique

intrinsic uncontrollable physical features, which can then be used for hardware authen-

tication or the generation of secret keys. Contrary to standard digital systems, PUFs

extract secrets from complex properties of a physical material rather than storing them

in a non-volatile memory. It is nearly impossible to predict, clone or duplicate PUFs.

Furthermore, an adversary cannot easily mount an attack to counterfeit the secret infor-

mation without changing the physical randomness. Based on these advantages, PUFs

can efficiently and reliably generate volatile secret keys for cryptographic operations

and enable lightweight and cost-effective authentication of ICs.

34
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The performance of a PUF depends on both process variations and environmental

conditions. Designing a PUF that is close to truly random in nature and that can

operate reliably over a wide range of operating conditions is still a challenge. Some

metrics have been introduced to evaluate the performances of PUFs by analyzing the

outputs of PUF instances. These considered metrics include reliability, uniqueness, and

randomness. PUF reliability captures how efficient a PUF is in reproducing the response

bits of an IC chip. When the same challenge is applied repetitively to a MUX-based

PUF, the responses are expected to be identical. Uniqueness represents the ability of

a PUF to uniquely distinguish a particular chip among a group of chips of the same

type. When the same challenge sets are applied to different PUFs, the output responses

are expected to be different. Ideally, the Hamming distances between the responses

of different PUFs should be 50%. Randomness indicates the unbiasedness of the PUF

response. However, these metrics need to be characterized over a large population

of chips to validate the effectiveness of PUFs. This can involve a long and costly chip

manufacturing process followed by many measurements after the circuits are fabricated.

Furthermore, since the manufacturing process variation and the environmental variation

are uncontrollable, it is hard to get a very accurate estimation of the performance during

the design stage. Note that security is another performance metric of PUFs, which is

not addressed in this chapter. A PUF is more secure, if an adversary finds it harder to

break in.

Knowledge about the circuit-level behavior such as process variation pattern, varia-

tion of circuit parameters (e.g., delay, threshold voltage) over changing operating condi-

tions could help designers to predict the performance comparisons among different PUF

designs. Conducting the performance comparison among detailed PUF designs before

fabrication would guarantee robust on-chip PUF performance. Monte-Carlo simulations

of netlists that take process and environment variations into account can be used for

this purpose. These simulations can provide approximate results, which can be used as
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indicators of the true performances of different PUFs. An alternate approach to evalu-

ate the performance of the PUFs is by modeling the physical components of PUFs in a

statistical manner. A number of such efforts have been developed in the literature. Sta-

tistical analysis on Coating PUF has been presented in [23]. In [24], entropy analysis of

Optical PUF has been discussed. The statistical models of Ring Oscillator PUF [25, 26]

and MUX PUFs [27, 28, 29] have also been studied in the literature. Additionally, the

work in [30] relates the statistical analysis of PUFs to circuit-level optimization and

architecture-level optimization, which leads to interesting results that could improve

the design and implementation of reliable and efficient PUFs.

The objective of this chapter is to theoretically compare the performances of different

MUX-based PUFs to predict the relative advantages of various MUX-based PUF de-

signs. In previous works, such as the efforts in [27, 28, 29], only the statistical modeling

with respect to the input-output mappings of PUF structures was presented. However,

theoretical performances of PUFs based on these models were not studied. Additionally,

there seems little consensus about which PUF is more suitable for a specific application

or a particular device in the existing literature. The work presented in this chapter

differs from existing efforts in several respects. First, to the best of our knowledge, this

work, for the first time, presents a systematic statistical analysis of the performances of

various MUX-based PUFs. These include the original MUX PUF, feed-forward MUX

PUFs, and multiplexer-demultiplexer (MUX/DeMUX) PUF. Moreover, the focus of

our work is on the comparison of performance of various MUX PUFs, which could help

the designer to select an appropriate PUF during the design stage. Finally, instead of

only modeling the structures of various MUX-based PUFs, statistical analysis is per-

formed to provide a deeper insight into the nature of these PUFs. Equations about the

PUF performances are derived; these equations allow the designer to estimate the PUF

performance metrics theoretically. In addition, we also introduce a class of modified

feed-forward MUX PUFs obtained by modifying the standard feed-forward path. These
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structures are also analyzed statistically. It is shown that the modified feed-forward

MUX PUFs have less intra-chip variations than standard feed-forward MUX PUFs.

3.2 Modified Feed-Forward MUX PUFs

3.2.1 Modified Feed-Forward Path

In this section, we propose a novel modified feed-forward MUX PUF structure shown

in Figure 3.1, which is motivated by our statistical analysis results. In this structure,

the output of a feed-forward arbiter from an intermediate stage is input as the challenge

bit to two consecutive late MUX stages. By employing this modified feed-forward path,

the reliability of the feed-forward PUF structure can be improved, while the same level

of security will be retained. This structure is analyzed statistically in this chapter.
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Figure 3.1: Modified feed-forward MUX PUF structure.

The complexity of the modified feed-forward MUX PUFs can be further improved

by using several modified feed-forward paths in a PUF circuit. Note that if we want

to maintain the length of challenge bits as N , we need to increase the number of MUX

stages to N + 2M for the modified feed-forward structure, compared to N +M of the

standard feed-forward PUF, where M represents the number of feed-forward paths.

Additionally, the design overhead will also include M arbiters for both the standard

feed-forward MUX PUF and the modified feed-forward MUX PUF.
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3.2.2 Different Types of Modified Feed-Forward MUX PUFs

Similar to the three types of the standard feed-forward MUX PUFs as discussed

in Chapter 2, the modified feed-forward MUX PUFs can also be classified as Modified

Feed-Forward Overlap (MFFO), Modified Feed-Forward Cascade (MFFC), and Modified

Feed-Forward Separate (MFFS) as shown in Figure 3.2, Figure 3.3, and Figure 3.4,

respectively.
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Figure 3.2: Modified feed-forward MUX PUF overlap structure.
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Figure 3.3: Modified feed-forward MUX PUF cascade structure.
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Figure 3.4: Modified feed-forward MUX PUF separate structure.

These three different structures also have different inter-chip and intra-chip behav-

iors, which are analyzed in Section 3.5. Additionally, the modified feed-forward paths

can also be used in the Logic-Reconfigurable Feed-forward MUX PUF as presented in

Section 2.4.2 to improve the reliability while retaining the high security.
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3.3 Definition of PUF Performance

As discussed in Section 3.1, Monte-Carlo simulation can be used to provide per-

formance indicators for different PUF designs. For example, by simulating the three

feed-forward MUX PUF structures with the same parameter variations and environmen-

tal conditions, we were able to conclude in [31, 32] that the FFO structure is the most

reliable among the three feed-forward structures. We focus on analyzing the quantita-

tive performance of various MUX-based PUFs through statistical modeling of the delay

variations and environmental variations. Performance indicators ranging from 0 to 1

with 1 representing the best performance are generated through a theoretical analysis.

The notations used in this chapter are listed in Table 3.1.

Table 3.1: Notation Used in the Chapter
Notation Explanation

N Number of MUX stages in a PUF instance
M Number of feed-forward paths
L Length of a response
Ci Challenge bit of the i-th MUX stage
Dt

i Delay of the top element of the i-th MUX stage
Db

i Delay of the bottom element of the i-th MUX stage
Δi Delay difference between top and bottom elements of the i-th MUX stage

ΔArb Skew effect of the arbiter
rN Delay difference of N stages
R Response

In this section, we introduce three PUF metrics to quantify the performance of

MUX-based PUFs. The relative performance behaviors of the PUF structures are the

main concern of this chapter rather than the absolute value of each indicator.

3.3.1 Reliability

Intra-chip variation is a measure of the reliability of PUF, which is determined

by comparing the digital signatures of the PUF to the same challenge under different

environmental conditions.
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Let Pintra represent the probability that a certain bit of a response will flip when

applying a randomly selected challenge multiple times. All the bits of a PUF response

have the same value of Pintra, since each bit is generated independently by a same PUF

instance (i.e., the effects of manufacturing process variation and environmental variation

for all the bits are the same). As a result, Pintra can be used to represent the intra-chip

variation for the entire L-bit response. In particular, the average Hamming distance

(HD) between the responses is used to measure the intra-chip variations of MUX-based

PUFs. The Pintra and the averaged HD are described by:

E(HDintra) = Pintra = E

(
1

m

m∑
i=1

HD(R,R′)

L
× 100%

)
, (3.1)

wherem is the number of HD comparisons, and R and R′ represent two measurements of

the PUF response under different conditions. The expected value of HDintra is equal to

Pintra. If the responses are sampled sufficient number of times, the averaged intra-chip

variation would be close to the value of Pintra.

As smaller intra-chip variation means better reliability, the reliability indicator is

defined as

Reliability = 1− Pintra. (3.2)

3.3.2 Uniqueness

Inter-chip variation is a measure of the uniqueness of PUF, which is determined

by comparing the digital signature of a PUF to that of another. Similarly, we can also

define Pinter as the probability that the bits generated by the same challenge for different

PUF instances are different. Since uniqueness is a measure of inter-chip performance,

all possible chip-combinations should be considered. Therefore, the average inter-chip
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HD of K PUFs can be described as:

E(HDinter) = Pinter

=E

⎛
⎝ 2

(K − 1)K

K−1∑
i=1

K∑
j=i+1

HD(R(i), R(j))

L
× 100%

⎞
⎠ . (3.3)

It can also be seen that Pinter represents the expected value of the inter-chip variation.

Since Pinter = 50% represents the best uniqueness for a PUF, the uniqueness indicator

can be defined by:

Uniqueness = 1− |2Pinter − 1|. (3.4)

3.3.3 Randomness

AMUX-based PUF is expected ideally to produce unbiased 0’s and 1’s. Randomness

represents the ability of the PUF to output 0 and 1 response with equal probability.

One measurement of the randomness can be expressed as:

Randomness = 1− |2P (R = 1)− 1|. (3.5)

Therefore, a randomness of 1 indicates unbiased PUF responses.

3.4 Performance Analysis of the Original MUX PUF

3.4.1 Physical Component Modeling of MUX-based PUFs

As shown in Figure 2.1, a MUX PUF consists of a sequence of MUXs and an arbiter.

The rising edge signal excites the two paths at the first stage simultaneously. The actual

propagated paths are determined by the external challenge bits. After the last stage, the

arbiter will generate the output bit by comparing the arrival time of the two paths at

its input. It has become standard to model the MUX PUF via an additive linear delay

model [27, 28]. According to the efforts in the field of statistical static timing analysis

(SSTA) [11], the manufacturing process variations for the parameters of transistors can
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be modeled as Gaussian distributions. As a result, the variations of the delays will also

be approximately Gaussian.

Process variations are classified as follows: inter-die variations are the variations

from die to die, while intra-die variations correspond to variability within a single chip.

Inter-die variations affect all devices on the same chip similarly, while intra-die variations

affect different devices differently on the same chip. A very widely used model for delay

spatial correlation is the ”grid model” [11], which assumes perfect correlations among

the devices in the same grid, high correlations among those in nearby grids, and low or

zero correlations in faraway grids, since devices close to each other are more likely to

have similar characteristics than those placed far away.

Additionally, experimental results in [10] have already shown that the inter-chip

variation for MUX PUF across the wafers is similar to that within a single wafer, as

the output of the arbiter in silicon MUX PUF is only based on the difference of two

selected paths. Therefore, these die-to-die, wafer-to-wafer, and lot-to-lot manufacturing

variations will have minimum effect on the output response.

Based on the facts discussed above, for simplicity, we can model the delay of each sin-

gle MUX as an independent identically distributed (i.i.d.) random variable Di, modeled

by a Gaussian random variable N(μ, σ2), where μ represents the mean and σ represents

the standard deviation of the delay of each MUX. Therefore, the total delay of the N

stages is modeled by N(Nμ,Nσ2). The delay difference between top and bottom MUXs

of the i-th stage will also follow a Gaussian distribution, and can be expressed as:

Δi = Dt
i −Db

i ∼ N(0, 2σ2). (3.6)

For the original MUX PUF, the response is dependent on the delay difference of the

two selected paths. The sign of the delay difference of each stage is determined by the

external challenge bits. Consequently, the delay difference after the last stage can be

modeled as

rN =

N∑
i=1

(−1)C
′
iΔi, (3.7)
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where C ′
i = ⊕N

j=i+1Cj and C ′
N = 0. The output bit is generated by

R = sign(rN ) =

⎧⎪⎨
⎪⎩
1, rN ≥ 0

0, rN < 0

. (3.8)

It can be seen that the original MUX PUF forms an additive linear model.

In a real PUF circuit, the arbiter would not be ideal. The skew effect of the arbiters

also affects the performance of MUX-based PUFs by reducing the uniqueness, producing

a biased response, and even degrading the security. If we assume that the threshold of

the arbiter is ΔArb, the response is given by

R = sign(rN ) =

⎧⎪⎨
⎪⎩
1, rN ≥ ΔArb

0, rN < ΔArb

, (3.9)

since the arbiter is preset to 0 and requires a setup time constraint to switch to 1.

3.4.2 Probability Distribution of Output Delay Difference

Figure 3.5 shows a scatter plot of output samples from the simulations of 100-stage

original MUX PUFs. Note that there are overlaps between the regions of output 1’s

and output 0’s, which makes it difficult to estimate ΔArb accurately. This could be

because the measured delay differences (measured for each path at the 50% point in the

transition) and the actual delay differences that the arbiter operates at are different.

Since the delay difference can be modeled by N(0, 2Nσ2), we fit a Gaussian distribution

to the delay differences, as shown in Figure 3.6. The standard deviation
√
2Nσ2 of the

generated Gaussian distribution is 5.2936 × 10−11. It can be seen that the skew effect

of the arbiter leads to biased outputs with 32.8% 1’s and 67.2% 0’s.

Moreover, the average of the total delay of one path is 1.2667 × 10−8s in our sim-

ulation results. Therefore, the percent of delay deviation of 100 stages is about 0.4%

(i.e.,5.2936×10−11

1.2667×10−8 ), which conforms with other published results of 65nm technology (e.g.,

[9]).
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3.4.3 Effect of Number of Stages

The probability that the output is equal to 1 can be derived as:

P (R = 1) = P (

N∑
i=1

(−1)C
′
iΔi ≥ ΔArb)

=

∫ ∞

ΔArb

1√
2πN2σ2

exp(
−x2

2N2σ2
)dx

=
1

2
− 1

2
erf(

ΔArb√
2N2σ2

). (3.10)

It can be seen that P (R = 1) is also dependent on the number of stages in a MUX

PUF. If we only consider the number of stages N as a variable, the above equation can

be rewritten as

P (R = 1) =
1

2
− 1

2
erf(

K√
N

), (3.11)

where K is a constant and is equal to ΔArb√
4σ2

. Thus, although the value of ΔArb is unclear,

we can still estimate the K based on the experimental results:

K =
√
N × erfinv(1− 2P (R = 1)). (3.12)

In our simulations, the 50-stage MUX PUF structure is only able to generate 1’s

with probability 25.6%, which is very close to the value of P (R = 1) = 26.4% that is

calculated theoretically from Equation (3.11).

3.4.4 Statistical Properties of the Original MUX PUF

Reliability

In order to analyze the reliability, we need to consider the effect of environmental

noise. As a usual practice, we assume that the noise ni of the i-th stage follows a

zero-mean Gaussian distribution with variance σ2
n. Then, Pintra can be described as:

Pintra =P [sign(

N∑
i=1

(−1)C
′
iΔi +

N∑
i=1

ni) �= sign(

N∑
i=1

(−1)C
′
iΔi +

N∑
i=1

n′
i)], (3.13)
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where ni and n′
i represent the noise under different environmental conditions. As each

individual stage follows the zero-mean i.i.d. Gaussian distribution, then the intra-chip

variation probability is equivalent to a single stage intra-chip variation probability:

Pintra = P [sign(si + ni) �= sign(si + n′
i)] (3.14)

where si = (−1)Ci(Dt
i −Db

i ) has a variance that is equal to 2σ2.

As manufacturing process variation and environmental noise of the delay difference

both follow zero-mean Gaussian distribution, their probability density functions (PDF)

are given by:

fs(s) =
1√
2πσ2

s

exp(− s2

2σ2
s

), fn(n) =
1√
2πσ2

n

exp(− n2

2σ2
n

). (3.15)

Note that σ2
s = 2σ2 in Equation (3.6). Pintra of an original MUX PUF can be calculated

as

Pintra =P [sign(si + ni) �= sign(si + n′
i)]

=4

∫ ∞

0

1√
2πσ2

s

exp(− s2

2σ2
s

)

∫ −s

−∞
1√
2πσ2

n

exp(− n2

2σ2
n

)dn

∫ ∞

−s

1√
2πσ2

n

exp(− n′2

2σ2
n

)dn′ds

=4

∫ ∞

0

1√
2πσ2

s

exp(− s2

2σ2
s

)(
1

4
− 1

4
erf2(

s√
2σ2

n

))ds

=

∫ ∞

0

1√
2πσ2

s

exp(− s2

2σ2
s

)ds−
∫ ∞

0

1√
2πσ2

s

exp(− s2

2σ2
s

)erf2(
s√
2σ2

n

)ds

=
1

2
− 1

π
arctan(

√
σ4
s

2σ2
sσ

2
n + σ4

n

), (3.16)

where the first of the two integrals in the fourth line represents integrating just a Gaus-

sian over half of the space, and the second is a known definite integral [33].

It can be seen that by increasing the ratio of manufacturing process variation to

environmental variation, the intra-chip variation can be reduced to close to 0.

If we consider the Pintra of the PUF response with a given challenge, the conditional

probability can be derived as

P [sign(si + ni) �= sign(si + n′
i)|si] =

1

2
− 1

2
erf2(

|si|√
2σ2

n

). (3.17)
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The reliability for a certain challenge-response pair is greatly dependent on the manu-

facturing process variation between the two generated paths. If a challenge selects two

paths with rN ≈ 0, the variation is large, since the above equation achieves maximum

at si = 0. Otherwise, if |rN | is relatively large, the manufacturing process variation

would be the primary factor to determine the output and the noise would hardly flip

the response.

However, if we take the skew effect of non-ideal arbiters into consideration, the

intra-chip variation behaviors would also be dependent on the number of stages and the

performance of the arbiter. The response then can be described as sign(
∑N

i=1(si+ni)−
ΔArb). Therefore, Pintra is given by

P [sign(
N∑
i=1

(si + ni)−ΔArb) �= sign(

N∑
i=1

(si + n′
i)−ΔArb)]. (3.18)

If we combine
∑N

i=1 si and ΔArb as a variable X ∼ (ΔArb, Nσ2
s), Pintra can be

expressed as P [sign(x+n) �= sign(x+n′)], where x ∼ N(−ΔArb√
N

, σ2
s) and n ∼ N(0, σ2

n).

Therefore, according to Equation (3.18), the intra-chip variation probability decreases

with the increase of ΔArb. Intuitively we would expect this as when ΔArb is relatively

large and the number of stages is small,
∑N

i=1(si + ni) will have a high probability of

unaltered sign() value. However, if the number of stages is relatively large that ΔArb√
N

approaches to 0, Pintra will be reduced to Equation (3.16).
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A closed-from expression for Pintra (i.e., Equation (3.18)) does not exist, but we can

derive the expression by using a first-order approximation of the exponential function:

P [sign(

N∑
i=1

(si + ni)−ΔArb) �= sign(

N∑
i=1

(si + n′
i)−ΔArb)]

=2

∫ ∞

−∞
1√
2πσ2

s

exp(− s2

2σ2
s

)(
1

4
− 1

4
erf2(

|s− Δarb√
N
|√

2σ2
n

))ds

=2

∫ ∞

−∞
1√
2πσ2

s

exp(−
(x+ Δarb√

N
)2

2σ2
s

)(
1

4
− 1

4
erf2(

|x|√
2σ2

n

))dx

≈2

∫ ∞

−∞
1√
2πσ2

s

exp(− x2

2σ2
s

)(1− ΔArb

σ2
s

√
N

x)(
1

4
− 1

4
erf2(

|x|√
2σ2

n

))dx

=
1

2
− 1

π
arctan(

√
σ4
s

2σ2
sσ

2
n + σ4

n

)− 4
ΔArb

σ2
s

√
N

∫ ∞

0

x√
2πσ2

s

exp(− x2

2σ2
s

)(
1

4
− 1

4
erf2(

x√
2σ2

n

))dx

=
1

2
− 1

π
arctan(

√
σ4
s

2σ2
sσ

2
n + σ4

n

)− ΔArb√
2πNσ2

s

(
1− 2

π

√
σ2
s

σ2
s + σ2

n

arctan(

√
σ2
s

σ2
s + σ2

n

)

)

(3.19)

It can be seen that Pintra increases with the number of stages, since

2

π

√
σ2
s

σ2
s + σ2

n

arctan(

√
σ2
s

σ2
s + σ2

n

)) < 1. (3.20)

Additionally, the term of
√

σ2
s

σ2
s+σ2

n
is close to 1, while the ratio of σs

σn
is relatively large.

As a result,
(
1− 2

π

√
σ2
s

σ2
s+σ2

n
arctan(

√
σ2
s

σ2
s+σ2

n
)
)
will be close to 0. Therefore, in this case,

the number of the stages only has a minor influence on the intra-chip variation of the

original MUX PUF.

Conclusion 1: The reliability indicator of an original MUX PUF is

Reliability = 1− Pintra

=
1

2
+

1

π
arctan(

√
σ4
s

2σ2
sσ

2
n + σ4

n

) +
ΔArb√
2πNσ2

s

(
1− 2

π

√
σ2
s

σ2
s + σ2

n

arctan(

√
σ2
s

σ2
s + σ2

n

)

)

(3.21)
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where σs is the standard deviation of manufacturing process variation for a single stage,

σn is the standard deviation of environmental noise, ΔArb is the skew effect of the ar-

biter, and N is the number of stages in an original MUX PUF. �

Uniqueness

In order to compute inter-chip variation based on the same mathematical model,

we need to compare the responses of different PUFs. The Gaussian fit curve for the

inter-chip variations of the 100-stage MUX PUF is shown in Figure 3.7. The average of

the inter-chip variation is 43.2%.
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Figure 3.7: Gaussian fit curve of inter-chip variation distribution.

Theoretically, if the PUFs are uncorrelated, the expected inter-chip variation of the

original MUX PUF is simply given by

Pinter = 2P (R = 1)(1− P (R = 1))

=
1

2
− 1

2
erf2(

K√
N

), (3.22)
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where K = ΔArb√
4σ2

= ΔArb√
2σ2

s

. Therefore, the value of uniqueness indicator can be expressed

as

Uniqueness =1− |2Pinter − 1| = 4P (R = 1)(1− P (R = 1))

=1− erf2(
ΔArb√
2Nσ2

s

). (3.23)

According to the value of P (R = 1), we could expect the average of the inter-

chip variation to be 2 × 0.328 × (1 − 0.328) = 44%, which is also consistent with our

experimental results.

Randomness

Similarly, according to Equation (3.10) in Section 3.4.3, the randomness of an orig-

inal MUX PUF is

Randomness = 1− |2P (R = 1)− 1| = 1− erf(
ΔArb√
2Nσ2

s

). (3.24)

3.4.5 Design Example

The above equations are useful for designing a PUF that could meet the specific

application requirement. Consider the scenario that the PUF designer has fabricated

a PUF and tested its performance. However, the designer found the performance of

the current PUF cannot satisfy the application requirement. Instead of fabricating a

large number of different PUF designs, the designer could utilize the statistical analysis

results to predict the performances of other PUF designs theoretically, since some of

the parameters can be calculated from the results of the current PUF. For example,

if we fabricate a 100-stage original MUX PUF which has the performance similar to

our experimental results, we can calculate the value of K by Equation (3.12) based on

the performance of the 100-stage MUX PUF. We can then substitute different values

of N to predict the performances of the original MUX PUFs for different numbers of

stages. For the intra-chip variation, we can obtain the relations among σs, σn, and ΔArb
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by utilizing Equations (3.19) and (3.24) together. The various performance results for

different values of N are calculated theoretically and are summarized in Table 3.2 (the

bold line indicates the results obtained from the current measured or simulated PUF).

Table 3.2: Predicted Performance of the Original MUX PUFs for Different Number of Stages
(N) Obtained by Statistical Analysis Using the Model Derived from Experimental Results with
N=100.

N Intra-chip Reliability Inter-chip Uniqueness P (R = 1) Randomness
25 5.3% 94.7% 30.3% 60.7% 18.7% 37.3%
50 5.6% 94.4% 38.9% 77.8% 26.4% 52.9%
75 5.7% 94.3% 42.3% 84.6% 30.4% 60.7%
100 5.8% 94.2% 44.1% 88.2% 32.8% 65.6%
150 5.9% 94.1% 46.0% 91.9% 35.8% 71.6%
200 5.9% 94.1% 46.9% 93.9% 37.7% 75.3%

Therefore, the statistical analysis can be used to decide how many MUX stages

should be used to design the PUF to match the application requirements. Note that

the values may not be exact, but we can obtain the trends of the performance metrics

from the statistical analysis results. These results show that inter-chip variation is

strongly dependent on N for N < 100, while intra-chip variation is almost independent

of N , for a relatively large N (i.e., N > 25).

3.5 Performance Analysis of Feed-Forward MUX PUFs

and MUX/DeMUX PUF

In Section 3.4, we demonstrated that MUX-based PUFs can be statistically analyzed

by modeling of the physical components. In this section, we continue to analyze the

performance of feed-forward MUX PUFs and MUX/DeMUX PUF. We compare the

performance of these MUX-based PUFs with respect to the three indicators described

in Section 3.3.
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3.5.1 Statistical Properties of Feed-Forward MUX PUF

Reliability

As shown in Figure 2.2, some of the challenge bits of a feed-forward MUX PUF will

be the intermediate stage arbiter outputs instead of the external bits in a feed-forward

MUX PUF. For instance, if there is only one feed-forward path in a MUX PUF, which

is from the a-th stage to the b-th stage, the time difference of the b-th stage could be

expressed as:

Δb = (−1)sign(ra)(Dt
b −Db

b). (3.25)

It can be expected intuitively that the intra-chip variation will be greatly dependen-

t on the location of the ending stage of the feed-forward path. If the challenge of

the last stage flips, the output bit will be sign(−∑N−1
i=1 (−1)C

′
iΔi + ΔN ) compared to

sign(
∑N−1

i=1 (−1)C
′
iΔi +ΔN ) while there is no error. We can also illustrate this charac-

teristic of the feed-forward PUF mathematically. As an example, if the challenge of the

k-th stage flips in an N -stage structure, the probability that the output bit will change,

Pe, is given by (without considering noise):

Pe =P [sign(

k−1∑
i=1

(−1)C
′
iΔi +

N∑
i=k

(−1)C
′
iΔi) �= sign(−

k−1∑
i=1

(−1)C
′
iΔi +

N∑
i=k

(−1)C
′
iΔi)]

=2

∫ ∞

0

1√
2π(N − k + 1)σ2

s

exp(− s2

2(N − k + 1)σ2
s

)

(1−
∫ s

−s

1√
2π(k − 1)σ2

s

exp(− w2

2(k − 1)σ2
s

))dwds

=2

∫ ∞

0

1√
2π(N − k + 1)σ2

s

exp(− s2

2(N − k + 1)σ2
s

)(1− erf(
s√

2π(k − 1)σ2
s

))ds

=1− 2

π
arctan(

√
N − k + 1

k − 1
)

=
2

π
arctan(

√
k − 1

N − k + 1
) (3.26)

where the second integral in the third line is also a known definite integral in [33].
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It can be seen that the probability Pe increases with k. Obviously, the problem for

this structure is that if the ending stage of a feed-forward path is close to the last stage,

the reliability of the PUF will be degraded significantly. If k = N , i.e., the ending stage

of the feed-forward path is the last stage, Pe will be 2
πarctan(

√
N − 1), which is close

to 1.

Therefore, Pintra of this feed-forward MUX PUF with single feed-forward path can

be described as

(1− P1)P1 + P1
2

π
arctan(

√
k − 1

N − k + 1
), (3.27)

where P1 is equal to Pintra of the original MUX PUF. Note that, for simplicity, the

following analysis on reliability will focus on the case without considering the skew

effect of arbiters (i.e., P1 represents Equation (3.16) instead of Equation (3.19)), since

the number of stages and the skew effect do not have a significant impact on intra-chip

variation, as described in Section 3.4. Additionally, there could be a number of feed-

forward paths in one PUF design. In these PUFs, if the ending stage of a feed-forward

path is close to the last stage, the reliability of the PUF will be degraded significantly.

3.5.2 Statistical Properties of Modified Feed-Forward MUX PUF

Motivated by this analysis, we propose the modified feed-forward MUX PUF struc-

ture shown in Figure 3.1, which is presented in Section 3.2. The modified feed-forward

path mitigates the effect of the locations of feed-forward paths. In this structure, the

modified feed-forward path only affects the delay difference of one stage. For example,

if the two consecutive ending stages of a feed-forward path are the k-th and (k + 1)-th

stages respectively, we can derive C ′ for the modified feed-forward MUX PUF as follows:

C ′
k−1 = ⊕N

j=k+2Cj ⊕ Ck ⊕ Ck+1, (3.28)

C ′
k = ⊕N

j=k+2Cj ⊕ Ck+1, (3.29)
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C ′
k+1 = ⊕N

j=k+2Cj . (3.30)

Since Ck = Ck+1 in this structure, the modified feed-forward path will only affect the

value of C ′
k.

As a result, by employing this modified feed-forward path, only one stage will be

affected by each feed-forward arbiter. Thus, this structure will have lower intra-chip

variation, compared to the standard feed-forward MUX PUF. However, the nonlinearity

of mathematical models for the modified feed-forward MUX PUF and the standard feed-

forward MUX PUF are similar, except the challenge mapping C ′
i. Therefore, we can

conclude that one benefit of using the proposed modified feed-forward path is that the

reliability of the feed-forward MUX PUF can be improved. Furthermore, the modified

feed-forward path can lead to higher security, as the degree of nonlinearity can be

increased without significant increase of intra-chip variation.

The designer can predict the performances of different implementations of the feed-

forward MUX PUFs based on above statistical analysis results. For example, we consider

the 100-stage feed-forward MUX PUFs with one feed-forward path (assuming that the

feed-forward path starts from the output of the 20th stage, and the ends at the k-th

stage). If error occurs in the feed-forward path, the probabilities that the output bit will

change Pe and the intra-chip variation probabilities, Pintra, are summarized in Table 3.3

(P1 is equal to 5.8% in our experimental results). Note that the probabilities of errors

in the feed-forward paths are the same for all the feed-forward MUX PUFs with single

feed-forward path, since there is no feed-forward path in previous stages.

Table 3.3: Performances of Different Feed-Forward MUX PUFs
Standard Feed-Forward MUX PUF Modified Feed-Forward MUX PUF

k 50 70 90 50 70 90
Pe 49.4% 62.4% 78.5% 6.4% 6.4% 6.4%

Pintra 8.33% 9.09% 10.02% 5.83% 5.83% 5.83%
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It can be seen that the modified feed-forward path can reduce the intra-chip varia-

tion of the feed-forward MUX PUF. Compared to the original MUX PUF, the intra-chip

variation of the modified feed-forward MUX PUF with single feed-forward path is only

increased very slightly. Based on Table 3.3, it can also be concluded that if the de-

signer want to design a standard feed-forward MUX PUF, the designer could adjust

the locations of the feed-forward paths according to the particular design performance

requirement.

Reliability

In this structure, the delay difference of the ending stage of the first feed-forward

path (from stage a to stage b) will be (−1)C
′
b+1(Dt

b−Db
b) with probability 1−P1, and will

be −(−1)C
′
b+1(Dt

b−Db
b) with probability P1. We define the stage variation probability as

the probability that the sign of the delay difference for each stage changes from positive

to negative or vice versa. Note that the stage variation probability is a good indicator of

the effect of the noise at each MUX stage. The greater the stage variation probability,

the less reliable the response. It is obvious that for the MUX PUF, the stage variation

probability for each stage is equal to the intra-chip variation probability Pintra = P1.

For the modified feed-forward structure, the stage variation probability for the stage

whose select signal is from the first feed-forward arbiter can be calculated as

P [sign(si + ni)sign(sb + nb) �= sign(si + n′
i)sign(sb + n′

b)]

=2(1− P1)P1 =
1

2
− 2

π2
arctan2(

√
σ4
s

2σ2
sσ

2
n + σ4

n

). (3.31)
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Since arctan(
√

σ4
s

2σ2
sσ

2
n+σ4

n
) ≤ π

2 , we can conclude that

1

2
− 2

π2
arctan2(

√
σ4
s

2σ2
sσ

2
n + σ4

n

)

=
1

2
− 2

π
arctan(

√
σ4
s

2σ2
sσ

2
n + σ4

n

)
1

π
arctan(

√
σ4
s

2σ2
sσ

2
n + σ4

n

)

≥1

2
− 1

π
arctan(

√
σ4
s

2σ2
sσ

2
n + σ4

n

). (3.32)

Therefore, it can be concluded that the stage variation probability is increased by intro-

ducing feed-forward arbiters. This is similar to the scenario where the environmental

noise can cause large variations of the time difference to the ending stages of feed-

forward paths. The intra-chip variation probability of a feed-forward MUX PUF can

be expressed as

Pintra =
1

2
− 1

π
arctan(

√
σ4
s

2σ2
s σ̃

2 + σ̃4
), (3.33)

where σ̃2 = σ2
n + 1

N

∑M
k=1 σ

′2
k , and M is the number of feed-forward paths and σ′

k is

the additional deviation introduced by the feed-forward paths. The value of σ′
k for

each feed-forward path is different, which is dependent on the noise in previous stages.

Therefore, unlike the original MUX PUF, the feed-forward MUX PUF structure has

large number of variants. The differences in both the number and the locations of the

feed-forward paths result in different mathematical models, which will lead to different

values of Pintra.

Conclusion 2: Although a general expression cannot be derived for Pintra of the

modified feed-forward MUX PUF, we can still conclude from Equation (3.33) and Ta-

ble 3.3 that

Pintra(feed-forward MUX PUF)

>Pintra(modified feed-forward MUX PUF)

>Pintra(original MUX PUF). (3.34)
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Thus, the modified feed-forward MUX PUF has lower value of the reliability indicator

than the original MUX PUF, since Reliability = 1 − Pintra. If we take skew effect of

the arbiter into consideration, the same conclusion above can also be reached, since the

feed-forward PUF has larger stage variations (assuming all other parameters to be the

same). �

Uniqueness

If we still assume that the arbiters are ideal, the inter-chip variation will not be

affected by the modified feed-forward paths. The delay differences of the ending stages

of feed-forward paths still follow a zero-mean Gaussian distribution. Thus, the mean of

total time difference of the two generated paths is 0. Since the manufacturing process

variations are uncorrelated for different PUFs, Pinter will remain 50% for the modified

feed-forward MUX PUFs.

However, if we consider the skew effect of arbiters, the inter-chip variation behaviors

would be different for the original MUX PUFs and the feed-forward MUX PUFs. We

consider the Gaussian random variable Y that follows the distribution N(0, Nσ2
s +∑N

i=1 σ
2
ni
). Without loss of generality, we assume ΔArb ≥ 0. Thus, the probability that

the PUF output is 1 is given by:

P (R = 1) = P (Y > ΔArb)

=
1

2
− 1

2
erf(

ΔArb√
2Nσ2

s + 2
∑N

i=1 σ
2
ni

). (3.35)

If we consider two variables Y and Y ′, where Y ′ has larger stage variations (i.e.,

larger
∑N

i=1 σ
2
ni
), we can obtain the relation that P (Y > ΔArb) < P (Y ′ > ΔArb) <

1
2

from Equation (3.35). In this case, Pinter for the two different PUFs are 2P (Y >

ΔArb)(1− P (Y > ΔArb)) and 2P (Y ′ > ΔArb)(1− P (Y ′ > ΔArb)), respectively. We can
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show that

2P (Y > ΔArb)(1− P (Y > ΔArb))− 2P (Y ′ > ΔArb)(1− P (Y ′ > ΔArb))

=2(P (Y > ΔArb)− P (Y ′ > ΔArb))(1− P (Y > ΔArb)− P (Y ′ > ΔArb))

<0. (3.36)

Thus we conclude that the PUF structure with larger stage variations has a larger inter-

chip variation. In particular, we can conclude that the modified feed-forward MUX PUF

has a greater inter-chip variation probability Pinter than the original MUX PUF, since

the stage variation probability for a modified feed-forward MUX PUF is larger.

Conclusion 3: The values of Pintra and Pinter of a modified feed-forward MUX

PUF are both greater than those of the original MUX PUF. Therefore, it can be con-

cluded that the feed-forward MUX PUF has higher uniqueness than the original MUX

PUF, as Pinter of the modified feed-forward MUX PUF is closer to 1
2 . �

Randomness

If we still consider the variable Y , we can get P (R = 1) = P (Y > ΔArb) while

taking the skew effect of the arbiters into consideration. Since P (Y > ΔArb) <
1
2 , we

can obtain the expression for the randomness as

Randomness = 1− |2P (R = 1)− 1| = 2P (Y > ΔArb). (3.37)

Therefore, we can also conclude that the modified feed-forward MUX PUF has better

randomness than the original MUX PUF, as the value of P (Y > ΔArb) for the modified

feed-forward MUX PUF is greater.
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3.5.3 Statistical Properties of Different Types of Modified Feed-forward

MUX PUFs

As discussed in Section 3.2, modified feed-forward MUX PUFs can be classified into

three different structures, which have different inter-chip and intra-chip characteristics.

We examine the relations of these structures statistically in this subsection.

Reliability

From Conclusion 2, the stage variation probability of the ending stage of the first

modified feed-forward path is given by

P2 = (1− P1)P1 + P1(1− P1) > P1. (3.38)

Similarly, the stage variation probability of the ending stage of the second modified

feed-forward path can be written as

P3 = (1− P2)P1 + P2(1− P1). (3.39)

Generally speaking, if we have the stage variation probability for the ending stages

of the first m modified feed-forward paths and P1 < P2 < ... < Pm, then the stage

variation probability for the ending stage of the (m+ 1)-th modified feed-forward path

is given by

Pm+1 = (1− Pm)P1 + (1− P1)Pm > Pm. (3.40)

This can be proved as follows:

Pm+1 − Pm =(1− Pm)P1 + (1− P1)Pm − (1− Pm−1)P1 − (1− P1)Pm−1

=(Pm−1 − Pm)P1 + (1− P1)(Pm − Pm−1)

=(Pm − Pm−1)(1− 2P1). (3.41)

As we have already shown that P1 < 1
2 and we have Pm > Pm−1, therefore, we can

conclude that Pm+1 > Pm.
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Conclusion 4: In a modified feed-forward MUX PUF structure, the stage variation

probability of the ending stage of a modified feed-forward path is greater than those of

previous modified feed-forward paths.

It can be expected that the stage variation probability of a modified feed-forward

overlap structure is less than the separate or cascade structure, since there is no feed-

forward arbiter in previous path for any of the modified feed-forward paths in the overlap

structure. We can show this property by combining the feed-forward paths and other

stages together. The stage variation probability of the first feed-forward arbiter is equal

to P1, since there is no feed-forward path involved. Then, the stage variation probability

of the second feed-forward arbiter is given by (assuming there are K2 stages before the

second feed-forward path and the b-th stage is the ending stage of the first feed-forward

path):

P2 = P [sign(

K2∑
i=1,i �=b

si + sb +

K2∑
i=1

ni) �= sign(

K2∑
i=1,i �=b

si + xb +

K2∑
i=1

n′
i)] (3.42)

where xb = sb, with probability 1− P1, and xb = −sb, with probability P1.

In the expression above, we have
∑K2

i=1,i �=b si ∼ N(0, (K2 − 1)σ2
s), sb ∼ N(0, σ2

s)

and
∑K2

i=1 ni ∼ N(0,K2σ
2
n). This involves triple integrals over Gaussian distributions

and does not have a closed-form expression. Therefore, we use Monte-Carlo simulation

method to examine the performance. Figure 3.8 shows the stage variation probabilities

of the second feed-forward arbiter for different K2.

It can be observed from Figure 3.8 that the stage variation probability is decreased

with the increase of K2, since the error in feed-forward path is more likely to be averaged

out by more stages. For the third feed-forward arbiter, the stage variation probability

is

P3 = P [sign(

K3∑
i=1,i �=b,d

si+ sb+ sd+

K3∑
i=1

ni) �= sign(

K3∑
i=1,i �=b,d

si+xb+xd+

K3∑
i=1

n′
i)] (3.43)
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Figure 3.8: Stage variation probability of the ending stage of the second feed-forward arbiter.

where xb = sb, with probability 1 − P1, and xb = −sb, with probability P1; xd = sd,

with probability 1 − P2, and xd = −sd, with probability P2. We can find that P3 also

decreases with K3.

In the modified feed-forward separate structure, Ki is greater than the corresponding

Ki in the cascade structure. Therefore, the stage variations of the ending stages of feed-

forward paths in the cascade structure are larger. Furthermore, large stage variation

probability in previous path is more likely to lead to a large stage variation probability

of the following feed-forward arbiters. As a result, we can conclude that the modified

feed-forward separate structure is more reliable than the modified feed-forward cascade

structure.

Conclusion 5: Based on the stage variation properties, we conclude that Pintra of

the three structures satisfy

Pintra(MFFO) < Pintra(MFFS) < Pintra(MFFC). (3.44)

The MFFO structure has the best reliability, while the MFFC structure is the least

reliable. Note that the above statistical analysis approach can also be applied to the

three different types of standard feed-forward MUX PUFs. These feed-forward MUX
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PUFs exhibit similar characteristics as the modified feed-forward MUX PUFs. �

Uniqueness

According to the derivation in Section 3.5.2, the MFFC structure has the largest

stage variation probability and, thus, has the best uniqueness, while the MFFO has

the lowest value of the uniqueness indicator among the three modified feed-forward

structures.

Randomness

Similarly, as discussed in Section 3.5.2, the randomness of the three structures satisfy

the relation:

Randomness(MFFC)

>Randomness(MFFS)

>Randomness(MFFO). (3.45)

3.5.4 Statistical Properties of MUX/DeMUX PUF

Reliability

The analysis of the MUX/DeMUX PUF is similar to the feed-forward structure. If

the select signal of a DeMUX flips, the intra-chip variation of the response is given by
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(assuming the DeMUX acts as skipping K stages, while there are N stages in total):

P [sign(

N∑
si + ni) �= sign(

N−K∑
si + ni)]

=2

∫ ∞

0

1√
2π(N −K)(σ2

s + σ2
n)

exp(− x2

2(N −K)(σ2
s + σ2

n)
)

∫ −x

−∞
1√

2πK(σ2
s + σ2

n)
2
exp(− y2

2K(σ2
s + σ2

n)
)dydx

=2

∫ ∞

0

1√
2π(N −K)(σ2

s + σ2
n)

exp(− x2

2(N −K)(σ2
s + σ2

n)
)

(
1

2
− 1

2
erf(

x√
2K(σ2

s + σ2
n)

))dx

=
1

2
− 1

π
arctan(

√
N −K

K
). (3.46)

It can be seen that the probability P [sign(
∑N si + ni) �= sign(

∑N−K si + ni)]

increases with K.

If we also employ feed-forward path to generate the select signal of the DeMUXs,

then Pintra of the MUX/DeMUX PUF with a single feed-forward path can be expressed

as

Pintra = (1− P1)P1 + P1 ×
(
1

2
− 1

π
arctan(

√
N −K

K
)

)
, (3.47)

where P1 = 1
2 − 1

πarctan(
√

σ4
s

2σ2
sσ

2
n+σ4

n
), which is equal to Pintra of the original MUX

PUF. If N−K
K < σ4

s
2σ2

sσ
2
n+σ4

n
, Pintra of MUX/DeMUX PUF will be greater than Pintra of

the original MUX PUF. Therefore, similar to the feed-forward MUX PUF, the intra-chip

variation of the MUX/DeMUX PUF will also depend on the number and the locations

of the signal propagation paths.

Uniqueness

As shown in Section 3.4, the greater of the number of stages in the original MUX

PUF, the less biased the output will be. Therefore, the MUX/DeMUX PUF will have

less uniqueness, as some stages will be skipped under certain configurations. In other
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words, Pinter of the MUX/DeMUX PUF is expected to be smaller than the Pinter of the

original MUX PUF, if their total numbers of stages are the same.

Randomness

Since the output will be more biased, we can conclude that the randomness will also

be degraded by introducing DeMUXs into the original MUX PUF.

3.6 Performance Comparison of Various MUX-based PUFs

Based on the statistical analysis results, the performance comparisons of the MUX-

based PUFs are summarized in Table 3.4.

Table 3.4: Theoretical Performance Indicators Comparison
Indicator Expression Relation

Reliability 1− Pintra original MUX > MFFO > MFFS > MFFC

Uniqueness 1− |2Pinter − 1| MFFC > MFFS > MFFO > original MUX > MUX/DeMUX

Randomness 1− |2P (R = 1)− 1| MFFC > MFFS > MFFO > original MUX > MUX/DeMUX

These analysis results enable deeper understandings of the MUX-based PUFs, which

could be exploited to improve the performance during PUF design. A number of claims

are listed below:

(a) In a MUX PUF, if we increase the number of stages, uniqueness and randomness

will improve while reliability will be degraded.

(b) Smaller skew of the arbiter will lead to higher uniqueness and randomness.

(c) The stage variation probability will increase with the number of previous feed-

forward paths in a feed-forward structure, as the error in previous path would

propagate to later stages.

(d) When designing the feed-forward PUF, an appropriate tradeoff point should be

achieved based on the particular application and the performance requirement.
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Designer should be careful in selecting the type, the number, and the locations of

feed-forward paths.

(e) The number and the locations of the paths in theMUX/DeMUX PUF also provide

a tradeoff between reliability and uniqueness.

3.7 Experiments

3.7.1 Experimental Setup

Experiments were carried out by SPICE simulations on a 65-nm technology pro-

cess. We use the Monte-Carlo method to simulate the effect of process variations and

environmental variations. In our simulation, we set up the transistor parameters and

process variations based on a major industrial standard model, according to the findings

in the area of statistical static timing analysis [11, 34]. All of the simulated MUX-based

PUFs have 100 MUX stages. We placed 10 feed-forward paths regularly on the MUX

stages for each PUF structure with feed-forward paths and 10 DeMUXs regularly for

MUX/DeMUX PUFs. We generated 100-bit responses for measurement in our experi-

ments. All the structures were tested by at least 1000 Monte-Carlo runs.

The inter-chip variations and the intra-chip variations are computed according to

the Hamming distances obtained for different chips and the same chip under different

readouts, respectively. Part of these results have already been presented in [31, 32].

The randomness values are calculated based on the total numbers of 0’s and 1’s for each

MUX-based PUF structure.

3.7.2 Results

Table 3.5 presents the results of inter-chip variations, intra-chip variations, and the

percentage of 1’s in the response., while Table 3.6 presents the results of the three per-

formance indicators: reliability, uniqueness, and randomness. First, it can be observed
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that the minimum inter-chip variation is larger than the maximum intra-chip variation

for all of the simulated structures. Thus, we can conclude that the variations caused

by the randomness in manufacturing process are more significant than the variations

under different environmental conditions. Therefore, these PUFs can be used as reliable

secret keys with some error correcting techniques. Second, it can also be observed that

by adding feed-forward arbiters into the MUX PUF circuit, the inter-chip variations

and intra-chip variations are both increased, since the noise influences the select sig-

nals of some of the intermediate stages. Furthermore, it can be seen that the modified

feed-forward structures lead to better reliability than the standard feed-forward MUX

PUFs. Compared to the original MUX PUF, the intra-chip variation of the standard

feed-forward MUX PUF is increased by 68% on average. But the intra-chip variation of

the modified feed-forward MUX PUF is only increased by 17% on average, which is only

1
4 of the standard feed-forward PUFs. Therefore, we can conclude that the reliability is

improved by adopting the proposed modified feed-forward path. Finally, it can also be

observed that the randomness is improved by introducing feed-forward paths into the

original MUX PUF.

Table 3.5: Results of Inter-Chip and Intra-Chip Variations for 100-Stage PUFs

Structures
Inter-Chip Variation Intra-Chip Variation

P (R = 1)
Max Min Max Avg

Original MUX 59% 22% 13% 5.8% 32.8%
Feed-forward Overlap 66% 27% 15% 8.7% 38.8%
Feed-forward Cascade 64% 25% 20% 10.7% 42.1%
Feed-forward Separate 65% 26% 17% 9.9% 40.3%

Modified Feed-forward Overlap 61% 25% 14% 6.6% 37.3%
Modified Feed-forward Cascade 64% 25% 15% 7.0% 39.9%
Modified Feed-forward Separate 61% 27% 15% 6.9% 38.4%

MUX/DeMUX 57% 23% 16% 7.1% 29.9%
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Table 3.6: Results of Performance Indicators for 100-Stage PUFs
Structures Reliability Uniqueness Randomness

Original MUX 94.2% 88.2% 65.6%
Feed-forward Overlap 91.3% 95.0% 77.6%
Feed-forward Cascade 89.3% 97.5% 84.2%
Feed-forward Separate 90.1% 96.2% 80.6%

Modified Feed-forward Overlap 93.4% 93.5% 74.6%
Modified Feed-forward Cascade 93.0% 95.9% 79.8%
Modified Feed-forward Separate 93.1% 94.6% 76.8%

MUX/DeMUX 92.9% 83.8% 59.8%

3.7.3 Discussion

By comparing the experimental results presented in Table 3.5 and Table 3.6, it can

be concluded that the relations between the performances of different types of MUX-

based PUFs are consistent with the theoretical results shown in Table 3.4. Note that the

value of P (R = 1) which is more close to 0.5 indicates better randomness. It can also be

observed from Table 3.5 and Table 3.6 that the feed-forward separate structure is the

most reliable structure while the feed-forward cascade is the least reliable one among

the three feed-forward structures. Moreover, the MUX/DeMUX PUF has relatively low

inter-chip variations; as a result, the uniqueness of this structure is decreased.

These experimental results validate the correctness of our statistical analysis. Over-

all, all the MUX-based PUF structures can be used as reliable secret keys for authen-

tication and identification within certain error tolerance, as the PUFs exhibit sufficient

gaps between the minimum of the inter-chip variations and the maximum of intra-chip

variations.

3.8 Conclusion

We have presented a systematic statistical approach to quantitatively evaluate var-

ious types of MUX-based PUFs. We defined three performance indicators - reliability,

uniqueness, and randomness - to compare the performances of these MUX-based PUFs.
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These indicators are also validated by the corresponding simulation results. The exper-

imental results show that the proposed statistical analysis approach effectively reflects

the characteristics of various PUF designs. We have also proposed a novel modified

feed-forward MUX PUF structure, which has better reliability than the standard feed-

forward MUX PUF.



Chapter 4

Lightweight, Secure, and Reliable

PUF-based Local Authentication

with Self-Correction

4.1 Introduction

As we discussed in previous chapters, Physical Unclonable Function (PUF) is a pow-

erful tool for chip authentication and cryptographic applications [2, 22]. Unfortunately,

PUFs are noisy in nature. The response of a PUF would be affected by intra-chip

variation sources such as temperature changes, voltage drifts, and aging effects. The

reported PUFs in the literature, such as optical PUF [35], multiplexer PUF [10], ring

oscillator PUF [22], butterfly PUF [36], SRAM PUF [16], and sensor PUF [37], are

not 100% stable. However, cryptography in general relies on the existence of precisely

reproducible keys. As a result, it is clear that the plain PUF responses are not suitable

as cryptographic keys. One solution to this problem is to add a stage to correct the

errors after collecting the PUF response based on error correcting codes (ECC) such as

Bose-Chaudhuri-Hochquenghem (BCH) codes [38, 39] or fuzzy extractors [40, 41]. In

69
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order to obtain reliable responses from PUFs, while still keeping PUFs attractive for

low-cost hardware applications, the error correction technique must be implemented in

hardware as well. Moreover, its implementation should be area-efficient; otherwise, it

will defeat the purpose of using PUFs in lightweight hardware devices.

This chapter presents a two-level finite-state machine (FSM) architecture which can

be used to authenticate a chip. Besides, a novel self-correcting approach is also proposed

based on the two-level FSM which eliminates the use of high overhead error correcting

techniques. In the literature, FSM-based techniques have been incorporated into a

number of works on hardware device protection, which include active metering [42],

remote IC activation [43], FPGA IP binding [44], and obfuscation [45, 46]. The major

advantage of using FSM is that it is not extractable from the synthesized design. Thus,

even for an adversary who has access to the synthesized hardware IP, extracting or

changing the FSM would need an effort equivalent to redoing all the stages of design

and implementation [47]. By utilizing the benefit of FSM, our proposed approach can

achieve a lightweight, secure and reliable authentication scheme. Different from previous

works, we incorporate self-correction into the FSM, which could eliminate the use of

high-overhead error correcting methods. This work perhaps is the first work to develop

an error correcting method that is tailored for PUF-based local authentication. In fact,

the BCH codes are usually used in storage devices and communication systems [48], and

the first fuzzy extractor construction is aimed at biometric applications [49].

4.2 Background

4.2.1 PUF-based Authentication

Remote Authentication

As the PUF response is unique and unpredictable for each IC, it is straightforward

to use PUF for IC authentication. In the literature, authentication using PUF response



71

bits as secret keys has been explored in many previous works [38, 39, 50, 51]. Most

of the existing PUF-based authentication schemes are remote authentications, which

involve a device and a trusted party or so-called server. A communication link should

be established between the server and the devices. During the enrollment phase, the

trusted party applies randomly chosen challenges to the device to collect unpredictable

responses. Then, the trusted party stores these CRPs in a database for future authen-

tication operations. Later, if a device initiates an authentication request, the trusted

party will send a challenge to the device and obtain the PUF response through the

communication link. The device will be considered as authentic only if the response is

the same as the previously recorded one or only vary in a predefined range. However,

remote authentication schemes suffer from man-in-the-middle attacks. The adversary

will be able to perform modeling attacks to create a software program after collecting

a set of CRPs.

Local Authentication

The problem can be resolved by using a local authentication scheme, as CRPs will

not be transmitted through a communication link. Local authentication can be used to

verify that each component inside a system is authentic and has not been tampered with.

Local authentication is applicable to different layers of the design hierarchy: for instance,

a controller can authenticate each IC in a system, an IC can authenticate each IP block,

an IP can authenticate each functional unit, and so on. Moreover, local authentication

is particularly useful in the applications where the communication link between the

server and the device cannot be established or the server is not available. Note that

local authentication scheme can also achieve IC metering [42] and IP binding [44].

Figure 4.1 illustrates the basic process of PUF-based local authentication. Unlike the

remote authentication that authenticated CRPs are kept on a trusted server, secret

information has to be stored on chip in a local authentication scheme. For example,

after fabrication, an authenticated response for a given challenge can be programmed
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into the memory of the chip after fabrication. During the authentication phase, a re-

generated response of the PUF is compared to values in the on-board memory to check

the authenticity of the device. Alternatively, the designer can provide the authenticated

CRPs to the customers which can be considered as a key that is required to be entered

during authentication process, which could protect their ownership.

Authentic 
Device

Untrusted 
Supply Chain/
Environment

PUF PUF

Key Key’

Response Response’ns

match?
Calculate

?

stored on chip or provided to the user

Figure 4.1: PUF-based local authentication.

4.2.2 Error Correction

One major issue for PUF-based local authentication is the robustness of the sys-

tem, since environmental variations will also affect the PUF response. In a server-based

remote authentication system, this issue can be easily resolved by tolerating certain

number of bit errors. For example, the server could authenticate a PUF response whose

Hamming distance to the desired response is less that a certain threshold. However,

this method cannot be used in a local authentication scheme due to the high overhead.

Additionally, it is not feasible to store a large amount of CRPs on chip. As mentioned in

Section 4.1, ECC and fuzzy extractor can be employed into PUF-based authentication

protocols to improve their robustness, which could also be used in the local authentica-

tion scenario. However, given the fact that PUF is usually a compact circuit, the use

of error correcting techniques significantly increases the design complexity. Moreover,

there is a security concern that the syndrome or helper bits will reveal information

about the secret bits. Therefore, error correction has to be secure, robust and efficient.
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In a typical error correction setting for PUF, during an initialization phase, a PUF

response is generated and the error correcting syndrome is computed based on this

response. The syndrome or helper data is public information which is later sent to the

PUF along with the challenges to perform correction on response bits. Equivalently, the

syndrome can be stored locally on chip. To re-generate the same PUF output, the PUF

first produces a response from the circuit. Then, the PUF uses the syndrome from the

initialization step to correct any errors in the circuit output. In this way, the PUF can

consistently reproduce the output from the initialization step if the device is authentic.

However, in most of previous works on correcting PUF responses, the area complex-

ities of the ECCs or the fuzzy extractors were not considered and there was no detailed

explanation on how to choose the algorithm and the parameters [38, 39]. In fact, the

implementation costs and hardware overheads of the commonly used ECCs are relative-

ly high, compared to the PUF circuit [52]. Besides of using ECC or fuzzy extractor,

other error correcting methods have also been exploited in the literature. The method

of utilizing majority voting on reducing errors has been demonstrated in [53]. The use

of repetition codes along with conventional syndrome generation using XOR masking

has been proposed for PUFs in [41]. Soft-decision encoders and decoders have also been

employed to correct PUF response errors [54]. However, the hardware implementations

of these methods have been only based on FPGAs and the area complexities have not

been addressed [53, 41, 54, 55]. Furthermore, authentications using pattern matching

algorithms [52, 51] need to maintain a database to store pattern information, which are

also not suitable for local authentication. In contrast to the above works, this chapter

proposes a novel secure, reliable and efficient error correcting method which can be used

for PUF-based local authentication.
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4.3 Two-Level FSM Architecture

This section presents a basic two-level FSM scheme which could be used for PUF-

based authentication, IP binding, and IC metering. The general concept is illustrated in

the state transition graph (STG) of Figure 4.2. The PUF response and an authentication

key (i.e., Key in Figure 4.2) are used to determine the state of the FSM. The PUF

response is the input of the first level FSM, while key is the input of the second level

FSM. The first level FSM is designed to transit to a unique intermediate state for each

unique PUF response. Only if the actual PUF response is the same as the desired

PUF response, the FSM will enter into the correct intermediate state. Furthermore,

only one key value will transit the second level FSM from a certain intermediate state

to the desired state (i.e., Auth in Figure 4.2). The desired state then can be used to

authenticate the circuit or activate the correct functionality of certain blocks. Basically,

this architecture generates unique mapping pairs between PUF response and key, i.e.,

(Ri,Ki).

Auth.

Key

S0

K1S2

S1

Si

KKKKKKK1

AA

R1

S2N

R2

Ri

R2N

K2

Ki

K2N
Initial

PUF Response

Figure 4.2: Two-level FSM.

It is important to note that (Ri,Ki) can be arbitrarily designed. Thus, all such

possible pairs are only known to the designer. For an N -bit PUF response, there will be
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2N intermediate states. The length of the key will at least be N , if we ensure only one

value of the key could transit the FSM into the desired state. Note that the lengths of

PUF response and the key are not necessarily identical, i.e., N -to-N mappings. A longer

key can be used to increase the complexity of the structure. At the expense of increasing

the probability of key collision, multiple PUF responses can also be mapped into one

intermediate state or multiple key values can be designed as correct inputs to a PUF

response. Moreover, the (Ri,Ki) mappings can be designed differently for different

chips. As a result, an adversary with access to the response and key authentication

records from other devices is still unable to authenticate a new device.

For example, we consider an example of a 3-bit PUF response as shown in Figure 4.3.

Without loss of generality, we can assume the values of Ri as marked in Figure 4.3,

respectively. The correct (Ri,Ki) pairs are summarized in Table 4.1, where the values

of Ki can be arbitrarily chosen.

S3
000
001
010
011
100
101
110
111

K2

K1

K5
K6

K7

K8

Auth.

S7

S4

S1

S0

S2

S5

S6

S8

K3
K4

Figure 4.3: A 3-bit example of the two-level FSM.

We can add another state Unauth as shown in Figure 4.4. If the key entered is

wrong, the FSM will transit into the Unauth state. This stage can be used to lock the

chip or trigger an alarm to report a possible attack.
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Table 4.1: Key Values Can Successfully Authenticate the Corresponding PUF Response
Ri correct Ki

000 K1

001 K2

010 K3

011 K4

100 K5

101 K6

110 K7

111 K8

Auth.

Unauth.

Key

S0

K1
≠K1

S2

S1

Si

≠K
KK1

KKKKKKK1

U

R1

S2N

R2

Ri

R2N

K2

Ki

K2N

≠K2

≠K2N

≠KiInitial

PUF Response

Figure 4.4: Two-level FSM that also has a lock or alarm state.
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The global flow of the local authentication scheme by utilizing the proposed tech-

nique is shown in Figure 4.5. For example, Company X designs the circuit and integrates

a PUF and the self-correcting FSM into the design. The (Ri,Ki) pairs are designed at

this stage. After that, Company X sends the detailed manufacturable design specifica-

tions to Foundry Y who makes the mask and manufactures multiple chips implementing

this design. Each chip will be uniquely locked after fabrication due to the inter-chip

variations of the PUFs. For each chip, the PUF response needs to be tested, which can

be conducted by either Foundry Y or Company X if Foundry Y sends the manufactured

chips back to Company X. If the tests are done by Foundry Y, the PUF responses should

be sent back to Company X. According to the PUF response (which will be considered

as the desired PUF response for the authentication phase), only Company X has knowl-

edge of calculating the key for entering into the correct authenticated state. The key

could be programmed by another honest vendor after the chips have been fabricated or

sold to the customer, i.e., Company Z. Therefore, the correct key is a strong proof of

ownership. At the beginning of the authentication phase, the FSM enters into an inter-

mediate state based on the variability-induced response of PUF, as shown in Figure 4.6.

Only Company Z, who has the possession of the correct key, can authenticate the chip.

The global flow can also prevent the ICs piracy from overbuilding, as modern chip

designs are usually outsourced for fabrication. For example, it is conceivable that a

dishonest manufacturing plant could create more chips than ordered and sell the addi-

tional chips at a lower cost, subverting the profits of the legitimate owner. However, by

employing the proposed two-level FSM, over-produced chips that without the correct

keys cannot function properly, since the manufacturing plant (Foundry Y, for example)

does not know the correct (Ri,Ki) pairs.
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X Semiconductor
IC & PUF Design

Manufacture chips

Test PUF, calculate Key 
for each chip

Chip Authentication

Y Foundries

X Semiconductor

Z Systems, Inc

Figure 4.5: Typical design flow of a PUF-based local authentication system.

4.4 Error Correction based on the Two-Level FSM

4.4.1 Self-Correcting Functionality

We propose a novel FSM structure which not only has the capability for PUF-based

authentication, but also could correct certain number of PUF response bit errors, caused

due to environmental variations, to improve the robustness.

The two-level FSM structure presented in Section 4.3 can be extended to incor-

porate the error correcting functionality by allowing a second key attempt, as shown

in Figure 4.6. For instance, in the conventional two-level FSM authentication scheme,

if the PUF response varies due to environmental noise, the FSM will enter into a dif-

ferent intermediate state and the device cannot be authenticated with the correct key.

The problem can be solved by introducing a pathway from intermediate state S′
i to the

authenticated state, where S′
i represent a state whose Hamming distance of the corre-

sponding PUF response to the correct PUF response is less than or equal to m bits.

Note that S′
i and Sj as shown in Figure 4.6 may represent multiple candidate states. If

the PUF response varies within m bits in the first level of the FSM structure, the second

attempt of the correct key Ki will bring the FSM back into the desired intermediate
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state Si. The advantage of the proposed approach is the inherent redundancy built into

the self-correcting FSM by contiguously entering the key twice that eliminates the need

for an extra error correcting code. We can also design a scheme that the key will always

be internally entered to the FSM twice.

Si

HD=0 Ki

Ki

≠KiKi

HD: Hamming Distance between Actural 
PUF Response Ri and Correct Response

Si
Auth.

Unauth.

S0

Sj

′ 

KeyPUF Response

1 HD m 

HD>m

Figure 4.6: Two-level FSM can fix up to m-bit intra-chip errors (i.e., 1 ≤ HD ≤ m bit).

A 3-bit example of such a structure is shown in Figure 4.7. For example, if the

response of the PUF has been tested to be 010 during the enrollment phase, the designer

can calculate the correct key as K3. However, during the authentication phase, the PUF

response may vary 1 bit due to environmental variations, e.g., 000 instead of 010. In the

proposed structure, the FSM could transit into the desired black state S3 from the grey

state S1 by entering the correct key K3 for the first time. Then, if the authenticated user

enters K3 once more, the FSM will transit to the authenticated state. For other PUF

responses that have Hamming distances of 2 or greater, K3 would not be able to bring

the FSM back into the authenticated state. Note that only the edges associated with

K3 are shown in the STG, while other edges are omitted in Figure 4.7. The complete

next state table of the FSM design is presented in Table 4.2.

Similar to error correcting codes or fuzzy extractor, adding the error correcting

functionality will degrade the level of security. The probability for the adversary to
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Figure 4.7: A simplified 3-bit example for the proposed scheme.

Table 4.2: Key Values Can Successfully Authenticate the Corresponding PUF Response with
Self-Correction
Present State Next State

K1 K2 K3 K4 K5 K6 K7 K8

S0 S1 S2 S3 S4 S5 S6 S7 S8

S1 Auth S2 S3 Unauth S5 Unauth Unauth Unauth

S2 S1 Auth Unauth S4 Unauth S6 Unauth Unauth

S3 S1 Unauth Auth S4 Unauth Unauth S7 Unauth

S4 Unauth S2 S3 Auth Unauth Unauth Unauth S8

S5 S1 Unauth Unauth Unauth Auth S6 S7 Unauth

S6 Unauth S2 Unauth Unauth S5 Auth Unauth S8

S7 Unauth Unauth S3 Unauth S5 Unauth Auth S8

S8 Unauth Unauth Unauth S4 Unauth S6 S7 Auth

Auth Auth Auth Auth Auth Auth Auth Auth Auth

Unauth Unauth Unauth Unauth Unauth Unauth Unauth Unauth Unauth
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guess the key value for a given PUF response will increase from 1
2N

to 1+N
2N

, if one bit

error can be corrected for an N -bit PUF response. More generally, for m bits correction

in anN -bit PUF response, 1+
∑m

i=1

(
N
m

)
key values can bring a certain intermediate state

to the correct Auth state, while there are 2N possible key values in total. In the example

of Figure 4.7, 4 out of 8 possible key values can authenticate the corresponding PUF

response. The details of successful key values that can authenticate the corresponding

PUF response are presented in Table 4.3. For example, besides K3, another three key

values K1, K4, K7 can also authenticate the PUF response 010. However, when N is

large (e.g., N = 256), the value of 1+N
2N

will still be very small for a 1-bit correction

scheme. Furthermore, a requirement for a practical PUF is that the PUF responses

should have a large inter-chip variation (50% Hamming distance ideally) so that even

in the presence of noise it is possible to distinguish responses originating from different

devices. Therefore, key collision of the proposed self-correcting approach would not be

an issue for PUF-based authentication. A set of distinguishable keys can be obtained

for different chips even if the (Ri,Ki) pairs are designed equivalently. Moreover, as

discussed in Section 4.3, we can increase the length of key to improve the security.

Table 4.3: Key Values Can Successfully Authenticate the Corresponding PUF Response with
Self-Correction

Ri correct Ki other successful Ki

000 K1 K2, K3, K5

001 K2 K1, K4, K6

010 K3 K1, K4, K7

011 K4 K2, K3, K8

100 K5 K1, K6, K7

101 K6 K2, K5, K8

110 K7 K3, K5, K8

111 K8 K4, K6, K7

4.4.2 Advantages

Generally speaking, if we want to correct up to m bits of an N -bit PUF response,∑m
i=1

(
N
m

)
extra transition edges need to be inserted for each intermediate state in the
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state transition graph of the conventional two-level FSM. A FSM is usually defined by

a 6-tuple (I,O, S, S0, F,G), where S is a finite set of internal states, I and O represent

finite set of inputs and outputs of the FSM, respectively, F is the next-state function,

G is the output function, and S0 is the initial state. However, the extra transition

edges introduced by the error correcting functionality only affect the next state logic

of the FSM, while the output logic and the size of state registers remain the same, as

shown in Figure 4.8. As a result, we can expect the extra design complexity would be

relatively small for the self-correcting FSM structure, which only involves an N -to-N

combinational logic synthesis. Furthermore, although there are 2N intermediate states

in the proposed two-level FSM, the state registers only need to store N +1 bits in total

(including S0, Auth, and Unauth). For examples, when N = 3 as shown in Figure 4.7,

only a 4-bit state registers are required, as there are 11 states in the design. Therefore,

the proposed self-correcting FSM scheme could enable lightweight yet reliable PUF-

based authentication.

Next State 
Logic

Output 
Logic

State 
RegistersClock

Next StatePresent 
State

Input

Output

Only the next 
state logic needs 
to be redesigned

Figure 4.8: Only the output function of the FSM needs to be redesigned after adding the
self-correcting functionality.

Another advantage is that the proposed scheme is more secure, compared to ECC

or fuzzy extractor. For example, in the applications of ECC, when testing a PUF

response, an error correcting syndrome (helper data, if for a fuzzy extractor) for that

response is also computed and saved for later use. The syndrome is information that

allows for correcting bit-flips in regenerated PUF outputs. The generated syndrome
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is public information and can be stored anywhere (on-chip, off-chip, or remotely on a

server). Clearly, the syndrome reveals information about the PUF response. In general,

given the b-bit syndrome, attackers can learn at most b bits of the N -bit PUF response,

where b is less than N and is dependent on the specific parameters of the employed ECC.

The soft-decision syndrome coding scheme proposed in [54] could limit the amount of

leaked information to improve the security of PUF-based authentication. However, the

generated syndrome is still associated with the PUF response.

As opposed to these prior works, the key in our proposed self-correcting FSM is

not public that only the designer or the authenticated users have the knowledge of the

correct key. Furthermore, the fact that the PUF response and authentication key pairs

(Ri,Ki) can be arbitrarily designed, which are not based on any algorithm such as ECC

or fuzzy extractor, also enhances the security. In other words, even if the adversary

knows the PUF response (or key) in a (Ri,Ki) pair, it is still infeasible to guess the

corresponding key (or PUF response). Another advantage is that the successful key

values are not close, i.e., Hamming distance is less than a certain threshold. For example,

even for two pairs (Ri,Ki) and (Rj ,Kj) that the Hamming distance of the two PUF

responses Ri and Rj is only 1, the Hamming distance of the two keys Ki and Kj could

be very large. Additionally, along with the fact as discussed above that extraction of

the corresponding STG of the FSM is a computationally intractable task, the proposed

scheme could achieve a very high level of security.

4.5 Other Applications

In fact, the proposed self-correcting two-level FSM can be extended for other appli-

cations. In this section, we discuss a number of other possible applications.
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4.5.1 Two-Factor Authentication

The proposed self-correcting two-level FSM can also be used for the so-called two-

factor authentication [56]. The challenge of a PUF is combined with the key to achieve

stronger hardware protection. The authenticated device, correct PUF challenge, and

correct key are required for the two-factor authentication. In other words, the (Ri,Ki)

pair is extended to (Ci, Ri,Ki). The state of the proposed two-level FSM is determined

by Ri and Ki, while Ri can be calculated by the challenge Ci for a given PUF. However,

PUF is a one-way function in the sense that it is hard to reconstruct the challenge

from the response. Therefore, even if the adversary knows the desired (Ri,Ki) pair,

it is still infeasible for the adversary to compromise the device without knowing the

correct challenge. Additionally, as described in Section 4.3, the (Ri,Ki) pairs can be

designed differently for different devices. As a result, (Ci, Ri) and (Ri,Ki) pairs will be

unique for each chip. The security can be greatly improved by the proposed two-factor

authentication. The security properties are summarized below:

(a) The device cannot be duplicated.

(b) The user is unable to authenticate without the device.

(c) The device cannot be used by someone else to successfully authenticate as the

user without the correct key.

(d) An adversary with access to the response and key authentication records from

other devices is still unable to authenticate a new device without the correct

challenge.

(e) The device does not need to store any information.

4.5.2 Signature Generation

The proposed self-correcting FSM architecture can also be utilized for reliable sig-

nature generation. The FSM can be modified as shown in Figure 4.9 to regenerate
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the same PUF output, which would be more straightforward from the error correction

aspect. Instead of having two states (i.e., Auth and Unauth) at the last stage, the FSM

structure can be extended to enable an N -bit output by adding extra 2N output states

(OSs) at the last stage. Note that OS′
i and OSj may represent multiple states, while

R′
i and Rj may represent multiple incorrect PUF responses. Each output state OSi will

generate a unique output Ri, which corresponds to the desired PUF response. For ex-

ample, if the actual PUF response R′
i vary within a tolerated range as the correct PUF

response Ri, the FSM will enter into an intermediate state S′
i. By adding the transition

edges of the proposed self-correcting functionality into the STG, the FSM could transit

to the desired intermediate state Si by entering the correct key Ki for the first time.

When entering Ki the second time, the FSM will transit into OSi and the correct PUF

response Ri will be generated. Key values other than Ki cannot bring the FSM to the

last stage of the FSM from state Si. As a result, the same PUF response cannot be

regenerated. In this case, the key value can be made public which will be similar to the

functionality of syndrome in ECC or helper data in fuzzy extractor. As mentioned in

Section 4.4, it is still infeasible to predict the corresponding PUF response even if the

adversary knows the key value.
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Figure 4.9: Reliable signature generation by utilizing the self-correcting FSM.
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4.5.3 Obfuscation

A FSM-based obfuscation approach is proposed in [46]. The obfuscating FSM can

be replaced by the proposed two-level FSM. An example of the architecture is shown

in Figure 4.10. The correct PUF response and key pair will activate the reconfigurator

(i.e., FSM will transit into the output state OS1), which controls the functionality of

the circuit. In this example, the output states determine the mode of a switch. The

switch will work correctly (i.e., output {1, 1, 2, 0} in a period of 4) only with the correct

configure data D1. The error correcting functionality can also be incorporated into the

structure.

Proposed Two-Level FSM Reconfigurator

D1,D2,D3
D1

D1,D3,D4D1,D2,D3

D2 D4

D4

D3

D3,D4

Key
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K1R1

S2N

R2

Ri

R2N

K2

Ki

K2N

PUF Response

Start OS1/1

OS2/1

OS4/0

OS3/2

OS6/3

OS5/0

Configure Data

Figure 4.10: Architecture with authentication and obfuscation.

The functionality of the circuit is integrated into the self-correcting FSM. It is in-

feasible to isolate the correct functionality of the circuit, because the extraction of the

corresponding state transition graph is a computationally intractable task. Consequent-

ly, the proposed architecture enables authentication as well as achieves obfuscation.
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4.5.4 Correcting Other Errors

Although the proposed design of self-correcting two-level FSM is tailored for PUF-

based local authentication, this technique is not limited to correcting PUF response

errors. For example, the two-level FSM can be used for correcting communication

errors, where the key in our design will be treated as the syndrome in an ECC. The

proposed FSM architecture is also applicable to authentication for the Internet of Things

(IoT), where security is an important concern. As discussed in Section 4.4, the proposed

error correcting method could achieve higher security than the commonly used ECC or

fuzzy extractor, as syndrome will leak information of the secret bits to the adversary,

while (Ri,Ki) pairs in the two-level FSM can be arbitrarily chosen.

4.6 Hardware Implementation

In this section, we present the performance of the proposed two-level self-correcting

FSM. All the circuits are synthesized using Synopsys Design Compiler with optimization

parameters set for minimum area and mapped to a 65 nm standard cell library. Note

that we use a same bit-length for the PUF response and key in our implementations.

We first examine the performance with respect to the PUF response bit-length N , and

the number of tolerated error bits m. Then we compare the proposed error correcting

technique to one commonly used ECC for PUF-based authentication, i.e., the BCH

codes.

4.6.1 Area and Power

Table 4.4 and Table 4.5 show the area and power consumptions of the FSM as shown

in Figure 4.6, respectively, for different design parameters (i.e., N and m). Note that

when m = 0, the implemented structure is reduced to the FSM without self-correction

as shown in Figure 4.4. The results include average area and power overheads over a

number of different implementations, where the PUF response and key value mappings
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are randomly designed (include both simple bitwise comparison and highly random

perturbation).

Table 4.4: Area (Gate Count) of the Proposed Self-Correcting FSM that Can Correct m Bits
of an N -Bit PUF Response

m
N

4 8 16 32 64 128

0 70 114 197 367 709 1399
1 85 134 235 470 919 1810
2 147 265 507 985 1909
3 281 514 994 1963
4 519 1009 2031
5 534 1018 2042
6 537 1038 2049
7 541 1045 2061

Table 4.5: Power (μW ) of the Proposed Self-Correcting FSM that Can Correct m Bits of an
N -Bit PUF Response

m
N

4 8 16 32 64 128

0 0.60 0.95 1.66 3.03 5.79 11.44
1 0.63 1.00 1.91 3.61 6.83 13.47
2 1.12 2.08 3.80 7.47 14.55
3 2.11 3.87 7.61 15.14
4 3.93 7.87 15.58
5 3.97 8.01 15.86
6 4.07 8.19 16.02
7 4.13 8.28 16.16

As expected, the area and power consumptions are not very significant. For example,

the area of the proposed FSM for a 128-bit PUF response with 7 bits error correction

is only equivalent to 2061 NAND2 gates, while the power consumption is about 16μW .

As expected, the area and power consumptions are not very significant. For example,

the area of the proposed FSM for a 128-bit PUF response with 7 bits error correction

is only equivalent to 2061 NAND2 gates, while the power consumption is about 16μW .

This can be compared to 1399 gates and 11μW with no error correction for a 128-bit

PUF response.

For better illustrations, we plot the gate counts for m = 0 (without self-correction)

and m = 2 (with 2 bits error correction) as shown in Figure 4.11. It can be observed
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that when the bit-length N is doubled, the area is also almost doubled for a fixed m.

The power consumption exhibits a similar trend.
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Figure 4.11: Area (gate count) for different bit-length N without self-correction and with 2
bits error correction.

We also plot the gate counts for different m for N = 64 as shown in Figure 4.12,

which is normalized to the gate count of the FSM when m = 0 and N = 64. It can

be seen that the overhead is about 30% for adding 1-bit error correcting functionality

into the conventional two-level FSM. However, as m increases, the additional overhead

in area or power consumption becomes less and less. For example, the overhead is 47%

when m = 7, while the overhead is already 39% when m = 2. Therefore, we can expect

that overhead of the proposed self-correcting FSM would be reasonable even for a large

m. Note that we can draw similar conclusions for area and power consumptions of the

FSM with other values of N , as shown in Table 4.4 and Table 4.5.

4.6.2 Comparison to BCH Codes

As illustrated in Section 4.2, the hardware implementation of the error correcting

techniques in prior works on PUF-based authentication were either not considered or

only implemented on FPGAs. However, error correcting techniques that incur relative-

ly large overhead, compared to PUF circuit, would not be suitable for lightweight and

low-cost devices. Furthermore, to the best of our knowledge, there is no other work on
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Figure 4.12: Normalized area (gate count) for different m (N = 64).

efficient hardware implementation of error correcting method that is particularly well

suited for PUF-based authentication in the literature. As a result, it is important to ex-

amine the performance comparison with other state-of-the-art low-cost error correcting

techniques. In order to achieve fair comparison, we also synthesized comparable BCH

decoders using the same 65 nm standard cell library. The area and power consumptions

for different parameters are presented in Table 4.6 and Table 4.7, respectively. Note

that the values of N are chosen to 1 less than 2n, as that is the highest value permitted

in the finite field of 2n.

Table 4.6: Area (gate count) of the BCH Codes

m
N

31 63 127

1 1031 1370 1760
2 1816 2410 3092
3 2612 3460 4435
4 3419 4519 5789
5 4231 5580 7153
6 5039 6646 8527
7 5854 7720 9908

It can be seen from our experimental results that the proposed self-correcting FSM

consumes about 2× to 10× less area and about 20× to 100× less power than the BCH

codes. Therefore, it can be concluded that the cost of correcting PUF response can be
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Table 4.7: Power (μW ) of the BCH Codes

m
N

31 63 127

1 181.67 228.86 286.60
2 319.54 401.99 503.07
3 458.77 576.39 721.18
4 598.77 751.31 940.61
5 739.70 926.44 1161.15
6 881.98 1102.21 1382.33
7 1024.90 1238.89 1604.58

significantly reduced by the proposed approach. Particularly, the power consumption

can be reduced to 1% ∼ 5% of the BCH codes. Additionally, as discussed above, the

extra overhead of the proposed self-correcting FSM will be small for a large number of

tolerated error bits m. However, for the BCH codes, it can be observed from Table 4.6

and Table 4.7 that both the area and power consumptions increase linearly with the

number of tolerated error bits, which is also consistent with the results in [57]. Therefore,

we can expect that the area consumption of the proposed method will be significantly

less than the BCH codes for a large m.

Furthermore, it is important to note that the proposed FSM architecture not only

corrects the errors, but also has the capability for PUF-based authentication. If we only

consider the design complexity for the error correcting functionality itself, the proposed

approach would be much more lightweight and low-cost compared to the BCH codes.

For example, we consider the overhead of introducing 4 bits error correcting functional-

ity to the two-level FSM without error correction. The area and power overhead results

for both the proposed self-correction FSM and the BCH codes are normalized to the

cost of the two-level FSM without error correction, as shown in Figure 4.13 and Fig-

ure 4.14, respectively. It can be seen that the normalized overheads of the BCH codes

are significantly greater than those of the proposed self-correcting FSM. For instance,

when N = 128 and m = 4, the normalized area overhead for the proposed self-correcting
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FSM is 9× less than the BCH codes, while the normalized power overhead for the pro-

posed self-correcting FSM is 167× less than the BCH codes. It can also be observed

that the overhead incurred by BCH codes will decrease as N increases. However, the

length of PUF response used for authentication is usually relatively small (N ≤ 256).

Therefore, it can be concluded that the overhead of the proposed self-correcting FSM

is significantly less than the BCH codes for the PUF-based authentication.

0
1
2
3
4
5
6
7
8
9

10

32 64 128

N
or

m
al

iz
ed

 A
re

a 

N

Proposed Self-
Correcting FSM

BCH Codes

O
ve

rh
ea

d 
Fa

ct
or

Figure 4.13: Normalized area overheads of introducing 4 bits error correcting functionality for
the proposed self-correcting FSM and the BCH codes.
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4.7 Conclusion

This chapter has presented a novel two-level self-correcting FSM, which can be used

for PUF-based authentication while tolerating a certain number of bit errors that are

generated by environmental variations. The applications of the proposed method for

local authentication and reliable signature generation have also been discussed. The

performances of the proposed two-level self-correcting FSM with respect to the PUF

response bit-length and the number of tolerated error bits have been studied. We have

also shown that the proposed technique achieves significantly lower cost than the error

correcting methods that are previously used for PUF-based authentication.



Chapter 5

Obfuscating DSP Circuits via

High-Level Transformations

5.1 Introduction

Digital Signal Processing (DSP) plays a critical role in numerous applications such as

video compression, portable systems/computers, multimedia, wired and wireless com-

munications, speech processing, and biomedical signal processing. However, as electron-

ic devices become increasingly interconnected and pervasive in people’s lives, security,

trustworthy computing, and privacy protection have emerged as important challenges

for the next decade. Therefore, DSP system designers have to pay more attention to

the security perspective of DSP circuits, since the adversary can easily learn the func-

tionality using massive attacking methods.

The problem of hardware security is a serious concern that has led to a lot of work on

hardware prevention of piracy and intellectual property (IP), which can be broadly clas-

sified into two main categories: 1) authentication-based approach, and 2) obfuscation-

based approach. The authentication-based approaches include physical unclonable func-

tions (PUFs) based authentication [38], digital watermarking [58, 59, 60, 61], key-locking

94
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scheme [62, 63], and hardware metering [42]. The focus of this chapter is on obfuscation,

which is a technique that transforms an application or a design into one that is func-

tionally equivalent to the original but is significantly more difficult to reverse engineer.

Some hardware protection methods are achieved by altering the human readability of

the hardware description language (HDL) code, or by encrypting the source code based

on cryptographic techniques [64]. Recently, a number of hardware obfuscation schemes

have been proposed that modify the finite-state machine (FSM) representations to ob-

fuscate the circuits [65, 66, 45].

However, to the best of our knowledge, no obfuscation-based IP protection approach

has been proposed specifically for DSP circuits in the literature. Our work, for the first

time, presents design of obfuscated DSP circuits via high-level transformations that are

harder to reverse engineer. From this standpoint of view, a DSP circuit is more secure,

if it is harder for the adversary to discover its functionality even if the adversary can

physically tamper the device. In other words, a high level of security is achieved if the

functionality of a DSP circuit is designed to be hidden from the adversary.

The key contribution of this chapter is a novel approach to design obfuscated DSP

circuits by high-level transformations during the design stage. The DSP circuits are

obfuscated by introducing a finite-state machine (FSM) whose state is controlled by a

key. The FSM enables a reconfigurator that configures the functionality mode of the

DSP circuit. High-level transformations lead to many equivalent circuits and all these

create ambiguity in the structural level. High-level transformations also allow design of

circuits using same datapath but different control circuits. Different variation modes can

be inserted into the DSP circuits for obfuscation. While some modes generate outputs

that are functionally incorrect, these may represent correct outputs under different

situations, since the output is meaningful from a signal processing point of view. Other

modes would lead to non-meaningful outputs. The initialization key and the configure

data must be known for the circuit to work properly. Consequently, the proposed
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design methodology leads to a DSP circuit that is both structurally and functionally

obfuscated.

Furthermore, the approach presented in the chapter will prevent piracy from over-

production and mask theft, because the manufacturer would not have access to either

the initialization key or the configure data. These keys could be programmed by anoth-

er honest vendor after the chips have been fabricated or provided to the customers by

the designer. Therefore, overproduced chips without the correct keys cannot function

properly.

5.2 Hiding Functionality by High-Level Transformations

High-level transformations [67] have been known for a long time and have been used

in a wide range of applications, such as pipelining [68], interleaving [68], folding [69],

unfolding [70] and look-ahead transformations (e.g., quantizer loops [71], multiplexer

loops [72, 73], relaxed look-ahead [74], annihilation reordering look-ahead [75]), and

have been used in synthesis of DSP systems [76]. These techniques can be applied at

the algorithm or the architecture level to achieve a tradeoff among different metrics

of performance, such as area, speed, and power [77]. However, the use of high-level

transformations from a security perspective has not been studied before. High-level

transformations alter the structure of a DSP circuit, while maintaining the original

functionality. These transformations may lead to architectures whose functionalities

are not obvious. Take an extreme case for example, many filters can be folded into one

multiply-accumulator (MAC), but their functionalities are not the same. In other words,

one MAC with proper switches can implement many different digital filters. Therefore,

we can conclude that high-level transformations naturally provide a means to obfuscate

DSP circuits both structurally and functionally. Structural obfuscation and functional

obfuscation are defined as follows:
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(a) Structural Obfuscation: any algorithm can be implemented by a family of architec-

tures by using high-level transformations. These architectures enable structural

obfuscation where the functionalities of the algorithms can be hidden. This can

be considered as a ”passive” model from attacker’s perspective.

(b) Functional Obfuscation: this is realized by encrypting the normal functionality of

a DSP circuit with one or more sets of keys. The DSP circuit cannot function

correctly without the keys. This corresponds to an ”active” model from attacker’s

perspective.

Folding is such an example of high-level transformation which could be utilized to

achieve design obfuscation. The folding transformation generates folded variants based

on the folding set, which is the reverse of the unfolding transformation [70]. The choice

of folding set is critical to the performance of the folded structure, since an appro-

priate choice of folding order can lead to an architecture with lower area and power.

Folding sets can be designed intuitively to meet the performance requirements or can

be obtained from a high-level synthesis system [76]. The details and other examples

(e.g., interleaving) of how to hide the functionalities of DSP circuits by high-level trans-

formations are described in [78, 79]. We can observe that: 1) Circuits with different

functionalities can have a similar structure, and circuits with the same functionality may

have very different structures; 2) Structural obfuscation can be achieved by high-level

transformations; 3) If the switch instances are invisible to the adversary, then the DSP

systems will be harder to reverse engineer, since the functionality of a DSP circuit is

not obvious due to obfuscation achieved by high-level transformations. As a result, the

adversary who only has knowledge of the structural information but lacks knowledge of

the switch instances cannot easily discover the functionality of a DSP circuit.

As an example, we consider a 3rd-order IIR digital filter given by transfer function

H(z) = 1+m2z−1+m3z−2

1−m0z−2−m1z−3 , as shown in Figure 5.1. The coefficients mi correspond to the

multiplication Mi. We assume the availability of one 1-stage pipelined adder and one
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3-stage pipelined multiplier. The filter is folded with folding factor N = 4 using the

following folding sets:

M = {M0,M1,M2,M3},
A = {A0, A1, A2, A3}.

Folding sets represent the order of operations executed by the same hardware. For a

folded system to be realizable, the folding equations, DF (U
e→ V ) = Nw(e)−PU+v−u,

must be greater or equal to 0 for all the edges in the diagram, where N is the folding

factor, w(e) is the number of delays from U to V , PU represents the pipelining level

of hardware functional unit for operation type U , u and v represent the folding orders

of U and V , respectively. Retiming and pipelining can be used to satisfy this property

(or it can be determined that the folding sets are not feasible), as a preprocessing step

prior to folding. The folded architecture is shown in Figure 5.2. Figure 5.3 presents

the structure that the switch instances are designed to be invisible. Null operations are

incorporated into the switches.

D

D

D

u(n) y(n)

M0

M1

M2

M3

A2

A3A1

A0

Figure 5.1: A 3rd-order IIR filter.

We consider the implementation of another 3rd-order IIR filter given by transfer

function H(z) = 1+m2z−1+m3z−2

1−m1z−3 as shown in Figure 5.4. In order to achieve obfuscation,

an architecture can be designed to be configurable as a 3rd-order IIR filter shown in

either Figure 5.1 or Figure 5.4. These two modes are considered as meaningful modes.
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Figure 5.2: A folded structure of the 3rd-order IIR filter in Fig. 1. The switch instance ”i”
corresponds to clock cycle 4l + i.
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Figure 5.3: A folded structure of the 3rd-order IIR filter with invisible switches.
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In fact, a folded architecture of Figure 5.4 using the following folding sets can be

obtained by assigning different switch instances to the structure in Figure 5.3, which is

shown in Figure 5.5.

M = {∅,M1,M2,M3},
A = {∅, A1, A2, A3}.

The folding factor is 4, while there are only 3 multipliers and 3 adders in the DSP

circuit. Therefore, if we consider the functionality of Figure 5.4 as the desired mode,

one computation cycle is wasted every 4 cycles. The latency will also be increased. Note

that we could use clock gating techniques to reduce the power for the null operation

cycles.
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Figure 5.4: Another 3rd-order IIR filter.
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Figure 5.5: A folded structure of the 3rd-order IIR filter in Figure 5.4. The switch instance
”i” corresponds to clock cycle 4l + i.
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However, we can extend the periodicity of the switches to overcome the hardware

underutilization. For instance, we can fold the 3rd-order IIR filter in Figure 5.4 by

folding factor 3 with the folding sets:

M = {M3,M1,M2},
A = {A2, A1, A3}.

The folded structure is shown in Figure 5.6. We can accommodate the two meaning-

ful modes with no increase in latency for the second mode by extending the periodicity

of the switches to the least common multiple of the folding factors of the two modes

(i.e., lcm(3,4)=12). Similar extensions of switch periods have been considered in de-

sign of digit-serial DSP architectures [80]. For example, switch instance 4l + i can be

rewritten as 12l+ i, 12l+4+ i, and 12l+8+ i, for i ranging from 0 to 3, in Figure 5.2;

while switch instance 3l + i can be rewritten as 12l + i, 12l + 3 + i, 12l + 6 + i, and

12l + 9 + i, for i ranging from 0 to 2, in Figure 5.6. As a result, for each meaningful

mode as the desired mode, the latency remains the same as the original folded struc-

ture. This is achieved by increasing the complexity of the switch and the expense of

hardware overhead associated with this step. The final obfuscated architecture for these

two meaningful modes is shown in Figure 5.7. The switch instances are obfuscated and

the two correct configurations of the switches correspond to two meaningful modes.

3D D D D 3D2D

y(n)

u(n)

{1}

{0}{2}

{1}
{2} {0}

{0}

{1}

{2}

{1}

Figure 5.6: Another folded structure of the 3rd-order IIR filter in Figure 5.4. The switch
instance ”i” corresponds to clock cycle 3l + i.
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Figure 5.7: An obfuscated structure, which can be configurable as a 3rd-order IIR filter shown
in either Figure 5.1 or Figure 5.4.

5.3 Obfuscated Design via High-Level Transformations

5.3.1 Secure Switch Design

From Section 5.2, it can be seen that the DSP circuits can be obfuscated via high-

level transformations by appropriately designing the switches in a secure manner. The

switches generated by high-level transformations are periodic N-to-1 switches. These

switches can be implemented as multiplexers (MUXs), whose control signals are obtained

from ring counters (as shown in Figure 5.8). Thus, the security of the switch relies upon

design of the ring counters such that the outputs of the ring counters can be obfuscated.
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Figure 5.8: Switch implementation.



103

A ring counter is often modeled as a FSM. A FSM is usually defined by a 6-tuple

(I,O, S, S0, F,G), where S is a finite set of internal states, I and O represent the inputs

and outputs of the FSM, respectively, F is the next-state function, G is the output

function, and S0 is the initial state. However, unlike general FSMs, the FSM of a ring

counter is input-independent, such that it always transits to the next state based on the

current state. As a result, the control signal of the switches (i.e., output of the FSM)

will be periodic.

5.3.2 Reconfigurable Switch Design

Indeed, existing works have demonstrated that functional obfuscation can be achieved

by embedding a well-hidden FSM (i.e., obfuscating FSM) in the circuit to control the

functionality based on a key [66, 43, 45]. In order to achieve design obfuscation by

using high-level transformations, we propose a reconfigurable switch design. The de-

tailed implementation is shown in Figure 5.9, where ”SR” represents the state registers

that store the information of the current state. We employ the idea of hardware design

obfuscation as an activation sequence required before configuration by inserting an ob-

fuscating FSM. The FSM enables a reconfigurator that controls the functionality mode

of the DSP circuit by configuring the output function G, next-state function F , and

the initial state S0. In our design, the configuration key must be known for the circuit

to work properly, which consists of two parts: an L-bit initialization key and a K-bit

configure data, as shown in Figure 5.10. The initialization key is used as the input of the

obfuscating FSM, while the configure data are applied to the reconfigurator to control

the operation of the switches. As the configuration of the switch is only enabled after

receiving a correct initialization key, hostile attempts of the configure data cannot be

processed by the reconfigurator as the reconfigurator is not activated. Note that other

secure switch designs, whose detailed switch instances are hidden to the adversary, can

also be adopted in the framework.
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Figure 5.9: The complete reconfigurable switch design.
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Figure 5.10: Configuration key containing an initialization key and a configure data.
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The number of possible variations of ring counters is limited by the length of the

configure data, K. We can create M variation modes of the original circuits that have

different functionalities, while log2M should be less than or equal to the length of config-

ure data, K. Different configure data can be mapped into the same mode. An example

of the mapping between the configure data and the associated modes is illustrated in

Table 5.1. Note that this only involves simple combinational logic synthesis.

Table 5.1: Switch Configurations
Mode Configure Data
1 data1, data2
2 data3
... ..., ...
M data{2K−1}, data{2K}

5.4 Generation of Variation Modes

5.4.1 Security Perspective of Variation Modes

The cost for an adversary to find the correct key of an obfuscated DSP circuit by

adopting the proposed architecture is not only dependent on the length of the configu-

ration key (L +K), but also on the number of required input-vectors for learning the

functionality of each variation mode (note that in this chapter, the inputs represent

the original inputs of the DSP circuits, while the key represents the data to control

the switches). For a certain variation mode, the adversary attempts to attack the D-

SP circuit by generating input-vectors until the functionality could be discovered. The

most intuitive way to mask the desired functionality is to modify the switch instances

arbitrarily. However, the functionality of the resulting structure may not be meaning-

ful from a signal processing point of view, which would be easier for the adversary to

distinguish whether the circuit is operating correctly. The numbers of required input-

vectors for these non-meaningful variation modes would be less than the numbers of

required input-vectors for meaningful variation modes. If one mode of a DSP circuit is
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obfuscated to output a large portion of invalid values, the adversary can figure out this

mode is non-meaningful with a relatively small number of input-vectors.

The challenge of this problem is how to generate meaningful variation modes from

a signal processing point of view such that the DSP circuit can also be operated in a

reconfigurable manner. Most often, we perform a high-level transformation based on

the design requirements and constraints by taking an existing design and generating the

resulting design during high-level synthesis stage. We may continue to add variation

modes into the design, as discussed in Section 5.2. Some of the variation modes may

correspond to meaningful modes (e.g., different order filters or filters of same order with

different coefficients) which can be exploited for different applications, while others

correspond to non-meaningful modes.

Design of obfuscated DSP circuits requires extra efforts during the design phase.

In fact, variations of the algorithm (e.g., different folding sets) can also be utilized to

produce several obfuscated versions. Therefore, it is possible to generate meaningful

variation modes simultaneously with the high-level transformation during design stage

instead of modifying the switch instances after performing high-level transformations.

As a result, the variations of the structures are indeed obtained from the variations of the

selected algorithm. Furthermore, the secure switches can also be designed systematically

based on the variations of algorithms. Using this approach, the extra design efforts can

be reduced, while reconfigurable design with a number of different meaningful modes is

ensured.

Note that meaningful modes are not mandatory for the proposed obfuscated design.

While meaningful modes achieve higher security, obfuscation only with non-meaningful

modes could also attain considerable protection of the DSP circuit against reverse en-

gineering.



107

5.4.2 A Case Study: Hierarchical Contiguous Folding Algorithm

The variation modes are generated based on the selected transformation algorithm,

which are different for various high-level transformations. It is difficult to cover very

large number of existing high-level transformations in this chapter. We just present

an example to demonstrate how to generate variation modes. The proposed design

methodology can also be extended to other high-level transformations.

Hierarchical folding approach is a novel folding technique that combines folding of

M cascaded stages to one hardware block, and folding N operations inside each section

to a hardware functional unit, as shown in Figure 5.11. Two hierarchical folding algo-

rithms are presented in [78], which include hierarchical interleaved folding (HIF) and

hierarchical contiguous folding (HCF). In this section, we only address hierarchical con-

tiguous folding, while it is also applicable to hierarchical interleaved folding. Hierarchical

contiguous folding transformation executes all operations of one section before starting

execution of operations of next section. Reader is referred [78] for further details.

Alg1Alg0 AlgM-1Alg2u(n) y(n)...

(a) Unfolded structure

Algu(n)

(b) Folding

Same structure as M-
interleaved, replace each
delay by M delays of Algi

DF

Figure 5.11: (a) A DSP data-flow graph containing M cascaded stages. Block Algi represents
i-th stage of the cascade. (b) A folded architecture where M stages are folded to same hardware.
DF represents the number of folded delays.

Hierarchical contiguous folding transformation executes all operations of one section

before starting execution of operations of next section. The folding sets are described

as follows:

{X0
0 , X

0
1 , ...X

0
N−1, X

1
0 , X

1
1 , ...X

1
N−1, ..., X

M−1
0 , XM−1

1 , ...XM−1
N−1 }, (5.1)
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The operation Xj
i , i.e., the i-th operation of j-th block, will be executed at time Nj+ i.

The operations in a later section will be executed only after all the operations from the

previous section are completed. The algorithm is described below:

Hierarchical Contiguous Folding (HCF) Algorithm

1. Fold Algi by factor NM , with the folding set

{X0, X1, ...XN−1, ∅, ∅, ...∅}, where the number of null operations corresponds to

(NM −N).

2. Replace each switch s by s,s+N ,s+ 2N ,...s+ (M − 1)N .

3. Compute DF (Alg
j e→ Algj+1), for j = 0, 1, 2...M − 2, and use these folded edges

to replace the external inputs.

We propose an algorithm for obfuscation that generates variation modes by vary-

ing the number of sections in the cascade structure based on the HCF algorithm. For

example, if the number of sections for a DSP system is l, then the algorithm can be

described as below (the total number of operations is still NM , where M ≥ l).

Design Obfuscation Algorithm based on the HCF Algorithm

1. Fold Algi by factor NM , with the folding set

{X0, X1, ...XN−1, ∅, ∅, ...∅}, where the number of null operations corresponds to

(NM −N).

2. Replace each switch s by s,s+N ,s+ 2N ,...s+ (l− 1)N , and set switch instances

from lN to MN − 1 to null operations.

3. Compute DF (Alg
j e→ Algj+1), for j = 0, 1, 2...l− 2, and use these folded edges to

replace the external inputs.
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If l = M , this algorithm reduces to the hierarchical contiguous folding algorithm.

From this algorithm, we can generate M meaningful modes correspond to l = 1, 2, ...,M .

Furthermore, the reconfigurator can also be designed based on the variations of the HCF

algorithm, which is a simple 2K-to-M combinational logic design problem. Note that

this algorithm can be easily extended to other types of DSP systems where the sub-

circuits are not directly connected.

5.5 Design Flow of the Proposed DSP Circuit Obfuscation

Approach

5.5.1 Design Methodology

In this section, we propose a novel DSP hardware protection methodology through

obfuscation by hiding functionality via high-level transformations. This approach helps

the designer to protect the DSP design against piracy. The detailed design flow is

described below:

Step 1: DSP algorithm. This step generates the DSP algorithm based on the

DSP application.

Step 2: High-level transformation selection. Based on the specific application,

appropriate high-level transformation should be chosen according to the performance

requirement (e.g., area, speed, power or energy).

Step 3: Obfuscation via high-level transformation. Selected high-level trans-

formations are applied simultaneously with obfuscation where variation modes, and

different configurations of the switch instances are designed.

Step 4: Secure switch design. The secure switch is designed based on the

variations of high-level transformations. Note that different configure data could be

mapped into the same mode, which only involves simple combinational logic synthesis.
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Step 5: Two-level FSM generation. The reconfigurator and the obfuscating

FSM are incorporated into the DSP design as shown in Figure 5.9. The configuration

key is generated at this step.

Step 6: Design specification. This step includes the HDL and netlist generation

and synthesis of the DSP system.

After these design steps, designer sends the obfuscated design to the foundry that

manufactures the DSP circuit. By using the proposed design methodology, the manu-

facturer will not gain access to the desired functionality or the configuration key. Unau-

thorized copies of the obfuscated DSP circuits would provide little information to the

adversary. The relationship between the obfuscated design and the original design via

high-level transformation is illustrated in Figure 5.12. The only difference between the

obfuscated design and the original design via high-level transformation is the control of

the DSP circuit. The main datapath is unaltered. As a result, the critical path would

not increase for the obfuscated design. Furthermore, the proposed design methodology

does not require significant changes to established verification and testing flows. In fact,

the obfuscated DSP circuit with the correct key behaves just like the original circuit.

5.5.2 Architecture of the Obfuscated DSP Circuits

The complete system of the proposed obfuscated DSP circuit is illustrated in Fig-

ure 5.13. The reconfigurator will be enabled only by the correct initialization key. Only

the correct configure data leads to the desired design. A wrong configure data activates

an obfuscated mode (either a meaningful or non-meaningful). The obfuscating FSM

and a portion of non-meaningful variation modes (i.e., we denote as alarm modes) can

both be utilized for security check purpose. For example, some undesired modes in

Table 5.1 can be designed as alarm modes by adding another output signal to the com-

binational logic. We can improve the security by mapping a larger number of configure

data to this alarm mode, while keeping the portion of functional configure data to be
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Figure 5.12: Relationship between the obfuscated design and the original design.

relatively small. If the circuit continuously receives wrong initialization key or configure

data whose number exceeds the pre-defined threshold, the adversary is prevented from

further attempts of the configuration key by a denial of use block.

5.6 Security and Resiliency against Attacks

5.6.1 Attacks and Countermeasures

The goal of the proposed methodology is to ensure the designer’s intellectual proper-

ty would not be stolen against reverse engineering. Generally speaking, a hacker trying

to determine the functionality of a DSP circuit can resort to either of the following ways:

1) structural analysis of the netlist to identify and isolate the original design from the

obfuscated design or 2) simulation-based reverse engineering to determine functionality

of the design.
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Figure 5.13: Architecture of the proposed obfuscated DSP circuit.

Our proposed obfuscation methodology protects the hardware against the first type

of attack (i.e., structural analysis) from two perspectives: 1) structural obfuscation by

high-level transformation, and 2) integration with obfuscation modes. As presented in

Section 5.2, high-level transformations lead to structural obfuscation at the HDL level or

gate-level netlist. Without knowing the correct configuration of the switches, it is hard

for the adversary to learn the functionality of the original design. Furthermore, although

the obfuscating FSMs could be isolated, the obfuscation of configuration switches cannot

be separated from the original functionalities. Since the obfuscation variation modes are

integrated to the reconfigurator in the synthesized DSP circuit, the adversary cannot

remove the design obfuscation achieved by high-level transformations. Additionally,

meaningful variation modes also create ambiguity when the adversary performs the

structural analysis attacks.

For a simulation-based approach where random key vectors are sequentially applied

to take the circuit to the correct mode, the probability of discovering the configuration
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key sequence is 1
2L+K for a circuit with a length-(L + K) configuration key sequence.

For example, the probability is only 5.4 × 10−20 for a circuit with a length L = 32

initialization key sequence and a length K = 32 configure data sequence.

Moreover, the cost of the simulation based attack approach is also dependent on

the size of inputs. Various input patterns need to be tested to determine the complete

functionality of a DSP circuit. In practice, most DSP circuits will have considerable size

of inputs and the length of configuration keys can be made larger. Therefore, brute-

force attack for learning the key sequences and input/output patterns is computationally

infeasible.

5.6.2 Measure of Obfuscation Degree

Structural Obfuscation Degree (SOD)

Manual attacks can be performed by visual inspection and structural analysis. In

these types of manual attacks, the adversary has to analyze the RTL or gate-level

structure as well as the layouts. This is a weak attack, as the adversary has very little

chance of figuring out the obfuscation scheme for large DSP circuits.

The obfuscation degree of the structural obfuscation is dependent on the number

of independent switches (Ns), the period of switch instances after high-level transfor-

mations (P ), and the number of connections for each independent switch (Cm). To

estimate the obfuscation degree against these manual attacks, we propose a metric

called Structural Obfuscation Degree (SOD):

SOD =

Ns∏
m=1

(Cm + 1)P , (5.2)

where the additional ”1” corresponds to the null operation. Note that a higher SOD

value implies better obfuscation, as the SOD value indicates the number of possible

functionalities generated by the combinations of these switches. A circuit is more secure,

if there is more ambiguity in the structure. For example, the SOD value of the structure
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in Figure 5.3 can be calculated as 34 × 44 × 54 = 12, 960, 000 (excluding the output

switch), which is already very large.

For a small sub-circuit with a small SOD value, it may be feasible to figure out

the original functionality from the obfuscated design, as the number of combinations

is small and most of these combinations may result in non-meaningful functionalities.

However, the structure of a DSP circuit after high-level transformations usually has a

larger SOD value (as illustrated by the example above). Thus, it will be extremely hard

to distinguish the original functionality from other possible functionalities of these DSP

circuits.

Functional Obfuscation Degree (FOD)

The proposed methodology also achieves functional obfuscation by encrypting the

correct functionality with a key sequence. The cost for an adversary to discover the

correct key is dependent on the bit-length of the key (L+K), the number of meaningful

modes (Nm), the number of non-meaningful modes (Nn), and the size of input bits

(NI). To estimate the obfuscation degree against simulation based attacks, we propose

a metric denoted as Functional Obfuscation Degree (FOD):

FOD = f(NI)2
L[Nm + αNn + β(2K −Nm −Nn)], (5.3)

where f(NI) represents the input cost coefficient that is the number of input vectors

required for learning the functionality of the DSP circuit, which is proportional to NI ;

and α, β represent the cost coefficients of learning a new non-meaningful variation

mode and learning a previously known mode compared to learning a new meaningful

mode, respectively. These coefficients are dependent on the particular applications. As

discussed in Section 5.4.1, it can be expected that they would follow the relation that

0 < β < α < 1. Future work will be directed towards validating the values of α and β

through experimental results. The higher the FOD value, more secure the obfuscated
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design. Note that in practice, the computation cycles and the clock periods of the DSP

circuits would also affect the cost of simulation based attacks.

5.6.3 Improving the Security by Key Encoding

In the proposed obfuscation scheme, the key consists of two parts: initialization

key and configure data. However, in the scenario that the adversary has found a key

that can successfully pass the initialization but is still in an incorrect configuration, the

adversary will only try different configure data while fixing the initialization key. This

could weaken the scheme. An encoder could be added to improve the security of the

system, as shown in Figure 5.14. The encoder could be a Hash function, a linear feedback

shift register (LFSR), or a Physical Unclonable Fcuntion (PUF). By incorporating the

encoder, the user key and the configuration key are no longer bit-to-bit mapped.

user key
(L+K)-bit

initialization key
(L)-bit

configure data
(K)-bit

Encoder

Figure 5.14: Key encoding.

Moreover, if we use a PUF as the encoder, key collisions could also be avoided in

different chips. PUFs can be used to give unique user keys for different DSP circuits

even though they are all obfuscated with the same configuration key.

5.6.4 Security Properties

The main objective of our work is to protect DSP circuits against reverse engineering.

The obfuscated DSP circuits will only operate in the desired mode with a negligible

probability that others would be able to find. Thus, the correct functionality is hidden

to the adversary even when the adversary can access the DSP circuits. Moreover, the

proposed obfuscating scheme also satisfies a set of following properties to ensure security

and resiliency against attacks:
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(a) Unobtrusiveness: The obfuscation is invisible to the functional DSP circuits. Its

presence would not interfere with regular operation of the design.

(b) Unambiguity: The probability of finding the correct key for a DSP circuit is low

by employing our proposed obfuscation scheme. The chance for an adversary to

enter a DSP circuit into the correct mode by random guessing is 1
2L+K , which will

be negligible when the bit-length of the key is long. Therefore, the correct key is

a strong proof of ownership.

(c) Robustness: Since the obfuscation modes are generated along with the high-level

transformation design phase, all the stages after this phase in the high-level syn-

thesis flow would contain the obfuscation. The embedded obfuscation is extremely

difficult to remove, since the variation modes are integrated to the switches. More-

over, we could combine PUFs to ensure that the keys of different DSP circuit

designers would not collide.

(d) Universality: The proposed obfuscating methodology can be used for all common

DSP designs. In this chapter, we have only described a few examples of high-

level transformations for hardware obfuscation. However, other types of high-level

transformations and other transformation algorithms can also be used to achieve

hardware obfuscation.

5.7 Evaluation of the Proposed Methodology

5.7.1 Overhead Impact

Component overhead of the proposed obfuscation design includes: (a) additional

control logic of switches, (b) reconfigurator, and (c) obfuscating FSM. These additional

circuits only affect the switches of an obfuscated DSP circuit, while the main datapath

stays the same as the original design, as shown in Figure 5.12. In this section, we

present the area overhead results of the proposed obfuscating methodology for two
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DSP benchmark circuits: (3l)th-order IIR filter and (12l)-tap FIR filter. All circuits

were synthesized using Synopsys Design Compiler with optimization parameters set for

minimum area and mapped to a 65 nm standard cell library. We employ the design

obfuscation algorithm based on the HCF algorithm to obfuscate the circuits. In our

experiments, the (3l)th-order IIR filter is folded to 1 multiplier and 1 adder, while the

(12l)-tap FIR filter is folded to 3 multiply-accumulators.

We take the (3l)th-order IIR filter benchmark as an example to illustrate the obfus-

cated design approach. Here, one section of the (3l)th-order IIR filter is a 3rd-order IIR

filter as shown in Figure 5.1. We assume the desired functionality is an 18th-order IIR

filter realized as a cascade of six 3rd-order IIR filters. In our experiment, the proposed

design obfuscation algorithm based on the HCF algorithm is applied to the original 18th-

order IIR filter to obfuscate this DSP circuit. In order to generate 8 meaningful variation

modes, the parameters M = 8 and N = 4 are used to the structure with 6 sections of

3rd-order IIR filter (i.e., the original 18th-order IIR filter) and 2 additional sections of

null operations. The switch instances of this folded design are periodic with period 32.

The 8 meaningful modes correspond to (3l)th-order IIR filter where l = 1, 2, ..., 8, re-

spectively. 8 non-meaningful variation modes are also incorporated. Each secure switch

is controlled by the reconfigurator independently. Figure 5.15 shows an example of the

switch connected to the input of the multiplier in the obfuscated design. This switch has

5 possible input paths, as the null operations are also integrated to the switches. Based

on the algorithm, the control signals of this switch within one period for the intended

mode should be

(3, 1, 4, 2, 3, 1, 4, 2, 3, 1, 4, 2, 3, 1, 4, 2, 3, 1, 4, 2, 3, 1, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0).

For other generated meaningful variation modes whose functionalities are (3l)th-order

IIR filters, the control signals should be periodic with a length-32 sequence that consists

of l (3,4,1,2) in the beginning and 8− l (0,0,0,0) in the end.
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Figure 5.15: The obfuscated design of the original 18th-order IIR filter.

In our experiment, 8 non-meaningful variation modes are also incorporated. As a

result, the bit-length of the configure data is at least 4, since the number of variation

modes Nm +Nn should be less than 2K . For instance, a simple design example of the

reconfigurator with configure data K = 4 is presented in Table 5.2. Note that multiple

configure data can be mapped to the same mode, if we increase K.

Table 5.2: Switch Configurations Example
Mode Configure Data Functionality
1 0000 3rd-order IIR filter
2 0001 6th-order IIR filter
3 0010 9th-order IIR filter
4 0011 12th-order IIR filter
5 0100 15th-order IIR filter
6 0101 18th-order IIR filter
7 0110 21st-order IIR filter
8 0111 24th-order IIR filter
9 1000 non-meaningful
10 1001 non-meaningful
11 1010 non-meaningful
12 1011 non-meaningful
13 1100 non-meaningful
14 1101 non-meaningful
15 1110 non-meaningful
16 1111 non-meaningful

An obfuscating FSM is also added into the secure switch design to provide the

second-level protection of the obfuscated DSP circuit. The number of the states of the
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obfuscating FSM should be less than or equal to 2L, where L is the length of initialization

key.

Area Overhead

We present the area overhead for the two DSP circuit benchmarks as shown in Ta-

ble 5.3 and Table 5.4, respectively. Note that the overhead percentages presented in

Tables 5.3 and 5.4 are computed based on the folded designs instead of the original

circuits. The results include average area overheads over a number of different imple-

mentations. For certain lengths of initialization key and configure data, the patterns

of the state transition graph in the design of obfuscating FSM and the input-output

mappings in the design of reconfigurator would also affect the design overhead of the

proposed obfuscated DSP circuit.

Table 5.3: Overhead (%) of the (3l)th-order IIR Filter Benchmark

L
K

4 8 16 32 64

4 3.8 4.0 4.3 4.8 5.9
8 4.9 5.0 5.4 5.9 6.9
16 6.6 6.7 7.0 7.6 8.7
32 9.7 9.8 10.2 10.8 11.9
64 15.4 15.7 16.0 16.6 17.7

Table 5.4: Overhead (%) of the (12l)-Tap FIR Filter Benchmark

L
K

4 8 16 32 64

4 1.6 1.7 1.8 1.9 2.1
8 2.0 2.1 2.2 2.4 2.5
16 2.8 2.9 3.0 3.2 3.5
32 4.1 4.2 4.3 4.4 4.7
64 6.6 6.7 6.8 6.9 7.1

It can be seen from Tables 5.3 and 5.4 that the overall overhead is about 17.7% for

the (3l)th-order IIR filter with a 128-bit (64+64) configuration key, while the overhead

is only about 7.1% for the (12l)-tap FIR filter also with a 128-bit configuration key.

However, a strong obfuscation is achieved, as the chance for an adversary to enter the
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DSP circuit into the desired mode is only 1
2L+K = 1

2128
= 2.94× 10−39. Note that these

two DSP circuit benchmarks are both small circuits. In practice, as the DSP circuits are

more complex, the overhead percentage would be even smaller under the assumption

that we want to create a certain degree of obfuscation (i.e., maintain an approximately

same number of switches to obfuscate, even though there are more switches).

Moreover, when we compare the effects between L and K, it can be seen that the

overhead increases more significantly with the increase of L. For the (3l)th-order IIR

filter example, the overhead is 3.8% when L = 4 and K = 4. If we fix K = 4, the

overhead is 15.4% when L = 64, which is increased by 305%. However, if we fix L = 4,

the overhead is only increased by 55% when K = 64. Thus, in order to achieve lower

overhead, we should employ a longer configure data in designing obfuscated DSP circuits

when the total length of the configuration key is bounded. Indeed, this is another

advantage of our proposed methodology, as obfuscating DSP circuits through secure

switches incur smaller overhead, compared to the methods only based on obfuscating

FSMs.

Timing Overhead

As the main datapath in the obfuscated design stays unaltered as the original design

via high-level transformations, the critical path will not be increased. The obfuscating

FSM and the reconfigurator can be pipelined such that the critical path is only depen-

dent on the main datapath.

There can be a degradation of the performance with respect to latency if null oper-

ations are inserted into the obfuscated design. However, obfuscation does not require

introduction of null operations. The parameters of an obfuscated design should be

selected based on the application requirements and constraints. In addition, at the ex-

pense of the control complexity, the latency of the obfuscated design can be guaranteed

to be the same as the original design by expanding the periodicity of the switches as

discussed in Section 5.2.
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Power and Energy Overhead

We present the power consumptions for different meaningful modes of the (3l)th-

order IIR filter benchmark in Figure 5.16.
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Figure 5.16: Normalized power consumption for different meaningful modes (%) of the (3l)th-
order IIR filter benchmark (normalized to the power consumption when considering l is a vari-
able).

When comparing the obfuscated design to the original folded design without these

additional circuits (i.e., folded design of the 18th-order IIR filter), the power is only

slightly increased by 1.1%. As a result, if we compare the obfuscated design running in

the desired mode and the folded design, the power overhead is 3.9%. Additionally, if an

obfuscated DSP circuit is designed with no increase of latency as presented in Section

5.2, the energy overhead will also be small.

Number of Meaningful Modes

As we pointed out above, the number of modes is bounded by 2K . Additionally, if

we apply the design obfuscation algorithm based on the HCF algorithm, the number of

meaningful modes is also limited by the selected number of sections of the DSP circuits.

For instance, we could only implement at most 8 meaningful modes by choosing the

parameter M = 8 in the (3l)th-order IIR filter benchmark example. Recall that the

hierarchical folding algorithms are not only limited to cascade systems whose sections

have very similar structure, but can also be extended to other types of DSP systems
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where the sub-circuits are not directly connected. In general, the maximum number

of meaningful modes is dependent on the sum of the number of sub-circuits and the

number of inserted null sections.

Therefore, in order to increase the number of meaningful modes, we need to add more

null sections. We still use the 18th-order IIR filter as an example. If we fold the 18th-

order IIR filter directly without any null section, we could only implement 6 meaningful

variation modes in the obfuscated design, i.e., 3rd-order, 6th-order, 9th-order, 12th-

order, 15th-order, and 18th-order IIR filter. If we want to further increase the number

of meaningful modes, we have to insert null operations into the original circuit, but

at the price of additional power consumption and computation cycles. Consequently,

the area and power of the folded design will also increase. Note that the length of

configure data K should be always greater than or equal to log2(number of modes).

In our experiments, we set K = 16 to ensure all the possible meaningful modes can

be realized. The measurements of the area and power for the (3l)th-order IIR filter

benchmark are shown in Figure 5.17.

Figure 5.17: Normalized area and power cost for different numbers of meaningful modes.

From Figure 5.17, it can be seen that area and power do not increase very signif-

icantly with the increase of the number of meaningful modes (e.g., for the obfuscated
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circuit with 32 meaningful modes, the area and the power area are increased by 48% and

19%, respectively, compared to the example with 6 meaningful modes). Therefore, in

the proposed methodology, we can increase the number of meaningful modes to improve

the security while maintaining relatively low power and area overheads.

Number of Non-Meaningful Modes

As discussed above, if the number of meaningful modes increases to a value that the

total number of modes is greater than 2K , we need to increase the length of configure data

as well to realize all the possible meaningful variation modes. In this scenario, however,

there is another feasible solution that is to reduce the number of non-meaningful modes,

if we want to maintain the same length of configure data.

We present the experimental results of the normalized area and power for different

numbers of non-meaningful modes in Figure 5.18. All of the results are based on the

(3l)th-order IIR filter benchmark with 8 meaningful modes and K = 16.

Figure 5.18: Normalized area and power cost for different numbers of non-meaningful modes.

Furthermore, since the latency is not affected by the obfuscating FSM and the recon-

figurator, the performance of energy has the same trends as the power with the increase
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in number of variation modes and key length.

Discussion. Note that all the experimental results presented above are only based

on the design obfuscation algorithm based on the HCF algorithm for the two particular

benchmarks. These results are just aimed to provide an example of the performance

for the proposed methodology. Null operations are inserted in this example. However,

as discussed in Section 5.2, the obfuscated circuit can also be designed to maintain

the same latency as the original structure obtained by performing certain high-level

transformation based on the application requirements and constraints. In this case,

the overheads of timing, power and energy would be minimal, which is suitable for the

application where diminished runtime performance is not acceptable.

The actual performance of an obfuscated DSP circuit may vary significantly accord-

ing to multiple design parameters, which include the target DSP algorithm/application,

the specific variation of the algorithm, the relation between the desired mode and the

obfuscated design, the number of modified switches, the key length, the numbers of

meaningful and non-meaningful modes, and so forth. In the design of obfuscated DSP

circuits, the designer should carefully select these parameters according to the specific

application requirements and constraints.

5.7.2 Overhead Reduction

Generally, since the variation modes are designed during the high-level transfor-

mation phase, the reconfigurator logic can be optimized for minimum area during the

following design stages. Furthermore, we can generate additional logic designs with

lower overheads by choosing appropriate algorithms.

State register sharing is one possible approach to reduce the area consumption by

managing the relation among different switches in a sub-circuit. For example, as shown

in Figure 5.19, 4 flip-flops can be used to implement six 4-state ring counters, in contrast

to 12 if no sharing of state registers is exploited. The saving could be significant for



125

a large circuit. In Figure 5.19, the registers marked in bold represent the active state

registers for corresponding ring counters.

S0 S1 S2 S3R3 R1 R0

S1 S3 S0 S2R3 R2 R0

S3 S2 S1 S0R3 R2 R1 R0

S2 S0 S3 S1R2 R1 R0

S1 S0 S2 S3R2 R0

S1 S3 S2 S0R3 R1 R0

msb

R3 R2 R1 R0

Clock 0

Clock 1

Clock 2

Clock 3

0 0 1 1

0 1 0 1

1 1 0 0

1 0 1 0

R3 R1

R2

R1

R3

R2

Figure 5.19: State registers sharing.

Furthermore, exploiting the relation among the state registers is more effective than

managing the output function or the next-state function to control the relations among

different switches in a sub-circuit. However, note that by using these design optimization

techniques, the structural obfuscation degree (SOD) will be degraded, as the number of

independent switches (Ns) is decreased.

5.8 Comparison to existing obfuscation methods

As our work is the first attempt to develop a methodology to obfuscate DSP cir-

cuits by utilizing high-level transformations, it is hard to compare with other existing

obfuscation methods which are general to a wide variety of designs. Therefore, we have

introduced two metrics to analyze the security, which are discussed in Section 5.6.
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Most of the hardware obfuscation techniques in the literature can also be applied to

DSP circuits. However, the use of high-level transformations from a security perspec-

tive has not been incorporated into any of these prior hardware obfuscation techniques.

Moreover, other circuit locking techniques only achieve protection at one-level (i.e., en-

crypt the normal functionality by a key), while our proposed methodology provides a

two-level protection (i.e., structural obfuscation and functional obfuscation). The main

advantage of the proposed methodology is the generation of meaningful variation modes

from a signal processing point of view, since the meaningful modes create ambiguity to

the adversary such that it is hard for the adversary to distinguish the desired func-

tionality from other variation modes. Other existing methods, such as [62, 61], are not

specific to DSP circuits, which would not be able to ensure meaningful variation modes

from a signal processing point of view. Moreover, meaningful variation modes enable

our proposed design methodology to be adaptable to reconfigurable applications.

Finally, when considering the metrics of the design performance, our proposed

methodology is also superior. While our proposed approach only alters the logic of

switches, most of the existing methods are based on explicit FSM modifications (e.g.,

the technique proposed in [45]), which are not scalable since the construction of the

FSM is not practical for even moderate-sized circuits, not to mention that the number

of added obfuscation states can be relatively large as compared to the original FSM. In

our proposed methodology, area consumption is slightly increased due to the increased

cost of the control logic for the obfuscated switches.

5.9 Conclusion and Future Work

This chapter presents a novel low-overhead solution to design DSP circuits that

are obfuscated both structurally and functionally by utilizing high-level transformation

techniques. It is shown that verifying the equivalence of digital signal processing cir-

cuits by employing high-level transformations will be harder if some switches can be
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designed in such a way that are difficult to trace. A secure reconfigurable switch design

is incorporated into the proposed design scheme to improve the security. A complete

design flow is presented. In the proposed obfuscation methodology, the variation modes

and the additional obfuscating circuits could also be designed systematically based on

the high-level transformations. Compared to other existing obfuscation methods, an-

other advantage of the proposed methodology is the generation of meaningful variation

modes from a signal processing point of view, since the meaningful modes create ambi-

guity to the adversary such that it is hard for the adversary to distinguish the correct

functionality from other variation modes. Experimental results have demonstrated the

effectiveness of the proposed methodology.



Chapter 6

Beat Frequency Detector based

True Random Number

Generators: Statistical Modeling

and Analysis

6.1 Introduction

The security of most cryptographic systems relies on unpredictability and irrepro-

ducibility of digital key-streams that are used for encryption and/or signing of confi-

dential information. These key-streams are generated by random number generators

(RNG), which can be further classified into two categories: true random number gen-

erators (TRNG) and pseudo random number generators (PRNG). The key difference

between TRNG and PRNG lies in the entropy source component. A TRNG derives ran-

domness from an analog physical process (electronic thermal noise, radioactive decay,

etc.), while a PRNG relies on computational complexity, whose outputs are completely

determined by the seed. TRNGs are used for authentication and encryption purposes

128
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in systems requiring a high level of security. On-chip TRNGs typically harvest random-

ness from a circuit that converts transistor level noise such as random telegraph noise

(RTN), flicker noise and thermal noise [81, 82, 83, 84, 85, 86, 87] into a voltage or delay

signal.

A source of randomness commonly used in FPGA and ASIC implementations of

TRNGs is the unpredictability of signal propagation time across logic gates. This un-

predictability is typically accumulated in so-called ring oscillators (ROSCs), consisting

of a series of inverters or delay elements connected in a ring. The phase jitter of a

ring oscillator is then extracted by another ring oscillator or by an external clock signal.

Ring oscillators and the underlying physical phenomena have been widely studied in the

literature as building blocks for many on-chip TRNGs [88, 89, 90, 91, 92, 93, 94, 95].

One major advantage of these TRNG designs is that no analog component is required,

while conventional delay based TRNGs typically involve extensive analog components

for amplifying the device noise [96], which makes them less suitable for practical TRNG

devices.

Evaluating TRNGs is a difficult task. Clearly, it should not be limited to testing the

TRNG output bitstream. The physical characteristics of the source of randomness and

the randomness extraction method determine the principal parameters of the generated

bit stream: the bias of the output bit stream, correlation between subsequent bits,

visible patterns, etc. While some of the non-randomness can be corrected by efficient

post-processing, it is better if the generator inherently produces a good quality random

bitstream. Furthermore, passing NIST [97] or DIEHARD [98] tests does not guarantee

a TRNG, as these tests were originally designed to check the performance of PRNGs.

One important requirement in TRNG security evaluation is the existence of a math-

ematical model of the physical noise source and the statistical properties of the digitized

noise derived from it [99]. If a stochastic model of the physical randomness source is

available, it can be used in combination with the raw signal to estimate the entropy and

the bias depending on the random input variables and the TRNG principle. Therefore,
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in order to provide a proof of security for a TRNG, an analysis of the statistical property

of the underlying mathematical model is needed. However, creating a model of a TRNG

is difficult as the model parameters are unknown. Thus, it is impossible to predict per-

formance of new TRNG designs as their models cannot be created. On the other hand,

it can be argued that TRNG performance can only be measured from fabricated chips.

Therefore, how good a new TRNG design can only be determined by measurements

from a fabricated design. This chapter exploits the synergy between a model and the

measurements of the real device. A new ROSC based BFD-TRNG was fabricated and

tested [100]. Based on NIST tests, this TRNG was demonstrated to be an effective

TRNG. Our work, for the first time, presents a model of this BFD-TRNG. The model

parameters are derived by fitting the data measured from the fabricated device. Based

on this created model, a rigorous analysis of the BFD-TRNG is presented. Further-

more, several new BFD-TRNG architectures are proposed and their performances are

predicted based on the proposed model.

6.2 Beat Frequency Detector based TRNG

The oscillator sampling method extracts randomness from phase noise in free-running

oscillators [88, 89, 92]. An example of this technique is shown in Figure 6.1, where the

output of a fast oscillator is sampled on the rising edge of a slower ring oscillator us-

ing a D flip-flop (DFF). Note that the design parameters for the inverters of the two

ROSCs are not necessarily the same. The timing fluctuations of the edges of the slow

signal relative to the fast oscillator is the source of the randomness in the ROSC based

TRNG. Oscillator jitter causes uncertainty in the exact sample values, ideally producing

a random bit for each sample. Additionally, randomness can be artificially enhanced by

carefully selecting the ratio of the fast and slow oscillator frequencies. Periods of these

oscillations vary from cycle to cycle causing jitter in the rising and falling edges. The

goal is to sample the signal at a point in time that is in close proximity of a transition
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zone thereby making sampled value unpredictable. In order to accumulate sufficient jit-

ter when the fast ring oscillator is sampled, a large ratio of the fast and slow oscillator

frequencies is usually desired. Note that the slow oscillator can also be substituted by

an external clock, such as in the IBM M -parallel structure [101].

DFF
D Q

B

A

Figure 6.1: Two-oscillator TRNG.

Built on the prior work of ROSC based TRNGs, we have proposed a novel TRNG

design to harvest randomness from jitter variation based on the beat frequency detector

(BFD) [100]. A beat frequency detector captures the frequency difference between the

two ROSCs [102] with a very high resolution, which was originally used to measure

frequency degradation of digital circuits. As shown in Figure 6.2, the ROSC A is

continuously sampled by a ROSC B whose frequency is slightly different from ROSC

A. The output of the DFF exhibits the beat frequency Δf , which is determined by

the frequency difference of the two ROSCs. A counter measures the beat frequency

with ROSC B as the clock. The counter output increments every ROSC period until

it reaches the beat frequency interval after which the count is sampled and reset. The

mean of the frequency difference of the two ROSCs is caused by manufacturing process

variations, and can be further adjusted by trimming capacitors associated with the ring

oscillators [100]. The output count will fluctuate due to the random jitter in the circuit.

Under the presented setting, we can generate approximately 3.25 bits per sample by

using first 3 least significant bits (LSBs) directly and processing the 4th LSB with the

von Neumann corrector [103].
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Figure 6.2: BFD-TRNG: (a) basic principle, (b) die microphotograph in 65nm.

Overall, there are a number of circuit level advantages of the BFD-TRNG compared

to other existing ROSC based TRNGs [100]:

1. Higher tolerance to temperature or voltage drifts.

2. Fully digital operation.

3. Increased number of random bits per sample.

4. Reduced sampling time.

5. Minimal calibration, i.e., one-time calibration of the average count during start

up is needed.

6.3 Physical Component Modeling of RO TRNGs

As discussed above, the statistical tests such as NIST and DIEHARD are designed to

check the performance of PRNGs. The core of a TRNG is its randomness source, which

usually generates a time-continuous analog signal that is digitized by certain harvest

mechanism. In order to validate a TRNG, characterization of the randomness source
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and the harvest mechanism are needed. In this section, we investigate the statistical

properties of the BFD-TRNG.

The randomness source of the ring oscillator based TRNGs is the timing jitter in

each ROSC, which is a stochastic phenomenon caused by internal random noise such

as thermal, shot, and random telegraph noise in the transistors of a ring oscillator.

Jitter can be considered as a short-term variation of a digital signal from their ideal

position in time. The size of the jitter is determined by the properties of the hardware

device and the operating environment. In these ROSC based TRNG designs, two or

more oscillators are combined to produce a random bitstream. This jitter will create an

accumulated phase drift in each ring so that the transition region in the sampling period

is assumed to be unpredictable. In the literature, several studies of the jitter in ring

oscillators have been presented [104, 105, 106, 107, 108, 109, 110]. More precisely, the

jitter model should incorporate a Gaussian variable, 1/f noise, and a coupling sinusoidal

signals [89]. However, existing works [105, 106] report that the durations between the

transition times appear in many cases to be independent and identically distributed

Gaussian, as it is the most dominant component. This allows us to create simple model

for ROSC based TRNGs by characterizing the jitter as a Gaussian random variable with

zero mean. Moreover, there are two major reasons that we do not consider Random

Telegraph Noise (RTN) as the major random noise source: First, due to the averaging

effect, the RTN induced jitter is much smaller than that on a single transistor. Second,

the occurrence of RTN with large amplitude and high frequency is rare [81, 111].

A ROSC consists of an odd number of inverters connected together in a ring configu-

ration. This causes the output of the oscillator to change with a period of approximately

2kD, where k is the number of inverters in a ROSC andD is the delay of a single inverter.

If we consider the delay of each inverter as a Gaussian random variable Di ∼ N(μi, σ
2
i ),

a period of the ROSC can be written as

T = 2
k∑

i=1

Di ∼ N(μ, σ2), (6.1)
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which is also a Gaussian random variable. For simplicity, we directly consider a period

of the ROSC as a Gaussian random variable in this chapter. Periods vary from cycle

to cycle causing jitter in the rising and falling edges. Note that this model can incor-

porate different operating conditions (e.g., temperature, supply voltage) by modifying

σ accordingly.

6.4 Statistical Analysis of BFD-TRNG

Based on the illustrated model above, this section presents a comprehensive statis-

tical analysis to help resolve some important BFD-TRNG design issues:

(a) How much of the frequency difference is required to produce sufficient random

numbers?

(b) How many bits of the counter value can be used?

(c) How can the TRNG performance be further improved?

6.4.1 BFD Model

As shown in Figure 6.2, the BFD-TRNG consists of two ROSCs whose frequencies

are slightly different. The period of the two ROSCs can be modeled as TA ∼ N(μA, σ
2
A)

and TB ∼ N(μB, σ
2
B), respectively. Note that the two ring oscillators are implemented

identical, therefore their free-running frequencies are very close but not identical due to

the process variation. To prevent injection locking phenomenon or any other unintended

coupling between the two ROSCs, we separated the frequencies of the two ROSCs

using trimming capacitors prior to the testing. Experimental data showed no signs

of correlation between the ROSC frequencies [100]. An output will be generated once

the beat frequency is obtained, i.e., the faster ROSC completes one more cycle than

the slower ROSC. The output will be the number of cycles completed by ROSC B at

this moment. Without loss of generality, we always assume ROSC A is faster than
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ROSC B in this chapter, i.e., μA < μB. Since the inverters in ROSC A and ROSC

B are almost equivalently designed with only slight frequency difference and operated

under the same environmental condition, we can assume σ = σA = σB. Therefore, the

probability density function (pdf) of the counter value N can be expressed as

pdf(N) = {min N :
N∑
i=1

TAi <

N−1∑
i=1

TBi} = {min N : TAN <

N−1∑
i=1

(TBi − TAi)}. (6.2)

However, the N in Equation (6.2) does not have a standard probability density function.

Instead, we perform Monte Carlo simulations to study the statistical properties of this

model. Model parameters extracted from experimental measurements in [100] imply

Δμ
μB

= μB−μA
μB

= 0.28% and σA = σB = 0.0006. Note that in this chapter, without loss

of generality, we always assume the mean of the clock signal of the DFF to be 1 (i.e.,

μB = 1). Therefore, Δμ = 0.0028 and μA = 0.9972 in this setup. The distribution of

the counter values is shown in Figure 6.3.
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Figure 6.3: Counter value distribution (Δμ = 0.28%, σ = 0.0006).

6.4.2 Effect of Counter Value

Mean of Counter Value

It can be seen from Figure 6.3 that the mean of the counter values is close to

1
Δμ = 357. We repeat the simulation with Δμ = 0.4% as shown in Figure 6.4. The

mean is also close to 1
Δμ = 250. Thus, we observe that the mean of counter values is

inversely proportional to the value of Δμ.
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Figure 6.4: Counter value distribution (Δμ = 0.4%, σ = 0.0006).

This property can also be derived by mathematically. Since Equation (6.2) does

not have a closed-form expression, we consider a simpler case: TA and TB remain

unchanged during one measurement time. In fact, this is the original function of a beat

frequency detector, i.e., to measure the frequency difference of ROSC A and ROSC B.

In this case, Equation (6.2) can be simplified to

N = {min N : |N − NTB

TA
| ≥ 1}. (6.3)

By solving the equation, we can get

N = � TB

|TB − TA| �. (6.4)

There is one trivial observation that |TB − TA| cannot be very small; otherwise,

the counter value will be very large (i.e., only one counter value can be obtained in very

large number of cycles). If we consider TA and TB as the average periods of N cycles,

these can be characterized as Gaussian random variables
∑N

i=1 TAi

N ∼ N(1−Δμ, σ
2

N ) and
∑N

i=1 TBi

N ∼ N(1, σ
2

N ), respectively. Thus,

TB

TB − TA
∼ N(1, σ

2

N )

N(Δμ, 2σ
2

N )
, (6.5)
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which can be described as a ratio of two Gaussian random variables. We can approxi-

mate the expected value of TB
TB−TA by a second order Taylor expansion [112]:

E(
TB

TB − TA
) ≈ E(TB)

E(TB − TA)
− Cov(TB, TB − TA)

E2(TB − TA)
+

V ar(TB − TA)E(TB)

E3(TB − TA)

=
1

Δμ
−

σ2

N

Δμ2
+

2σ2

N

Δμ3

=
1

Δμ
+

1

N

σ2

Δμ2
(
2

Δμ
− 1). (6.6)

Based on the assumption that TA and TB are uncorrelated, we can obtain that

Cov(TB, TB − TA) = V ar(TB) = σ2. For the parameters Δμ = 0.28%, σ = 0.0006,

the above equation will equal to

1

Δμ
+

1

N

σ2

Δμ2
(
2

Δμ
− 1) = 357.14 +

32.75

N
. (6.7)

It can be seen from Figure 6.3 that 330 < N < 390. Consequently, the second term

of Equation (6.7) (i.e., 32.75
N ) is less than 0.1. Consequently, the mean of counter values

is approximately 1
Δμ ≈ 357 in this case.

Typically, the second term of Equation (6.7) will be relatively small compared to

1
Δμ , since Δμ is a very small number and σ2

Δμ2 is generally less than 1.

As a result, we can conclude

E(N) ≈ 1

Δμ
. (6.8)

Thus, in contrast to the original function of the BFD, i.e., to measure the slight

frequency difference of two signals, we should set up an appropriate frequency difference

for the two ROSCs. In other words, trimming capacitors should be used to set an

appropriate Δμ for the two ROSCs, instead of equalizing their frequencies or making

the frequency differences as small as possible. Therefore, we mainly harvest randomness

from the jitter noise instead of the metastability in our design, as the random numbers

are generated from the delay difference variations of the two ROSCs, instead of from

sampling one ROSC with another ROSC. Note that our current test chips provide a
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frequency trimming resolution of 0.1%, this can be further reduced with more trimming

capacitor bank controls.

Dynamic Range of Counter Value

The randomness of the BFD-TRNG comes from the counter values. If the dynam-

ic range is larger, we could use more bits of the counter value as random numbers.

Therefore, it is important to examine the statistics of the dynamic range of the counter

values. We attempt to use a Gaussian distribution to fit the counter values from ex-

perimental measurements and consider 6σG as the dynamic range based on the fitting

result N(μG, σ
2
G). An example is shown in Figure 6.3, with parameters Δμ = 0.28%,

σ = 0.0006. It is shown that the distribution of the counter values is close to a Gaussian

distribution. In this case, the dynamic range 6σG is equal to 34.6.

We repeat the simulation for different parameters as shown in Figure 6.4 and Fig-

ure 6.5, whose dynamic ranges are 20.3 and 68.9, respectively. The relationship between

the dynamic range of counter values and Δμ is shown in Figure 6.6, where the mean of

counter values is equal to 1
Δμ . It can be seen that the dynamic range of counter values

will increase with the increase of σ, while it will decrease with the increase of Δμ. This

observation is also conformed from our measured chip data [100]. Moreover, it can be

seen that only slight change of Δμ will affect the counter values significantly.
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Figure 6.5: Counter value distribution (Δμ = 0.28%, σ = 0.0012).
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Figure 6.6: The relationship between the dynamic range of counter values and Δμ (σ =
0.0006%).
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Figure 6.7: The relationship between the dynamic range of counter values and σ (Δμ = 0.28%).
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We can also examine the variance of counter values by a second order Taylor expan-

sion [112]:

V ar(
TB

TB − TA
) ≈ E2(TB)

E2(TB − TA)
(
V ar(TB)

E2(TB)
− 2

Cov(TB, TB − TA)

E(TB)E(TB − TA)
+

2V ar(TB − TA)

E2(TB − TA)
)

=
1

Δμ2
(
σ2

N
− 2σ2

NΔμ
+

2σ2

NΔμ2
)

=
σ2

NΔμ2
(1− 2

Δμ
+

2

Δμ2
). (6.9)

Since we have demonstrated that the expected value of N is approximately 1
Δμ and

Δμ is a very small value, we can further approximate the above equation as

V ar(
TB

TB − TA
) ≈ σ2

NΔμ2
(1− 2

Δμ
+

2

Δμ2
)

≈ σ2

Δμ

(
2(

1

Δμ
− 1

2
)2 +

1

2

)

≈ 2σ2

Δμ3
. (6.10)

Consequently, we can obtain

σG ≈
√

V ar(
TB

TB − TA
) ≈

√
2σ

Δμ
3
2

. (6.11)

Thus, we can conclude that the dynamic range of counter values increases linearly

with σ and is inversely proportional to Δμ
3
2 .

6.4.3 Bounds on Bias of Each Bit

According to the NIST test, the probability of ”1” occurrence, p1, should satisfy

49.91% ≤ p1 ≤ 50.09% to pass the frequency test of NIST tests [97]. For any bit of

the counter values, if the probability of ”1” occurrence is within the acceptance range

[49.91%, 50.09%], then this bit might be used as random numbers directly. Otherwise,

certain techniques are required to post-process the bit. Note that we only consider the

biasedness metric in our simulation, as other metrics are completely dependent on the

performance of the employed pseudo random number generator for simulation. The p1
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of each bit for the distribution in Figure 6.3 is presented in the second row of Table 6.1.

Since the counter values are less than 512 in our setup, we only need to consider the

first 9 LSBs. It can be seen that the first 3 LSBs are within the acceptance range. In

fact, our chip experimental results show that all of the first 3 LSBs can pass the NIST

test individually or collectively after serializing them.

Table 6.1: The Probability of ”1” Occurrence p1 for Each Bit
Distribution p1(b8) p1(b7) p1(b6) p1(b5) p1(b4) p1(b3) p1(b2) p1(b1) p1(b0)
Figure 6.3 1 0 1 0.8384 0.1979 0.4564 0.5003 0.4991 0.4995
Figure 6.8 0.5173 0.4827 0.4827 0.4827 0.4838 0.4991 0.4998 0.5007 0.5005

We also present the value of p1 of each bit for the distribution as shown in Figure 6.8

with parameters Δμ = 0.391% and σ = 0.0009 in Table 6.1. The dynamic range 6σG is

30.2 which is less than the dynamic range of the distribution in Figure 6.3. However,

the first 4 LSBs are within the acceptance range. Furthermore, the higher bits are

also less biased compared to counter values in Figure 6.3. Therefore, the counter values

in Figure 6.8 have better randomness than the counter values in Figure 6.3, even though

the dynamic range of the counter values in Figure 6.8 is smaller.
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Figure 6.8: Counter value distribution (Δμ = 0.391% and σ = 0.0009).

As a result, we can conclude that the number of bits that we can use is not only

dependent on the dynamic range, but also dependent on the mean of the counter values.

For example, we consider the two cases as shown in Figure 6.9. The counter values in

the top and the bottom panels of Figure 6.9 have the same dynamic range. However,
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the mean of counter values in the top panel is 15.5, which is just at the boundary of

b3 = 0 and b3 = 1. As a result, the expected bias ε will be 0, where ε is defined as

ε = |0.5−p1|. For the counter values in the bottom panel whose mean is 19.5, p1 = 0.11.

Thus, the bias is |0.5− p1| = 0.39. This is because the mean of the counter values is in

the middle of the region where b3 = 0.
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Figure 6.9: The biasedness of b3 for different counter values.

For a certain dynamic range of counter values, in the best case, E(N) = 2km−0.5 for

bk (m is an integer), which leads to ε = 0. In the worst case, E(N) = 2km+2k−1− 0.5,

which generates the largest bias ε. Ideally, we can extract more randomness from the

counter values by carefully adjusting the mean. However, in order to ensure the quality

of each bit when taking noise and operating environmental change into consideration,

we have to consider the bias in the worst case. Table 6.2 presents the corresponding

bias ε for each bit under different σG in the worst case.

It can be seen from Table 6.2 that the first LSB is guaranteed to be unbiased if

the dynamic range of counter values is greater than 6σG = 12. Furthermore, if the

dynamic range is greater than 30, the first 3 LSBs might be used as random numbers

without any post-processing. As a result, we have to ensure at least a dynamic range

of 30 for the BFD-TRNG [100], if we output the first 3 LSBs directly. In addition, we
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Table 6.2: Bias ε for Each Bit under Different σG in the Worst Case
σG ε(b8) ε(b7) ε(b6) ε(b5) ε(b4) ε(b3) ε(b2) ε(b1) ε(b0)
1 0.5 0.5 0.5 0.5 0.5 0.4999 0.4545 0.1854 0.0046
2 0.5 0.5 0.5 0.5 0.4999 0.4545 0.1854 0.0046 0
3 0.5 0.5 0.5 0.5 0.4923 0.3176 0.0397 0 0
4 0.5 0.5 0.5 0.4999 0.4545 0.1854 0.0046 0 0
5 0.5 0.5 0.5 0.4986 0.3904 0.0926 0.0003 0 0
6 0.5 0.5 0.5 0.4923 0.3176 0.0397 0 0 0
7 0.5 0.5 0.5 0.4777 0.2475 0.0146 0 0 0
8 0.5 0.5 0.4999 0.4545 0.1854 0.0046 0 0 0
9 0.5 0.5 0.4996 0.4246 0.1336 0.0012 0 0 0
10 0.5 0.5 0.4986 0.3904 0.0926 0.0003 0 0 0
11 0.5 0.5 0.4964 0.3542 0.0618 0.0001 0 0 0
12 0.5 0.5 0.4923 0.3176 0.0397 0 0 0 0
13 0.5 0.5 0.4862 0.2816 0.0245 0 0 0 0
14 0.5 0.4999 0.4777 0.2475 0.0146 0 0 0 0
15 0.5 0.4999 0.4671 0.2153 0.0083 0 0 0 0

cannot use b4 to b8 directly while the dynamic range is less than 90. Since the dynamic

range increases with the increase of the mean of the counter values, we have to set an

appropriate Δμ to attain sufficient randomness of the TRNG design.

Figure 6.10 shows the relationship between the number of bits that we can output

directly and the dynamic range. The number of unbiased bits can be expressed by

fitting the curve perfectly as

number of unbiased bits = 
log2 40
23

+ log2σG� = 
log2 40
23

+ log2σ − 3

2
log2Δμ+

1

2
�.

(6.12)

Therefore, we can conclude that the number of bits that we can use is logarithmically

proportional to the dynamic range of the counter values.

Summary

The observations are summarized below.

1. The mean of the counter values is inversely proportional to Δμ.

2. The dynamic range of counter values is inversely proportional to Δμ
3
2 and is

proportional to σ.
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Figure 6.10: The relation between the number of unbiased bits and the value of σG.

3. The sampling rate is inversely proportional to the mean of counter values.

4. The number of unbiased bits is logarithmically proportional to the dynamic range

of counter values; thus, it is inversely logarithmically proportional to Δμ
3
2 .

5. The sampling rate is proportional to Δμ.

As we are only able to control the value of Δμ, we should set an appropriate Δμ

to achieve better throughput. Note that a higher σ can be obtained by appropriately

sizing the transistor and choosing number of stage in the ROSCs, but this is out of

the scope of this chapter. For post-fabrication throughput optimization, we are able to

achieve better throughput with the following two methods based on Δμ controlling.

(a) Use a higher Δμ (i.e., lower counter values), which could improve the sampling

rate. But we may only be able to use limited number of bits from each counter

value as random numbers.

(b) Use a lower Δμ (i.e., higher counter values). The sampling rate is reduced. But

we can use more bits from the counter values as random numbers. Moreover, we

can further post-process the higher bits of the counter values to generate more

bits.

Based on the summary above, we can obtain the relationship between the throughput

(i.e., rate × number of unbiased bits) of the BFD based design and parameters Δμ, σ
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as below:

throughput ∝ Δμ
log2 40
23

+ log2σG� ≈ Δμ
log2 40
23

+ log2σ − 3

2
log2Δμ+

1

2
�. (6.13)

If we consider Equation (6.13) without the floor function as

throughput ∝ Δμ(log2
40

23
+ log2σ − 3

2
log2Δμ+

1

2
). (6.14)

Equation (6.14) achieves maximum value at

Δμ = 2(
2
3
log2

40
√
2σ

23
− 1

ln2
). (6.15)

For example, the values of Equations (6.13) and (6.14) are shown in Figure 6.11 when

σ = 0.0006.
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Figure 6.11: Values of Equations (6.13) and (6.14) for different Δμ’s (σ = 0.0006).

It can be seen from the top panel of Figure 6.11 that the BFD-TRNG achieves the

best throughput when Δμ = 0.0050 (2 bits can be used as random numbers), while the

maximum value of Equation (6.14) is achieved at Δμ = 2(
2
3
log2

40
√
2σ

23
− 1

ln2
) = 0.004768 as

shown in the bottom panel. Therefore, in this case, we can adjust the Δμ such that

the mean of the counter values is about 200 to achieve higher throughput. Generally,

the Δμ should be adjusted according to the environmental noise σ based on Equation

(6.15).
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6.4.4 Post-Processing

As discussed above, the number of bits that can be treated as random numbers is

determined by both the dynamic range and the mean of counter values. For those bits

with some randomness that do not meet the NIST test requirement (i.e, 0.0009 < ε <

0.5), post-processing techniques can be used to generate more random bits.

Post-processing techniques for TRNGs are used to ameliorate non-randomness in the

raw bitstream, which are basically compression functions that are applied to the raw

bitstream before the output of the TRNG. Furthermore, post-processing techniques can

improve the stability of a TRNG, as it is able to correct the raw bitstream if operating

conditions change. In the BFD-TRNG design, if a certain bit starts out with a high

bias, the post-processing step would transform the bitstream such that the bias becomes

more acceptable. The two common techniques we consider in the post-processing step

include block-wise XOR and Von Neumann corrector [103]. Other techniques, such

as linear compression functions based on good linear codes can also be used for de-

biasing [93, 113, 114]. The comparison of block-wise XOR and Von Neumann corrector

is illustrated in Table 6.3, where XOR d corresponds to XOR operation with a block

size of d.

Table 6.3: Comparison of Block-Wise XOR and Von Neumann Corrector
XOR d Von Neumann

Rate 1
d

1
4 − ε2

bias 2d−1εd 0

Each of these post-processing techniques has its pros and cons. Using Von Neumann

corrector will produce perfect correction with 0 bias but throughput is reduced to less

than 25% of its original. XOR may achieve better throughput with a small d. How-

ever, we have to ensure that 2d−1εd is within the acceptance range. For example, the

compression rate is 50% when d = 2. However, the bias is only improved from ε to 2ε2.

Table 6.4 presents the number of bits that we can generate for different σG in the

worst case. Each value in Table 6.4 represents how many bits can be used as random
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numbers for a certain counter value. For example, if a bit has a bias ε < 0.0009, the

bit can produce 1 random bit per sample. However, if the bias ε exceeds the threshold,

this bit of the counter value can be used to generate 1
d random bit per sample by using

block-wise XOR or 1
4 − ε2 bit per sample by the Von Neumann corrector. Entropy

is essentially an upper bound on the number of bits that we can generate for a given

dynamic range. Note that the total entropy can be obtained by the sum of the entropy

for each individual bit, according to Table 6.2.

Table 6.4: Number of Bits per Sample for Different σG in the Worst Case
σG Von Neumann XOR Entropy
1 0.51 0.64 2.17
2 1.51 1.64 3.17
3 2.41 2.4 3.75
4 2.51 2.64 4.17
5 3.34 3.29 4.49
6 3.41 3.4 4.75
7 3.46 3.61 4.97
8 3.51 3.64 5.17
9 3.55 3.7 5.34
10 4.34 4.29 5.49
11 4.37 4.3 5.62
12 4.41 4.4 5.75
13 4.43 4.42 5.86
14 4.46 4.61 5.97
15 4.49 4.63 6.07

It can be seen that the block-wise XOR and Von Neumann corrector have comparable

performances for the BFD-TRNG. However, for the bit with a small bias, XOR will be

more favored than Von Neumann corrector. As we always try to utilize the bits with

smaller biases, block-wise XOR could outperform Von Neumann corrector in general.

From the simulation results, besides the bits of counter values that we can output

directly, we may only be able to use 2 more bits by post-processing, as the rate will

be too low for the higher bits. According to Table 6.2, for example, we can use the

first 3 LSBs directly when σG = 7. If we only want to post-process the 4th LSB to

generate more bits, we can generate 3.5 bits per sample by XOR or approximately 3.25
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bits per sample by Von Neumann corrector. Moreover, the output of block-wise XOR is

synchronous while the output of Von Neumann corrector is asynchronous. The challenge

of using block-wise XOR is that we need to determine the value of d for each bit based

on the dynamic range of the counter values.

6.4.5 Online Test and Feedback Control

Due to tolerances of the components, aging effects, a total breakdown of the noise

source or possible active attacks, the TRNG may output considerably weaker random

numbers. Online tests can be very useful for a TRNG to detect non-tolerable weaknesses

while the TRNG is in operation [115]. Based on our statistical analysis results, the

counter values can be easily used as a performance indicator. We can monitor the

counter values during operation. Note that we will monitor higher bits of the counter

value to achieve feedback control, while LSBs are used as random numbers. As a result,

the problem of output manipulation can be avoided. If the dynamic range or mean of

the counter values changes significantly, there is a high possibility of attack or significant

operating environmental change. In this case, TRNG should stop outputting random

numbers.

Furthermore, feedback control can be used to neutralize the environmental change

or aging effects. Trimming capacitors in ring oscillators can be adjusted adaptively to

keep the same value of Δμ based on our statistical analysis results. For example, we

can adjust the trimming capacitor according to the higher bits of the counter values,

while the lower bits are considered as random numbers.

Feedback control can also improve the efficiency of the BFD-TRNG:

(a) Based on the optimal relationship of Δμ and environmental noise σ as expressed

in Equation (6.15), we may adjust the trimming capacitor according to the distri-

bution of counter values during setup. For example, we can estimate the σ after

collecting a number of counter value samples based on Equation (6.11). Then
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we will be able to determine whether the current Δμ is desired or it needs to be

adjusted.

(b) According to the dynamic range, the TRNG can decide the number of unbiased

bits that can be output directly in the worst case. Moreover, the type of post-

processing techniques can also be determined to extract random numbers from

higher bits of the counter values.

6.5 Alternate BFD-TRNG Architectures

Motivated by the statistical analysis results, in this section, we propose a number

of alternate BFD-TRNG designs, which can further improve the performances.

6.5.1 Parallel Structure

Parallelizability is also a desired metric of a TRNG. In fact, the BFD-TRNG is

notably easy to parallelize by adding as many extra ROSCs instead of 2 ROSCs to

generate multiple outputs, as shown in Figure 6.12. Our experimental results show

that the counter values of the two adjacent outputs are highly correlated. However,

the advantage of the BFD-TRNG is that we can consider bits of the counter values

individually. For example, the simulated correlation coefficients for a 4-parallel structure

are presented in Table 6.5. Note that the Δμ is assumed to be same for all the ROSC

pairs. According to NIST test, only the bitstreams with correlation coefficients less than

0.073 can pass the test [97]. It can be seen that the correlation coefficients of the counter

values of two adjacent outputs are large, i.e., around 0.5. However, the correlations of

the first 4 LSBs from two adjacent outputs are very small, while the counter values

and individual bits are not correlated for non-adjacent outputs. Therefore, it can be

concluded that the first 4 LSBs from the outputs in Figure 6.12 can still be used as

random numbers. In general, we can generate 3.25M bits per sample by using M + 1
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ROSCs and M DFFs, since we can use the first 3 LSBs directly and generate 1
4 bits per

count by postprocessing the 4th LSB with Von Neumann corrector.
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Output M
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...
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Counter
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Counter
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Frequency 
Counter

Figure 6.12: An M-parallel TRNG structure.

Table 6.5: Correlation Coefficients of Each Bit among the Outputs for a 4-Parallel Structure
Correlation Coefficients

Output (1,2) Output (2,3) Output (3,4) Output (1,3) Output (2,4) Output (1,4)

[b8 : b0] 0.4967 0.4970 0.4974 0.0018 -0.0006 -0.0007

b0 0.0005 0.0005 0.0008 -0.0003 0.0000 0.0009

b1 0.0003 0.0008 0.0016 -0.0006 -0.0004 -0.0018

b2 0.0010 0.0013 0.0005 0.0004 0.0001 -0.0016

b3 0.0027 0.0049 0.0023 0.0014 -0.0006 -0.0004

b4 0.1193 0.1177 0.1190 -0.0008 -0.0009 0.0002

b5 0.2974 0.2966 0.2971 0.0006 -0.0013 0.0001

b6 0.3023 0.2998 0.3001 0.0009 -0.0010 0.0001

b7 0.3023 0.2998 0.3001 0.0009 -0.0010 0.0001

b8 0.3023 0.2998 0.3001 0.0009 -0.0010 0.0001

6.5.2 Cascade Structure

A novel cascade structure which could achieve better randomness is shown in Fig-

ure 6.13. Note that ROSC B also connects to the clock signal of the counter (not shown

in Figure 6.13). The dynamic range of this cascade structure is higher than that of

the original BFD-TRNG. Figure 6.14 shows the counter value distributions of the orig-

inal BFD-TRNG and the cascade structure. Note that in our simulation, we set the
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|fA − fB| − |fB − fC | = 0.28% to maintain the same mean of the counter values. In

other words, the frequencies of the 2 DFFs in the first stage are not very close to each

other.
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Figure 6.13: A cascade TRNG structure.
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Figure 6.14: Counter values of the original BFD-TRNG (top figure) and the cascade structure
(bottom figure).

The dynamic range is increased from 34.6 to 64.3 by adopting the cascade structure.

As a result, we can also use the 4th LSB directly according to Table 6.2, while main-

taining the same mean of the counter values. Therefore, the randomness is improved

by using the cascade structure. Alternatively, we can reduce the mean of the counter

values to increase the sampling rate, while maintaining considerable randomness. The
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cascade structure will be extremely useful when the environmental noise is small. The

BFD-TRNG may even be adaptively configured between 3 ROSCs and 2 ROSCs. For

example, if the noise is relatively small, we could use 3 ROSCs as shown in Figure 6.13

to increase the dynamic range of counter values; otherwise, we could use 2 ROSCs as

shown in Figure 6.12 to output 2 bitstreams of random numbers. Furthermore, this cas-

cade structure provides higher flexibility for adjusting trimming capacitors associated

with the ring oscillators.

6.5.3 Parallel-Cascade Structure

We can also parallelize the cascade structure, which leads to the so-called parallel-

cascade structure of the BFD-TRNG. For example, a 4-parallel-cascade structure is

shown in Figure 6.15. Two adjacent outputs share two ring oscillators, while the outputs

that are separated from one output share one ring oscillator. We also need to examine

the correlation coefficients of the outputs to ensure the bits that are used as random

numbers are not correlated. The simulated correlation coefficients for the counter values

and the individual bits among different outputs are presented in Table 6.6. Note that we

set all the Δf ’s in Figure 6.15 as 0.0028. It can be seen that the correlation coefficients

for the first 4 LSBs between any two of the outputs are still very small and satisfy the

NIST criteria. The correlations of the counter values and higher bits (i.e., b4 to b8)

between two adjacent outputs are large, while the correlation coefficients of the counter

values and higher bits between the outputs 1 and 3 or the outputs 2 and 4 are smaller

but still exceed the threshold (i.e., 0.0073). The outputs 1 and 4 are not correlated

for both the counter values and the individual bits, since they do not share any ring

oscillator. Therefore, an M -parallel cascade structure can generate 4M bits per sample

by using (M + 2) ROSCs and (2M + 1) DFFs. Note that in order to generate 4 bits

from each output, we need to ensure the frequencies are either descending or ascending

from the first ROSC to the last ROSC, as Δf = ||fA−fB|−|fB−fC || = |fA−2fB+fC |
only if fA > fB > fC or fA < fB < fC . Otherwise, Δf will equal to |fA − fC |, which
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leads to the same dynamic range as the original BFD-TRNG. As a result, only 3.25 bits

can be obtained from each output in this case. However, there is a problem when M

is large that the frequency difference between the first ROSC and the last ROSC will

be fairly large if we want to generate 4 bits from each output, which may exceed the

capability of the trimming capacitors. Therefore, the frequencies need not necessarily

be set as either descending or ascending from the first ROSC to the last ROSC, which

leads to a parallel-cascade structure where some of the outputs can generate 4 bits each

and the others can generate 3.25 bits each. The performance is still improved.
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Figure 6.15: A 4-parallel-cascade structure.

Table 6.6: Correlation Coefficients of Each Bit among the Outputs for a 4-Parallel-Cascade
Structure

Correlation Coefficients
Output (1,2) Output (2,3) Output (3,4) Output (1,3) Output (2,4) Output (1,4)

[b8 : b0] 0.6640 0.6634 0.6650 0.1666 0.1664 -0.0027

b0 0.0002 -0.0004 -0.0003 0.0001 0.0008 0.0000

b1 -0.0009 0.0012 0.0005 -0.0014 0.0005 -0.0003

b2 -0.0007 0.0011 -0.0007 -0.0006 0.0010 -0.0002

b3 -0.0029 -0.0015 -0.0023 0.0005 0.0006 -0.0004

b4 0.0377 0.0382 0.0388 0.0197 0.0181 -0.0001

b5 0.3539 0.3534 0.3542 0.1032 0.1013 0.0009

b6 0.1771 0.1673 0.1701 0.0163 0.0189 -0.0015

b7 0.1817 0.1721 0.1760 0.0145 0.0177 -0.0011

b8 0.1817 0.1721 0.1760 0.0145 0.0177 -0.0011
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6.6 Comparison with Other Existing ROSC based TRNGs

Furthermore, by adopting the proposed statistical model, we could also analyze

prior ring oscillator based TRNG designs. In this section, we present the performance

comparisons of the BFD-TRNG with other existing ring oscillator based TRNGs.

6.6.1 Two-Oscillator TRNG

The most comprehensive model of a two-oscillator TRNG is presented in [109]. In

this section, we analyze the two-oscillator TRNG as shown in Figure 6.1 based on our

simple model, i.e., assume a Gaussian random variable for the period of a ring oscillator.

As discussed in Section 6.2, the frequency ratio between the two ROSCs plays a very

important role in the randomness of the output. Experimental results have shown that

the randomness is the worst when the fast oscillator frequency is an integer multiple of

half the slow oscillator frequency [104]. In practice, the ratio is often carefully selected

to achieve better randomness [92].

However, even if the TRNG design was originally designed to operate at a suitable

oscillator frequency/sampling frequency ratio, a change in environmental conditions or

worse adversarial influences may shift the frequency ratio to a weak operating point. It

is claimed that the amount of accumulated jitter 6σacc should be at least six times as

large as the period of the fast oscillator to attain sufficient randomness [116]:

6σacc ≥ 6μA, (6.16)

where σ2
acc ≈ σ2

B+Lσ2
A, since the randomness is generated from the timing fluctuations of

the edges of the slow signal relative to the fast oscillator. Let L represent the number of

periods ROSC A is completed before it is sampled. If we assume the design parameters

for the inverters of the two ROSCs are the same, σ2
B will equal Lσ2

A, since the two

ROSCs accumulated approximately with the same amount of jitter. Consequently, the



155

value of L can be calculated as:

L ≥ μ2
A

2σ2
A

. (6.17)

In order to ensure sufficient randomness, a large frequency ratio is required. For exam-

ple, L should be greater than 1 million when σA = 0.0006. However, in the application

of two-oscillator TRNG, the value of σA is usually much larger. Frequency dividers can

also help to achieve a large frequency ratio [117, 118]. Furthermore, a smaller ratio is

sufficient to pass the NIST test in practice (i.e., NIST test is not that strict, compared

to the statistical analysis). For example, experimental results [119] show that the peri-

od of a 7-stage ring oscillator implemented with a 65 nm CMOS process is 220ps from

circuit simulation; thus, 220× 6 = 1320ps of jitter is required. On the other hand, the

jitter amount of a 251-stage ring oscillator with 64-frequency dividers is measured as

100ps, which is much smaller than the necessary value. Moreover, the results in [101]

demonstrate that at least a ratio of 500 is required to achieve sufficient randomness to

pass the NIST test.

6.6.2 ROSC TRNG with XOR Tree

A ROSC TRNG with XOR tree has been proposed in [93], which does not require

large frequency separation of the fast and slow ring oscillators. The outputs from the

oscillator rings are XOR-ed together and sampled with a DFF. A series of ring oscillators

are combined to compensate for the imbalance between the number of zeros and ones

in the random signal. In this structure, the jitter is accumulated spatially instead of

temporarily. The TRNG structure is shown in Figure 6.16.

A stochastic approach of this TRNG is presented in [93]. It shows that in order

to increase the entropy of the generated binary raw signal and to make the generator

provably secure, large number of ROSCs needs to be employed. Experimental results

show that the outputs of at least 114 supposedly independent ROSCs are XOR-ed and

sampled using a reference clock with a fixed frequency can pass the NIST test. Only a

small frequency ratio of 5 to 20 is required (e.g., approximately 6 in [93]).
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Figure 6.16: ROSC TRNG with XOR tree.

However, some weakness of this TRNG design has been pointed out in [120]. The

main concern is that the XOR-tree and the sampling D flip-flop cannot handle the

high number of transitions from the oscillator rings. With many oscillator rings in

parallel, the number of transitions during a sampling period will be too high to meet

the setup/hold-time requirements. Experimental results show that approximately 50%

of the transitions get lost [121]. To cope with the problem with many transitions in the

sampling period, an enhanced TRNG based on the ROSCs has been proposed in [94] by

adding an extra DFF after each ring oscillator before the XOR gate Figure 6.17. This

TRNG design can generate desirable raw bitstream with a significantly reduced number

of ROSCs. Its outputs can pass the NIST and DIEHARD tests without postprocessing.

The mathematical models for the ROSC TRNG with XOR tree as shown in Fig-

ure 6.16 and the enhanced structure as shown in Figure 6.17 are the same [122]. Similar

to the two-oscillator based TRNG, the variance of the accumulated jitter of the ROSC

TRNG with XOR tree can be expressed as

σ2
acc ≈ σ2

B +MLσ2
A, (6.18)

where M is the number of ROSCs in parallel and L is the frequency ratio.
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Figure 6.17: Enhanced ROSC TRNG with XOR tree.

The number of ROSCs can be reduced by using the enhanced ROSC TRNG with

XOR tree [94]. Experimental results in [94] show that 50 ROSCs in parallel are required

to achieve sufficient randomness to pass the NIST test. However, this TRNG design is

still not very efficient, since most of the ROSCs in this structure do not improve the

entropy of random numbers if their transition regions are not sampled.

6.6.3 Comparison

There are a number of advantages of the BFD-TRNG designs. First of all, the

random numbers of the BFD-TRNG are generated from counter values, which is a bet-

ter harvest mechanism that can utilize more of the entropy. The bits per sample can

be increased by post-processing or appropriately adjusting the counter values, while

other existing ROSC based TRNGs are only able to generate maximum 1 bit per sam-

ple. Moreover, we could also choose to post-process with the counter values instead of

individual bits.

Furthermore, other existing ROSC based TRNGs are sampled continuously. If the

accumulated jitter is not sufficient between consecutive samplings, these samples will
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be correlated. However, for the BFD-TRNG, the counter will be reset after collecting

the data. As a result, the correlation between consecutive samples is reduced.

We continue to compare their performances according to evaluation metrics as below.

Randomness

In fact, the BFD-TRNG can be considered as a faster ROSC B that is sampled by

a slower ROSC with frequency |fA − fB|. Therefore, the variance of the accumulated

jitter between two consecutive samplings is

σ2
acc ≈ 22σ2

B + Lσ2
A, (6.19)

where L is equal to the counter value N in this case. This is similar to the sum of the

jitter in ROSC A and two times of the jitter in ROSC B. If we still assume the clock

signal is generated from a slower ROSC and the design parameters for the inverters in

the two ROSCs are the same (i.e., σ2
B = Lσ2

A), the value of σ2
acc for the BFD-TRNG is

σ2
acc ≈ 5Lσ2

A. (6.20)

Similarly, the cascade structure as shown in Figure 6.13 can be considered as a faster

ROSC B which is sampled by a slower ROSC with frequency |fA − 2fB + fC |. In this

case, the accumulated jitter will be the sum of the jitter in ROSC A, the jitter in ROSC

C, and three times of the jitter in ROSC B. As a result, the value of σ2
acc for the cascade

structure will be

σ2
acc ≈ (1 + 1 + 32)Lσ2

A = 11Lσ2
A. (6.21)

The value of σ2
acc for each TRNG design is summarized in Table 6.7.

It can be seen that the BFD-TRNG has greater σ2
acc per ROSC than prior ROSC

based TRNGs, which could lead to better randomness, as it accumulates a larger amount

of jitter before it is sampled. Moreover, it can be seen that the σ2
acc of BFD-TRNG is
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Table 6.7: Comparison of σ2
acc for Different ROSC based TRNG Designs

σ2
acc σ2

acc per ROSC
Two-Oscillator TRNG (Figure 6.1) 2Lσ2

A Lσ2
A

ROSC TRNG with XOR tree (Figure 6.16, Figure 6.17) (M + 1)Lσ2
A Lσ2

A

BFD-TRNG (Figure 6.2) 5Lσ2
A 2.5Lσ2

A

M -parallel BFD-TRNG (Figure 6.12) 5MLσ2
A

5M
M+1Lσ

2
A

Cascade BFD-TRNG (Figure 6.13) 11Lσ2
A 3.67Lσ2

A

M -parallel Cascade BFD-TRNG (Figure 6.15) 11MLσ2
A

11M
M+2Lσ

2
A

150% higher than the σ2
acc of two-oscillator TRNG. The parallel, cascade, and parallel-

cascade structures of the BFD-TRNG can further improve the randomness. Note that

the σ2
acc is just a rough estimate of the randomness when the TRNG is sampled.

Cost

We summarize the performance of different ROSC based TRNG designs in Table 6.8.

We measure the area and power consumptions for the 7-stage ROSC, DFF, and 10-bit

counter from the test chip in 65nm, as shown in Table 6.9. Consequently, the cost

comparisons (only considering the components) for different ROSC based TRNGs are

presented in Table 6.10. It can be seen that the BFD-TRNGs can generate more bits per

sample. Furthermore, the BFD-TRNGs have less cost per bit in general, compared to

prior ROSC based TRNG designs. We can further improve the performance by setting

an appropriate Δμ as discussed in Section 6.4. Moreover, the parallel and the parallel-

cascade structures of the BFD-TRNG can further reduce the cost per bit, as only one

extra ROSC is required for each extra output. When M is large, the costs of the parallel

and the parallel-cascade structures will be significantly less than prior existing ROSC

based TRNG designs.

We now compare the area and power performance of the M -parallel BFD-TRNG

and the 64-parallel IBM TRNG in [101]. Since the M -parallel BFD generates 3.25M

bits per count, for 64 parallel bits, M = 64/3.25 ≈ 20. With M = 64 for IBM TRNG

and M = 20 for BFD-TRNG, the (power)(sample period)/bit products for the two
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designs are given by 522.2125 and 182.2308, respectively. The (area)(sample period)/bit

products for the two designs are give by 534.0625 and 285.0000, respectively. Thus, we

conclude that the M -parallel BFD-TRNG has approximately 3 times power advantage

and 2 times area advantage for a specified number of bits per same period, compared to

the IBM TRNGs. Similar calculations show that the power and area consumptions ofM -

parallel cascade BFD-TRNG are only 30.9% and 45.4% of the IBM TRNG, respectively.

However, we caution that the M -parallel and M -parallel-cascade BFD-TRNG results

are not based on actual measurements, but are predicted from models.

Table 6.8: Summary of Different ROSC based TRNG Designs

# Bits per Sample Sample Period Component

Two-Oscillator TRNG (Figure 6.1) 1 > 500 2 ROSCs, 1 DFF

M -parallel Two-Oscillator TRNG ([101]) M > 500 (M + 1) ROSCs, M DFFs

ROSC TRNG with XOR tree (Figure 6.16) 1 5 ∼ 20 115 ROSCs, 1 DFF†

Enhanced ROSC TRNG with XOR tree (Figure 6.17) 1 5 ∼ 20 51 ROSCs, 50 DFFs†

BFD-TRNG (Figure 6.2) 3.25 500 2 ROSCs, 1 DFF, 1 Counter

M -parallel BFD-TRNG (Figure 6.12) 3.25M 500 (M + 1) ROSCs, M DFFs, M Counters

Cascade BFD-TRNG (Figure 6.13) 4 500 3 ROSCs, 3 DFFs, 1 Counters

M -parallel Cascade BFD-TRNG (Figure 6.15) 4M 500 (M + 2) ROSCs, (2M + 1) DFFs, M Counters

† the cost of XOR is negligible

Table 6.9: Area and Power Consumptions for ROSC based TRNG Components
Power Normalized Power Area Normalized Area

ROSC 21.19μ 1 40× 10μ2 1
DFF 0.61μ 0.0288 3× 7μ2 0.0525

Counter 2.24μ 0.1057 30× 10μ2 0.75

Table 6.10: Cost for Different ROSC based TRNG Designs
Total Power (Power)(Sample Period)/Bit Total Area (Area)(Sample Period)/Bit

Two-Oscillator TRNG (Figure 6.1) 2.0288 > 1014.4 2.0525 > 1026.25

M -parallel Two-Oscillator TRNG ([101]) 1.0288M + 1 > 514.4 + 500/M 1.0525M + 1 > 526.25 + 500/M

ROSC TRNG with XOR tree (Figure 6.16) 115.0288 575.144 ∼ 2300.576 115.0525 575.2525 ∼ 2301.05

Enhanced ROSC TRNG with XOR tree (Figure 6.17) 52.44 262.2 ∼ 1048.8 52.625 263.125 ∼ 1052.5

BFD-TRNG (Figure 6.2) 2.1345 328.3846 2.8025 431.1538

M -parallel BFD-TRNG (Figure 6.12) 1.1345M + 1 174.5385 + 153.8461/M 1.8025M + 1 277.3077 + 153.8461/M

Cascade BFD-TRNG (Figure 6.13) 3.1921 399.0125 3.9075 488.4375

M -parallel Cascade BFD-TRNG (Figure 6.15) 1.1633M + 2.0288 145.4125 + 253.6/M 1.855M + 2.0525 231.85 + 256.5625/M
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6.7 Conclusion and Future Work

This chapter has presented a comprehensive statistical analysis for BFD-TRNG.

The relationships of period difference of the two ROSCs, environmental noise and the

counter values have been investigated. Furthermore, how the counter values affect the

number of random bits per sample that we can use has also been examined. We have

concluded that an appropriate frequency difference of the two ROSCs should be set

based on the environmental noise to achieve higher throughput. Other aspects of the

BFD-TRNG design, such as post-processing techniques, have also been explored. Based

on statistical analysis results, we have proposed several alternate BFD-TRNG designs,

which include the parallel structure, the cascade structure, and the parallel-cascade

structure. These novel structures could achieve improved performances. Comparisons

of the BFD-TRNG with other existing ROSC based TRNGs have also been conducted.

We have shown that the BFD-TRNG designs have better performances from both the

randomness and the cost perspectives.



Chapter 7

Conclusion and Future Directions

7.1 Conclusion

This dissertation has considered the authentication and obfuscation of digital signal

processing integrated circuits. Furthermore, the design and analysis of True Random

Number Generator have also been discussed.

Several novel reconfigurable PUF structures have been proposed, where the challenge-

response pairs are updatable. We have shown that these novel reconfigurable PUFs can

embed more non-linearity of the challenge-response mapping functions and lead to more

secure PUFs without degrading reliability and robustness. One example of the recon-

figurable PUFs is the reconfigurable feed-forward MUX PUF, whose logic is updated

by adding reconfigurable feed-forward paths into a MUX PUF. We have also presented

a systematic statistical analysis to quantitatively evaluate the performances of various

MUX-based PUFs. Furthermore, we have also presented an approach to examine the

PUF structures theoretically. Our statistical analysis and our experimental results show

great consistency. Motivated by the statistical analysis results, we have proposed several

novel PUF structures with improved performance.

162
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We are the first to tackle the problem of obfuscating DSP circuits. The synthesis

results for proposed methodology are convincing. The hardware cost is less than that

of conventional obfuscation methods which are not specific to DSP circuits. We believe

our work will lead to a number of interesting work in this new research field of exploiting

the high-level transformations for hardware security applications.

TRNG plays a significant role in cryptographic applications. However, the secondary

metrics of a TRNG are also very important, which include area, power, latency, and

so forth. We have presented an analysis of BFD-TRNG. We have shown that the

performance can be improved if we could appropriately choose the design parameters

of the BFD-TRNG.

7.2 Future Directions

7.2.1 Evaluate and Attack PUFs

Each PUF design has its own advantages and drawbacks. The performance of a PUF

depends on both process variations and environmental conditions. Some metrics have

been introduced to characterize the performances of PUFs by analyzing the outputs

of PUF instances, such as intra-chip variation, inter-chip variation, and randomness.

However, unclonability, the core property of Physical Unclonable Functions, is only

informally described in at most an ad-hoc manner at this moment. In order to make

strong claims on the security of PUFs and PUF applications, it is necessary to come up

with a formalized version of PUF performances.

Therefore, one promising research direction is to formalize the unclonability of PUFs,

which should include statistical unclonability and physical unclonability. By using sta-

tistical modeling, an adversary might be able to correctly predict the response for a

new challenge after collecting sufficient CRPs. My research suggests that the number

of unpredictable CRPs can be increased by introducing reconfigurability into the PUF.

However, it is still limited to an amount at best polynomial in the size of the PUF. To
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assess the usefulness of a particular PUF in some applications, we believe it is worth

examining how many unpredictable response bits one can optimally obtain from a PUF

of a given size. For the practical properties, i.e., physical unclonability and tamper

evidence, it is more elusive to fit into a quantitative theoretical framework. It will be of

great interests to address the feasibility of physical tampering for different delay-based

PUFs. The statistical models of the delay and response variations under invasive and

semi-invasive attacking methods can also be further exploited.

Another exciting direction of future research is to study the attacking techniques.

In spite of the fact that various machine learning methods have already been applied

to attack different types of PUFs, methods that are suitable to break all the PUFs

remain unexploited. One promising approach is to develop an attacking technique that

does not any require prior knowledge of the PUF. It is reasonable to consider a PUF

as a black box, as an adversary cannot obtain the general model of the PUF even

with access to the PUF. The prediction of future responses will be only determined by

the collected challenge and response information. Future work can be directed towards

trying data-driven data mining techniques rather than employing arbitrary models based

on intuition, or even expert elicitation.

7.2.2 Obfuscation CAD Tool

As described by the Moore’s law, the number of transistors in an integrated cir-

cuit doubles approximately every two years. Today, some of the largest chips in the

world already contain more than one billion transistors. The design of such large-scale

circuits requires a considerable amount of work, which is far beyond the amount of hu-

man labor that a design team can afford. Indeed, many problems in circuit design are

computationally-intensive optimization problems. The great success of the semiconduc-

tor industry is predicated on computer-aided design (CAD) programs to perform many

routine tasks.
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Within the new context of DSP circuit design obfuscation, future work can be di-

rected towards developing a CAD synthesis tool which can incorporate large number

of design obfuscation algorithms based on high-level transformations for DSP system

design. The algorithmic aspect of different high-level transformations for design ob-

fuscation need to be exploited. Each of those transformation techniques needs to be

examined from the perspectives of (i) the suitability for design obfuscation, (ii) the

generation of variation modes, and (iii) the performance tradeoff. Another exciting di-

rection for future research is the development of a design obfuscation methodology at the

behavioral level, for instance within the framework of hardware description languages

such as Verilog and VHDL.

7.2.3 DSP Circuit Reverse Engineering

There is a old Chinese sayings: know your opponent and yourself, emerge victorious

in every battle. When we are talking about security, we should always think from the

adversary’s perspective. To the best of my knowledge, attacking methods that target

DSP circuits are still very nascent. We can explore reverse engineering methods of DSP

circuits by utilizing frequency domain information. For example, assume we know the

device that we intend to attack implements an FIR filter design using windows, but

we have no idea about the detailed information of the filter. As far as we know, each

type of window used in the FIR filter design has distinct property in the frequency

domain. We can use the frequency domain information to determine the window type

according to the peak sidelobe amplitude and peak approximation error by collecting

a series of outputs. In addition, we can also estimate the cut-off frequency of the FIR

filter from the frequency domain information. Once we know the type of window, we

could estimate the filter order based on the filter properties such as approximate width

of mainlobe and transition bandwidth. Consequently, we can solve the linear equations

of the FIR filter system to obtain the filter coefficients and the actual order. Future
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work can be directed towards generalizing the reverse engineering approach by utilizing

the frequency domain information to other types of digital signal processing circuits.

7.2.4 Security in Emerging Technologies based Computing Systems

With CMOS technology scaling down to deep nanometer realm, process variation has

become more and more pronounced. The increasing process variations lead to consider-

able uncertainty in circuit performance and large spread in chip speed. The imprecision

provided by the deeply downscaled nanometer CMOS technology no longer holds on the

widely accepted practice of designing circuits that operate on deterministic zeros and

ones. One interesting direction is to exploit the inherent randomness for cryptographic

purposes. A broad objective is to embed security and cryptographic primitives into

customized circuits with negligible overhead by making use of the inherent randomness.

For example, in the sub-threshold or near-threshold applications, soft errors can be di-

rectly used as PUF response and/or random numbers. The advantage is manifest in

the fact that this approach does not incur any overhead, since these soft errors are cre-

ated by voltage over-scaling for the low-power purpose that will be corrected by certain

compensation algorithm at a later stage.

At meanwhile, as the semiconductor industry contemplates the end of Moore’s Law,

there has been a groundswell of interest in technologies that offer a path to scale beyond

the limits of the current CMOS technology. Emerging technologies that might help ex-

tend the life of Moore’s Law, such as carbon nanotubes [123], nanowire arrays [124],

and molecular FETs [125], present both challenges and opportunities for digital cir-

cuit design. Most of these technologies are characterized by very high defect rates, as

well as large amounts of inherent randomness. For example, it is nearly impossible to

guarantee perfect alignment and accurate positioning of all carbon nanotubes at VLSI

scale. Mispositioned and misaligned carbon nanotubes can result in incorrect digital

logic functionality. Hardware security of emerging technologies can be a very important

research topic in the future. For example, future non-volatile memory systems, such
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as phase change memory (PCM), spin torque transfer magnetoresistive RAM (STT-

MRAM), and resistive RAM (RRAM), typically have large number of intrinsic defects.

A non-volatile storage system includes solutions to mask intrinsic defects, read and era-

sure endurance and cell coupling problems. When used appropriately, such information

allows unique identification of non-volatile memory. Different technologies might to

be considered within an overall framework for security applications. Future work can

be directed towards developing a general method to inherently extract randomness on

non-volatile memory systems for security signature or random number applications.



References

[1] J. Villasenor and M. Tehranipoor. Chop-shop electronics. IEEE Spectrum,

50(10):41–45, 2013.

[2] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld. Physical one-way functions.

Science, 297(5589):2026–2030, 2002.

[3] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas. Silicon physical random

functions. In Proceedings of the 9th ACM Conference on Computer and Commu-

nications Security, 2002.

[4] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas. Controlled physical un-

clonable functions. In Proceedings of 18th Annual Computer Security Application

Conference, pages 149–160, 2002.

[5] S. Kumar, J. Guajardo, R. Maesyz, G. Schrijen, and P. Tuyls. Extended abstract:

The butterfly PUF protecting IP on every FPGA. In Proceedings of Hardware-

Oriented Security and Trust (HOST 2008), pages 67–70, 2008.

[6] R. Maes, P. Tuyls, and I. Verbauwhede. Intrinsic PUFs from flip-flops on reconfig-

urable devices. In Proceedings of 3rd Benelux Workshop Information and System

Security (WISSec 08), pages 63–80, 2008.

168



169

[7] D. E. Holcomb, W. P. Burleson, and K. Fu. Initial SRAM state as a fingerprint and

source of true random numbers. In Proceedings of Conference on RFID Security,

2007.

[8] U. Ruhrmair, F. Sehnke, J. Solter, G. Dror, S. Devadas, and J. Schmidhuber.

Modeling attacks on physical unclonable functions. In Proceedings of Conference

on RFID Security, pages 237–249, 2010.

[9] M. Majzoobi, F. Koushanfar, and M. Potkonjak. Techniques for design and imple-

mentation of secure reconfigurable PUFs. ACM Transactions on Reconfigurable

Technology and Systems, 2(1):1–33, 2009.

[10] D. Lim, J. W. Lee, B. Gassend, G. E. Suh, M. Van Dijk, and S. Devadas. Extract-

ing secret keys from integrated circuits. IEEE Transaction on Very Large Scale

Integration Systems, 13(10):1200–1205, 2005.

[11] H. Chang and S. Sapatnekar. Statistical timing analysis considering spatial cor-

relation in a pert-like traversal. In Proceedings of IEEE International Conference

Computer-Aided Design Integrated Circuits and Systems, pages 621–625, 2003.

[12] J.-W. Lee, D. Lim, B. Gassend, G. E. Suh, M. van Dijk, and S. Devadas. A tech-

nique to build a secret key in integrated circuits with identification and authenti-

cation applications. In Proceedings of IEEE International Conference Computer-

Aided Design Integrated Circuits and Systems, pages 621–625, 2003.

[13] K. Kursawe, AR. Sadeghi, D. Schellekens B. Skoric, and P. Tuyls. Reconfigurable

physical unclonable functions – enabling technology for tamper-resistant storage.

In Proceedings of 2nd IEEE International Workshop on Hardware-Oriented Secu-

rity and Trust(HOST), pages 22–29, 2009.

[14] S. Morozov, A. Maiti, and P. Schaumont. An analysis of delay based PUF imple-

mentations on FPGA. In Proceedings of 6th International Symposium on Applied



170

Reconfigurable Computing. LNCS, pages 382–387. Springer Berlin / Heidelber,

2010.

[15] D. Merli, F. Stumpf, and C. Eckert. Improving the quality of ring oscillator PUFs

on FPGAs. In Proceedings of the 5th Workshop on Embedded Systems Security,

pages 9:1–9:9, 2010.

[16] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls. FPGA intrinsic PUFs

and their use for IP protection. In Proceedings of Cryptographic Hardware and

Embedded Systems (CHES 2007), pages 10–13, 2007.

[17] J. Cong. Challenges and opportunities for design innovations in nanometer tech-

nologies. SRC Design Science Concept Paper, 1997.

[18] S. Nassif. Delay variability: Sources, impact and trends. In Solid-State Circuits

Conference, pages 368–369, 2000.

[19] L. Alaus, D. Noguet, and J. Palicot. A reconfigurable linear feedback shift register

operator for software defined radio terminal. In IEEE International Symposium

on Wireless Pervasive Computing, 2008.

[20] P. Kitsos, N. Sklavos, N. Zervas, and O. Koufopavlou. A reconfigurable linear

feedback shift register (LFSR) for the bluetooth system. In Proceedings of IEEE

International Conference on Electronics, Circuits and Systems (ICECS), pages

991–994, 2001.

[21] M. Zeghida, B. Bouallegue, A. Baganne, and M. Machhout. A reconfigurable

implementation of the new secure hash algorithm. In Proceedings of Second In-

ternational Conference on Availability, Reliability and Security (ARES), pages

281–285, 2007.



171

[22] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas. Silicon physical random

functions. In Proceedings of ACM Conference on Computer and Communications

Security, pages 148–160, 2002.
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