
Unsupervised methods to discover events from
spatio-temporal data

A DISSERTATION

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Xi Chen

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Doctor of Philosophy

Prof. Vipin Kumar, Advisor

May, 2017



c© Xi Chen 2017

ALL RIGHTS RESERVED



Acknowledgements

First of all, I would like to thank my advisor, Professor Vipin Kumar, for his uncondi-

tional help, advice, and support. He is the person that walked me into the data mining

world. I learned tons of skills and knowledge from him, which build the technique foun-

dation for my future career. In addition, he also taught me how to learn a new thing,

how to solve a new problem, how to present a work, and how to collaborate with people

from di�erent backgrounds. These knowledge and experience helped me �nish my PhD

study very fruitfully. And even more important, I believe all the things that I learned

from him are treasures that will be of great values in my entire career.

I also would like to thank two brilliant researchers, Dr. Shyam Boriah, and Pro-

fessor James Faghmous. I worked with them in di�erent stages of my PhD study. To

me, they are not only very respectful collaborators, but more like my mentors that

helped me �nally grow up as an independent researcher. Next, I would like to thank

the committee members, Professor Shashi Shekhar, Professor Arindam Banerjee, and

Professor Snigdhansu Chatterjee. I could not �nish my dissertation without their help.

Furthermore, deep thanks also go to the undergraduate students that worked with me

very closely in many research projects, especially Yuanshun Yao, Sichao Shi, and Robert

Warmka. In addition, many thanks go to my labmates in University of Minnesota for

the colorful and rewarding time that we spent together. The chatting, discussions, and

arguing related to data mining questions that we have in the lab and the Espresso cafe

is one of my most cherished memory.

Last but the most important, I want to thank my family, especially my parents,

Guisen Chen and Yumin Cai, and my husband Chao Guo. Nothing can be achieved in

my life without the support and unconditional love they provide. You were and will

always be my heroes.

i



Dedication

To my father, Chen Guisen, and my mother, Cai Yumin.

ii



Abstract

Unsupervised event detection in spatio-temporal data aims to autonomously identify

when and/or where events occurred with little or no human supervision. It is an active

�eld of research with notable applications in social, Earth, and medical sciences. While

event detection has enjoyed tremendous success in many domains, it is still a challenging

problem due to the vastness of data points, presence of noise and missing values, the

heterogeneous nature of spatio-temporal signals, and the large variety of event types.

Unsupervised event detection is a broad and yet open research area. Instead of

exploring every aspect in this area, this dissertation focuses on four novel algorithms

that covers two types of important events in spatio-temporal data: change-points and

moving regions.

The �rst algorithm in this dissertation is the Persistence-Consistency (PC) frame-

work. It is a general framework that can increase the robustness of change-point de-

tection algorithms to noise and outliers. The major advantage of the PC framework

is that it can work with most modeling-based change-point detection algorithms and

improve their performance without modifying the selected change-point detection algo-

rithm. We use two real-world applications, forest �re detection using a satellite dataset

and activity segmentation from a mobile health dataset, to test the e�ectiveness of this

framework.

The second and third algorithms in this dissertation are proposed to detect a novel

type of change point, which is named as contextual change points. While most existing

change points more or less indicate that the time series is di�erent from what it was

before, a contextual change point typically suggests an event that causes the relationship

of several time series changes. Each of these two algorithms introduces one type of

contextual change point and also presents an algorithm to detect the corresponding

type of change point. We demonstrate the unique capabilities of these approaches with

two applications: event detection in stock market data and forest �re detection using

remote sensing data.
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The �nal algorithm in this dissertation is a clustering method that discovers a par-

ticular type of moving regions (or dynamic spatio-temporal patterns) in noisy, incom-

plete, and heterogeneous data. This task faces two major challenges: First, the regions

(or clusters) are dynamic and may change in size, shape, and statistical properties over

time. Second, numerous spatio-temporal data are incomplete, noisy, heterogeneous, and

highly variable (over space and time). Our proposed approach fully utilizes the spatial

contiguity and temporal similarity in the spatio-temporal data and, hence, can address

the above two challenges. We demonstrate the performance of the proposed method on

a real-world application of monitoring in-land water bodies on a global scale.
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Chapter 1

Introduction

Spatio-temporal data are rapidly becoming ubiquitous thanks to a�ordable sensors and

storage. These information-rich data have the potential to revolutionize diverse �elds

such as social, Earth, and medical sciences where there is a need to extract and un-

derstand complex phenomena and their dynamics. Additionally, data in such scienti�c

domains tend to be unlabelled since collecting data labels is often a time-consuming

and labor-intensive operation. This highlights the importance of unsupervised methods

in analysing spatio-temporal data.

Unsupervised event detection is an important problem that has enjoyed tremendous

interest in the data mining community [3, 5, 18, 21, 45, 52, 54, 69, 71]. Yet, it is still a

challenging problem in many applications due to the vastness of data points, presence

of noise and missing values, the heterogeneous nature of spatio-temporal signals, and

the large variety of event types. Designing event detection methods that can overcome

all the above challenges is an ultimate and yet ambitious task. This dissertation is one

step in this direction. It includes four algorithms, each of which solves a combination

of these challenges under certain assumptions. I hope that introducing these methods

to the data mining community will allow us to explore the real-world event detection

problem in more depth and design a host of methods to analyze spatio-temporal data

more e�ciently and accurately.

1
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1.1 Events in spatio-temporal data

Literally, an event is an occurrence of something that is important. Although event

detection is considered as one of the major research tasks, there is no formal de�nition

of events in the data mining community. In this dissertation, I consider events as either

rarely occurring patterns (e.g., outliers or anomalous) or patterns that include changes

(e.g., change-points in a time-series or moving regions).

Spatio-temporal data typically contain three types of attributes: behavior attributes,

temporal attributes, and spatial attributes. Theoretically, events can be de�ned by their

behavior attributes only. However, most interesting events in spatio-temporal data are

de�ned in the context of spatial and/or temporal information. I summarize events in

spatio-temporal data into three categories: spatial events, temporal events, and spatio-

temporal events. Figure 1.1 shows the taxonomy of events in spatio-temporal data.

Figure 1.1 also provides several example events in each category (in the blue area). All

the examples are commonly studied events and have been applied in real applications

to solve critical problems. Among all types of events, this dissertation focuses only on

modeling-based time-series change-points (Chapter 2), contextual time-series change-

points (Chapter 3 and Chapter 4), and moving regions (Chapter 5). These three types

of events are marked by grey blocks in Figure 1.1.

Figure 1.1: The taxonomy of events in spatio-temporal data.
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1.1.1 Spatial events

Spatial events are data points with abnormal behavior attributes in the context of spatial

attributes. Spatial outliers and hot-spots are two commonly seen spatial events.

Spatial outliers [18] are data points with abnormal behavior attributes compared

with their spatial neighbors ( i.e., data points that are spatially closed to the target data

points). Figure 1.2 shows data points in a dataset. The x-axis and y-axis in Figure 1.2

are the two spatial attributes ( i.e., the latitude and longitude) of the data points. The

color of any point indicates the value of its behavior attribute. In other words, points

with the same color have the same behavior attributes and points with di�erent colors

have di�erent behavior attributes. The shapes of points are for illustration purposes

and they are not related to data attributes. In Figure 1.2, the two rectangle points

(one in red and the other in green) are spatial outliers. The red rectangle point is

surrounded by blue points and the green rectangle point is surrounded by red points,

which means that the two points have di�erent behavior attributes compared with their

spatial neighbors. Thus, the two rectangle points are spatial outliers.

Figure 1.2: The x-axis and y-axis of the plot are the spatial attributes (i.e., the latitude
and longitude). The color of a point indicates its behavior attribute. The two rectangle
points are spatial outliers because they are surrounded by points with very di�erent
behavior attributes. The green rectangle point is also a global outlier with respect
to the behavior attribute because it is the only green point in the dataset. The two
triangle point are global outliers with respect to the spatial attributes since their spatial
attributes are very di�erent from all the other data points.

Global outliers are data points with certain attributes ( e.g., spatial attributes or
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behavior attributes) that do not conform to the majority data. Figure 1.2 shows two

types of global outliers: global outliers with respect to spatial attributes and global

outliers with respect to behavior attributes. In detail, the blue triangle point and the

red triangle point are global outliers with respect to spatial attributes since they are

located very far away from the other points. In other words, their spatial attributes

are very di�erent from the majority of the points. The green rectangle point is a global

outlier with respect to behavior attributes because its behavior attribute is di�erent

from all the other points ( i.e., the green rectangle point is the only data point with

green color). In contrast, in addition to the red rectangle point, there are many other

red points in the plot. Hence, the red rectangle point is not a global outlier with respect

to behavior attributes.

While global outliers indicate global extreme events (e.g., extremely low rainfall in

the whole earth), spatial outliers are sensitive to locations (e.g., extremely low rainfall

in Minnesota), and hence are critical in detecting regional events, such as local extreme

meteorological events (e.g., tornadoes and hurricanes) and abnormal highway tra�c

patterns [20].

Figure 1.3: Hotspots (red regions) in the gun crime incidents data in Portland between
2009 to 2013. This example is from [2].

Hot-spots [11, 32, 68] are areas where the density of data (with a certain behavior

attributes) is signi�cantly higher than the other areas. Figure 1.3 shows the density map

of gun crime incidents in Portland between 2009 and 2013 [2]. We can observe that
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hotspots were dispersed throughout downtown and Northwest, Northeast, Southeast,

and East Portland. Hot-spots have been widely used in analyzing social activities (e.g.,

crimes [15, 16, 73]) and biodiversity (e.g., the distribution of a certain species) [43, 74].

1.1.2 Temporal events

Temporal events are de�ned by behavior attributes and temporal attributes. Tempo-

ral outliers, anomalous sub-sequences, and change-points are three commonly studied

temporal events.

Figure 1.4: Two temporal outliers (the red point and the green point) in a time-series
data. The red point is not a global outlier, while the green point is a global outlier.

Temporal outliers are time-points that do not follow the general temporal trend of

a time-series. Similar to spatial outliers, temporal outliers may not be global outliers.

Figure 1.4 shows two temporal outliers (a red point and a green point) in a time-series

data. The x-axis in the plot is the temporal attribute and the y-axis is the behavior

attribute. We can observe that both the green point and the red point do not match

the general time-series trend. Thus, they are two temporal outliers. Additionally, the

behavior attribute of the green point is di�erent from all the other time points. Hence,

the green point is also a global outlier (with respect to the behavior attributes). The

red point, in contrast, is not a global outlier since its behavior attribute is similar to

the behavior attributes of many other time points. Temporal outliers are important in

detecting events that are sensitive to time. For example, 0oF is normal and not very

harmful during winter in Minnesota. But 0 oF in late spring or early summer in the

same location can signi�cantly reduce the yield of crops. Similar applications can be

found in many other domains such as tra�c control [57] and fraud detection [18].
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Figure 1.5: An example of anomalous sub-sequence (red points).

An anomalous sub-sequence, which is also known as a collective anomaly [18, 19],

is several consecutive time-points that form an abnormal temporal pattern. Figure

1.5 shows an anomalous sub-sequence (marked as red points) in a periodic time-series.

Anomalous sub-sequences have been applied to clinic data as key patterns of certain

diseases. For example, an anomalous sub-sequence in electrocardiography data may

indicate a heart problem [62]. In addition, anomalous sub-sequences are also used in

detecting Web-based attacks [18] and monitoring air transportation systems [12].

Change points are the times when the behavior of one or more time series changes.

Many types of change points have been de�ned in literature. Modeling-based change

points, or structural change points, is one of the most commonly used types of change

points [5, 46, 47, 71, 72, 78, 83, 86, 88]. Roughly speaking, a modeling-based time-series

change point is the time when a time-series starts to signi�cantly deviate from its own

historical data.

Figure 1.6 (a) and (b) show two examples of modeling-based change points. The

time series in Figure 1.6 (a) represents the monthly deaths and serious injuries on UK

roads between 1975 and 1985. This time series contains one change point, which is

marked by a red vertical dot line. This change point matches the time when the seat-

belt law was introduced. Figure 1.6 (b) shows the chest-mounted accelerometer data

(the y-acceleration �eld) that was recorded from a user when he was asked to do di�erent

activities. Vertical green lines in the plot indicate change points in the time series. All

the change points are the times when the user changed his activity.
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(a) Monthly deaths and serious injuries in UK
roads between 1975 to 1985. The change point
(the red vertical dot line) matches the time
when the seat-belt law was introduced.

(b) The y-acceleration �eld in a chest-mounted
accelerometer time-series data. The change
points (green vertical lines) are the times
when the user changed his activity.

Figure 1.6: Examples of modeling-based time-series change points.

1.1.3 Spatio-temporal events

Spatio-temporal events are de�ned in the context of both spatial and temporal infor-

mation. Spatial outliers, moving objects, and moving regions are three examples of

spatio-temporal events.

Similar to the de�nitions of spatial outliers and temporal outliers, spatio-temporal

outliers are data points with abnormal behavior attributes compared with their spatio-

temporal neighbors [26, 53]. Identifying spatio-temporal outliers can lead to discovery

of many interesting events such as local instability or deformation. For example, Jun et

al. [50] detects faulty sensors as spatio-temporal outliers in the sensor network.

Most studies on moving objects aim to discover the trajectory patterns of objects

whose spatial attributes (e.g., GPS signals) change with time [51, 58{60, 77]. Examples

of studied objects include animals, human beings, and cars. Moving object clusters [77]

is one major type of event in this research area. Typically, moving object clusters are

groups of objects that travel together for an extended period of time [51, 58, 59]. Dis-

covery of such clusters is critical in understanding animal behaviors, detecting climate

events (e.g., hurricane tracks), and helping in vehicle controls.

Typically, moving regions are de�ned in raster spatio-temporal data (e.g., earth-

orbiting satellites, fMRI recordings, and surveillance videos). A raster spatio-temporal

dataset is a three dimensional gridded data cube as shown in Figure 1.7. The three di-

mensions consist of two dimensional spatial attributes (e.g., latitude and longitude) and
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a one dimensional temporal attribute (i.e., date). Each data cell in the data cube con-

tains one or multiple behavior attributes. For example, in surveillance videos, each data

cell is a pixel in a certain time frame and it usually contains three behavior attributes

(i.e., the R, G, and B values).

Figure 1.7: A raster spatio-temporal dataset typically is a three dimensional data cube.

At any time-step, a region in a raster spatio-temporal dataset includes multiple

spatially connected data cells that share similar behavior attributes. There is a moving

region in the dataset when the position of the same region shifts or moves over time.

Figure 1.8 shows an example of moving regions. In this example, red pixels in each

time framework have similar behavior attributes in the SSH satellite dataset and hence

each red area is a region. The regions in di�erent time frames are located in di�erent

positions, but they indicate the same physical phenomenon (i.e., an ocean eddy [38]).

Therefore, the red regions form a moving region.

Figure 1.8: An example of a moving region. The moving region (marked by red color
pixels) is a moving eddy at �ve successive time-steps of SSH satellite data.
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1.2 Summary of contributions

Discovery of events in spatio-temporal data is a wide open area. Instead of exploring

every aspect in this domain, this dissertation includes four novel algorithms that cover

two major types of events in spatio-temporal data: change-points and moving regions.

The �rst proposed algorithm is a Persistence Consistency (PC) framework. The

PC framework is a solution to detect modeling-based change points in noisy time-series

data. While modeling-based change-point detection methods have achieved tremendous

success in many applications, they perform poorly when data are noisy and have out-

liers. The PC framework enhances the performance of existing modeling-based methods

when these data challenges exist. There are three contributions in this work. First, this

work summarizes the common structure of most modeling-based change-point detection

methods. Based on this common structure, it also introduces a four step approach to de-

sign a modeling-based approach for a given application. Second, this work explains and

demonstrates the negative impact of noise and outliers on a modeling-based approach.

Finally, this work presents the PC framework. This PC framework can be combined

with most modeling-based approaches to produce more accurate detection results when

data are noisy and contain outliers.

The second and third algorithms in this dissertation are designed to detect contextual

change points from time series. Contextual change points are a novel type of change

point. While a modeling-based change point more or less indicates that the time series is

di�erent from what it was before, a contextual change point typically suggests an event

that causes the relationship of several time series to change. This dissertation introduces

two types of contextual change points: Singleton Contextual Time-series Change points

(S-CTCs) and Group level Contextual Time-series Change points (G-CTCs). Roughly

speaking, a S-CTC is the time when one time series starts to deviate from its \peer

group" and a G-CTC is the time when a new peer group forms or an old peer group

disbands. Here, we de�ne the peer group as a group of highly correlated time series.

Figure 1.9 shows one example of S-CTC and one example of G-CTC. In Figure 1.9

(a), the stock price of Sprint Corporation (the black curve) behaved similarly to stock

prices of several other companies (the grey curves) from year 2004 to year 2006. Hence,

the grey time series formed a peer group of the black time series. The black time series
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(a) An example of a S-CTC. (b) An example of a G-CTC.

Figure 1.9: Examples of contextual time-series change points.

began to deviate from its peer group in the beginning of year 2006. Therefore, there is

a S-CTC occurred in Jan. 2006. We use blue lines for the 16 & 84 percentiles of all the

grey time series after the change point, and a green line for the mean of the grey time

series. In Figure 1.9 (b), several REITs stock price data had highly correlated behaviors

before Jun. 5th, 2012, and hence they formed a peer group. The two self-service storage

companies (one in dark blue and the other in light blue) began to fork out from the

general REIT context, which led the whole group to split. Thus, Jun. 5th, 2012 is a

G-CTC in the REITS stock price data.

As shown in Figure 1.9, contextual change points are useful patterns to discover

events from non-stationary data, where the modeling-based change points are not suit-

able. There are two major contributions in the work of detecting contextual changes.

First, these two works introduce contextual time-series change points to the data mining

community. Second, two algorithms are proposed. Each of them detects one particular

type of contextual change point.

The last algorithm in this dissertation is to discover moving regions from a spatio-

temporal dataset. This task faces two major challenges. First, the regions are dynamic

and may change in size, shape, and statistical properties over time. Second, numer-

ous spatio-temporal data are incomplete, noisy, heterogeneous, and highly variable

(over space and time). The proposed algorithm is a new spatio-temporal data min-

ing paradigm and can autonomously identify dynamic spatio-temporal clusters in the

presence of the above data issues. The major contribution of this work is the proposed
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paradigm. Compared with most existing methods, which either analyze data in space

and then aggregate/associate over time, or analyze data over time and then smooth

over space [30, 75], the proposed paradigm takes advantage of both spatial and tempo-

ral auto-correlation. In addition, it utilizes knowledge from physical domains. Hence,

it can discover moving regions in noisy, incomplete, and heterogeneous spatio-temporal

data.

1.3 Thesis Overview

The remainder of this dissertation is organized in the following way. Chapter 2 presents

the PC framework. The PC framework is a general framework that can increase the

robustness of most modeling-based change-point detection methods to noise and outliers.

Chapter 3 and Chapter 4 describe the two types of contextual change points and present

the corresponding detection algorithms. Chapter 5 introduces the clustering paradigm

that discovers a type of moving region in noisy, incomplete, and heterogeneous spatio-

temporal data. Finally, Chapter 6 summarizes the whole dissertation and discusses

potential research directions and applications of event detection in spatio-temporal data.



Chapter 2

The Persistence Consistency

(PC) framework:

A solution to detect change-points in noisy

time-series data using modeling-based methods

2.1 Motivation

Time-series change-point detection aims to autonomously identify time-steps where the

behavior of a time-series signi�cantly deviates from a prede�ned model. It is an active

�eld of research with notable applications in �nance [4], health [42], advertising [10], net-

work security [41], and a host of other domains where data is presented as time-series.

Figure 2.1 shows two examples of change-points (the red vertical lines) in a remote

sensing time-series (left) and an automotive accident time-series (right). As the number

of time-series continues to grow, there is an increasing need for autonomous change

point detection and reporting methods. One common class of change-point detection

algorithms relies on time-series models to de�ne change-points. These modeling-based

methods tend to be ad hoc, where each method is speci�cally tailored to the target ap-

plication and deep domain expertise is required. While these methods are specialized,

they share the common characteristic that they perform poorly when the data are noisy

12
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(a) The \greenness" index of a forest area
in Northern California. A forest �re oc-
curred in this location in 2008.

(b) Monthly deaths and serious injuries on UK
roads between 1975 to 1985. A seat-belt law
was introduced in 1983.

Figure 2.1: Examples of change points (red vertical lines) that can be detected by
modeling-based methods.

or have outliers. We propose a general framework to make existing modeling-based

change-point detection algorithms robust to noise and outliers, regardless of the under-

lying change point detection algorithms used by the researcher. This general framework

immediately improves existing methods without the need to change the existing algo-

rithm.

2.2 Background

As the name suggests, modeling-based change-point detection methods detect change-

points by modeling the given time series. In detail, these methods assume data in a

time-series are generated from a time-series model. We call this modelthe underlying

model of the given time-series. Typically, the underlying model is a stochastic function.

A time-series, in most cases, follows one single underlying model. However, sometimes

the underlying model of a time-series may alter from one function to the other. The time

when the underlying model changes is namedchange-points. Modeling-based change-

point detection methods are concerned with detecting these change-points. Examples

of modeling-based change-point detection methods include BFAST [88], the cumulative

sum (CUSUM) chart [71, 72], and many other algorithms [5, 46, 47, 78, 83, 86].
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2.2.1 The common structure of most modeling-based change-point de-

tection methods

While the existing methods are numerous, most modeling-based change-point detection

algorithms share a similar algorithm structure as shown in Algorithm 2.11 . In detail,

these modeling-based methods can be de�ned by a time-series model function and a

change-score function. Their �nal outputs are usually a change-score time-series.

Algorithm 2.1: calAnomalyTS
Input: x : a time-series data;

f (�): a time-series model;

g(�): a change-score function;

Output: a, a change-score time series;

1 for any x t 2 x do

2 x 0 = x (t � w; t � 1));;

3 �̂ = est(� jx 0; f );;

4 at = g(�̂ ; x t );;

5 end

The time-series model function is a mathematical function with several unknown

parameters. Most algorithms assume the underlying models of all time-series data

are the same function with di�erent parameters. With the input time-series model

function, a modeling-based detection method learns an underlying model for each time-

series independently (Line 3). The change-score function is to calculate a change-score

for each time-point in the time-series. The change-score of a time-step measures how

much the underlying model changes around that time-step. Most change-point detection

methods keep all change-scores of a given time-series also as a time-series (Line 4). We

name it the change-score time-series.

After obtaining a change-score time-series for each input time-series, an algorithm

can report the �nal change-points. There are two commonly used methods. First, we

can label all time-steps as change-points if their change-scores exceed a user-de�ned

1 Algorithm 2.1 is a pseudo-code that calculates the change-score time-series for a given time-series.
This algorithm trains the time-series model using a sliding-window approach and hence is good when
detecting multiple change-points from a single time-series. This pseudo-code has been commonly used
in many modeling-based change-point detection methods [5, 47, 88].
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threshold. Second, we can report k change-points totally from the dataset. The change-

points are the k time-steps with the highest change-scores in a certain time duration.

Hundreds of modeling-based change-point detection methods exist in the literature

mainly due to the special tailored time-series model and change-score function. In most

cases, these two components are designed in an application-speci�c fashion to achieve the

best performance. In other words, most modeling-based change-point detection methods

have their own time-series model and change-score function and are only suitable for

one or several applications.

2.2.2 The four steps in designing a modeling-based change-point de-

tection method

The common structure of existing modeling-based change-point detection methods also

inspires insights on how to design a new method for a particular detection task. Design-

ing a new modeling-based method usually involves four steps: (i) choose an appropriate

time-series model; (ii) design a change-score function that quanti�es how \di�erent"

two time-series segments are (before and after a change-point)2 ; (iii) compute the

change-scores for each time-point based on the chosen time-series model and anomaly-

score function; and (iv) select a mechanism to report change-points. Next, we illustrate

the four steps using two simple examples.

Case I: Detecting abrupt changes for periodic time-series

In case I, we aim to detect abrupt change-points in periodic time-series data. The top

panel in Figure 2.2 shows one time-series (the black curve) and its change-point (the red

line). As shown in Figure 2.2, data after the change-point have much higher values than

data before the change-point. The given change occurs suddenly and dramatically. We

name this type of changeabrupt changes. Here, we design a simple abrupt change-point

detection method using the above mentioned four steps.

First, we choose an appropriate time-series model. Given the regular periodicity in

the data, we choose the most simple seasonal ARIMA model [47]:

x t = � t x t � 1 + � t x t � p + e
2 Sometimes, the change-score may integrate anomaly-scores from multiple time-steps to enhance

change events from random noise and/or outliers.
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Figure 2.2: A periodic time series (on the top panel) that changes around the red line
and its corresponding anomaly scores.

where,x t is the observation of the given time-seriesx at time-step t; p is the periodicity

of x, which is 10 in our example;e is a random noise term; and� t and � t are the two

unknown parameters.

Second, we choose an change-score function. Since the time-points after the change-

point are dramatically greater than the time-points before the change-point (as shown

in the top panel of Figure 2.2), we measure the degree of a change by the di�erence

between the observed and the predicted values, which is:

at = jx̂ t � x t j = j�̂ t x t � 1 + �̂ t x t � p � x t j

where at is the change-score ofx t ; x̂ t is the predicted observation; and ^� t and �̂ t are

the two estimated parameters.

Next, we compute the change-score for each time-step. To obtain change-scores, we

need to estimate ^� t and �̂ t for each time-stepx t . Here, we use a sliding window method

as shown in Algorithm 2.1 and set w to 50. The bottom panel of Figure 2.2 is the

change-score time-series of the given example.

Finally, we report the change-points. Here, we use a threshold (e.g., 15) to report

the event. For a more complex problem, we can train the threshold using a training set.
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Case II: Detecting changes in variance for a stationary time-series

In case II, we need to detect changes in variance for a stationary time-series. Figure 2.3

shows one time-series (the black curve) and its two change-points (red vertical lines).

We design a modeling-based change-point detection method also using the four steps.

Figure 2.3: A stationary time series (top panel) that experiences a change in variance
around the red line and its corresponding anomaly scores (bottom panel).

First, as shown in the top panel in Figure 2.3, the time-series is stationary (i.e.,

its expectation and variance are almost constants) when no change occurs. Hence, we

select the time-series model as:

x t = � + et

where, � is a constant value; andet is the noise term that follows a Normal distribution

N (0; � 2
t ). In this model, � and � t are the two unknown parameters.

Second, the top panel in Figure 2.3 also shows that only the variance of the time-

series changes around the change-points. The expectation remains same. Therefore, we

decide to score this event using the di�erences in the variance.

at = jlog(
� tb

� ta
)j = jlog(� tb) � log(� ta )j

where, � tb is the time-series variance before time-stepx t and � ta is the variance after

x t .
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Next, we compute the change-score for each time-step. We use 30 values to estimate

a variance value. In other words, � tb is the variance of f x t � 30; � � � ; x t � 1g and � ta is

the variance of f x t+1 ; � � � ; x t+30 g. The change-score time-series of the given example is

shown in the bottom panel of Figure 2.3.

Finally, we report the change-points. For the given example, we can report time-

points with the highest two change-scores as the �nal change-points.

2.2.3 Challenges

The majority of work in this area has focused on applied problems. General solutions

have been less studied. Thus, there are two major opportunities within this line of work.

First, there is an opportunity to create autonomous (application-agnostic) change-point

detection algorithms that take any type of time-series and return change-points. Second,

there is an opportunity to develop general solutions to overcome common data quality

problems such as noise and outliers. The �rst opportunity is our grand vision but will

require signi�cant innovations. Instead, we focus on the second opportunity of creating a

framework to allow existing model-based change-point detection algorithms to overcome

outliers and noise. We next highlight how these challenges a�ect existing methods.

Outliers

Outliers are rare and anomalous observations that are di�erent from the overall popu-

lation. They are not change-points. Typically, the underlying time-series model does

not change from one function to the other when an outlier presents. Figure 2.4 shows

a time-series with two outliers (the red points).

Figure 2.4: The impact of outliers on modeling-based change-point detection methods.
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Figure 2.5: The decay phenomenon in a change-score time series.

Outliers negatively a�ect modeling-based change-point detection algorithms in two

aspects: (i) they can be detected as change-points due to their anomalous behaviors;

and (ii) they bias parameter estimation of the time-series model, especially when esti-

mating the parameters using least square methods. Figure 2.4 demonstrates these two

impacts of outliers. The �gure shows a time-series that contains both change-points and

outliers. The change score of a time step is de�ned as the absolute di�erence between its

observation and the mean of its previous 20 time-steps. The four points highlighted with

green color dots have change-scores 0.32(A), 1.95(B), 2.88(C) and 0.58(D). If we delete

outliers manually and re-compute the change-scores, they are 0.15(A), 1.95(B), 2.88(C)

and 2.54(D). The scores of A and D when outliers are removed are signi�cantly di�erent

from the ones with outliers. This shows that outliers impact change-point detection,

which in turn (i) causes non-change points to have arti�cially high change-scores; and

(ii) decreases the change-scores of real change-points.

Noise

Noise is a random signal provided by a meaningless or irrelevant resource(s). Typically,

noise is mixed with \real" signals and causes the observed data to randomly deviate from

their true value. It can be challenging to detect change-points from a noisy time-series.

Common solutions include (i) preprocessing the data; and (ii) aggregating change-scores

of several consecutive time-steps to assess the signi�cance of a change event. However,

both of these solutions have limited applicability. First, preprocessing methods (e.g.,
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smoothing), have aggregation issues and may introduce extra false negatives. Second,

change-score aggregation methods tend to use the area-under-the-curve as a measure

of the signi�cance of a change event. This can be misleading since change-scores tend

to be high and then decay over time as shown in Figure 2.5. This fact makes the

area-under-the-curve an unreliable metric.

The top panel of Figure 2.6 shows a noisy time-series that changes around the

green line. Its anomaly scores are shown in the bottom panel. The change-scores are

calculated in the same way as the example shown in Figure 2.4. Note that the area

under the curve of the real change-point (the green line) is smaller than the one caused

by random noise (the red line).

Figure 2.6: The impact of noise on modeling-based change-point detection methods.

2.3 Proposed method

To improve the robustness of most existing modeling-based change-point detection

methods to noise and outliers, we propose to: (i) utilize the central method to es-

timate time-series models and calculate anomaly-scores and (ii) incorporate both the

persistence and consistency properties to score the change events. Although the two

proposed technologies can be used independently, we construct a framework that can

use them together to achieve the best performance. In the following section, we �rst



21

introduce the central method and the concepts of persistence and consistency. Then,

we present the proposed framework, which has been named the Persistence-Consistency

(PC) framework.

2.3.1 The central method for anomaly-score estimation

As we discussed in Section 2.2, outliers, if they exist in the training data, can dra-

matically reduce the accuracy of a time-series model estimation method and therefore

negatively impact the �nal performance of the change-point detection algorithm. To

address this challenge, we propose a central method to calculate anomaly-scores.

The central method is a random sampling technique. We show its pseudo-code as

Algorithm 2.2. For comparison purposes, we also show Algorithm 2.1 from Section 2.2

on the right side. For the sake of simplicity, we use TS for time-series in all of the

pseudo-codes.

Algorithm 2.2: calAnomalyCentral
Input: f (�), a TS model

g(�), an anomaly score function

x , a TS data

Output: a, An anomaly score TS

1 for any x t 2 x do

2 for r from 1 to � do

3 x 0 = sample(x (t � w; t � 1));

4 �̂ = est(� jx 0; f );

5 tempr = g(�̂ ; x i ) ;

6 end

7 at = med(temp1; � � � ; temp� );

8 end

Algorithm 2.1: calAnomalyTS(�)
Input: f (�), a TS model

g(�), an anomaly score function

x , a TS data

Output: a, An anomaly score TS

1 for any x t 2 x do

2 x 0 = x (t � w; t � 1));

3 �̂ = est(� jx 0; f );

4 at = g(�̂ ; x t );

5 end

As introduced in Section 2.2, Algorithm 2.1 is one of the most commonly used meth-

ods to generate an anomaly-score for each time-step. As shown in Line 2-3, Algorithm

2.1 uses all available data in the training window to estimate the time series model.

When outliers occur in the training data, the estimated time-series model may dramati-

cally di�er from the true model. The proposed central method, on the other hand, does
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not use all training data. Instead, it estimates one time-series model using a subset of

the training data (Line 3 - 4 in Algorithm 2.2) and then calculates one anomaly score

from the obtained model (Line 5 in Algorithm 2.2). We repeat this procedure multiple

times (Line 2 - 6 in Algorithm 2.2). The �nal anomaly score is the median of all the

obtained scores (Line 7 in Algorithm 2.2). The intuition behind the central method is

to reduce the chance of including outliers in the training data.

The following lemma demonstrates the conditions under which anomaly scores cal-

culated by the central method are not impacted by outliers at all. In many cases,

even when the condition may not be fully satis�ed, the central method can still largely

increase the robustness of a change point detection method to outliers.

Lemma 2.1. Assume that the sampling rate isb, the outlier rate is o, and the times

of the randomly sampling we do isn, then the probability that no outliers were used to

estimate the parameters� has the lower bound as below.

p(�̂ = � jb; o) > (
1 � b� o

1 � o
)on

where � is the set of � where no outliers are used in the estimation.

Proof. Let k = on and m = bn. The probability that no outliers were used to estimate

� is

p(�̂ = � jb; o) =
(n� k)!

m!(n� m� k)!
n!

m!(n� m)!

=
(n � k)!(n � m)!
(n � m � k)!n!

When outliers are rare, we havek < m < n . Then,

p(� = � jn; m; k )

=
(n � k)!(n � m)!
(n � m � k)!n!

=
(n � m)(n � m � 1) � � � (n � m � k + 1)

n(n � 1) � � � (n � k + 1)

=
k� 1Y

i =0

n � m � i
n � i

Also since 0< k < m and 0 � i � k � 1, we have
n � m � i

n � i
>

n � m � k
n � k

=
n � bn � on

n � on

=
1 � b� o

1 � o
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Hence,

p(� = � jn; m; k ) > (
1 � b� o

1 � o
)on

2.3.2 Persistence and Consistency

Persistence and consistency are two properties of change-points that we can use in a

detection method to improve its detection accuracy when noise and outliers present in a

dataset. More precisely, we can use the persistence property to distinguish change-points

from outliers and the consistency property to enhance the performance of a detection

method against noise.

Persistence is a characteristic that we use to avoid labeling outliers as change-points.

We de�ne an anomalous time-point (x t ) to be persistent if many time-steps after x t

persistently di�er from time-steps before x t . As discussed in Section 2.2, change-points

and outliers are two types of anomalous observations in a time series. The (underlying)

time-series model is expected to change around a change-point but not around an outlier.

Hence, we consider change-points as persistent anomalies since typically multiple time-

steps after a change-point are signi�cantly di�erent from time-steps before the change

point. In contrast, we de�ne outliers as non-persistent anomalies since time-steps after

an outlier typically follow the same time-series model as time-steps before the outlier.

Consistency is used to reduce false alerts due to random noise. We say an anomaly

is consistent when the anomaly can be detected using multiple subsets of historical

data. Most predictive modeling-based change-point detection methods use consecutive

historical data to train the model (as shown in Line 2 in Algorithm 2.1). When data

is very noisy, normal data may be assigned high anomaly scores occasionally. When

change-points are very rare compared with normal points, a small fraction of false alerts

can lead to a pool accuracy in the detection results. We use consistency to solve this

problem. In detail, we assign multiple anomaly-scores to each time-step using di�erent

training data. We say an anomaly is consistent if all or most of its anomaly scores

are high. Otherwise, the anomaly is inconsistent. Both change points and outliers are

considered to be consistent. A normal data point, on the other hand, may have several

high anomaly scores. But the probability that anomaly scores of a normal time-step are

consistently high across di�erent training sets is low.
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2.3.3 The Persistence Consistency (PC) framework

The proposed Persistence-Consistency (PC) framework takes advantage of both the

persistence and consistency properties. In addition, it is also very convenient to add

the central method into the framework. Hence, the PC framework can dramatically

increase the robustness of a given change point detection method to both noise and

outliers. The PC framework can be applied to most modeling-based detection methods.

Algorithm 2.3 shows the pseudo-code of the PC framework. This proposed frame-

work has three types of inputs: (i) a time series data, which is denoted by a vectorx;

(ii) a change point detection method, which is characterized by a time-series modelf (�)

and an anomaly-score functiong(�); and (iii) a set of user-de�ned parameters �. Here,

we assume that the selected time-series change-point detection method (i.e., f (�) and

g(�)) �ts the application very well ( i.e., the detection accuracy is very high) if no noise

and outliers exist in the time-series data. The PC framework outputs a change-score

for each time-step. We keep all the change-scores in a time-series (which is denoted by

y) and name the time-series as the change-score time-series.

Algorithm 2.3: The pseudo-code of the PC framework.
Input: x : a TS data;

f (�): a TS model;

g(�): an anomaly-score method;

�: user de�ned parameters;

Output: y : a change score time series.

1 M = calAnomalyMatrix (x ; f (�); g(�); �);

2 y = calChangeScoreTS(M ; �);

There are two steps in the PC framework. The �rst step (Line 1 in Algorithm 2.3) is

to calculate an anomaly-score matrixM for the given time-series datax . We name the

�rst step anomaly-score matrix construction or function calAnomalyMatrix (�). The

second step (Line 2 in Algorithm 2.3) is to generate the �nal change-score time-series

from the obtained anomaly-score matrix. We call the second stepchange-score time-

series generationor function calChangeScoreTS(�).
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Anomaly-score matrix construction: calAnomalyMatrix (�)

Anomaly-score matrix is an internal data structure that we use to keep all the anomaly

scores of the input time-series data. This novel data structure is the core component

in the proposed PC framework. Algorithm 2.4 illustrates the construction process of

the anomaly-score matrix for a given time-seriesx . Note that in Algorithm 2.4, we

DO NOT include the central method for anomaly-score calculation. The most compre-

hensive algorithm (i.e., the PC framework with the central method) is provided later

in Algorithm 2.5. Again, we show Algorithm 2.1 on the right side of Algorithm 2.4 to

highlight the di�erences between the construction of an anomaly-score matrix and an

anomaly-score time-series.

Algorithm 2.4: calAnomalyMatrix
Input: x : a TS data;

f (�): a TS model;

g(�): an anomaly score function;

�: user de�ned parameters;

Output: A : an anomaly score Matrix;

1 for any x t 2 x do

2 �̂ = est(� jx (t � w; t � 1); f );

3 for i from t to the end do

4 A t;i = g(�̂ ; x i );

5 end

6 end

Algorithm 2.1: calAnomalyTS
Input: x : a TS data;

f (�): a TS model;

g(�): an anomaly score function;

�: user de�ned parameters;

Output: a: an anomaly score TS;

1 for any x t 2 x do

2 �̂ = est(� jx (t � w; t � 1); f );

3 at = g(�̂ ; x t );

4 end

The PC framework calculates anomaly-scores for multiple time-steps from a single

estimated time-series model. In detail, for any quali�ed time stepx t , the PC framework

trains a time-series model using w data before it (i.e., time steps betweenx t � w and x t � 1)

(Line 2 in Algorithm 2.4). This step is exactly the same as the selected change point

detection method (Line 2 in Algorithm 2.1). Then, besides using the obtained model to

estimate an anomaly score for time-stepx t , the PC framework also estimates anomaly

scores for all time-steps afterx t and keep all the obtained values in the corresponding

positions in the t th row of the anomaly-score matrix (Line 3 - 5 in Algorithm 2.4).
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We repeat this procedure through a sliding window approach for all other quali�ed

time-steps.

Figure 2.7 illustrates this process using an image to further help in understanding

the construction process. The target time series is on the top of the image and its

corresponding anomaly-score matrix is in the bottom right. Values in each row of the

anomaly-score matrix are calculated using the same time series model. We mark the

training window by a horizontal line on the left of that row and record the anomaly

scores in the corresponding columns. For illustration purposes, instead of writing down

the real anomaly score values, we use H (red), M (blue) and L (green) to indicate high

anomaly scores, median anomaly scores, and low anomaly scores respectively in Figure

2.7.

Figure 2.7: The construction of the anomaly score matrix for a time series. The anomaly
scores, in general, are continuous values. For the illustration purposes, we separate them
into three categories and use H (red), M (blue) and L (green) to indicate high anomaly
scores, median anomaly scores, and low anomaly scores respectively.

In anomaly-score matrix, as we discussed above, each time-series model generates

multiple anomaly-scores for di�erent time-steps. Simultaneously, each time-step gets

multiple anomaly-scores. When we generate the anomaly-score matrix, we keep all the

anomaly-scores for a single time-step in the same column (as shown in Figure 2.7). One

interesting fact is that all the anomaly scores of a single time-step are obtained using

di�erent training sets. Such a novel data structure has several advantages.
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Figure 2.8: Examples of the anomaly score matrix for di�erent time series.

First, outliers and change-points have easily discernible patterns in the anomaly-

score matrix. The left panel in Figure 2.8 shows a time series (the top panel) and its

corresponding anomaly-score matrix (the bottom panel). There are one outlier and

one change-point in the time series. In the anomaly-score matrix, we use red for high

anomaly-score values and blue for low values. Change-points have the persistence prop-

erty and hence there is a patch of high anomaly scores (orange color) after the change

point. In contrast, outliers are non-persistent anomalies and hence an outlier is shown

in an anomaly-score matrix as one column of high values.

Second, the anomaly-score matrix also enables us to robustly detect change-points

in a noisy time-series. The middle panel in Figure 2.8 shows a noisy time-series (top

panel) with its anomaly-score matrix (bottom panel). Although the time-series is so

noisy that any single anomaly-score (each cell in the matrix) is not strong enough to

make a decision, we can still observe a patch with relatively high anomaly scores right

after the change-point. This increases our ability to identify change-points in highly

variable data.

Finally, the anomaly-score matrix allows us to easily identify multiple change-points

in a single time-series. The right panel in Figure 2.8 shows a time-series with two change-

points (top panel) and its anomaly-score matrix (bottom panel). We can clearly identify

the two change-points as the time-steps preceding the high anomaly-score blocks in the

bottom panel.
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While Algorithm 2.4 has many advantages as we discussed above, the anomaly-score

matrix itself still cannot reduce the negative impact of outliers on model estimation. To

overcome this challenge, we need to incorporate the central method in the algorithm.

Algorithm 2.5 is a more comprehensive algorithm that calculates the anomaly-score

matrix using the central method.

Algorithm 2.5: calAnomalyMatrixCentral
Input: f (�), a TS model

g(�), an anomaly score function

x , a TS data

�: User de�ned parameters;

Output: A , An anomaly score Matrix

1 for any x t 2 x do

2 for r from 1 to � do

3 x 0 = sample(x (t � w; t � 1));

4 �̂ = est(� jx 0; f );

5 for i from t to the end do

6 B r;i = g(�̂ ; x i ) ;

7 end

8 end

9 for i from t to the end do

10 A t;i = med(B 1;i ; � � � ; B �;i );

11 end

12 end

Change-score time-series calculation: calChangeScoreTS(�)

A change-point can be observed from an anomaly-score matrix as the boundary of a low

anomaly score triangle block on the left and a high anomaly-score rectangle block on the

right. When only one single change occurs in a time-series, as shown in the �rst two plots

in Figure 2.8, the change-point is the column where the matrix is partitioned into the

two most contrasting \sub-matrices". However, when there are multiple change-points,

as shown in the right panel in Figure 2.8, scoring change-points becomes a non-trivial
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problem.

We use Figure 2.9 to illustrate the method we use to calculate change-scores. The

detailed psedo-code is shown in Algorithm 2.6. The left panel in Figure 2.9 shows a

time-series and its anomaly-score matrix. To account for multiple change events, we

use a sliding window approach. We adopt Matlab notation for matrices. Let M (i 1 :

i 2; j 1 : j 2) be the sub-block in a matrix M that starts at the i th
1 row and ends with

the i th
2 row, and starts at the j th

1 column and ends with the j th
2 column. Using this

notation, we de�ne B t (the reference area of time stept) as the upper triangular part

of M (t � c : t � 1; t � c : t � 1) and A t (the test area of time step t) as the sub-matrix

M (t � c : t � 1; t + 1 : t + p), where p and c are the parameters that control the size of

the reference area and the test area.

Figure 2.9: Illustration of the change-score calculation method. The left: an illustrative
example of how we report change events from an anomaly score matrix. The right: the
distribution of entries in sub-matrix A and sub-matrix B. The change points can be
detected as the column that maximizes the di�erence between the two distributions.

This proposed scoring method allows us to easily combine consistency and persis-

tence properties. First, the length of both the reference area and the test area indicates

the consistencyof an anomaly event { that is, an anomaly, whether an outlier or a real

change, has high anomaly-scores based on multiple training sets. We use parameterc

to control it. Second, the width of the test area indicates the persistenceof a change
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event { that is, how long does the time-series model remain di�erent from a training

period. We use parameterp to control it.

We can detect the change points as the time-steps such that the di�erence between

A t and B t are maximized. One way to quantify the di�erence betweenA t and B t is

by the distribution of their entries (anomaly scores). The right panel in Figure 2.9 is

the distribution of the anomaly scores within A t and B t in the left panel. Here, we opt

for a two-sample student t-test because of its modest computational costs. The �nal

change score for time stept can be obtained by function scoring(:).

scoring(x t ) =
kmean(A t ) � mean(B t )kp

var(A t )=count(A t ) + var(B t )=count(B t )

where, mean(.), var(.), and count(.) are the mean, variance, and number of entries in

the sub-matrix, respectively.

Algorithm 2.6: calChangeScoreTS
Input: A : an anomaly-score Matrix;

�: user de�ned parameters;

Output: y : an anomaly-score TS;

1 for any valid t do

2 A t = M (t � c : t � 1; t + 1 : t + p) ;

3 B t = M (t � c : t � 1; t � c : t � 1) ;

4 y t = scoring(A t ; B t );

5 end

Parameter selection: �

The PC framework has a set of user de�ned parameters, which is denoted as � in all

the above pseudo-codes. Parameters in � belong to three categories. The �rst category

is parameters that are introduced by the selected time-series method. One example is

the size of the sliding window used to train the time series model (i.e., the parameter

w in Algorithm 2.1 - Algorithm 2.5).

The second categories include two values (i.e., p and c in Algorithm 2.6) that control

the size of the reference area and the test area. Since the performance of the two-sample

student t-test is better when the sample size is larger, we should makep and c a large
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number. However, if there is more than one change point in a time series, one might

include information from previous change periods whenp and c are too large. Therefore,

in general,p and c should be a large number but smaller than the shortest time duration

between two change points.

The �nal category is the parameter used in the central method. The central method

contains one parameter� , which is the times of random sampling we do in the anomaly

score calculation. � is bounded by the requirement of algorithm accuracy (See Lemma

2.1) and the requirement of the computation cost. When� decreases, the accuracy of

the central method drops. When � increases, the computational cost increases. Hence,

for � , we can select any number within the acceptable region. The lower bound of the

acceptable region is the smallest value that matches the error rate requirement. The

upper bound is the largest value that satis�es the computational cost requirement.

2.4 Evaluation

We illustrate the performance of the proposed PC framework through two applications:

(i) autonomous forest �re detection from satellite images and (ii) Activity segmentation

using chest-mounted accelerometer data.

2.4.1 Autonomous forest �re detection from satellite images

We �rst evaluate the performance of the PC framework by its ability to detect forest

�res from satellite data.

Experimental setup

The dataset that we use is the Enhanced Vegetation Index (EVI) data [87]. EVI data

measure the surface \greenness" as a proxy for the amount of vegetated biomass at

a particular location. Forest �res cause an abrupt change on the land surface due to

vegetation loss, which can be characterized as abrupt changes in the EVI time series

[24]. Figure 2.10 shows two EVI time-series for two burned locations from di�erent

geographic regions. Applying most existing time-series change detection methods to

identify forest �res from EVI data has three challenges: (i) a signi�cant number of

time-series are very noisy and contain outliers, (ii) the time-series are periodic, and (iii)
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the data are very large (� 1 billion time-series). In this experiment, we aim to show

the robustness of the proposed framework to outliers and noise.

(a) Burned in 2008. (b) Burned in 2007.

Figure 2.10: Example EVI time-series from two locations where forest �res occurred.
The left time-series is from Northern California while the right one is from Southern
California.

To demonstrate the generalization ability of the PC framework, we choose two eco-

logically varied regions in the state of California (US). Each experimental region contains

roughly two-thousand time series. The �rst region is near San Diego (the region be-

tween 32:85oN � 32:53oN and 116:4oW � 117oW ) and the second region is near Salinas

(the region between 36:4oN � 35:9oN and 121:2oW � 122oW ). These two geographic

areas represent diverse regions with di�erent variability, land cover types, geography,

and noise characteristics.

We select four baseline methods that can detect changes in periodic time-series. The

baseline methods are (i) seasonal ARIMA [47]; (ii) adaptive CUSUM (CUSUM method

after removing the periodicity of the time series); (iii) Gaussian process method with

periodic model (GP) [17] and (iv) Variance Independent Drop (VID) [67] { an algorithm

designed to speci�cally detect sudden drops in remote sensing time series. We Local

Instant Drop (LID) [24] as the input change detection method in PC framework. LID

is very sensitive to outliers and noise and has poor performance if directly used in this

experiment.

We use manually curated data to quantitatively evaluate and compare the per-

formance of the proposed PC framework and the four baseline algorithm. These �re
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validation data are from government agencies responsible for monitoring and managing

forests and wild�res. According to these validate data, we assign a label for each time

series: 0 for unburned, 1 for burned, and 2 for partially burned3 . We consider a

time-series to bepositive if it is totally burned (label is 1) and negative if it is totally

unburned (label is 0). The remaining pixels (partially burned) are discarded from our

evaluation to avoid ambiguity.

When reporting events, each detection method provides one change-score to each

time-series. The reported change-score of a time-series is the maximum value in the

corresponding change-score time-series. Given change-scores of all time-series, there are

two ways to mark a time-series as positive. We can either report all the time-series

whose change-scores are larger than a speci�c threshold as positives or label the time-

series with the top-k change-scores as positives. For this experiment, we choose the

second method.

Predicted

Fire No Fire

Validation Data
Fire TP FN

No Fire FP TN

Table 2.1: The confusion matrix for the �re detection experiment.

Forest �res are rare events. We usePrecision and Recall as evaluation metrics to

quantitatively compare the various methods [84]. Given a number ofk, each algorithm

returns a set of positive and negative events. Comparing the detected results against

the �re validation data, we obtain the number of true positives ( TPk ), false positives

(FPk ), false negatives (FN k ) and true negatives (TNk ) for each algorithm (as shown in

the confusion matrix in table 2.1). Precision (pk ) and recall (r k ) are then computed as:

pk =
TPk

TPk + FPk

3 Although government agencies make their best e�ort in documenting historical �res, �re perimeter
data are neither complete nor without error due to the �nite resources available to any agency. However,
inaccuracies and incompleteness are represented only in a small portion of the validation data, and these
data are still useful for quantitatively comparing methods across large spatial regions.
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r k =
TPk

TPk + FN k

We illustrate the performance of di�erent algorithms using precision curves and

recall curves. A precision (or recall) curve is a line that shows how the precision (or

recall) values change withk, i.e. the number of detected positive points.

Experimental results

Figure 2.11 shows the precision (in the top panel) and recall (in the bottom panel)

curves for each method in both Northern California (in the left panel) and Southern

California (in the right panel). The PC framework has better precision and recall values

in both regions, especially whenk is not too large. Thus, the proposed PC framework

provides more reliable results. Since all methods can handle periodicity well, the major

improvement of the PC framework is because of its robustness to noise and outliers.

Another observation from the results is that most methods perform reasonably well

in Northern California but our method is much better than the others in Southern

California. This is because the data in Southern California are more heterogeneous and

noisy.

2.4.2 Activity segmentation through chest-mounted accelerometer data

The second experiment illustrates the performance of the proposed PC framework by its

ability in activity segmentation through chest-mounted accelerometer data. There has

been work in time-series segmentation using this dataset (e.g. [14]). However, a change-

point detection approach may be more suitable especially for real-time monitoring. This

application is challenging since the data are highly variable with changing periodicity

(e.g. di�erent behavior when walking and standing).

Experimental setup

The chest-mounted accelerometer data are from the UCI Machine Learning Repository

[14, 61]. This dataset records the uncalibrated accelerometer signals from �fteen users

when they are asked to do seven activities: (i) work at a computer, (ii) stand up, walk

and go up/down stairs, (iii) stand, (iv) walk, (v) go up/down stairs, (vi) walk and talk
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