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ABSTRACT

Evidence for Holocene droughts in Mesoamerica exists from numerous
paleolimnological studies. Speleothems from the Yucatan Peninsula can be used to help
constrain the timing, intensity, and regional extent of these droughts. Late Holocene
wet/dry cycles are inferred from the oxygen isotope record of speleothem calcite and the
timing is constrained using U/Th dating. In the lowland neotropics, there is a strong
negative correlation between 8'°0 of precipitation and rainfall amount, i.e. the “amount
effect”. The 8'30 of speleothem calcite can then be used as a proxy for the relative
amount of past precipitation in the Maya Lowlands. A speleothem from Cueva Tzabnah,
near Tecoh, Yucatan, Mexico, has a basal date of 1240 £61 yr BP and a top date of 28
+21 yr BP, indicating growth during most of the Terminal Classic period of Maya
prehistory. Oxygen isotopes were measured at 0.5 mm intervals, with an average value of
-5.25%o. 8'%0 values increase near the hiatuses in speleothem growth, interpreted as
evidence for the presence of drought conditions. The relative increases in 8'°0 are dated
using U/Th methods to constrain the timing of the drought events. In the top 3mm, the
mean 5'%0 value is 2.49%o greater an the mean speleothem &'20 value, and possibly
represents drier conditions beginning in the mid-15" century AD consistent with a nearby
lake sediment core record from Aguada X’caamal (Hodell et al., 2005). Another
speleothem from Cueva Columnas, near Tzucacab, Mexico, has a basal date of 1347 £63
yr BP and a top date of 520 +99 yr BP, and a mean 8'°0 value of —3.80%o. Both
speleothems contain evidence for past climate fluctuations during the Terminal Classic
period, including a relatively drier period from about 850-900 AD recorded in both

speleothems.
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INTRODUCTION

The Maya civilization occupied the Yucatan Peninsula (Figure ) of Mexico,
Guatemala, and Belize since 2000 BC, culminating in a cultural peak during the Classic
period (ca 250-900 AD). The Classic Maya civilization experienced a dramatic decline
during the late Terminal Classic Period (ca 800-1000 AD), when many large population
centers were abandoned and monuments ceased to be built (Sharer, 1994). One of the
prominent hypotheses is that a prolonged drought contributed to the demise of the Maya
during the late terminal Classic Period. The hypothesis is controversial because accurately
dated paleoclimate records from the Maya Lowlands of the Yucatan Peninsula that span
the late Holocene (last 2 to 3 thousand years) are needed in order to assess the role
climate may have played in the collapse of the Classic Maya civilization. Although
paleoclimate studies from lakes indicate drought conditions existed during the late
Holocene, these records are not well-constrained. Paleoclimate data from speleothems,
which have a much higher resolution and can be accurately dated using U/Th techniques,
have the potential to resolve this roblem.

The Maya Lowlands of the Yucatan Peninsula consist of a karst lan cape that
contains numerous caves with abundant speleo ems. The growth rates of the
speleothems often allow for resolution of climate signals on a sub-decadal timescale. The
growth layers can be successfully analyzed for both carbon and oxygen isotopes, which
yield valuable data about past climate (White, 2004). Carbon isotopes are useful for

recording vegetation changes, possibly resulting from either climate change or human



ind use, and oxygen isotopes provide information about amount of past precipitation
(Harmon et al., 2004).

Despite abundant caves with speleothems, there are rc itively few
paleoclimatology studies using climate archives from caves from the Yucatan or from
central America, especially from the late Holocene. Webster et al., in press, present
paleoclimate data from a 3300-yr old stalagmite from Belize. The stalagmite, dated using
a combination of U/Th, radiocarbon, and 210py methods, reveals evidence for droughts in
the Maya Lowlands, including a severe drought lasting from 700-1135 AD, encompassing
the terminal Classic Period. Two other studies have also used U/Th techniques to date
speleothems from the lowland Neotropics. Lachniet et al. (2004a) documented an early
Holocene dry period in Costa Rica, and Lachniet et al. (2004b) studied El Nino/Southern
Oscillation and precipitation history over the last 1500 years recorded in calcite from a
Panamanian speleothem. Although these studies reveal the ability to use speleothem
calcite to obtain a datable climate archive in & Neotropics, speleothems from the
northern Yucatan have yet to be dated accurately and precisely using U/Th dating
techniques. This is significant, Because archeological studies indicate abandonment of
Maya settlements in the northern Yucatan occurred between 861-910 AD, whereas
abandonment of sites in the western and southeastern lowlands occurred earlier, between
760-810 AD (Gill, 2000). Paleoclimate evidence from speleothems in the northern
Yucatan could provide support for the spatial extent and regional timing of droughts in
the Maya Lowlands, which can then be correlated with the archeological record.

In this study, U/Th dating methods are used to constrain the climatic changes



during the late Holocene as recorded in oxygen isotopes in the “Tecoh” eleothem from
Cueva Tzabnah, near Tecoh, Yucatan, and in the “Hobo 5 speleothem from Cueva

Columnas, Rancho Hobonil, near Tzucacab, Yucatan.

BACKGRC 'ND
Stu -’ Area: Climate and Geology

The Maya Lowlands of the Yucatan Peninsula inc 1de the Peten, or central
lowlands of Guatemala and Belize, and the Yucatecan, or northern lowlands of the
Yucatan Peninsula in Mexico (Morley and Brainerd, 1983). The Yucatan is known as the
site of the earliest centers of the Classic Maya civilization, which spread throughout the
region and culminated in a cultural peak from the third through the ninth centuries AD
(Morley and Brainerd, 1983). Tikal, a population center located in the Peten, may have
supported up to 49,000 indivi 1als during the late Classic Period (Haviland, 1969), and
population estimates for the Maya Lowlands are as high as 13 million at the peak of the
Classic period (Sharer, 1994).

The current climate of the Maya Lowlands is warm, with an average temperature
of 25°C. A sharp N-S rainfall gradient exists throughout the region (Figure 1), with
annual precipitation values of <500 mm/yr in the north, and increasing to >3000 mm/yr in
the south. The source of the precipitation is moisture from the Caribbean, which is carried
east to west by the northern branch of the Caribbean low-level jet (Mestas-Nufiez et al.,
2002). This results in a slight E-W precipitation gradient, as well. Precipitation values

vary seasonally, with the northward migration of the Intertropical Convergence Zone
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Appendix A: U/Th Chemical Procedures

1.

2.

10.

11.

12.

13.

14.

transfer powdered sample to a pre-weighed 30 ml Teflon vial and reweigh

cover sample with deionized water and then dissolve by adding small amounts of
7N HNO;

spike dissolved sample using a solution with known concentrations of 2°U, 2°U,
and “°Th isotopes, and dry down on a hot plate

dissolve sample using 10-12 drops of HC1O4 to dissolve organics and to convert
the sample to a uniform oxidation state, and then dry down again

while warm, dissolve again using 2N HCI, and then add a drop of Fe solution
coprecipitate U and Th with iron hydroxide by adding drops of concentrated
NH,OH

centrifuge solution and discard supernate

dissolve precipitate using 14N HNO; and dilute with 7N HNO; and dry down
dissolve sample using 2-3 drops of HC1O4 and dry down again

dissolve sample using 7N HNQs, and transfer to an elution column containing
anion exchange resin

elute thorium using 3 column volumes of 6N HC]; elute uranium using 4 column
volumes of super clean H,O; dry down U and Th separates

dissolve sample using 1-2 drops of HC1O4 and dry down again

dissolve separates in 14N HNO; and then dilute with a 1% HNOs/HF solution

transfer to ICP vials in preparation for mass spectrometric analyses
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144

Yucatan Samples

2%Th dating results. The error is 2 error.

Sample  Depth Iy B2y B0Th 1 ®2Th 52y B0y 2%8Y Z0Th Age (yr) 2Th Age (yr) 8**Uma™  2°Th age (yr BP)*™
Number  (mm) (ppb) (ppt) (atomic x10%)  (measured) - ~ivity) (uncorrected)  (corrected) (corrected) (corrected)
OX-1-B  base 205.8 £0.6 1006 £+ 17 1071.4 £25.3 271.7 4.7 0.31... 10.00533 31,004 + 611 30895 £ 613 296.5 £5.2 30838 £ 613
0X-2-B base 131.2£#0.3 16258 + 70 37.3 1.0 2298 46 0.28085 +0.00779 28,012 + 887 25082 £ 1719 246.7 5.0 25025 £ 1719
OX-3-T top 158.1 +0.5 3579 + 22 31.9 1.3 406.1 +59 0.04386 10.00181 3,447 + 145 2979 + 276 409.5 6.0 2922 +276
0X-3-B base 123.1 £0.2 792 £ 15 139.7 £6.1 4125 +45 0.05458 10.00216 4,285+ 173 4153 £185 4174 45 4096 1+ 185
IX-1x-B  base 193.6 +0.4 5953 + 27 119.1 £2.3 568.7 +4.0 0.22227 +0.00422 16,497 + 338 15935 % 439 5949 143 15878 £ 439
IX-1-T top 92.3 +0.3 1095 + 13 13.6 2.3 606.7 £7.9 0.00978 £0.00162 665 + 111 450 + 154 607.5 £8.0 393 +154
I1X-1-B base 130.3 0.2 2432 + 14 78.2 £2.1 503.2 +4.1 0.08853 10.00235 6,592 + 181 6232 £255 5121 +4.2 6175 £ 255
1X-2-B base 46.9 +0.1 98 +13 7708.2 £+1049.1 129 +5.1 0.97500 +0.01156 346,606 + 38719 346547 £ 38695 34.2 £25.5 346490 *+ 38695
AC-B base 59.1 £0.1 4107 + 17 108.3 +1.8 2327 +53 0.45664 10.00723 49,606 £+ 1018 48000 £ 1288 266.5 6.1 47943 + 1288
TE-3-B base 5729 +1.7 2057 + 15 250.3 +4.0 274 +3.0 0.05457 +0.00080 5,945 + 92 5843 £ 105 27.9 £+15.5 5786 £ 105
CA-1-T tap 49.2 +0.1 663 + 12 7.6 1.7 1515 +£4.0 0.00622 +0.00135 590 + 128 250 * 213 151.6 +4.0 193 £213
PL-1-T top 119.7 £0.2 999 + 12 26.3 +1.5 2248 +27 0.01330 10.00074 1,189 + 67 991 + 119 2254 +2.7 934 £ 119
PL-1-B base 91.9 0.2 1040 + 13 24.2 12,6 180.9 +4.3 0.01663 20.00177 1,544 £ 166 1265 £ 216 181.5 +4.3 1208 £ 216
PL-2-T top 83.0 £0.1 2285 +13 14.6 +1.4 136.1 +3.2 0.02439 10.00229 2,364 + 224 1657 £ 419 136.7 £3.2 1600 + 419
PL-2-B base 236.9 £0.7 4038 £ 23 29.8 +1.2 325.7 +46 0.03081 0.00127 2,559 + 107 2185 + 216 327.7 +4.6 2128 £ 216
SR-T top 175.0 £0.3 769 +14 2104.2 +42.3 745 +31 0.56159 £0.00480 79,702 + 1062 79585 + 1063 93.2 +3.9 79528 + 1063
SR-B v 177.4 +0.3 167 £ 11 10079.7 £665.9 824 +2.8 0.57544 +0.00423 81,628 + 952 81603 * 952 103.7 £53.7 famae £ 952

Mo =9.1788 X 107 y', Apyy = 2.8263 x 10° y', A5 = 155125 x 1077 y",
y

MU = (P*UA U Luggiy~ 1)x1000. %% 87Uy g,was calculated based on 2*Th age (T), €., 8 Uit 8 *UnessureaX €.

Corrected »°Th ages assume the initial *°Th/***Th atomic ratio of 4.4 +2.2 x10°. Those are the values for a material at secular

equilibrium, with the bulk earth “2Th/?*U value of 3.8. The errors are arbitrarily assumed to be 50%.
***B.P. stands for “Before Present” where the “Present” is defined as the year 1950 A.D.
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Ay endix C: Map of Grutas Tzabnah
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Appendix D: Map of Cueva Colun as
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