HYPERGEOMETRIC EXPANSIONS
OF HEUN POLYNOMIALS

By

E.G. Kalnins
and
W. Miller, Jr.

IMA Preprint Series # 679
July 1990
HYPERGEOMETRIC EXPANSIONS OF HEUN POLYNOMIALS*

E.G. KALNINS† AND W. MILLER, JR.‡

Abstract. The product of two Heun polynomials is expanded in terms of products of two Jacobi polynomials. This is done by making crucial use of group theory and the knowledge of separable coordinate systems on the n-sphere. The expansion presented includes as a special case hypergeometric function expansions of Heun polynomials that have been derived previously by other methods.

Key words. multivariable orthogonal polynomials, the n-sphere, Heun functions

AMS(MOS) subject classifications. 22E70, 33A65, 33A75

1. Introduction. Any Fuchsian equation of second order with four singularities can be reduced to the form

\[
\frac{d^2w}{dx^2} + \left[\frac{\gamma}{x-e_1} + \frac{\delta}{x-e_2} + \frac{\epsilon}{x-e_3}\right] \frac{dw}{dx} + \frac{\alpha \beta x - q}{(x-e_1)(x-e_2)(x-e_3)} w = 0
\]

where \(\alpha + \beta - \gamma - \delta - \epsilon + 1 = 0\).

The singularities are located at \(x = e_1, e_2, e_3\) and \(\infty\) and have indices depending upon \(\alpha, \ldots, \epsilon\). The constant \(q\) is known as the accessory parameter. This is Heun's equation [1] and solutions may be characterised by the \(P\) symbol [2].

\[
P \left\{ \begin{array}{cccc}
e_1 & e_2 & e_3 & \infty \\
0 & 0 & 0 & \alpha \\
1-\gamma & 1-\delta & 1-\epsilon & \beta \end{array} \right\}
\]

Power series expansions for the solutions of Heun's equation have been studied by Heun for various arguments [1], [3]. There turn out to be 96 distinct types of power series. Alternatively, solutions of Heun's equations can be expanded in series of hypergeometric functions. Such expansions were studied by Svartholm [4] and Erdelyi [5]. Typically such expansions have the form

\[
P \left\{ \begin{array}{cccc}
e_1 & e_2 & e_3 & \infty \\
0 & 0 & 0 & \alpha \\
1-\gamma & 1-\delta & 1-\epsilon & \beta \end{array} \right\} = \sum_{m<0} A_m P \left\{ \begin{array}{cccc}
0 & 0 & \lambda + m & x \\
1-\gamma & 1-\delta & 1-\epsilon & \beta \end{array} \right\}
\]

where \(\lambda + \mu = \gamma + \delta - 1 = \alpha + \beta - \epsilon\). Two types of expansion were given;

(i) Series of type I for which \(\lambda = \alpha, \mu = \beta - \epsilon\). These series converge outside an ellipse with foci at \(e_1, e_2\) and which passes through \(e_3\). There are three distinct expansions of this type.

(ii) Series of type II for which \(\mu = 0, \gamma - 1, \delta - 1\) or \(\gamma + \delta - 2\).

*Supported in part by the National Science Foundation under grant DMS 88-23054
†Department of Mathematics and Statistics, University of Waikato Hamilton, New Zealand
‡School of Mathematics, 127 Vincent Hall, University of Minnesota, Minneapolis, MN 55455, U.S.A.
In all these expansions the coefficients \(A_m \) satisfy three term recurrence relations

\[
(1.4) \quad b_0 A_0 + c_1 A_1 = 0 \\
a_r A_{r-1} + b_r A_r + c_{r+1} A_{r+1} = 0, \quad r = 1, 2, \ldots
\]

where \(a_r, b_r, c_r \) are known expressions in \(r \) and \(c_r \neq 0 \). If \(q \) is chosen from a number of characteristic values then expansions of this type converge. In this article we derive some of these expansions for the case of Heun polynomials from considerations based on group theory and its connection with separation of variables solutions of the Laplace-Beltrami eigenvalue equation on the \(n \)-sphere. The method used makes a judicious choice of coordinates on the \(n \)-sphere. The expansions that are first derived are for products of Heun polynomials as sums of products of Jacobi polynomials. The coefficients in the expansions obey three term recurrence relations. The corresponding single variable expansions are then obtained by allowing one of the variables to take a fixed value. This paper is an extension of [8] in which the motivation and background can be found.

2. Derivation of the expansion formula. The graphical calculus of separable coordinates for the Laplace-Beltrami eigenvalue equation on the \(n \)-sphere has been completely worked out by Kalnins and Miller [6], [7]. To derive an expansion for Heun polynomials we consider coordinate systems corresponding to graphs of the type

\[
\begin{array}{ccc}
\varepsilon_1 & \varepsilon_2 & \varepsilon_3 \\
\vdots & \vdots & \vdots \\
S_{n_1} & S_{n_2} & S_{n_3}
\end{array}
\]

on the \(n \) sphere, \(n = n_1 + n_2 + n_3 + 2 \). A suitable choice of coordinates is

\[
(1.5) \quad s_i = u_1 w_i, \quad i = 1, \ldots, n_1 + 1 \\
s_{j+n_1+1} = u_2 t_j, \quad j = 1, \ldots, n_2 + 1 \\
s_{k+n_1+n_2+2} = u_3 z_k, \quad k = 1, \ldots, n_3 + 1
\]

where

\[
\sum_{i=1}^{n_1+1} w_i^2 = 1, \quad \sum_{j=1}^{n_2+1} t_j^2 = 1, \quad \sum_{k=1}^{n_3+1} z_k^2 = 1
\]

and

\[
(1.6) \quad u_i^2 = \frac{(x - e_i)(y - e_i)}{(e_j - e_i)(e_k - e_i)}, \quad i = 1, 2, 3, \quad i, j, k \text{ pairwise distinct.}
\]
The metric on the n sphere is

\begin{align}
(1.7) \quad ds^2 &= -\frac{(x-y)}{4} \left[\frac{dx^2}{(x-e_1)(x-e_2)(x-e_3)} - \frac{dy^2}{(y-e_1)(y-e_2)(y-e_3)} \right] \\
&\quad + \frac{(x-e_1)(y-e_1)}{(e_2-e_1)(e_3-e_1)} \sum_{i=1}^{n_1+1} dw_i^2 + \frac{(x-e_2)(y-e_2)}{(e_3-e_2)(e_1-e_2)} \sum_{j=1}^{n_2+1} dt_j^2 \\
&\quad + \frac{(x-e_3)(y-e_3)}{(e_2-e_3)(e_1-e_3)} \sum_{k=1}^{n_3+1} dz_k^2.
\end{align}

The coordinate systems chosen for w_i, t_j, z_k can be taken to be, say, spherical coordinates in each case, corresponding to the graph [6].

\[\begin{array}{cccc}
0 & 1 & \cdots & 1 \\
0 & 1 & \cdots & 1 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 1 & \cdots & 1
\end{array}\]

n_i boxes

We then seek eigenfunctions ψ of the Laplacian satisfying

\begin{align}
(1.8) \quad \Delta \psi &= -J(J + n_1 + n_2 + n_3 + 1)\psi,
\end{align}

where J is a non-negative integer. In the coordinates we have chosen, this equation has the form

\begin{align}
(1.9) \quad \Delta \psi &= -\frac{4}{(x-y)}[(x-e_1)(x-e_2)(x-e_3)] \left[\frac{\partial^2}{\partial x^2} + \frac{1}{2} \left[\frac{n_1+1}{x-e_1} + \frac{n_2+1}{x-e_2} + \frac{n_3+1}{x-e_3} \right] \frac{\partial}{\partial x} \right] \psi \\
&\quad - (y-e_1)(y-e_2)(y-e_3) \left[\frac{\partial^2}{\partial y^2} + \frac{1}{2} \left[\frac{n_1+1}{y-e_1} + \frac{n_2+1}{y-e_2} + \frac{n_3+1}{y-e_3} \right] \frac{\partial}{\partial y} \right] \psi \\
&\quad + \left[\frac{(e_1-e_2)(e_1-e_3)}{(x-e_1)(y-e_1)} \Delta_1 + \frac{(e_2-e_1)(e_2-e_3)}{(x-e_2)(y-e_2)} \Delta_2 + \frac{(e_3-e_1)(e_3-e_2)}{(x-e_3)(y-e_3)} \Delta_3 \right] \psi \\
&\quad = -J(J + n_1 + n_2 + n_3 + 1)\psi,
\end{align}

where Δ_k is the Laplacian on the sphere S_{n_k}.

If we seek eigenfunctions such that

\begin{align}
(1.10) \quad \Delta_i \psi &= -\ell_i(\ell_i + n_i - 1)\psi, \quad i = 1, 2, 3,
\end{align}

3
where the ℓ_i are non-negative integers, then writing

$$ (1.11) \quad \psi = \prod_{i=1}^{3} [(x-e_i)(y-e_i)]^{\ell_i/2} \phi, $$

we find (1.9) has the form

$$ (1.12) \quad \begin{aligned} &- \frac{4}{(x-y)} \left\{ (x-e_1)(x-e_2)(x-e_3) \left(\frac{\partial^2}{\partial x^2} + \left[\frac{\ell_1 + \frac{1}{2}(n_1+1)}{x-e_1} + \frac{\ell_2 + \frac{1}{2}(n_2+1)}{x-e_2} \right) \phi + A x \phi \\
&+ \frac{\ell_3 + \frac{1}{2}(n_3+1)}{x-e_3} \right\} \phi = -J(J+N+1)\phi \\
&- (y-e_1)(y-e_2)(y-e_3) \left(\frac{\partial^2}{\partial y^2} + \left[\frac{\ell_1 + \frac{1}{2}(n_1+1)}{y-e_1} + \frac{\ell_2 + \frac{1}{2}(n_2+1)}{y-e_2} \right) \phi + A y \phi \right\} \phi = -J(J+N+1)\phi \\
&+ \frac{\ell_3 + \frac{1}{2}(n_3+1)}{y-e_3} \right\} \phi \end{aligned} $$

where

$$ A = \frac{1}{4} (L + N + 1) L $$

and

$$ L = \ell_1 + \ell_2 + \ell_3, \quad N = n_1 + n_2 + n_3. $$

The corresponding separable solutions have the form

$$ (1.13) \quad \psi = u_1^{\ell_1} u_2^{\ell_2} u_3^{\ell_3} \varphi_{1}^{\ell_1, \ell_2, \ell_3}(x) \varphi_{2}^{\ell_1, \ell_2, \ell_3}(y) \varphi_{3}^{\ell_1, \ell_2, \ell_3}(w, t, z) $$

where a complete set of functions $\varphi_{\ell_1, \ell_2, \ell_3}(w, t, z)$ can be taken as

$$ (1.14) \quad \varphi_{\ell_1, \ell_2, \ell_3}(w, t, z) = \varphi_{\ell_1}(w) \varphi_{\ell_2}(t) \varphi_{\ell_3}(z) $$

and typically,

$$ (1.15) \quad \varphi_{\ell_1}(w) = \prod_{j=0}^{n_1-2} C_{K_j - K_{j+1}}^{1/2(n_1-j-1)} \frac{1}{j!} \frac{1}{(\pi)^{1/2}} \frac{(\sin \theta_{n_1-j})^{K_j+1}}{K_j^{1/2(n_1-j-1)}} e^{\pm i K_{n_1-j-1} \theta}, $$
for $\ell_1 = K_0 \geq K_1 \geq \cdots \geq K_{n_1-1} \geq 0$, and

\begin{equation}
\Delta_{(k)} \Theta_{\ell_1}(w) = -K_k(K_k + n_1 - k - 1)\Theta_{\ell_1}(w)
\end{equation}

where $C^w_\mu(z)$ is a Gegenbauer polynomial. The coordinates on S_{n_1} are

\begin{equation}
\begin{aligned}
 w_1 &= \sin\theta_{n_1} \cdots \sin\theta_2 \sin\theta_1 \\
 w_2 &= \sin\theta_{n_1} \cdots \sin\theta_2 \cos\theta_1 \\
 &\vdots \\
 w_{n_1} &= \sin\theta_{n_1} \cos\theta_{n_1-1} \\
 w_{n_1+1} &= \cos\theta_{n_1}
\end{aligned}
\end{equation}

and the operator $\Delta_{(k)}$ is given by

\begin{equation}
\Delta_{(k)} = \sum_{r < \ell \leq n_1+1-k} I_{r\ell}^2, \quad I_{r\ell} = w_r \frac{\partial}{\partial w_\ell} - w_\ell \frac{\partial}{\partial w_r}, \quad k = 0, \ldots, n_1 - 1.
\end{equation}

(The $\Delta_{(k)}$ are the second order symmetry operators for Δ_1 whose eigenvalue equations (1.16) characterize the separable coordinates (1.17), see [6], [7].) The corresponding separation equations are

\begin{equation}
[-4(\lambda - e_1)(\lambda - e_2)(\lambda - e_3) \left[\frac{d^2}{d\lambda^2} + \left(\frac{\ell_1 + \frac{1}{2}(n_1 + 1)}{\lambda - e_1} - \frac{\ell_2 + \frac{1}{2}(n_2 + 1)}{\lambda - e_2} + \frac{\ell_3 + \frac{1}{2}(n_3 + 1)}{\lambda - e_3} \right) \frac{d}{d\lambda} + (J - L)(J + L + N + 1)\lambda + 4q \right] \Phi^\epsilon_{J\ell_1\ell_2\ell_3q}(\lambda) = 0
\end{equation}

where $\lambda = x, y$ according as $\epsilon = 1, 2$, respectively. This is Heun's equation of the form (1.1) with $\gamma = \ell_1 + \frac{1}{2}(n_1 + 1)$, $\delta = \ell_2 + \frac{1}{2}(n_2 + 1)$, $\epsilon = \ell_3 + \frac{1}{2}(n_3 + 1)$, $\alpha = \frac{1}{2}(L - J)$, $\beta = \frac{1}{2}(L + J + N + 1)$. The solutions for the functions $\Phi^\epsilon_{J\ell_1\ell_2\ell_3q}(\lambda)$ are Heun polynomials which for fixed J will form a complete set of basis functions once the eigenvalues q have been calculated. To calculate the eigenvalues it is convenient to observe that in the coordinate system (1.5) the operator \mathcal{M} whose eigenvalue χ is

\begin{equation}
\chi = (e_1 + e_2 + e_3)[\ell_1^2 + \ell_2^2 + \ell_3^2 + \ell_1 n_1 + \ell_2 n_2 + \ell_3 n_3 - J(J + N + 1)]
+ 2\ell_1 \ell_2 e_3 + 2\ell_1 \ell_3 e_2 + 2\ell_2 \ell_3 e_1 - \ell_1 e_1 - \ell_2 e_2 - \ell_3 e_3
+ \ell_1 n_2 e_3 + \ell_1 n_3 e_2 + \ell_2 n_1 e_3 + \ell_2 n_3 e_1 + \ell_3 n_1 e_2 + \ell_3 n_2 e_1 - 4q
\end{equation}
is given by [6], [7]

\[(1.21)\]
\[\mathcal{M} = (e_1 + e_2) \sum_{p \in P} \sum_{q \in Q} I_{pq}^2 + (e_2 + e_3) \sum_{q \in Q} \sum_{r \in R} I_{rq}^2 + (e_1 + e_3) \sum_{p \in P} \sum_{r \in R} I_{pr}^2\]

\[P = \{1, \ldots, n_1 + 1\}, Q = \{n_1 + 2, \ldots, n_1 + n_2 + 2\},\]
\[R = \{n_1 + n_2 + 3, \ldots, n_1 + n_2 + n_3 + 3\}\]

That is, \(\mathcal{M}\) is the second order symmetry operator for the Laplacian ([\(\mathcal{M}, \Delta\] = 0) which corresponds to the separable coordinates \(x, y\). Expression (1.20) gives the relationship between the eigenvalue \(\chi\) and \(q\). (The terms involving the \(\ell_j\) result from consideration of the factor \(u_{1}^{\ell_1} u_{2}^{\ell_2} u_{3}^{\ell_3}\).)

The basis functions on the sphere \(S_n\) corresponding to coordinates of the graph can also be expanded in terms of the basis functions of the coordinate system corresponding to the graph [6],

\[
\begin{array}{c}
0 \ 1 \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
S_{n_3} \\
0 \ 1 \\
\vdots \\
\vdots \\
S_{n_1} \ \ \ S_{n_2}
\end{array}
\]

i.e., the coordinates (1.5) with

\[(1.22)\]
\[u_1 = \sin \theta \cos \phi, \quad u_2 = \sin \theta \sin \phi, \quad u_3 = \cos \theta\]

and the infinitesimal distance

\[(1.23)\]
\[ds^2 = d\theta^2 + \sin^2 \theta d\phi^2 + \sin^2 \theta \cos^2 \phi \sum_{i=1}^{n_1+1} dw_i^2 + \sin^2 \theta \sin^2 \phi \sum_{j=1}^{n_2+1} dt_j^2 + \cos^2 \theta \sum_{k=1}^{n_3+1} dz_k^2.\]

Eigenfunction solutions of (1.8) in these coordinates are

\[(1.24)\]
\[\psi = (\sin \theta)^{M} (\cos \theta)^{\ell_3} (\sin \phi)^{\ell_2} (\cos \phi)^{\ell_1} \times P_{(J-M-\ell_3)/2}^{M+\frac{1}{2}(n_1+n_2), \ell_3+\frac{1}{2}(n_3-1)}(\cos 2\theta) \times P_{(M-\ell_1-\ell_2)/2}^{\ell_2+\frac{1}{2}(n_2-1), \ell_1+\frac{1}{2}(n_1-1)}(\cos 2\phi) \Theta_{\ell_1 \ell_2 \ell_3}(w, t, z) = \psi_{JM} \Theta_{\ell_1 \ell_2 \ell_3}\]
where \(P^{\alpha,\beta}(z) \) are Jacobi polynomials. Here \(J = L + 2j \) and \(M = L + 2m \) where \(j = 0,1,\ldots, m = 0,1,\ldots j-1,j \). The eigenfunctions satisfy

\[
\Delta' \psi = -M(M+n_1+n_2) \psi,
\]

where

\[
\Delta' = \sum_{i>j} I_{ij}^2.
\]

and \(i,j \) range from 1 to \(n_1+n_2+2 \).

Note that in terms of the Cartesian coordinates \(u_1, u_2, u_3 \) on the 2-sphere \((u_1^2+u_2^2+u_3^2 = 1) \) these eigenfunctions take the form

\[
\psi_{JM} = u_1^{\ell_1} u_2^{\ell_2} u_3^{\ell_3} (u_1^2 + u_2^2)^{(M-\ell_1-\ell_2)/2} \times P^M_{(J-M-\ell_3)/2} (1 - 2u_1^2 - 2u_2^2) \times P_{(M-\ell_1-\ell_2)/2} \left(\frac{2u_1^2}{u_1^2 + u_2^2} - 1 \right) = u_1^{\ell_1} u_2^{\ell_2} u_3^{\ell_3} \Phi_{jm},
\]

i.e., the form \(u_1^{\ell_1} u_2^{\ell_2} u_3^{\ell_3} \Phi(u_1^2, u_2^2) \) where \(\Phi \) is a polynomial.

This remark leads to another way of viewing the Heun and Jacobi bases. In the equation \(\Delta \psi = -J(J+N+1) \psi \) with \(\Delta \psi \) given by (1.9) and \(\Delta_k \) replaced by the values \(-\ell_k(\ell_k+n_k-1), k = 1,2,3 \) we set \(\psi = u_1^{\ell_1} u_2^{\ell_2} u_3^{\ell_3} \Phi(x_1, x_2) \) and introduce the new coordinates \(x_1 = u_1^2, x_2 = u_2^2 \). The eigenvalue equation for \(\Phi \) reads

\[
H \Phi = -j(j+G-1) \Phi,
\]

where

\[
H = \sum_{i,j=1}^2 (x_i \delta_{ij} - x_i x_j) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^2 (\gamma_i - G x_i) \frac{\partial}{\partial x_i}.
\]

Here \(G = \gamma_1 + \gamma_2 + \gamma_3 \) and in this particular case

\[
\gamma_i = \ell_i + \frac{1}{2}(n_i + 1), \quad i = 1,2,3
\]

\[
j = \frac{1}{2}(J-L) = 0,1,2,\ldots.
\]

This coincides with equation (1.4) in [8]. In particular \(H \) maps polynomials of maximum degree \(m_i \) in \(x_i \) to polynomials of the same type. Furthermore, it is easy to see that the
polynomial eigenfunctions of H form a basis for the space of all polynomials $f(x_1, x_2)$ and that the spectrum of H acting on this space is exactly \{-$j(j + G - 1)$: $j = 0, 1, \ldots$\}. It is also shown in [8] that $H = \Delta_2 + \Lambda_2$ where Δ_2 is the Laplace Beltrami operator on S_2 and

\begin{equation}
\Lambda_2 = \sum_{i=1}^{2} \left[\gamma_i - \frac{1}{2} + \left(\frac{3}{2} - G \right) x_i \right] \frac{\partial}{\partial x_i}.
\end{equation}

Moreover, H is self-adjoint with respect to the inner product

\begin{equation}
(f_1, f_2) = \iint_{x_1, x_2 > 0, 1 - x_1 - x_2 > 0} f_1(x) \overline{f_2(x)} d\omega
\end{equation}

where

\begin{equation}
d\omega = x_1^{\gamma_1 - 1} x_2^{\gamma_2 - 1} (1 - x_1 - x_2)^{\gamma_3 - 1} dx_1 dx_2 : (H f_1, f_2) = (f_1, H f_2).
\end{equation}

Here f_1, f_2 are polynomials in $x = (x_1, x_2)$. For fixed j the polynomials

\begin{equation}
\Phi_{jm}(x_1, x_2) = (x_1 + x_2)^m P_{j - m}^{\gamma_1 + \gamma_2 + 2m - 1, \gamma_3 - 1} (2x_1 + 2x_2 - 1) \\
\times P_m^{\gamma_2 - 1, \gamma_3 - 1} \left(\frac{2x_1}{x_1 + x_2} - 1 \right), \quad m = 0, 1, \ldots, j
\end{equation}

form an orthogonal basis for the eigenspace corresponding to eigenvalue $-j(j + G - 1)$. (This is the orthogonal basis of Proriol [9] and of Karlin and McGregor [10]). Similarly the Heun polynomials $\Phi_{j\ell_1 \ell_2 \ell_3 q}(x) \Phi_{j\ell_1 \ell_2 \ell_3 q}(y)$ where q runs over the possible eigenvalues, form an alternate orthogonal basis for this same space. Moreover as pointed out in [11] these bases correspond to spherical and ellipsoidal coordinates on the 2-sphere and are the only coordinates in which Δ_2 separates.

With this point of view we are operating on S_2 rather than S_n and our two distinguished orthogonal bases are the only ones possible rather than two out of a multiplicity of separable systems on S_n for large n. The principal advantage of this new point of view is that the eigenfunctions are obviously polynomials in x_1, x_2 and that the only requirement on the constants $\gamma_1, \gamma_2, \gamma_3$ to ensure orthogonality is that they be strictly positive. Thus the ℓ_i and n_i need not be integers; it is only required that $2\ell_i + n_i + 1 > 0$.

In the following our expansion formulas are valid for all real $\gamma_i > 0$. In the special case $\gamma_1 = \gamma_2 = \gamma_3 = \frac{1}{2}$ we have $H = \Delta_2$, the Laplace-Beltrami operator on S_2. In this case the eigenvalue equation $\Delta_2 \Phi = -j(j + \frac{1}{2}) \Phi$ admits the Lie algebra $so(3)$ as a symmetry algebra. A basis for $so(3)$ is \{u_1 \partial_{u_2} - u_2 \partial_{u_1}, u_3 \partial_{u_1}, u_3 \partial_{u_2}\} where $u_3 = \pm (1 - u_1^2 - u_2^2)^{\frac{1}{2}}$. This extra symmetry is associated with the fact that there are additional polynomial
solutions of the eigenvalue equation (see §3 of reference [8]). In particular the equation admits polynomial solutions of the form \(f(u_1, u_2) \) and the spectrum of \(\Delta_2 \) acting on the space of all such polynomials is \(-j(j + \frac{1}{2})\) where now \(2j = 0, 1, 2, \ldots\). Furthermore there exist solutions of the form \(u_3 g(u_1, u_2) \) with \(g \) a polynomial and with the same eigenvalues. The dimension of each eigenspace is \(2j + 1\) rather than \(j + 1\) for the general case. In this special case the eigenfunctions corresponding to spherical coordinates are just the spherical harmonics whereas those corresponding to ellipsoidal coordinates are products of Lamé polynomials. For the solution of the problem of expanding the Lamé basis in terms of a spherical harmonic basis see [11], [12], [13].

Returning to the case of general \(\ell_i, n_i \) we consider the problem of expanding the Heun basis (1.13) in terms of the Jacobi polynomial basis (1.24), (1.27), (1.34):

\[
\psi = u_1^{\ell_1} u_2^{\ell_2} u_3^{\ell_3} \Phi_1^{\ell_1 \ell_2 \ell_3} (x) \Phi_2^{\ell_1 \ell_2 \ell_3} (y) = \sum_{m=0}^{j} \xi_m \psi_{J\ell_1 \ell_2 \ell_3 M}(\theta, \phi).
\]

Three term recurrence relations for the expansion coefficients \(\xi_m \) (where \(M = \ell_1 + \ell_2 + 2m \)) can be deduced by requiring that

\[
\mathcal{M} \psi = \chi \psi \tag{1.36}
\]

Using the recurrence formulas for Jacobi polynomials this relation can be deduced. Indeed to do this we need the action of the various pieces of \(\mathcal{M} \) on the Jacobi bases \(\psi_{J\ell_1 \ell_2 \ell_3 M}(\theta, \phi) \).

We have

\[
\mathcal{M} \psi_{J\ell_1 \ell_2 \ell_3 M}(\theta, \phi) = \sum_{r=-1}^{+1} X_r \psi_{J\ell_1 \ell_2 \ell_3 M+2r}(\theta, \phi) \tag{1.37}
\]

where

\[
X_1(m, j) = \frac{4(e_1 - e_2)(\gamma_1 + \gamma_2 + \gamma_3 + m + j - 1)(\gamma_3 - m + j - 1)(m + 1)(\gamma_1 + \gamma_2 + m - 1)}{(\gamma_1 + \gamma_2 + 2m - 1)(\gamma_1 + \gamma_2 + 2m)}
\]

\[
X_{-1}(m, j) = \frac{4(e_1 - e_2)(\gamma_1 + \gamma_2 + m + j - 1)(-m + j + 1)(\gamma_2 - 1)(\gamma_1 - 1)}{(\gamma_1 + \gamma_2 + 2m - 1)(\gamma_1 + \gamma_2 + 2m - 2)}
\]

\[
X_0(m, j) = \frac{2(e_1 - e_2)[m^2 + m(\gamma_1 + \gamma_2 - 1) - j^2 - j(\gamma_1 + \gamma_2 + \gamma_3 - 1)](\gamma_1 + \gamma_2 - 2)(\gamma_1 - \gamma_2)}{(\gamma_1 + \gamma_2 + 2m - 2)(\gamma_1 + \gamma_2 + 2m)}
\]

\[
\quad + \frac{4(e_1 - e_2)m\gamma_3(\gamma_1 - \gamma_2)(m + \gamma_2)}{(\gamma_1 + \gamma_2 + 2m - 2)(\gamma_1 + \gamma_2 + 2m)}
\]

\[
\quad + 2(e_1 + e_2)[-m^2 - m(\gamma_1 + \gamma_2 - 1) + j^2 + j(\gamma_1 + \gamma_2 + \gamma_3 - 1)]
\]

\[
\quad + 4e_3[m^2 + m(\gamma_1 + \gamma_2 - 1)] + 4q.
\]

9
Keys to deriving this result are the following recurrence formulas for Jacobi polynomials $P_n^{\alpha,\beta}(x)$

(1.39) \[xP_n^{\alpha,\beta} = AP_{n-1}^{\alpha,\beta} + BP_n^{\alpha,\beta} + CP_{n+1}^{\alpha,\beta} \]

\[A = \frac{2(n + \alpha)(n + \beta)}{(2n + \alpha + \beta + 1)(2n + \alpha + \beta)}, \quad B = \frac{(\beta - \alpha)(\beta + \alpha)}{(2n + \alpha + \beta + 2)(2n + \alpha + \beta)} \]

\[C = \frac{2(n + 1)(n + \alpha + \beta + 1)}{(2n + \alpha + \beta + 2)(2n + \alpha + \beta + 1)} \]

\[(1 - x^2) \frac{d}{dx} P_n^{\alpha,\beta} = AP_{n-1}^{\alpha,\beta} + BP_n^{\alpha,\beta} + CP_{n+1}^{\alpha,\beta} \]

\[A = \frac{2(n + \alpha)(n + \beta)(n + \alpha + \beta + 1)}{(2n + \alpha + \beta + 1)(2n + \alpha + \beta)}, \quad B = \frac{2n(\alpha - \beta)(n + \alpha + 1)}{(2n + \alpha + \beta + 2)(2n + \alpha + \beta)} \]

\[C = -\frac{2n(n + 1)(n + \alpha + \beta + 1)}{(2n + \alpha + \beta + 2)(2n + \alpha + \beta + 1)} \]

Now substituting the expansion (1.35) into the eigenvalue equation $M\psi = \chi\psi$ and using (1.37) we find the three term recurrence relation

(1.40) \[X_1(m - 1, j)\xi_{m-1} + (X_0(m, j) - \chi)\xi_m + X_{-1}(m + 1, j)\xi_{m+1} = 0 \]

where $m = 0, 1, \ldots, j$. Consequently the $j + 1$ independent eigenvalues q are calculated from the determinant

(1.41) \[\begin{vmatrix} X_0(j, j) - \chi & X_1(j - 1, j) & X_0(j - 1, j) - \chi & X_1(j - 2, j) \\ X_1(j, j) & X_0(j - 1, j) - \chi & X_1(j - 2, j) & \ddots \\ \vdots & \ddots & \ddots & \ddots \end{vmatrix} = 0 \]

To obtain the expansions in terms of one variable from (1.35) we proceed as follows. For the two choices of u_i, $i = 1, 2, 3$ given by (1.6) and (1.22) take $y = e_3$, $\theta = \frac{\pi}{2}$. Then the expansion has the form

(1.42) \[\Phi^1_{J\ell_1,\ell_2,\ell_3}(x) = \sum_{M=\ell_1+\ell_2}^{J-\ell_3} \tilde{\gamma}_M P_{\frac{1}{2}(M-\ell_1-\ell_2)}^{\frac{1}{2}(n_2-1),\frac{1}{2}(n_1-1)}(\cos 2\phi) \]

where

\[\cos 2\phi = 2 \frac{(x - e_1)}{(e_2 - e_1)} - 1. \]
This is an expansion of type 2 with \(\mu = 0 \). A different type of expansion can be obtained by taking \(\phi = \pi/2 \) and \(y = e_1 \). The resulting expression has the form

\[
(1.43) \quad \Phi^1_{J\ell_1 \ell_2 \ell_3 q}(x) = \sum_{M=\ell_1+\ell_2}^{J-\ell_3} \tilde{\gamma}_M (\sin \theta)^{M-\ell_1-\ell_2} \\
\times P^{M+\frac{i}{2}(n_1+n_2), \ell_3+\frac{i}{2}(n_3-1)}_{\frac{J-M-\ell_3}{2}}(\cos 2\theta)
\]

where

\[
\cos 2\theta = -2 \frac{(x-e_2)}{(e_2-e_3)} - 1.
\]

In both these examples the dependence of the \(\tilde{\gamma}_M \) and \(\tilde{\gamma}_M \) coefficients on the indices \(\ell_1, \ell_2, \ell_3, q \) has been suppressed.

This second type of expansion of a Heun polynomial appears to be new. Nothing that was done in the derivation of expansions (except the limits of summation on \(r \)) could not be extended to the representation of Heun functions when \(J, \ell_1, \ell_2, \ell_3 \) are complex. Consequently representations of such functions in terms of expansions whose coefficients obey three term recurrence relations can be derived. The convergence of series of this type will be discussed elsewhere.

REFERENCES

Recent IMA Preprints

<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>596</td>
<td>Scott J. Spector</td>
<td>Linear Deformations as Global Minimizers in Nonlinear Elasticity</td>
</tr>
<tr>
<td>597</td>
<td>Denis Serre</td>
<td>Richness and the classification of quasilinear hyperbolic systems</td>
</tr>
<tr>
<td>598</td>
<td>L. Preziosi and F. Rosso</td>
<td>On the stability of the shearing flow between pipes</td>
</tr>
<tr>
<td>599</td>
<td>Avner Friedman and Wenxiong Liu</td>
<td>A system of partial differential equations arising in electrophotography</td>
</tr>
<tr>
<td>600</td>
<td>Jonathan Bell, Avner Friedman, and Andrew A. Lacey</td>
<td>On solutions to a quasilinear diffusion problem from the study of soft tissue</td>
</tr>
<tr>
<td>601</td>
<td>David G. Schaeffer and Michael Shearer</td>
<td>Loss of hyperbolicity in yield vertex plasticity models under nonproportional loading</td>
</tr>
<tr>
<td>602</td>
<td>Herbert C. Kranzer and Barbara Lee Keyfitz</td>
<td>A strictly hyperbolic system of conservation laws admitting singular shocks</td>
</tr>
<tr>
<td>603</td>
<td>S. Laederich and M. Levi</td>
<td>Qualitative dynamics of planar chains</td>
</tr>
<tr>
<td>604</td>
<td>Milan Miklavčič</td>
<td>A sharp condition for existence of an inertial manifold</td>
</tr>
<tr>
<td>605</td>
<td>Charles Collins, David Kinderlehrer, and Mitchell Luskin</td>
<td>Numerical approximation of the solution of a variational problem with a double well potential</td>
</tr>
<tr>
<td>606</td>
<td>Todd Arbogast</td>
<td>Two-phase incompressible flow in a porous medium with various nonhomogeneous boundary conditions</td>
</tr>
<tr>
<td>607</td>
<td>Peter Poláčik</td>
<td>Complicated dynamics in scalar semilinear parabolic equations in higher space dimension</td>
</tr>
<tr>
<td>608</td>
<td>Bei Hu</td>
<td>Diffusion of penetrant in a polymer: a free boundary problem</td>
</tr>
<tr>
<td>609</td>
<td>Mohamed Sami ElBialy</td>
<td>On the smoothness of the linearization of vector fields near resonant hyperbolic rest points</td>
</tr>
<tr>
<td>610</td>
<td>Max Jodeit, Jr. and Peter J. Oliver</td>
<td>On the equation (\nabla f = M \nabla g)</td>
</tr>
<tr>
<td>611</td>
<td>Shui-Nee Chow, Kening Lu, and Yun-Qiu Shen</td>
<td>Normal form and linearization for quasiperiodic systems</td>
</tr>
<tr>
<td>612</td>
<td>Prabir Daripa</td>
<td>Theory of one dimensional adaptive grid generation</td>
</tr>
<tr>
<td>613</td>
<td>Michael C. Mackey and John G. Milton</td>
<td>Feedback, delays and the origin of blood cell dynamics</td>
</tr>
<tr>
<td>614</td>
<td>D.G. Aronson and S. Kamin</td>
<td>Disappearance of phase in the Stefan problem: one space dimension</td>
</tr>
<tr>
<td>615</td>
<td>Martin Krupa</td>
<td>Bifurcations of relative equilibria</td>
</tr>
<tr>
<td>616</td>
<td>D.D. Joseph, P. Singh, and K. Chen</td>
<td>Couette flows, rollers, emulsions, tall Taylor cells, phase separation and inversion, and a chaotic bubble in Taylor-Couette flow of two immiscible liquids</td>
</tr>
<tr>
<td>617</td>
<td>Artemio González-López, Niky Kamran, and Peter J. Olver</td>
<td>Lie algebras of differential operators in two complex variables</td>
</tr>
<tr>
<td>618</td>
<td>L.E. Fraenkel</td>
<td>On a linear, partly hyperbolic model of viscoelastic flow past a plate</td>
</tr>
<tr>
<td>619</td>
<td>Stephen Schecter and Michael Shearer</td>
<td>Undercompressive shocks for nonstrictly hyperbolic conservation laws</td>
</tr>
<tr>
<td>620</td>
<td>Xinfu Chen</td>
<td>Axially symmetric jets of compressible fluid</td>
</tr>
<tr>
<td>621</td>
<td>J. David Logan</td>
<td>Wave propagation in a qualitative model of combustion under equilibrium conditions</td>
</tr>
<tr>
<td>622</td>
<td>M.L. Zeeman</td>
<td>Hopf bifurcations in competitive three-dimensional Lotka-Volterra Systems</td>
</tr>
<tr>
<td>623</td>
<td>Allan P. Fordy</td>
<td>Isospectral flows: their Hamiltonian structures, Miura maps and master symmetries</td>
</tr>
<tr>
<td>624</td>
<td>Daniel D. Joseph, John Nelson, Michael Renardy, and Yuriko Renardy</td>
<td>Two-Dimensional cusped interfaces</td>
</tr>
<tr>
<td>625</td>
<td>Avner Friedman and Bei Hu</td>
<td>A free boundary problem arising in electrophotography</td>
</tr>
<tr>
<td>626</td>
<td>Hamid Bellout, Avner Friedman and Victor Isakov</td>
<td>Stability for an inverse problem in potential theory</td>
</tr>
<tr>
<td>627</td>
<td>Barbara Lee Keyfitz</td>
<td>Shocks near the sonic line: A comparison between steady and unsteady models for change of type</td>
</tr>
<tr>
<td>628</td>
<td>Barbara Lee Keyfitz and Gerald G. Warnecke</td>
<td>The existence of viscous profiles and admissibility for transonic shocks</td>
</tr>
<tr>
<td>629</td>
<td>P. Szmolyan</td>
<td>Transversal heteroclinic and homoclinic orbits in singular perturbation problems</td>
</tr>
<tr>
<td>630</td>
<td>Philip Boyland</td>
<td>Rotation sets and monotone periodic orbits for annulus homeomorphisms</td>
</tr>
<tr>
<td>631</td>
<td>Kenneth R. Meyer</td>
<td>Apollonius coordinates, the N-body problem and continuation of periodic solutions</td>
</tr>
<tr>
<td>632</td>
<td>Chjan C. Lim</td>
<td>On the Poincare–Whitney circuitspace and other properties of an incidence matrix for binary trees</td>
</tr>
</tbody>
</table>
equations on an infinite interval using piecewise constant arguments

Stanley Minkowitz and Matthew Witten, Periodicity in cell proliferation using an
asynchronous cell population

M. Chipot and G. Dal Maso, Relaxed shape optimization: The case of nonnegative
data for the Dirichlet problem

Jeffery M. Franke and Harlan W. Stech, Extensions of an algorithm for the analysis
of nongeneric Hopf bifurcations, with applications to delay-difference equations

Xinfu Chen, Generation and propagation of the interface for reaction–diffusion equations

Philip Korman, Dynamics of the Lotka–Volterra systems with diffusion

Harlan W. Stech, Generic Hopf bifurcation in a class of integro-differential equations

Stephane Laederich, Periodic solutions of non-linear differential difference equations

Peter J. Olver, Canonical Forms and Integrability of BiHamiltonian Systems

S.A. van Gils, M.P. Krupa and W.F. Langford, Hopf bifurcation with nonsemisimple
1:1 Resonance

R.D. James and D. Kinderlehrer, Frustration in ferromagnetic materials

Carlos Rocha, Properties of the attractor of a scalar parabolic P.D.E.

Debra Lewis, Lagrangian block diagonalization

Richard C. Churchill and David L. Rod, On the determination of Ziglin monodromy groups

Xinfu Chen and Avner Friedman, A nonlocal diffusion equation arising in terminally attached
polymer chains

Peter Gritzmann and Victor Klee, Inner and outer j- Radii of convex bodies in finite-
dimensional normed spaces

P. Szmolyan, Analysis of a singularly perturbed traveling wave problem

Stanley Reiter and Carl P. Simon, Decentralized dynamic processes for finding equilibrium

Fernando Reitich, Singular solutions of a transmission problem in plane linear elasticity
for wedge-shaped regions

Russell A. Johnson, Cantor spectrum for the quasi-periodic Schrödinger equation

Wenxiong Liu, Singular solutions for a convection diffusion equation with absorption

Deborah Brandon and William J. Hrusa, Global existence of smooth shearing motions of a
nonlinear viscoelastic fluid

James F. Reineck, The connection matrix in Morse–Smale flows II

Claude Baesens, John Guckenheimer, Seunghwan Kim and Robert Mackay, Simple
resonance regions of torus diffeomorphisms

Willard Miller, Jr., Lecture notes in radar/sonar: Topics in Harmonic analysis with applica-
tions to radar and sonar

Calvin H. Wilcox, Lecture notes in radar/sonar: Sonar and Radar Echo Structure

Richard E. Blahut, Lecture notes in radar/sonar: Theory of remote surveillance algorithms

D.V. Anosov, Hilbert's 21st problem (according to Bolibruch)

Stephane Laederich, Ray–Singer torsion for complex manifolds and the adiabatic limit

Geneviève Raugel and George R. Sell, Navier-Stokes equations in thin 3d domains: Global
regularity of solutions I

Emanuel Parzen, Time series, statistics, and information

Andrew Majda and Kevin Lamb, Simplified equations for low Mach number combustion with
strong heat release

Ju. S. Il'yashenko, Global analysis of the phase portrait for the Kuramoto–Sivashinsky equation

James F. Reineck, Continuation to gradient flows

Mohamed Sami Elbialy, Simultaneous binary collisions in the collinear N-body problem

John A. Jacquez and Carl P. Simon, Aids: The epidemiological significance of two different mean
rates of partner-change

Carl P. Simon and John A. Jacquez, Reproduction numbers and the stability of equilibria of SI
models for heterogeneous populations

Matthew Stafford, Markov partitions for expanding maps of the circle

Ciprian Foias and Edriss S. Titi, Determining nodes, finite difference schemes and inertial manifolds

M.W. Smiley, Global attractors and approximate inertial manifolds for abstract dissipative equations

M.W. Smiley, On the existence of smooth breathers for nonlinear wave equations

Hitay Özbay and Janos Turi, Robust stabilization of systems governed by singular integro-differential
equations

Mary Silber and Edgar Knobloch, Hopf bifurcation on a square lattice

Christophe Golé, Ghost circles for twist maps

Christophe Golé, Ghost tori for monotone maps

Christophe Golé, Monotone maps of $T^n \times \mathbb{R}^n$ and their periodic orbits

E.G. Kalnins and W. Miller, Jr., Hypergeometric expansions of Heun polynomials

Victor A. Pliss and George R. Sell, Perturbations of attractors of differential equations