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Abstract

Dimensionality reduction is a significant problem across a wide variety of domains such

as pattern recognition, data compression, image segmentation and clustering. Different

methods exploit different features in the data to reduce dimensionality. Principle com-

ponent Analysis is one such method that exploits the variance in data to embed data

onto a lower dimensional space called the principle component space. These are linear

techniques which can be expressed in the form B = TX where T is the transformation

matrix that acts on the data matrix X to the reduced dimensionality representation

B. Other linear techniques explored are Factor Analysis and Dictionary Learning. In

many problems, the observations are high-dimensional but we may have reason to be-

lieve that the they lie near a lower-dimensional manifold. In other words, we may believe

that high-dimensional data are multiple, indirect measurements of an underlying source,

which typically cannot be directly measured. Learning a suitable low-dimensional mani-

fold from high-dimensional data is essentially the same as learning this underlying source.

Techniques such as ISOMAP, Locally Linear Embedding, Laplacian EigenMaps (LEMs)

and many others try to embed the high-dimensional observations in the non-linear space

onto a low dimensional manifold. We will explore these methods making comparative

studies and their applications in the domain of climate science.
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Chapter 1

Introduction

Dimensionality reduction is a significant problem across a wide variety of domains such

as pattern recognition, data compression, image segmentation and clustering. Differ-

ent methods exploit different features in the data to reduce dimensionality. Principle

component Analysis is one such method that exploits the variance in data to embed

data onto a lower dimensional space called the principle component space. These are

linear techniques which can be expressed in the form B = TX where T is the trans-

formation matrix that acts on the data matrix X to get the reduced dimensionality

representation B. Other linear techniques explored are Factor Analysis and Dictionary

Learning. In many problems, the observations are high-dimensional but we may have

reason to believe that the they lie near a lower-dimensional manifold. In other words,

we may believe that high-dimensional data are multiple, indirect measurements of an

underlying source, which typically cannot be directly measured. Learning a suitable low-

dimensional manifold from high-dimensional data is essentially the same as learning this

underlying source. Techniques such as ISOMAP, Locally Linear Embedding, Laplacian

EigenMaps (LEMs) and many others try to embed the high-dimensional observations in

the non-linear space onto a low dimensional manifold.

In climate data, we would like to find factors that have high interpretibility. Principle

component analysis only establishes components that have high variability. But this

does not tell us if there is a pattern in the data.

PCA finds patterns of high variability. Thus both dipoles and monopoles can be found

using this technique. In fact any oscillatory patterns that show high variability are

caught during EOF analysis and they become even more prominent when two regions

are acting in opposition to each other. It is important to remove trends and seasonality

in data as they are the first to be picked in EOF anaysis.

1



Chapter 1. Introduction 2

We will talk more on EOF analysis, its literature and its implementation along with

rotation techniques such as varimax and promax in the following chapters. A detailed

discussion will be made on other linear techniques of dimensionality reduction such as

factor analysis, probabilistic PCA and Dictionary Learning. We will then introduce Non-

linear methods of Dimensionality reduction based on the concept of manifold learning

such as Isomaps, Laplacian EigenMaps, Locally Linear Embedding (LLE) to further

explain the structure of climate data. Since climate processes are governed by a number

of non-linear variables it is possible that a non-linear dimensional reduction can reduce

the data onto a linear subspace that can help explain the underlying factors of climate

teleconnections.

Many other well known dipoles such as the Southern Oscillation (SO), Western Pa-

cific(WP), Pacific/North Atlantic (PNA) have been discovered by manually comparing

time series data at these locations [6]. Manual analysis is not complete and may miss

essential patterns that have not been known before. Dimensional reduction techniques

to find patterns such as the Emperical Orthogonal Functions (EOFs) [7] have been used

for a long time. The Arctic Oscillation (AO) and the Antarctic Oscillation (AAO) have

been found using EOF analysis. EOF technique is thus a very useful technique in finding

dipoles but these do not always necessarily give physically meaningful modes[8]. Un-

less a dipole is physcially present in the region it becomes uncertain if the time series

associated with the first principle component is indeed a physically meaningful mode.

One can speculate if techniques such as rotation of principle components leads to phys-

ically meaningful modes but this looks like an open ended question[9]. These problems

can be overcome by doing EOF analysis in a small region where we know the dipole is

present, but again we need to know where the dipole is present which is equivalent to

discovering the dipole manually. Graph based techniques[10] help overcoming some of

these challenges and tends to give regions that may possibly have a dipolic behaviour.

Such techniques give many candidate dipoles which require further filtering to find the

statistically significant ones among them.



Chapter 2

Data Description

2.1 Dataset

We use sea level pressure (SLP) data to find the dipoles because most of the impor-

tant climate indices are based upon pressure variability. We analyze three reanalysis

datasets. Reanalysis projects create gridded datasets for all the locations on the globe

by assimilating remote and in situ sensor measurements using a numerical climate model

to achieve physical consistency and interpolation for global coverage. In the absence of

a global data of observations, the reanalysis datasets are considered the best available

proxy for global observations. Such datasets are produced by modeling groups around

the world, including the NCEP/NCAR Reanalysis project [5], the European Reanlysis

project [11], and the Japanese Reanalysis project [12]. Table 2 shows the summary of

the details of the three reanalysis datasets. We present most of our results using the

NCEP data as it is the longest reanalysis dataset. The NCEP data spans 1948present

and there are 10512 grid points in the 2.5 degree resolution data. We use monthly mean

values for the 60 years of data (corresponding to 720 monthly values). The NCEP/N-

CAR reanalysis is provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA

[5], available for public download at [13]

2.2 Seasonality Removal

An important component of Earth Science data is the seasonal variation in the time

series. The change in seasons brings about annual changes in the climate of the Earth

such as increase in temperature in the summer season and decrease in temperature in the

winter season. The seasonality component is the most dominant component in the Earth

science data. For example, consider the time series of monthly values of air temperature

3



Chapter 2. Data Description 4

at Minneapolis from 1948-1968 as shown in the Figure 3. From the figure, we see that

there is a very strong annual cycle in the data. The peaks and valleys in the data

correspond to the summer and winter season respectively and occur every year. The

seasonal patterns even though important are generally known and hence uninteresting

to study. Mostly, scientists are interested in finding non-seasonal patterns and long term

variations in the data. As a result of the effect of seasonal patterns, other signals in

the data like long term decadal oscillations, trends, etc. are suppressed and hence it is

necessary to remove them. Climate scientists usually aim at studying deviations beyond

the normal in the data.

Two methods are discussed here that remove seasonality. One is by obtaining the mean-

scored anomalies and the other is by obtaining the z-scored anomalies. The mean scored

anomalies are constructed as follows.

µm =
1

end− start+ 1

end∑
y=start

xy(m),∀m ∈ 1− 12 (2.1)

xy(m) = xy(m)− µm (2.2)

In this equation, start and end represent the start and end years to consider for the

mean and define the base for computing the mean for subtraction (for example 1948

and 2009 for the NCEP data). mum is the mean of the month m and xy(m) represents

the value of pressure for the month m and year y. Once we remove the monthly means,

the resulting values are the anomaly time series for that location. Although, removal of

monthly means is the most popularly used approach to construct anomalies, they can

also be constructed by alternate measures like using the z-score.

2.3 Detrending

Another important aspect of climate data is the presence of long term increasing or

decreasing trends in the data. If there are two regions with strong trends in the opposite

direction then it could result in spurious negative correlations between the two regions.

For, example consider the pressure anomaly time series at two locations as shown in

the figure (a) in the NCEP data during the time period 1951-2000. From the figure, we

see that the two locations have trends in the opposite direction and hence as a result

have a high negative correlation between their anomalies (-0.46 in this case). A possible

approach to handle the trends in climate data that is widely used by climate scientists is

to detrend the data before any possible analysis. If we detrend the data in the example
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above, we no longer see the high negative correlation between the two time series as

shown by the figure (b). Throughout this paper, we use detrended data to present our

results. But, we acknowledge that detrending of non-stationary time series data itself

has several issues and may result in removing connections or adding spurious ones, which

might require a detailed investigation. Figures courtest of [14]



Chapter 3

EOF Analysis in Climate Science

EOF analysis (better known as Principle Component Analysis in Computer Science)

is the most popular technique use in climate science to find teleconnections patterns

in climate data in a given variable. Most teleconnection analysis is carried forth in

pressure and temperature data. Climate being highly nonlinear and high dimensional

presents a challenging task to find important patterns and ways to characterize them.

EOF analysis, one of the most widely used methods in climate science is one such

technique. Eofs have been used for analyzing the nature of climate oscillations all over

the globe. It finds the variability in a field such as the Sea Level Pressure(SLP), Sea

Surface Temperature. The pattern that an EOF represents when plotted on a map is a

standing oscillation and the time evolution of the EOF shows how it oscillates in time [5].

The EOF method is thus a map series method of analysis that looks at the variability in

the time evolving field of all spatial locations and breaks it into a few standing oscillations

and a time series to go with each oscillation. EOF analysis is used to find important

oscillations such as the Antarctic and Arctic Oscillations and other northern oscillations

in SLP, the Madden Jullian oscillation, the Indian ocean dipole and tropical atlantic

dipole in SST [1][6].EOF technique has been widely used in the climate domain to find

well known teleconnections called dipoles. Dipoles are defined as a pair of regions such

that locations within each region are highly positively correlated with each other and

locations across these regions are negatively correlated to each other. EOF is a very

simple technique and exploits the variability in the data to find such dipoles. It acts on

the data on a global scale and gives a set of eigen vectors that correlates well with the

major dipole present in that region. A simple method that climate scientists use to find

dipoles are look at a small region where we know only one dipole exists and performing

EOF on that region alone. This is done because it is very difficult to tell physically what

information the 2nd eigen vector holds as it is constrained to be orthogonal to the 1st

eigen vector. The 1st eigen vector captures the maximum variability in the data but

6
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this generally does not correspond to the strongest dipole present in that region. EOF

does not exploit the nature of the data to find dipoles more efficiently and accurately.

3.1 Drawbacks of EOF

This method despite its simplicity gives a plethora of information and hence is used

by climate scientists. The EOF analysis, due to its simplicity fails on many aspects as

well. The major constraint in EOF analysis is that the principle components need to

be orthogonal to each other. Thus it is uncertain if the PCs of 3rd order or more have

any physical significance attached to them or not [3][4]. The method also fails when

you have prominent oscillations that are not spatially orthogonal to each other but are

nearly statistically independent in the time domain. There are also variations to the

EOF method. The varimax rotation of EOFs finds modes that are more localized in

space than the standard EOF modes [1]. In varimax one needs to set more parameters

than normal EOF analysis and hence is more subjective. We also have to be careful in

interpreting the EOF or rotated EOF modes as physical modes as either one or both

could be significant. [1] gives situations where the physical modes could be localized

and they have nearly equal variances. Here EOFs may be misleading but by the study

conducted by [2], EOF outperforms varimax and regression analysis. Thus the results

of the EOF and rotated EOF can be complimentary rising eyebrows on the possible

credibility of these methods and confusion in the climate community as to which method

needs to be applied in a given scenario which requires a good domain knowledge leading

to introduction of new parameters. It is thus important to introduce a non-parametric

way of finding oscillations that do not rely on domain knowledge. EOF analysis may also

result in spurious patterns and result in two camps arguing if the dipole is a manifestation

of a physical process or an artifact.

3.2 Does EOF always work?

Climate oscillations can be broadly classified into two major categories. The first type

are the dipoles that are a pair of regions whose intra cluster correlation is positive

and inter cluster correlation is negative. The other type are the monopoles that are

singular regions around the globe that are periodic in nature and are quite dominant in

a particular spectral band. EOF can capture dipoles prominently in a given region only.

If EOF analysis is done in a region that has only one dipole, then it would capture it very

accurately considering noise in the data is minimum. If there are two dipoles and they

are nearly independent (correlation 0), Then the dominant dipole with bigger clusters
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or larger magnitude time series get captured in the 1st EOF pattern and the second less

dominant dipole gets captured by the second EOF pattern. If the 2 dipole indices are not

independent, i.e they have some correlation, then both the EOFs capture a mixed signal

which is difficult to segragate and hence in climate science EOF is generally done in a

region where we know for sure only one dipole exists. To overcome this challenge climate

scientists use techniques such as varimax rotation (have to explain this properly). EOF

technique in general is applied to the entire time series with no knowledge of its spectral

properties. A monopole has a high postive intra cluster correlation only in a particular

spectral band and this is hidden when applying EOF. Thus EOF cannot ideally find

monopoles.

3.3 Comparison with Dynamic Dipole Discovery Frame-

work

The dynamic discovery of dipoles framework [7] can capture multiple oscillations all

over the globe which the EOF methodology cannot handle. Thus we cannot find global

modes using EOF which can be captured by the dipole analysis as it is not dimension

dependent and does not depend on the strength of the mode but simply on the presence

of the mode. It also has problems in finding the dominant centers of interaction[1] which

is not a problem in our algorithm as we also find the local attractors for all the clusters

found. The EOF methodology can find standing oscillations only and cannot work on

moving oscillations which the dynamic dipole discovery framework can handle. Again

we have the problem that the modes of variability need to be orthogonal to each other

in space and time. The modes are generally never orthogonal to each other and thus

any mode we find is actually never a pure mode but a mixture of oscillations. This is

not the case with our algorithm as it simply looks for clusters that are wholly negatively

correlated with each other. The EOF method finds regions of high variations, thus not

being streamlined to find monopoles or dipoles separately. A monopole can be looked

at as a set of points lying in the 1st quadrant of a 2-d plane whereas a dipole has

points lying in the 1st and 3rd quadrant. As EOF simply finds directions of maximum

variance which is independent of the spatial distribution of points. It is thus a top-down

approach. The bottom-up dipole discovery algorithm starts from the basic definition of

a dipole and proceeds to find larges clusters that are negatively correlated, The physical

interpretibilty of the dipoles found by this algorithm is very high.
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Linear Techniques for

Dimensionality Reduction

4.1 Introduction

In this section we will cover some of the linear techniques of dimensionality reduction

such as PCA,Factor Analysis and Dictionary Learning, their application on climate

data and an introduction of rotation techniques and compare them with the modern

frameworks available. There are other dimensionality reduction techniques such as Multi

Dimensional Scaling, sparse PCA and Kernel PCA which will be mentioned within the

confines of the above algorithm.

4.2 Factor Analysis - the Fundamental Equation

Let Y be an N×1 vector whose values are the observed random variables Yi∀i = 1, 2..N .

Without loss of generality assume E(Y) = 0 and that E(Y Y t) = Syy is the covariance

matrix. We could take a correlation matrix as well in which case E(Y Y t) = Ryy, Yi

are normalized in which case the diagonal elements will be 1. Let X be an r × 1 vector

whose variables are the factors Xi∀i = 1..r. Let Rxx be the correlation matrix. Let E be

an n× 1 random vector whose variables are the unique factors εi∀i = 1..N . We assume

that the unique factors have 0 mean and unit variance and are mutually uncorrelated.

Finally, let A be the factor pattern coefficients which is an n× r matrix and Ψ an n×n
diagonal matrix which gives a magnitude to the unique factors εi.[15]

9
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y1 = a11x1 + a12x2.....a1nxn + Ψ1e1 (4.1)

y2 = a21x1 + a22x2.....a2nxn + Ψ2e1 (4.2)

y3 = a31x1 + a32x2.....a3nxn + Ψ3e1 (4.3)

yi = ai1x1 + ai2x2.....ainxn + Ψie1 (4.4)

Y = AX + ΨE (4.5)

(4.6)

Through simple calculations, we get

Ryy = ARxxA
t + Ψ2 (4.7)

or (4.8)

Syy = ARxxA
t + Ψ2 (4.9)

If all factors are orthogonal to each other with unit variance, then Rxx will be an Identity

matrix. Thus the factor equation reduces to

Ryy = AAt + Ψ2 (4.10)

(4.11)

In PCA, we use the correlation matrix Ryy to compute the principle components. Here

in factor analysis we are given with RAA = AAt and we need to compute the principle

components in a manner of speaking for RAA. Since Ψ2 is diagonal, covariances are

represented by A. Note that PCA does not allow a separate Ψ2 and it tires to account

for both the covarianes and the variances. When Ψii = Ψjj∀i, j ∈ 1..n, then we have

probabilistic PCA[16] and the conventional PCA is when Ψii = 0. Thus the factor

matrix that one would be factorizing in order to get the factors for PCA would have

1 on the diagonal, whereas for factor analysis, the values will be slightly less than 1,

remainder of the values being the same. Thus even though the two techniques were

developed independently based on different assumptions, the resultant math boils down

to be very similar.[15]
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4.3 Principle component Analysis

In a few words, a principle component is a directional vector that explains the maximum

separation of data when data is projected onto it. The percentage of variance contributed

is contained in the eigen value. The remainder variance is contained in the subspace

orthogonal to the first principle component u1. The second principle component, u2 lies

in this orthogonal subspace (which implies u1⊥u2) and is such that the projection of all

points onto u2 gives maximum separation of points. Mathematically it can be explained

below as follows

Let p1, p2, p3..... pN be N points in a space spanning d-dimensions.Without loss of

generality we will assume that the data is mean centric. i.e

1

N

∑
i

pi = 0 (4.12)

The data covariance matrix is given by

S =
1

N

∑
i

pip
t
i (4.13)

Thus to maximize the projected variance ut1Su1 with respect to u1 which becomes a

constrained maximization problem that we are already familiar with

ut1Su1 + λ(1− ut1u1 (4.14)

Now we would like to project all points on the subspace to orthogonal to u1 i.e new

p2i = pi − (ptiu1)u1.

Thus the new covariance matrix in this projected space will be

Snew =
1

N

∑
i

(pi − (ptiu1)u1)(pi − (ptiu1)u1)
t (4.15)

(4.16)

Now we need to find a vector in this space that maximizes the separation of the projection

of p2i. Maximizing the new projected variance along u2 under the known conditions we

get

ut2Snewu2 + λ1(1− ut2u2) + λ2(u
t
1u2) (4.17)
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Simplifying ut2Snewu2 gives

ut2(
1

N

∑
i

(pi − (ptiu1)u1)(pi − (ptiu1)u1)
t)u2 (4.18)

=
1

N

∑
i

ut2((pi − (ptiu1)u1)(pi − (ptiu1)u1)
t)u2 (4.19)

=
1

N

∑
i

(ut2(pi − (ptiu1)u1)u
t
2(pi − (ptiu1)u1)) (4.20)

=
1

N

∑
i

(ut2pi − ut2(ptiu1)u1)2 (4.21)

=
1

N

∑
i

(ut2pi − (ptiu1)u
t
2u1)

2 (4.22)

=
1

N

∑
i

(ut2pi)
2 ∵ u1⊥u2 (4.23)

=
1

N

∑
i

ut2pip
t
iu2 (4.24)

= ut2Su2 (4.25)

4.4 Principle component Analysis vs Factor Analysis

There is a good deal of overlap in terminology and goals between Principal Compo-

nents Analysis (PCA) and Factor Analysis (FA). Both are two completely different

techniques and serve different purposes but are sometimes statistically mistaken to be

the same. Much of the literature on the two methods does not distinguish between

them, and some algorithms for fitting the Factor Analysis model involve PCA. Both are

dimension-reduction techniques, in the sense that they can be used to replace a large set

of observed variables with a smaller set of new variables. They also often give similar

results. However, the two methods are different in their goals and in their underlying

models. Roughly speaking, you should use PCA when you simply need to summarize

or approximate your data using fewer dimensions (to visualize it, for example), and you

should use FA when you need an explanatory model for the correlations among your

data.

Let us look at the difference in the final results between Factor Analysis and PCA from

a mathematical stand point as shown below.[16]

FA : Ryy = AAt + Ψ2 (4.26)

PCA : Ryy = AAt (4.27)
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FA =


c11 −Ψ2

1 c12 . . . c1k

c21 c22 −Ψ2
2 . . . c2k

...
...

. . .
...

ck1 ck2 . . . ckk −Ψ2
k



PCA =


c11 c12 . . . c1k

c21 c22 . . . c2k
...

...
. . .

...

ck1 ck2 . . . ckk



Probabilistic PCA =


c11 −Ψ2 c12 . . . c1k

c21 c22 −Ψ2 . . . c2k
...

...
. . .

...

ck1 ck2 . . . ckk −Ψ2


The final adjacency matrix upon which spectral decomposition is being done is AAt.

Thus for FA we are doing a spectral decomposition on Ryy − Ψ2 and for PCA we are

working on the correlation matrix itself i.e Ryy. Thus if the unique factors for each factor

component is small, the results of factor analysis and PCA are very much the same. The

values of Ψi∀i = 1..N will be large only if each and every data point are more or less

independent of each other. Climate data lies on a high dimensional manifold that has

a smooth structure due to its continuity and following physical laws. On a global scale

on large timescales, climate data is less chaotic leading to a smoother topology. Thus

intuitively the Ψ− i will be small due to large spatio-temporal autocorrelation.

4.5 PCA as a correlation preserving embedding

As will be discussed in the Non-linear dimensionality reduction section, where the tech-

niques try to embed onto lower dimensions using a euclidean distance metric, we can

draw parallels to PCA technique where the correlations are preserved in the lower di-

mensional manifold. Comparing the two techniques.
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Table 4.1: Comparison of PCA and Laplacian eigenmaps

Laplacian PCA

Weight (Wij) exp||xi−xj ||
2
2 cor(xi, xj)

Objective Minimize Maximize
Objective function

∑
ijWij ||yi − yj ||22

∑
ijWijy

t
iyj

Matrix form yt(D − L)y ytΣy

4.6 Rotation Techniques

Rotation Techniques have been known for many decades now and form a very important

caveat of EOF analysis. Suggested procedures for analytic rotation vary from quartimax

[17], which maximizes the sum of fourth powers of factor loadings, to varimax [18],

which maximizes the variance of the factors squared loadings, to maxplane [19], which

maximizes hyperplane count. Other procedures-such as covarimin [20], biquartimin

[21], direct oblimin [22] and promax [23] have also been suggested. Differences in factor

analytic technique can, of course, produce different results.

The purpose of rotation is to make the rotated factor loading matrix have some desirable

properties. One of the methods used is to rotate the factor loading matrix such that the

rotated matrix will have a simple structure.

L. Thurstone introduced the Principle of Simple Structure, as a general guide for factor

rotation:

Simple Structure Criteria:

• Each row of the factor matrix should contain at least one zero

• If there are m common factors, each column of the factor matrix should have at

least m zeros

• For every pair of columns in the factor matrix, there should be several variables

for which entries approach zero in the one column but not in the other

• For every pair of columns in the factor matrix, a large proportion of the variables

should have entries approaching zero in both columns when there are four or more

factors

• For every pair of columns in the factor matrix, there should be only a small number

of variables with nonzero entries in both columns

The ideal simple structure is such that:
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• Each item has a high, or meaningful, loading on one factor only and

• Each factor have high, or meaningful, loadings for only some of the items

The problem is that, trying several combinations of rotation methods along with the

parameters that each one accepts (especially for oblique ones), the number of candidate

matrices increases and it is very difficult to see which one better meets the above criteria.

4.6.1 Orthogonal Analytical Rotation

In the 1950s and 1960s several factor analysts using different approaches came up tech-

niques to solve the orthogonal rotation criterion to get meaningful factors. The methods

that were developed were the Quartimax criterion, Orthomax, Varimax, Parsimax and

Equamax which are all mathematically equivalent. Carroll (?) was the first who pro-

posed the quartimax criterion. He proposed that the factor matrix A would represent

the simple structure if the value of

f1 =
d∑
s<t

n∑
j

A2
jsA

2
jt = minimum (4.28)

This draws parallels to Thurstone’s third criterion.... should be minimum. To explain

the intuition behind this cost function, let us assume that the data is normalized and

there are only 2 factors. All Aij ∈ [-1,1]. We would want as little overlap as possible

between the contributions of 2 factors to a given data point.

Shortly afterwards, Neuhaus and Wrigley proposed that the most interpretable factor

loading matrix A would be such that the variance of the nxd squared loading was a

maximum.

f2 =
nd

∑n
i=1

∑d
j=1A

4
ij − (

∑n
i=1

∑d
j=1A

2
ij)

2

n2r2
= maximum (4.29)

f3 =
nd

∑n
i=1

∑d
j=1A

4
ij

(
∑n

i=1

∑d
j=1A

2
ij)

2
= maximum (4.30)

Now we know that
∑

j

∑
iA

2
ji is always a constant because the sum of squared contribu-

tions of the all factors for a given test point is always a constant given that the factors

are orthonormal to each other. Thus for a given test point Summing over all factors

constant =
∑
j

∑
i

A2
ji)

2 −
∑
j

∑
i

A4
ji + 2

∑
j

∑
i<t

A2
jiA

2
jt (4.31)
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Thus minimizing
∑

s<t

∑
j A

2
jsA

2
jt is equivalent to maximizing

∑
j

∑
iA

4
ji

Varimax is quite similar to the quartimax condition. The criteria used here is

q =
r
∑

j

∑
i(A

2
ji)

2 −
∑

j(
∑

iA
2
ji)

2

r2
(4.32)

In case of orthonormal bases, the second term is a constant which disappears on dif-

ferentiating, which boils down to the quartimax condition. This is called the varimax

criteria because we are summing the variance of the squared loadings for all data points.

The goal is to minimize the value of q, the objective function. This can be solved using

an iterative method using SVD decomposition as follows

Algorithm 1 Orthogonal Analytical Rotation algorithm

1: procedure Rotate
2: λD = 0
3: A = B
4: while |λD−λDold|

λD
< threshold do

5: λDold = λD
6: [L,D,M ] = SV D(A′ ∗ (d ∗B.3 − γBdiag(sum(B.2))))
7: T = LM ′

8: λD = sum(diag(D))
9: B = AT

10: end while
11: end procedure

Figure 4.1: Comparison of PCA (left) with varimax rotated factors(Right)

4.6.2 Oblique Analytical rotation

If the restriction of orthogonality is relaxed, it is impossible to apply directly the quarti-

max criterion or the normal varimax criterion. This is because interfactor relationships

are not considered when the criteria are in this form, and when applied all factors will
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collapse into the same factor - that one factor which best meets the criterion. Thus we

need a slightly more sophiticated method to get oblique factors. One of them is the

promax rotation technique.This is an oblique rotation technique promax which seeks to

revise varimax so that the solution can become oblique if such a construction is war-

ranted by the data. We take the factor patterns obtained from varimax and raise it to

powers of 2,4,or 6. This transformation drives down the values of all the loadings, with

the smallest values from Varimax becoming much smaller with the Promax solution,

while the larger loadings are not reduced as much. The result of this oblique rotation

is a set of loadings that typically reflect simple structure better than do those from the

Varimax solution, particularly when the latent traits are highly correlated.

Let Anxr and Bnxr be two matrices such that n ≥ r. Consider the class of rxr transfor-

mation matrices T in the equation

B = AT + E (4.33)

B is the resultant matrix after rotation and translation, and A is the factor loading ma-

trix that represents the data. We wish to find the transformation matrix that minimizes

tr(EtE) = tr(B −AT )t(B −AT ) (4.34)

This ensures that we have as little translation as possible. Differentiating with respect

to T , we get

∂tr(EtE)

∂T
= −2AtB + 2AtAT = 0 (4.35)

⇒ T = (AtA)−1AtB (4.36)

How do we determine the resultant approximate factor matrix B? Hendickson and

White[23] came up with an ingenious way of determining A and B0. Now B0 is not

the true representation of the rotated factor loadings but just an initial assessment of

what we would like it to be. A was taken to be the rotated factors obtained from the

varimax solution as it can be assumed that the varimax solutions is close to the optimum

oblique simple-structure solution. The desired features of B0 would be to have small

valued loadings that are close to 0 approach 0 more rapidly than those distant from

0. One way to achieve this as explained above would be to take the matrix A to the

mth power preserving the signs. Thus B0ij = sign(Aij)|Amij |. We can thus obtain the
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transformation matrix T from the equation 4.35. The final factor loading matrix B is

obtained as[15]

B = AT (4.37)

Figure 4.2: From Top Left to Bottom Right : Final Factors for powers from 1 to 6.
When A is raised to power=1, the solution does not change from the varimax solution.

The algorithm works best for a power of 4.

4.7 Dictionary Learning

A dictionary in language is a set of words that can be used to create any sentence.

Similarly we can have a set of basis vectors or atoms that can be used to describe the

data at hand and the process of learning these basis vectors is called dictionary learning.

We can have all data points to be atoms of the dictionary but this defeats the purpose

of finding patterns in data. The purpose of Dictionary Learning (DL) is to find a few

atoms, a linear combination of which reconstructs the original data point with minimal

error. We also impose that any data point is reconstructed from only a few atoms of

the dictionary.[24][25][26]

xi = αTi Di where|αi|0 < K (4.38)

The L0 norm gives us the cardinality of the vector, that is the number of non-zero terms

in the vector thus making it a sparsity inducing norm. Due to a lack of mathematical

representation of the L0 norm, it is an NP hard problem not suitable for optimization.
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Thus for practical applications the L0 norm is relaxed to a L1(Lasso) or an L2(Ridge

Regression) norm or a combination of both (Elastic net) to induce sparsity. More impor-

tantly L1 induces sparsity and L2 helps in reducing the overall magnitude of the weight

vector.

DL is used in many applications such as image analysis, speech recognition where usage

of predefined dictionaries such such as wavelets do not give good signal reconstruction

using sparse basis. In such as scenario it is best to learn the dictionary from the data

provided and adapt the dictionary as more signals are processed.

4.7.1 Problem Formulation

Consider a signal x in Rm . We say that it admits a sparse approximation over a

dictionary D in R mk, with k columns referred to as atoms, when one can find a linear

combination of a few atoms from D that best approximates the signal x. Let x1xdi ∀i ∈
[1..N ] be a signal,X = [x1x2..xN ]inRdxN and DdxK be the dictionary with K atoms.

Let αi be the sparse weight vector for a signal xi, α = [α1α2..αN ], then the loss function

`(α,D) is given by

`(α,D) =
1

N
σNi=1(

1

2
||(xi −Dαi)||22 + λ|αi|1 (4.39)

(4.40)

Minimizing over the both D and α simultaneously is not a convex optimization problem

but solving the problem by alternating between the two variables, minimizing over one

while keeping the other fixed and vice versa makes it convex thus standard methods can

be applied to find an optimal value of D and α. For more details on how to solve the

above problem please refer to ...

4.8 Application of Dictionary Learning to Simple Datasets

Consider a simple dataset XNxd where d = 2, d = 3. The dimensions are chosen for ease

of visualization. The sample points are distributed such that they lie approximately on

a hyperplane xi w1d1 + w2d2...wNdN∀i ∈ [1..n1]. This can be extended to another set

of points xi∀i ∈ [1..nj ] with a different weight vector. n1 + n2...nj = N . We learn the a

dictionary of atoms that best represents the data. The number of unique patterns must

be known beforehand to achieve the best results. We can simply assume that the number
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Figure 4.3: Data points in 2-d that indicate two distinct components. Varimax and
promax rotated components for contrast.

of factors must be the degrees of freedom of the data. Since DL allows for correlated

atoms, and as we know that the various unique processes that govern climate can be

correlated, this is a reasonable assumption. In general, this is a hard problem and the

number of basis vectors is either set by experience or coarsely evaluated empirically. A

simple toy dataset in 2-d is presented below along with the learnt dictionary atoms. The

points in blue are the initial dataset and the red lines indicate the atoms learnt by the

above algorithm.

Figure 4.4: Top Left : DL algorithm exits at a local minimum that is not optimal;
Top Right : DL find the optimal atoms; Bottom Left : DL again exiting with a non-
optimal local minimum; Bottom Right : DL finds all the necessary components by

overestimating
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aaaaaa
PCA FA Factor 1 Factor 2 Factor 3

Factor 1 -0.9058 0.1875 0.9627

Factor 2 0.5501 0.8239 -0.0948

Factor 3 -0.0527 -0.9708 -0.0772

Table 4.2: Comparison of Components of PCA, Factor Analysis and Dictionary Learn-
ing over a small region

4.9 Application on climate data

Though the matrix structure looks similar for FA and PCA, the output eigen vectors

are different. We express the similarity between the eigen vector components of the

different methods by looking at their correlation and draw some conclusions from

them. FA and PCA is applied on NCEP pressure data in a small region concentrated

around the NAO index near Iceland. We take the top three non-rotated eigen vectors

and make our comparisons.

aaaaaa
PCA DL Factor 1 Factor 2 Factor 3

Factor 1 0.9414 -0.1915 -0.7512

Factor 2 0.0648 -0.8788 0.7729

Factor 3 -0.8840 0.5413 0.5210

aaaaaa
FA DL Factor 1 Factor 2 Factor 3

Factor 1 0.9415 -0.6060 -0.4518

Factor 2 0.2525 0.6972 -0.8587

Factor 3 0.1721 -0.8648 0.7013

From the above results we see that the first eigen vector are correlated for all three

methods indicating that the models are capturing the direction of maximum variance.

This is intuitive because since we are applying the algorithm over a small region and

this would result in the first component aligning itself with the dominant pattern in

the region. Applying this on a large generic region gives poor relationship between the

factors of different methods as shown below
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aaaaaa
PCA FA Factor 1 Factor 2 Factor 3

Factor 1 -0.8842 0.3339 -0.6235

Factor 2 -0.3405 0.4613 0.7163

Factor 3 0.2486 0.7914 -0.2574

Table 4.3: Comparison of Components of PCA, Factor Analysis and Dictionary Learn-
ing over a big region

aaaaaa
PCA DL Factor 1 Factor 2 Factor 3

Factor 1 0.7425 0.2825 -0.5229

Factor 2 -0.5223 -0.2460 -0.8368

Factor 3 0.3917 -0.8790 0.1306

aaaaaa
FA DL Factor 1 Factor 2 Factor 3

Factor 1 -0.3857 -0.3717 0.7815

Factor 2 0.3118 -0.6887 -0.4531

Factor 3 -0.9387 -0.1371 -0.3116

aaaaaa
PCA FA Factor 1 Factor 2 Factor 3

Factor 1 -0.9349 0.1755 -0.1722

Factor 2 0.0375 0.1843 0.9672

Factor 3 0.2936 0.9403 0.0402

aaaaaa
PCA DL Factor 1 Factor 2 Factor 3

Factor 1 0.2150 -0.2221 -0.9279

Factor 2 -0.9631 0.0301 -0.2619

Factor 3 -0.0857 -0.9286 0.2388

aaaaaa
FA DL Factor 1 Factor 2 Factor 3

Factor 1 -0.2645 -0.0618 0.9283

Factor 2 -0.2270 -0.8795 0.0179

Factor 3 -0.9721 0.0115 -0.0890

The above values do not indicate the orthogonality but rather the correlation. The

former is simply dot product of the eigen vectors and the latter is the dot product

after subtracting the individual means. We see that the components of the three meth-

ods are aligned indicating that doing a rotation afterwards gives more meaning to the

components.
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4.10 Discussion and Conclusions

Rotated factor analysis and rotated PCA generally give different results as can be seen

from the tables. The initial results of PCA and FA are different due to the difference in

their covariance matrices. Thus the eigen vector are different. On rotation using vari-

max we see that the rotated vectors are close but are not exactly the same indicating

that varimax converges to a local minima for the initial set of factor loadings. This leads

to a very old problem of factor indeterminacy. Different methods give different results.

There are various way of carrying out factor analysis such as Maximum likelihood es-

timation which gives a closed form solution in case of probabilistic PCA but requires

an iterative methodology for FA where the unique variances for every data point is dif-

ferent. Iterative methods such as Newton-Raphson, Fletcher-Powell and Expectation

maximization algorithm can be applied to get the maximum likelihood estimate. An

issue with the Fletcher-Powell algorithm is that the covariance matrix needs to be pos-

itive definite. In case of climate data that has a high spatial-temporal auto-correlation

getting a covariance matrix that is positive definite is next to impossible. In such cases

we can apply the Expectation Maximization (EM) algorithm where we get the expected

values of mean and variance of the factor loadings and use that to maximize the factor

loadings but this generally does not yield orthonormal basis vectors (in case of PCA, the

basis vectors or the eigen vectors of the correlation/covariance matrix are orthonormal).

Alternatively, the EM algorithm can be modified in such a way as to yield orthonor-

mal principal directions, sorted in descending order of the corresponding eigenvalues,

directly[27]. Unfortunately, EM algorithm is sensitive to the initialization parameters

and may not converge to the global optimum. Probabalistic PCA is a simplified ver-

sion of the factor analysis model where it is assumed that the unique variance for each

variable is the same and the maximum likelihood estimate to this gives a closed form

solution which evaluates to finding the top eigen vectors of the data covariance matrix.

Historically, factor analysis has been the subject of controversy when attempts have been

made to place an interpretation on the individual factors, which has proven problematic

due to the nonidentifiability of factor analysis associated with rotations in the principle

component space[16]. From our perspective, however, we view factor analysis as a form

of latent variable density model and once this latent model is discovered we apply ay of

the rotation techniques to establish some form of interpretability on our factor model.

It must be noted that factor analysis models aims to establish the number for degrees

of freedom of the dataset. The number can be determined by restricting the unique

variance to a small value and gradually increasing the number for factors in the FA

model to meet the unique variance constraint [15].
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Due to the varied number of solutions present for solving the factor analysis model,

which results in factor indeterminacy, it is difficult to cross-verify results. Thurstone

argued that as long as interpretations could be drawn from the factor analysis model,

the choice of the method was not of utmost concern[28]. But this can be always be

argued otherwise and it is for this reason that PCA followed by rotation is used as it

achieves the goal of interpreting the factors as stationary patterns in climate data.

Unlike principle component analysis and its variants, DL does not impose that the basis

vectors be orthogonal to each other thus more effectively capturing the representation of

data. We can actually draw parallels to rotation techniques such as varimax, where we

would like to increase the variance of the squared loadings across factors for a variable

i. The variance will be large when there are large loadings on few factors and near-zero

loadings on the remaining factors. DL tries to achieve the same by ”sparsifying” the

weight vector α which in turn results in increasing the variance of the squared loadings.

What method to finally use in order to obtain the most interpretable factors is still up

for debate. Linear methods have limited interpretability on climate data because if it

being highly non-linear but over small regions they can be assumed to be almost linear

and thus the above techniques can be applied. It is not advised to apply such techniques

over larger regions as dominant patterns are in general correlated to each other and

applying PCA with rotation reduces the interpretability of the factors. Non-orthogonal

methods do not necessarily do a better job at interpreting factors either as can be seen

from the table. One must exercise caution while applying the above techniques.



Chapter 5

Non Linear Techniques for

Dimensionality Reduction

5.1 Introduction

Thus far we have discussed about linear methods of dimensionality reduction in order to

obtain meaningful features in the dataset. Such methods have drawbacks that they ig-

nore the topology of the dataset in higher dimensions. So on performing dimensionality

reduction, the relative distances of the points are not preserved. Far away points may

seem closer than nearby points in the reduced space. The distances or similarity index in

most cases of non-linear dimensionality reduction is euclidean distance or the L2 norm.

In climate data it is important to understand that similarity of two data points with

respect to a third data point is not measured by their relative distances to the third

point but rather the correlation of its values. Given the dataset, Xnxd, xi is similar to

xj if they share similar behaviour in their values across the d time steps. The non-linear

techniques such as ISOMAP[29][30], Locally Linear Embedding (LLE)[31][32], Lapla-

cian EigenMaps[33][34][35] and Structure Preserving Embedding (SPE) use euclidean

distances for creating a similarity matrix. But climate data requires correlation as its

similarity index. In order to achieve this, we normalize the data. Normalization forces

a linear relationship between squared L2 norm and correlation as follows

25
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L2(xi, xj)
2 = ||xi − xj ||22 (5.1)

= ||xi||22 + ||xj ||22 − 2(xtixj) (5.2)

= 1 + 1− 2(correlation(xi, xj) (5.3)

= 2(1− correlation(xi, xj) (5.4)

(5.5)

We will use normalized z-score data for our analysis of the four Non Linear Techniques

for Dimensionality Reduction (NLDR). From the analysis, we will determine if such

non-linear techniques do find interesting patterns in data by taking it down to a low

dimensional manifold. An interesting thought experiment to ascertain the usefulness

of NLDR techniques is as follows. Consider climate data to have certain interesting

patterns which are in the form of the swissroll dataset [Give hyperlink]. From our toy

examples shown below, we see the NLDR techiques tend to unroll the data into a planar

shape. Think of it as unrolling a mat onto the floor. If we are to visualize the data,

we do not see any swissrolls but a set of points lying close to a plane preserving the

local topology of the points. If no prior information is given, we would not know the

original data consisted of swissrolls. Thus if the interesting pattern to be identified were

swissrolls, then NLDR techniques would not be able to obtain the number as a result of

the unrolling. These techniques preserve local topologies on the assumption that they

are planar and thus only preserve geodesic distances.

5.2 Isomap

The Isomap algorithm is a two-step process that simultaneously attempts to find a low

dimensional manifold in which a set of data points lies, and Euclidean coordinates for

the points in this low-dimensional manifold. The first step in the algorithm uses a graph

based approximation to the data manifold to calculate a similarity matrix based on

approximate geodesic distances between data points. These geodesic distances are then

analysed using multi dimensional scaling (MDS) to find an isometric embedding of the

data onto a lower dimensional manifold.

5.2.1 Geodesic Approximation

In this step, we first determine the nearest neighbours of a given point. We can either

have look at the K nearest neighbours of the point or looking at within an ε ball centred
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at the point such that d(xi, xj) = ||xi − Xj ||2 <= ε∀j = [1..n]. These neighbourhood

relations are captured in a graph matrix, G with the edge weights being the distances

dG(xi, xj) in the previous step. Once the preliminary distance graph is computed, we

compute the shortest path distance between any two unconnected nodes (they are not

in each other’s K nearest neighbours) using djikstra’s algorithm or Floyd-Marshall Al-

gorithm. With this we get the final similarity matrix G, such that dG(xi, xj) represents

the approximate geodesic distance between any pair of points on the manifold where

the true geodesic distance is given by dM (xi, xj) .Asymptotic convergence results exist

showing that the difference between the approximation dG(xi, xj) and the true geodesic

distance in the data manifold, dG(xi, xj), tends to zero in a probabilistic sense as the

density of data point i.e limn→∞ dG(xi, xj)− dM (xi, xj) = 0 [36]

5.2.2 Dimensionality Reduction

Once the approximate geodesic distance function dG(x, y) has been found, a multidimen-

sional scaling (MDS) procedure is applied. This procedure results in an eigenvalue spec-

trum that can be examined to determine the dimensionality of the data manifold. It

also calculates embeddings of the data points into low-dimensional Euclidean spaces.

MDS [Borg and Groenen, 1997] is a statistical technique that takes as input distance or

dissimilarity measures for a set of data points and attempts to find points in Euclidean

space such that the Euclidean distances between the output points correspond to the

distance or dissimilarity values between the input points. Both PCA and Isomap can be

considered within this framework. For PCA, the input distances are Euclidean distances

in the input data, so that MDS leads to an orthogonal transformation of the data. For

an idealisation of Isomap where the input distances are exact geodesic distances in the

data manifold, MDS leads to an isometric transformation of the data.

5.3 Locally Linear Embedding

Suppose x1xdi is a data point sampled from a smooth manifold. If there are sufficiently

many samples then we can assume that the data point and its neighbours lie on a

locally linear patch. We characterize the local topology around a data point by writing

it as a weighted linear combination of its neighbours. As in ISOMAP, we determine

the K nearest neighbours or a set of points that like in an ε sized-ball. We can write

xi σ
k
j=1wijxj . The reconstruction error will be

E(W ) = σni=1|xi − σkj=1wijxj |2 (5.6)
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Following this we have two steps to compute the low dimensional isometric embedding.

We first calculate the weights, and then we compute a reduced dimensionality embedding

y1xpi of the point x1xdi , p < d

5.3.1 Compute Weights

We constrain the weights such that σj = 1kwij = 1. This is to make it invariant to

affine transformation of the data. Solving the weights as a constrained linear regression

problem, we get the minimization error for a data point xi as follows

Ei(W ) = |xi − σkj=1wijxj |2 (5.7)

= |σkj=1wij(xi − xj)|2 ∵ σkj=1wij = 1 (5.8)

=
[
wi1 wi2 . . . wik

]

c11 c12 . . . c1k

c21 c22 . . . c2k
...

...
. . .

...

ck1 ck2 . . . ckk




wi1

wi2
...

wik



= W t
iCiWi (5.9)

Here we have introduced the local covariance matrix Ci, where clm = (xi−xl)(xi−xm).

We introduce lagrangian λ to enforce σjwij = 1∀i = [1..n]. The loss function becomes

Ei(W ) = W t
iCiWi + λ(|Wi|1 − 1) (5.10)

Taking derivatives with respect to wij∀j and λ we get k+ 1 equations to solve for k+ 1

unknowns. Thus the weights are obtained.

5.3.2 Dimensionality Reduction

LLE now constructs a neighbourhood preserving mapping based on the weights dis-

covered in the above step. In the final step of the algorithm, each high dimensional

observation xi is mapped to a low dimensional vector yi representing global internal co-

ordinates on the manifold. This is done by choosing dimensional coordinates to minimize

the embedding cost function



Chapter 1. Introduction 29

L(W ) = σi|yi − σkj=1wijyj |2 (5.11)

L(W ) = σi,jMijYiYj (5.12)

Through simple calculations we get M = (I−W )t(I−W ). We assume that the Yi’s are

mean centered and have unit variance. Thus the Loss function can be rewritten as

L(W ) = YMY t (5.13)

where,

Y =


Y1

Y2
...

Yn


We now need to solve for the eigen vectors of M corresponding to the smallest non-zero

eigen values and take as many as the number of dimensions onto which the data needs

to be embedded.

The basic steps of this algorithm are:

1. Compute the neighbours of each data point

2. Compute the weights that best reconstruct each data point from its neighbours,

minimizing the cost in eq. (1) by constrained linear fits.

3. Compute the vectors best reconstructed by the weights, minimizing the quadratic

form in eq. (2) by its bottom non-zero eigen vectors.

5.4 Laplacian EigenMaps

This method is similar to LLEs where only local topologies are learnt and global topolo-

gies are ignored unlike ISOMAP where both the local and the global topologies are

learnt. This method also starts with learning graph laplacian on which spectral decom-

position is performed. The following steps are performed to get the eigen vectors of the

laplacian.
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5.4.1 Compute weights

This step is similar to LLE, where we determine edge weights Wij . An edge is weighted

only if xj is in the nearest neighbour list of xi or vice versa, else it is set to 0. The

nearest neighbour can be obtained by either taking the KNN for a point or looking at

an ε ball around the point. For the nearest neighbours we can construct Wij as follows:

1. Heat Kernel : if i and j are connected, then

Wij = exp||xi−xj ||
2
2 (5.14)

Otherwise, Wij is set to 0.

2. We can set an adjacency matrix where the weights are Wij = 1 if they are in the

neighbourhood, else it is set to 0

5.4.2 Dimensionality Reduction

Compute the eigen vectors of the following eigen vector problem:

Lv = λDv (5.15)

where D is the diagonal matrix such that Dii = σjWij and L is the graph laplacian where

L = D −W . If our objective is to reduce the data to an embedding of p dimensions,

then we take the bottom p eigen vectors corresponding to the smallest non-zero eigen

values to be our new coordinates.

Consider the problem of embedding the points Xn×d = [x1, x2..xn] onto a 1-d manifold

Y n×1 = [y1, y2....yn]. A reasonable loss function to make a good embedding will be

l(W,X) = σijWij(yi − yj)2 (5.16)

This indicates that if the the points are close in d-dimensional space, then they should

be close in the 1-d embedding. If they are not then they are heavily penalized because

Wij for such a pair of points will be large. This can be written in matrix form as L as

explained 5.15.
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5.5 Previous Application of NLDR techniques on Climate

Data

Isomap has been applied to climate data analysis in the work of [37][38], where it was

applied to observational SSTs to examine ENSO variability in the equatorial Pacific.

Another recent application has been to understand the regime behaviour in atmosphere-

ocean interactions during climate change[39]. [40] viewed 20th century intra-seasonal

Asian monsoon dynamics using ISOMAP. ENSO dynamics in current climate models is

also explored using nonlinear dimensionality reduction where they apply Isomap, one

such technique, to the study of El Nino/Southern Oscillation variability in tropical

Pacific sea surface temperatures, comparing observational data with simulations from

a number of current coupled atmosphere-ocean general circulation models. Very little

is known on LLE being applied on climate data. Laplacian Spectral Analysis is used

to study the reemergence mechanisms for North Pacific Sea Ice[41]. [42] applied NLDR

techniques such as Non-linear PCA, Hessian Locally Linear Embedding (HLLE) and

Isomap to study pacific SSTs to understand the ENSO variabiity and to learn coupling

modes in climate data.

5.6 Application on Toy Datasets

We will consider the swiss roll dataset to understand the application of the NLDR

reduction techniques. We will also consider a case where NLDR techniques fail to do

work as intended.

5.6.1 Swiss Roll Dataset

The dataset is as shown in the figure.

Figure 5.1: Data points lying in the form of a swiss roll in 3 dimensions
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ISOMAP:

Figure 5.2: From Left : Spectral Decomposition along first and second Eigen vectors;
first and third eigen vectors; second and third eigen vectors; 3-d embedding of swiss

roll
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Locally Linear Embedding:

Figure 5.3: From Left : Spectral Decomposition along first and second Eigen vectors;
first and third eigen vectors; second and third eigen vectors; 3-d embedding of swiss

roll
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T(G) T(S) T(Spectral Decomposition)

Isomap O(N2 logN) O(N3) O(min(N3, d3))
LLE O(N2 logN) NA O(min(N3, d3))
Laplacian O(N2 logN) NA O(min(N3, d3))

Table 5.1: Time complexities of Isomap, LLE and Laplacian

Laplacian EigenMaps:

Figure 5.4: From Left : Spectral Decomposition along first and second Eigen vectors;
first and third eigen vectors; second and third eigen vectors; 3-d embedding of swiss

roll

Isomap takes the longest time to completion. Since it embeds not only local but also

global topology by taking the geodesic distances, it has a larger time complexity. The

net time complexity can be broken down into three steps based on the algorithm. The

initial construction of the graph G, the computation of the spectral graph S (this is the

L for a laplacian, M for LLE and G for isomap which includes geodesic distances as

well), and spectral decomposition of S to get eigen vectors.
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5.6.2 Gaussian Dataset

In this dataset, the 3-d manifold looks like a gaussian distribution. There are such

distributions of which one is inverted. Applying the NLDR techniques illustrated below

Gaussian datasets perform poorly when NLDR techniques are applied on them. From

Figure 5.5: From Left : Original data with 2 gaussian distributions; 3d embedding
from ISOMAP; 3d embedding from LLE; 3d embedding from Laplacian

the figures, we can observe that LLE preserved the topology, whereas Laplacian do not.

In case of isomap, the two gaussians now face the same direction. This can give false

indications that the two gaussians are positively related when they are not.

5.7 Application on climate Data

The above examples indicate that NLDR techniques give poor results on complex man-

ifolds and one must exercise caution while applying them. For example one limitation

of Laplacian eigenMaps is that the dimensionality of the graph Laplacian scales with

the number of data points. Therefore, the associated eigenvalue problem can become

intractable for large data sets. This problem can be overcome by a reduction of the effec-

tive number of data points or by taking a smaller spatially contiguous region of points.
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For our experiments we take the region around North Atlantic Oscillation(NAO) and

Southern Oscillation(SO) to further understand these oscillations. In building the near-

est neighbour graph, the spatial neighbors are considered i.e points to the north, south,

east and west of the current index and not the temporal neighbours based on temporal

autocorrelation. This is because the points are not sampled uniformly in the spatial

dimension and by taking such neighbours we are enforcing spatial connectivity across

latitudes and longitude of a given point. One must note that a location that is spatially

close is temporally close to i.e the correlation of the timeseries will be close to 1. We

take K = 4 considering off-diagonal neighbours and k = 8 considering the diagonal

neighbours as well. This is a common step in all manifold learning algorithms.

NLDR works best when applied on low dimensional data. For our experiments we will

first reduce the dimensionality of the original data using PCA and we retain 98%(say)

of the original variance. Since PCA is a correlation preserving embedding, it is simply

a rotation of the original axes to the principle axes as determined by the eigen vectors.

Figure 5.6: Top Left :Laplacian, Top Right : ISOMAP, Bottom Left : LLE, Bottom
Right : PCA with varimax. Blue points indicate the la-nina phase and red points

indicate the el-nino phase of Southern Oscillation
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Comparison of the eigen vectors of linear and non-linear techniques do not make sense

because the distribution of data is different due to the process of unfolding when applying

NLDR techniques.

The plots indicate the distribution of points along the leading two principle components

for the NLDR techniques and compared with rotated PCA component. The points in

blue indicate the la-nina phase and red points indicate the el-nino phase of Southern

Oscillation. The Isomap and PCA show pretty similar results and a good separation.

LLE and Laplacian perform poorly and do not separate the 2 phases. Separation of these

two phases is actually a trivial problem. Positive anomalies of the southern oscillation

indicates the el-nino and the negative anomalies indicate the la-nina.

5.8 Discussions and Conclusions

NLDR techniques in general try to disentangle a tangled manifold. For example take

a piece of paper and crunch it into a ball. if we sample enough points from this 3-d

ball and the neighbours of any point lie along the plane of the paper, then applying

any of the above techniques would get us back the isometric projection of the 3-d ball

which is original flat paper that we started out with. Let us take another example of

a mexican hat in the form of a gaussian distribution lying in 3-d space. Any amount

of force applied at the brim of the hat in a radial direction is not going to deform

the object (Our objective is not to tear it but simply deform it). Application of any

NLDR technique is not going to give us a flatter manifold[43]. The distance preserving

isometric projection of the mexican hat does not exist and the application of the NLDR

techniques distorts the information doing more harm than good. Thuss if our manifold

had important patterns in this case it is required to identify 2 gaussian distributions

lying on the manifold, then this information will be lost. Let us take another example

of a spherical distribution of points. An isometric projection for sphere is not possible[].

The 2-d embeddings of all techniques is shown here and as we can see though the local

distances are being preserved. The global geodesic distances cannot be.

Notice that LLE performs poorly for a full sphere. The NLDR methods do not work

well on a half sphere as well. But gives a reasonable output for LLE unlike its result for

a full sphere.

From the linear methods of dimensionality reduction discussed above it is natural to seek

a trade-off between the two goals of statistical fidelity(explaining most of the variance in

the data) and interpretability (making sure that the factors involve only a few coordinate

axes). Solutions that have only a few nonzero coefficients in the principal components
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Figure 5.7: Top Left : Original data with spherical distribution of points;Top Right:
2d laplacian embedding. Bottom Left to Right : 2-d projection ISOMap, LLE

Figure 5.8: Left to Right : 2d laplacian embedding, 2-d projection ISOMap, 2-d
projection LLE

are usually easier to interpret. When studying climate data, patterns are what we would

like obtain and interpretibility is given higher importance. Interpretibility is a hard thing

to do if the data is lying in some high dimensional manifold that is entangled. Again

consider the above example of a paper mexican hat lying attached to a plane of paper.

If this were wrapped up into a ball, then the mexican hat pattern is lost to us unless we

perform any of the above NLDR techniques. Direct application of PCA on this would

not give us anything useful to interpret.

For best results it would be best to apply PCA or a variation of PCA called the Robust

PCA that is robust to outliers. We capture a percentage of variance i.e say around 95
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to 99 percent. PCA is a topology preserving application because it rotates the original

axes to principle component axes. After capturing a high percentage of variance ( call it

the topology smoothener), we apply NLDR techniques on this reduced space to untangle

the embedding if present. This would open up many intricate small patterns that would

not have been discovered by doing simple PCA/rotation. An important point to note

here is that temporal information is lost in the above process but we have preserved the

relationships of points based on temporal information only, thus for any two data points

on the manifold, xi and xj are close only of they have a high correlation i.e are similar

in their behaviour over all time steps.

Can we have a correlation and distance preserving dimensional reduction? My experi-

ments have indicated that it seems unlikely. We can combine the two together to create

a loss function that needs to be optimized in the following way (4.5).

l(C,W,X) = σijWij(yi − yj)2 − λσijCijytiyj (5.17)

The second term is the correlation embedding term where if two points are negatively

correlated, then their corresponding embeddings also need to be negatively correlated

else it is penalized by bring the net sum lower. Thus the second terms needs to be

maximized or the negative of it needs to be minimized. λ ∈ [0, 1] is a tuning parameter.

Application on climate data does not seem to yield any patterns of interest when looking

at a smaller region. This is perhaps due to the fact that climate data is smooth and

linear on a smaller regions. It must be noted that most applications of NLDR techniques

are use for clustering or for semi-supervised learning[44]. If patterns exist in a non-

linear structure which are not separable then it may be possible to cluster them after

applying any of the above techniques. Generally climate data does not come with

labels thus making it an unsupervised learning problem where stationary patterns i.e

teleconnections are learnt. The mechanics of the patter/teleconnection or rather the

underlying structure of the pattern can be learnt.
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