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Abstract

The study of laminar to turbulent boundary layer transition has been a flow phe-

nomenon of research for many decades. Recently, there has been interest in under-

standing how transition occurs for hypersonic boundary layers of increasingly complex

geometries. Therefore, the Air Force Research Laboratory/Air Force Office of Scien-

tific Research (AFRL/AFOSR) introduced the Boundary Layer Turbulence (BoLT-2)

flight experiment to help in the understanding and prediction of boundary layer tran-

sition to turbulence at high-speeds by collecting data in flight. The BoLT-2 research

geometry allows for the existence of multiple instabilities to coexist and potentially

interact thus leading to transition. This allows for the opportunity to assess current

stability analysis tools and numerical methods to help improve prediction of thermal

loading under flight conditions. In support of this task, the objective of this disserta-

tion is to quantify transition mechanisms contributing to nonlinear breakdown using

a forced DNS approach. Modal analysis techniques are applied to simulation datasets

to extract pertinent information associated with dominant instabilities contributing

to breakdown. This is meant to help in the understanding of the underlying flow

physics contributing to breakdown on BoLT-2. Comparisons are made with experi-

ments conducted in the Mach 6 Quiet Tunnel (M6QT) at Texas A & M University and

show excellent agreement. Furthermore, flight conditions are investigated to identify

instabilities that are potentially present at flight conditions. This is meant to help

with the interpretation of flight data once it becomes available to the research commu-

nity. The numerical methodology of the DNS approach presented in this dissertation

is one that can be used to predict transition and help towards the development of

multi-dimensional stability analysis methods for transition prediction.
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Chapter 1

Introduction

1.0.1 Hypersonic Vehicle Design Challenges

High speed vehicles for aerospace applications have become increasingly popular in

recent years. The demand for hypersonic aerospace applications comes from the de-

sire to send and/or return vehicles to orbit, faster means of atmospheric travel, and

rapid military response. Hypersonic vehicles (i.e. air-breathing hypersonic aircraft,

rocket-based launch vehicles, boost-glide vehicles, re-entry capsules, ballistic missiles,

etc.) face di�cult design challenges. A few of the design constraints may include

optimizing reliability, re-usability, costs, and functionality for the desired applica-

tion. More importantly, the start of a feasible design requires the need for accurate

physics-based models and high-�delity numerical methods to predict the operation

of hypersonic 
ight vehicles since a balance between aerodynamics and aeroheating

dictates proper functionality. Although the hypersonic 
ow regime is often reported

to occur for vehicles 
ying at a freestream Mach number of about �ve, the hyper-

sonic 
ow regime is governed by the physical 
ow phenomena which may exist at

slightly lower Mach numbers. A few examples of the 
ow phenomena at hypersonic

conditions for di�erent design problems are shown in Figure 1.1. The schematics

illustrate that the hypersonic 
ow around vehicles at di�erent operating conditions

are characterized by compressible 
ow phenomena which may include but are not

1
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limited to [1, 2]: shock waves, boundary layer transition, shock-shock interactions,

shock-boundary layer interactions, chemical kinetics, thermal non-equilibrium e�ects,

vibrational and/or electronic excitation, surface catalysis, or ablation which causes

surface recession. Regardless of the application, surface heating is a fundamental

problem that constrains hypersonic vehicle design and can have varying amounts of

e�ects induced by the physical phenomena present.

Figure 1.1: Hypersonic 
ow phenomena of: a) Boost-Glide Vehicle (BGV) operating
at a single condition along the glide phase of the trajectory [3], b) atmospheric entry
capsule [4], and c) scramjet engine and intake port structure [5].

In order to handle the large surface heat loads, a suitable Thermal Protection

System (TPS) is required. The peak heat transfer rates are often governed by the


ow characteristics of the boundary layer - the region at which large viscous stresses

augment the 
ow state close to the vehicle. This requires an understanding of the un-

derlying 
ow physics in high speed compressible boundary layers in order to properly

model and obtain accurate heating predictions in the presence of boundary layer tran-
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Figure 1.2: Impacts of boundary layer transition on hypersonic vehicle design param-
eters.

sition. Even though 
ow transition has been studied for many decades, it continues to

be a 
ow phenomenon that has not been fully understood making it a di�cult task to

properly simulate using computational 
uid dynamics (CFD). This is due to the fact

that transition mechanisms can support and amplify external disturbances leading to

laminar-turbulent transition in many di�erent ways. This can have a direct impact

on surface skin friction and aerodynamic heating thus a�ecting hypersonic vehicle

performance. For some 
ow con�gurations, turbulent heat transfer rates can reach

triple to almost an order of magnitude greater thermal loading than laminar heat

transfer rates. Figure 1.2a) shows a surface heating comparison of a straight cone

geometry at Mach 7.2. By comparison, experimental data and solutions obtained
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with turbulence models using CFD show over a 3 times higher increase in turbulent

heat transfer rates compared to the laminar heat transfer rate estimate. Therefore,

boundary layer transition studies are often motivated by optimizing thermal protec-

tion systems and obtaining accurate heat transfer rates. Furthermore, vehicle skin

friction can drastically increase in the event that a boundary layer transitions. This

is shown in Figure 1.2b) which illustrates increased drag of a cone con�guration at

Mach 8. The increased drag can cause as much as a 50% reduction in range due to

drag forces obtained from simulation. As a consequence, this can make it di�cult

to maneuver a vehicle along a desired trajectory due to uncertainty in control e�ec-

tiveness and have a large impact on vehicle dynamics as seen in Figure 1.2c). This

example illustrates drastic di�erences in pitching moment coe�cients versus 
ap de-


ection angle due to maneuvering. The changes in pitch moment are a result of the


ap angle having a transitional boundary layer.

Another problem that a boundary layer may cause is when the surrounding 
ow-

�eld 
uctuations can lead to strong variations in light refraction. This can make

it di�cult for tracking vehicles at which the vehicle position may appear distorted.

Therefore, it is important for designers to be able to properly model and predict

when and where the boundary layer may transition in 
ight, along with the physical

understanding at various operating conditions. This can be directly related to the

trajectory which must be optimized for e�ciency. In the case that aerodynamic forces

are used to slow the vehicle upon re-entry, it is essential that safe thermal stresses are

maintained below the peak heating of the TPS. Examples of variable peak heating

at di�erent 
ight conditions have been observed from past space shuttle 
ights where

surface temperature histories show laminar-turbulent heating at di�erent points in

the trajectory [6, 7]. Therefore, the optimization and design of hypersonic vehicles

has to balance aerothermal and aerodynamic needs, and the state of the boundary

layer is typically one aspect which governs the design process. This motivates the cur-
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rent work which involves developing a Direct Numerical Simulation (DNS) approach

that can be used to address the performance of current stability analysis tools used in

practice. Also, the methodology can be used to help develop physics-based modeling

approaches for a wide variety of problems and verify the applications to realistic 
ow

con�gurations.

1.0.2 Introduction to Boundary Layer Transition of High

Speed Flows

Boundary layer transition at hypersonic speeds is a complicated total process, and

continues to be a major unresolved problem in 
uid mechanics and engineering de-

spite many decades of dedicated research. The phenomenon of laminar to turbulent

transition at high speeds is illustrated in Figure 1.3 showing a ballistic cone travelling

at Mach 4. Physically, the disturbance environment dictates the spatial location of

Figure 1.3: Laminar-turbulent transition on ballistic slender cone at Mach 4 [8].

the early stages of transition. The disturbance environment in ground test facilities

is often unknown which results in having low con�dence for predicting transition that

is representative of 
ight. Therefore, it is essential that analysis techniques are de-

veloped to provide a physical understanding of transition processes to account for

experimental uncertainties in estimating transition onset. Numerically, this requires
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that simulation techniques and realistic boundary conditions are applied to make ac-

curate predictions for 
ight. Typically, the transition process is often modeled by

analyzing growth of perturbations relative to a laminar 
ow state for quantifying

disturbance ampli�cation. In the past, transition prediction and analysis has focused

on identifying boundary layer instabilities and quantifying local disturbance ampli�-

cation for canonical geometries (e.g. 
at plates, wedges, and cones). These studies

have provided a fundamental understanding of transition mechanisms in hypersonic

boundary layers. This is valuable for academic research since the problems are gen-

erally more manageable in terms of grid sizes, data collection, simulation modeling,

and analysis techniques. Additionally, the problems can be easily reproduced and

compared between academic researchers thus allowing numerical methodologies to be

veri�ed. However, many tools developed based on simple, canonical test cases under

ideal 
ow conditions do not always scale when applied to actual design problems.

Also, the general framework is sometimes no longer useful when applied to realistic


ight geometries and/or 
ow conditions which is the claimed end goal of many re-

searchers performing transition studies. This is due to the fact that most boundary

layer stability analysis typically assumes two-dimensional or at most axi-symmetric


ow con�gurations which is not always the case for realistic 
ight con�gurations.

Furthermore, vehicles that are actually 
own inherently experience three-dimensional


ow e�ects such as a dispersion in pitch, yaw, and roll. In addition to this, the transi-

tion process is inherently nonlinear. This means that the 
ow state can evolve to the

point where assumptions made by traditional stability analysis tools are no longer

valid. As a result, recent boundary layer transition 
ight experiments have been

carried out to address predictive capabilities with current boundary layer stability

analysis tools.

Over the past decade, the Air Force O�ce of Scienti�c Research (AFOSR) have

been performing a series of hypersonic 
ight experiments to quantify 
ight data for in-
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Figure 1.4: Air Force O�ce of Scienti�c Research (AFOSR) hypersonic boundary
layer transition 
ight experiments.

creasingly complex nose cone geometries of sounding rockets for high speed boundary

layer transition studies. The �rst 
ight experiment was the HIFiRE-1 
ight exper-

iment which contained an axi-symmetric blunt cone shape and was 
own in 2010.

The second was the HIFiRE-5 
ight experiment that was 
own in 2012 & 2016, and

contained a 2:1 elliptic cone with convex surfaces. The third 
ight experiment was

the Boundary Layer Turbulence (BoLT) 
ight experiment [9] involving a nose cone

geometry characterized by highly swept leading edges joined by concave surfaces.

The most recent experiment is the Boundary Layer Turbulence (BoLT-2) 
ight ex-

periment which is an extension of the original BoLT geometry to promote the study

of boundary layer turbulence. Therefore, the purpose of this work is to character-

ize three-dimensional boundary layer instabilities and secondary 
ow behavior of the

BoLT-2 boundary layer through the stages of nonlinear breakdown. Also, to elucidate

on the need to assess current simulation and analysis techniques on more realistic 
ow

con�gurations for accurate transition and turbulence predictions. This is achieved by

simulating the 
ow state and quantifying heat transfer rates imposed by the bound-

ary layer instabilities which is essential for obtaining accurate aerothermal heating

estimates.
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1.0.3 BoLT-2 Experimental Overview

The Boundary-Layer Transition (BoLT) 
ight experiment has proven to be successful

in testing and developing stability analysis tools using numerical simulation [10, 11]

and comparisons are consistent with experimental ground test measurements [12,

13]. Therefore, the Boundary Layer Turbulence (BoLT-2) 
ight experiment is the

next hypersonic 
ight experiment and was 
own in March of 2022. The research

geometry of interest is referred to as BoLT-2 and is a nose cone of the sounding

rocket. The goal of the sounding rocket 
ight test is to collect measurements to

characterize boundary layer transition and turbulent 
ow quantities at hypersonic


ight conditions of the BoLT-2 research geometry. This is meant to help further

test, develop, and verify stability analysis tools through boundary layer breakdown

using state-of-the-art computational analyses and ground tests to study transition

to turbulence. The geometry contains four swept edges that are meant to isolate

regions for individual research studies including natural transition on the primary

(top) surface and boundary layer trips on the secondary (bottom) surface [14].

The motivation of the Boundary Layer Turbulence (BoLT-2) 
ight experiment

comes from the desire to improve 
ight predictions for hypersonic vehicles by doc-

umenting surface quanti�es of a fully turbulent boundary layer at 
ight conditions.

The purpose of this is to use the 
ight data for improving transition prediction and

turbulence modeling. The objective of the BoLT-2 
ight experiment is to make mea-

surements in 
ight and add to the experimental database by collecting surface quan-

tities induced by the o�-surface 
ow structures. Therefore, this presents an oppor-

tunity to assess and develop numerical analysis tools to understand how the thermal

transport is altered by nonlinear 
ow behavior. A comparison to data collection will

address quantifying time-varying and non-uniform boundary conditions since 
ight

times extend for a longer duration than most ground test facilities.

In this work, multiple versions of the BoLT-2 geometry introduced by [15] are
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considered. The geometries of interest are the a 25% subscale version of the original

1.5 m (1.477 m) BoLT-2 geometry and the full scale 
ight geometry which has a

length of 1.0 m. The simulation data is compared with experimental measurements

collected in the Mach 6 Quiet Tunnel (M6QT) at Texas A&M University. Due to

scaling and freestream conditions, the Reynolds numbers from of the tunnel are low

compared to when transition is expected to occur in 
ight. For this reason, the 
ight

geometry was originally the 1.477 m length but was truncated to 1 m for 
ight in

order to satisfy 
ight stability of the rocket con�guration. A scaled version of the

long BoLT-2 geometry is where the majority of the measurements were taken in the

M6QT due to the di�culty in observing transition to turbulence for the model sizes

that can �t within the tunnel. Nonetheless, invaluable experimental measurements

were made which can be used for comparison to simulation for analysis for veri�cation

of the numerical approach. More importantly, the low noise environmental of quiet

wind tunnels provides a better representation of atmospheric 
ight than conventional

wind tunnels. This is essential since transition is signi�cantly a�ected by the forcing

function and initial disturbance amplitude for accurate transition prediction. Results

from Kostak-Teplicek [15] have provided useful insight into the state of the boundary

layer with the help of high resolution infrared thermography of the wall temperature.

Furthermore, high frequency pressure transducer measurements on the surface were

used to identify frequencies which are ampli�ed by instabilities. The idea is that

the higher amplitude surface perturbations have frequencies attributed to boundary

layer instabilities. Since the 
ow state is three-dimensional, a poor choice of spatial

location may not record frequencies induced by relevant boundary layer instabilities.

Because of this, non-intrusive measurement techniques were used to measure 
ow

quantities o� the wall including mass 
ux and velocity 
uctuations. This is meant to

con�rm the existence of 
ow�eld 
uctuations induced by instabilities contributing to

boundary layer breakdown which are observed in numerical simulations as well. This
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is important for veri�cation since multiple types of unstable boundary layer modes

exist, and it should not be assumed that transition is a result of a single unstable

mode.

Genesis of the BoLT-2 Geometry

The intent of the BoLT-2 experiment was inspired by the BoLT experiment derived

from the original BoLT geometry. The �rst BoLT concept was generated by the Uni-

versity of Minnesota (UMN) team in late 2016 in collaboration with a government-led

team including researchers from AFOSR, AFRL, CUBRC, Purdue University, Texas

A&M University, NASA Langley, and Johns Hopkins Applied Physics Laboratory.

The initial concepts proved to have a signi�cant amount of 
ow separation and shock

boundary layer interaction phenomena which contributed to extreme heating. This

included serious concerns related to manufacturing and unsteady aerodynamic load-

ing. The BoLT geometry concepts are depicted in Figure 1.5.

Further modi�cations were made by the University of Minnesota (UMN) team

to address a few of the underlying issues. While doing so, the Air Force Research

Laboratory (AFRL) developed a competing geometry to help ful�ll design objectives.

Nonetheless, the same issues constraining the UMN concepts were present on the

AFRL concept. The team collaborated and resorted to combining two competing

concepts by incorporating concave surfaces with a cylindrical leading edge nose tip.

The UMN team produced preliminary CFD calculations to ensure desirable features

were present for the 5th concept but the geometry did not meet the size or payload

requirements for the sounding rocket. Therefore, the geometry was elongated in the

axial direction to 0.866 m; the same length as the HIFiRE-5 research geometry. The

key geometry features included a cylindrical nose tip (5 mm) with four swept leading

edges joined by concave surfaces. The surfaces of interest were the upper and lower

concave surfaces. Also, note that the side surfaces (often referred to as the "gutter")



Chapter 1. Introduction 11

Figure 1.5: BoLT geometry concepts.

were designed to isolate 
ow from the swept leading edges within a low-pressure

regions to channel 
ow away from the surfaces that are of interest. The intent is so

the 
ow is isolated to prevent contamination of transition from di�erent sides of the

geometry.

The BoLT-2 geometry was developed by Texas A&M University (TAMU) and the

concepts are shown in 1.6. The BoLT-2 geometry is identical to BoLT up to 0.866

m at which the surface slope and curvature is preserved. The original intent was

meant to promote turbulent 
ow with an extended geometry while reaching much

higher unit Reynolds number conditions in 
ight. Due to the low-pressure region in

the gutter in combination with the extended geometry, a strong spanwise pressure
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Figure 1.6: BoLT-2 geometry concepts.

gradient channels near wall streamlines to pass over the swept leading edge close to

the back of the geometry. This then produced a small region of separation due to an

adverse pressure gradient in the boundary layer. To address this, the next concept

included a less drastic curvature near the swept edge of the gutter surface to help

eliminate the separation bubble. Even though this was resolved, surface streamlines

still pass over the swept leading edge due to the low-pressure region in the gutter.

This can make it di�cult for obtaining stable solutions in later chapters of this work.

Furthermore, a drastic geometric expansion near the back of the research geometry

can lead to 
ow separation and unsteady 
ow structures past the end of the research

geometry as well. Nevertheless, the geometry was truncated to 1 m for the �nalized
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ight geometry to satisfy 
ight stability of the sounding rocket, and the so called

fairing (geometric expansion) was deemed su�cient by the BoLT-2 team to minimize


ow separation. This ensures that the boundary layer remains wall bounded in critical

regions of the 
ow�eld during 
ight.

1.1 Scope of the Present Work

The objective of this work is to further develop a general numerical methodology

framework to study transition mechanisms for three-dimensional boundary layer tran-

sition through nonlinear breakdown to turbulence. This is motivated by the need to

understand the relevant 
ow physics leading up to the nonlinear transition regime

which has not been well characterized and to gain an understanding of potential

transition processes seen in practice. The primary research con�guration of interest

is the Boundary Layer Turbulence (BoLT-2) geometry in order to help improve the

understanding of the underlying 
ow physics contributing to elevated surface heat-

ing by simulating through the nonlinear transition regime. This is motivated by the

fact that elevated heating is observed on the surface taking the form of streaks when

viewing the surface heat 
ux from experiments of Figure 1.7. At higher Reynolds

number conditions, the onset of transitional surface heating was observed [15].

The numerical studies in this work are achieved by performing Direct Numeri-

cal Simulation (DNS) and introducing external disturbances to the DNS solution in

order to excite boundary layer instabilities. A numerical methodology is introduced

within the existing �nite-volume solver, US3D, and guidelines for obtaining accurate,

high-�delity solutions are established. Veri�cation of the results are conducted by

making comparisons to measurements obtained from wind tunnel experiments per-

formed at the Mach 6 Quiet Tunnel at Texas A&M University. Modal analysis tools

are used to extract pertinent information from simulation datasets to identify domi-
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Figure 1.7: Infrared Thermography reveals elevated heat transfer rates at localized re-
gions for a 25% subscale con�guration of the BoLT-2 research geometry from Kostak-
Teplicek [15]. View is of the top, back portion of the geometry and 
ow is from left
to right with increasing freestream unit Reynolds.

nant modes in the BoLT-2 boundary layer. The modes are representative of relevant

boundary layer instabilities that contribute to breakdown resulting in higher surface

heating. This is necessary for understanding the underlying 
ow physics that are

contributing to elevated heat transfer rates for vehicles travelling in the hypersonic


ow regime. Furthermore, this provides a general framework capable of simulating

the entire transition process up to a fully turbulent boundary layer state if the proper

grid resolution is achieved to resolve the relevant length scales needed to capture

a majority of the disturbance energy. Modal analysis techniques which consider a

disturbance energy norm are used to quantify local 
uctuations taking the form of

dominant modes associated with boundary layer instabilities.

The remaining Chapters are summarized as follows: Chapter 1 introduces a brief

literature review to introduce the pathways of boundary layer transition along with

an overview of relevant boundary layer transition mechanisms which have been widely

studied in the past. Chapter 2 presents the governing equations and numerical meth-

ods used in this work. The importance of high-order, low-dissipation methods for
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simulating the transition process is discussed for problems with shock waves. Chap-

ter 3 reviews environmental disturbance sources that are likely to cause transition and

the numerical approaches used in this work for studying boundary layer instabilities

are covered. Chapter 4 and 5 investigates the transition process for BoLT-2 under

various 
ow conditions to identify which instabilities are contributing to breakdown

in experiments. Finally, the transition process for the 
ight con�guration at a 
ight

condition identi�ed to show evidence of transition based on 
ight data is investigated

to understand how the transition process scales from ground test conditions to 
ight

conditions.

1.2 Instability and Transition

1.2.1 Laminar to Turbulent Transition Processes

The pathways of boundary layer transition are often cited and categorized by the

diagram as introduced by Morkovin [16]. Assuming that a boundary layer has a

stable mean 
ow state, the laminar steady-state numerical solution is referred to as

the base
ow or basic 
ow state. In simulation, the 
ow state can be obtained by

solving for an approximate solution to the Navier-Stokes Equations. The ideal 
ow

state that is obtained numerically can be physically unstable. However, the discrete

solution may appear stable to do numerical dampening and absence of environmen-

tal disturbances. In actuality, the 
ow state is not ideal and transition is typically

initiated by perturbations generated from some type of environmental source which

can take the form of wind tunnel noise, freestream turbulence, particulates, surface

roughness, or other. The process at which perturbations generated by environmental

sources that then interact with a 
ow�eld is referred to as receptivity. The linearized

Euler equations for compressible 
ow have been shown to categorize several types of
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Figure 1.8: a) Pathways of Transition adapted from Morkovin [16]. b) Receptivity
mechanisms induced by freestream disturbances and roughness [17]. c) Stages of
boundary layer transition adapted from Hader and Fasel [18].

receptivity components of freestream waves taking the form of acoustic, entropic, and

vortical components [19]. The acoustic waves are pressure perturbations which travel

at the local speed of sound, entropic waves are density/temperature perturbations

traveling with wave speeds equivalent to the local convection velocity, and vortical

waves representing perturbations in velocity components. The 
ow�eld disturbances

can then "force" the 
ow by interacting with the mean
ow and absorb energy from

the mean
ow. These involve nonlinear processes that cause local 
uctuations to grow

in amplitude through eigen-modes induced by local 
ow gradients that can support
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a particular type of transition mechanism characterized by the boundary layer 
ow

state. The de�nition of nonlinearity within the boundary in this work refers to when

disturbances become su�ciently large in amplitude at which the disturbances interact

with the mean
ow. Once the disturbances absorb enough energy from the mean
ow,

secondary instability growth or the interactions of multiple boundary layer insta-

bilities can contribute to exponential disturbance energy growth. This can lead to

breakdown to small-scale coherent structures producing spatio-temporal 
uctuations

seen by local 
ow quantities - commonly referred to as turbulence. Therefore, the

ampli�cation process takes the form of eigen-modes resulting from modal or non-

modal (transient) growth transition mechanisms. If the environmental disturbance

source produces very large 
ow�eld 
uctuations, the large perturbations can lead to a

bypass of the transition process thus tripping the boundary layer to a turbulent state.

Therefore, this implies that the initial disturbance amplitude is a major contributing

factor for the pathway a boundary layer may transition and is dictated by the type

of instabilities which support propagating waves speci�c to the instability.

1.2.2 Compressible Boundary Layer Transition Mechanisms

Mack's First-Mode and Second-Mode Instabilities

Several types of instabilities can contribute to transition by means of amplifying dis-

turbance quantities leading to transition within a hypersonic boundary layer. Two

types of instability mechanisms were identi�ed by Mack [20] in two-dimensional

boundary layers using linear stability theory (LST) and are commonly referred to

as �rst- and second-modes. The �rst- and second-modes can become important to

the transition process by absorbing energy from the mean 
ow and have been study

extensively within experiments and simulations. The �rst-mode is a viscous instabil-

ity of a compressible boundary layer taking the form of streamwise unstable waves,
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analogous to Tollmien-Schlichting waves for incompressible 
ow. The second-mode is

an inviscid instability where the boundary layer acts as an acoustic wave guide such

that the instability is tuned to the local boundary layer properties causing a re
ec-

tion of acoustic waves between the wall and the relative sonic line [21]. Resulting

from this are acoustic waves which become visible near the boundary layer edge that

radiate from the boundary layer and di�use into the mean
ow further away from the

wall. For hypersonic 
ows, second-mode is typically found to be more unstable over

�rst-mode in compressible boundary layers [21]. Work by Li et al. [22] demonstrated

for high-speed boundary layer 
ows that three-dimensional secondary instabilities can

arise and lead to nonlinear evolution of second-mode waves for cone con�gurations.

Stationary and Travelling Cross
ow Instabilities

With the extension to three-dimensional space, additional transition mechanisms can

exist within a high speed, compressible boundary layer. One of these instabilities is

the so called cross
ow instability. This is produced by a cross
ow velocity component,

and occurs when the boundary layer velocity pro�le contains an in
ection point. This

is contributed by misalignment of the inviscid velocity vector and spanwise pressure

gradient resulting in varying momentum and pressure gradients near the wall [23]. It

is possible for the in
ection point to become inviscidly unstable leading to transition

and has two types of eigen-modes. One type is a stationary-mode resulting from

steady forcing near the in
ection point taking the form of stationary cross
ow insta-

bilities. This instability is a result of steady forcing and to not to be confused with

steady cross
ow vortices. Cross
ow instabilities have been observed for a number of

con�gurations in the past such as for a cone at an angle of attack [24], a yawed cone

[25], the HIFiRE-5 2:1 elliptic cone [26], and BoLT [11]. For BoLT, Thome et al. [10]

showed the stationary cross
ow mode can become a dominant transition mechanism

due to its sensitivity to roughness. For longer geometries under speci�c conditions,
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cross
ow can cause the development of steady streamwise vortices capable of support-

ing vortical instabilities. Furthermore, [27] showed that roughness on the HIFiRE-5

geometry can lead to the formation of coexisting vortical structures, referred to as

vortex doubling. The other eigen-mode of cross
ow is a temporal mode commonly

referred to as travelling cross
ow instability which has an associated wave angle and

phase speed. Stationary cross
ow instabilities are more likely to be a dominant in-

stability where the freestream environment contains low noise levels. Meanwhile,

travelling cross
ow instabilities tend to dominant in the presence of broadband, large

amplitude freestream environments.

The interaction of disturbances with developing vortex structures in a region fa-

voring cross
ow have been shown to initiate breakdown on a 25% subscale, 1.5 me-

ter BoLT-2 geometry and will be introduced in later Chapters. Furthermore, 
ow

modulated by cross
ow vortices are highly susceptible to high-frequency secondary

instability modes (SIMs) present near shear layers when disturbances are introduced

to vortices developing in regions of cross
ow [28]. Secondary instability of cross
ow

has been studied in the past with Wassermann and Kloker [29] introducing a number

notation and Malik et al. [30] de�ning a letter notation for the same secondary 
ow

e�ects:

ˆ Type-I: A high frequency mode driven by strong spanwise velocity gradients

located on the upwash side of cross
ow vortex.

ˆ Type-II: A high frequency mode driven by strong streamwise velocity gradients

generated by intense wall-normal gradients located at the top portion (crest) of

the cross
ow vortices. Recent work has shown that the secondary 
ow behavior

can appear near the trough portion induced by similar velocity gradients as seen

from Figure 1.9.

ˆ Type-III: A low frequency mode driven by strong spanwise velocity gradients
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and located on the upwash side of the cross
ow vortex.

Figure 1.9: Schematic illustrating regions of secondary instability mechanisms of
cross
ow instability within developing vortex structures of a boundary layer reported
by Chen and Xu [28]. The streamwise velocity component,u, is pointing into the
page.

1.2.3 Instabilities Identi�ed on BoLT

When boundary layers become lifted due to strong spanwise gradients, this allows the

development of steady, streamwise vortex structures. This has typically been observed

near the centerline for the HIFiRE-5 elliptic cone, the BoLT/BoLT-2 
ight experi-

ment geometries, and for lifting body geometries such as the Hyperonsic Transition

Research Vehicle (HyTRV) [31]. At higher Reynolds numbers, the lifted boundary

layer tends to roll up at which the upwash side results in a signi�cantly thickened

boundary layer thickness containing strong shear gradients capable of supporting

vortical instabilities. In the case of small-scale streamwise vortices, the vortical insta-

bilities are typically localized further away from the wall and target regions having

the largest velocity gradients. The understanding of such instabilities are often quan-

ti�ed using a type of modal analysis tools to isolate eigen-modes associated with

instabilities for stability analysis.
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Many types of modal analysis techniques have been used to extract spatio-temporal

information from 
ow�eld snapshots generated by simulations. An overview of cur-

rent modal analysis techniques with their applications are described in the papers

by Taira et al. [32, 33]. Many of these analysis techniques are purely data-driven

and typically apply modal decomposition to a dataset of a particular 
ow variable,

or of an operator relevant to the system. One such modal analysis tool capable

of extracting pertinent information from computational datasets is dynamic mode

decomposition (DMD). DMD is a modal analysis tool that can extract dynamical

information provided a sequence of snapshots in time.

Numerical simulations and analysis by Knutson et al. [11] using Sparsity-promoting

DMD (SPDMD) [34] revealed multiple instabilities in the BoLT 
ow�eld. These in-

stabilities have been de�ned as a vortical mode near the centerline, traveling cross
ow

near the swept edge, and a region containing mixed-modes that are thought to cor-

respond to an interaction between di�erent types of coexistent instabilities. This has

provided useful insight into the types of transition mechanisms contributing to linear

growth of disturbances for BoLT and are consistent with subscale experimental mea-

surements [13]. At higher Reynolds numbers, there is a development of stationary

cross
ow vortices located between the centerline and swept edge. The interaction

of disturbances with the cross
ow vortices have been shown to initiate breakdown

observed on the surface of BoLT-2 and results are shown in later chapters.

1.2.4 Simulation Methodology

Now knowing the types of instabilities that we may expect to contribute to breakdown

on the BoLT-2 con�guration, DNS is the tool used for boundary layer stability analysis

because the spatial homogeneity of this particular 
ow�eld should not be assumed.

Therefore, in theory, the DNS datasets include linear and nonlinear 
ow processes

along with potential mode interactions since it is demonstrated that the solver is able
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to simulate the e�ects based on supporting cases of this thesis. Furthermore, the

excitation of instabilities is achieved by convecting disturbances without constraining

the propagation of waves to speci�c paths or frequency bands which might favor

particular instabilities. This requires some type of physical disturbance that must

propagate through the domain and has to �rst be imposed as a boundary condition for

simulating instabilities of the DNS. In 
ight and wind tunnel experiments, boundary

layer instabilities arise due to some type of external forcing that can take the form

of freestream disturbances that enter the boundary layer through receptivity. Since

comparisons are being made to wind tunnel measurements, a forcing approach is

utilized and is meant to mimic e�ects similar to quiet wind tunnel noise to obtain

a response representative of natural transition. This provides a more representative

model of a quiet wind tunnel environment by using a stochastic, broadband forcing

function to allow the boundary layer to select a response representative of natural

transition. This is di�erent than what was previously used to investigate the linear

stages of transition on BoLT by Knutson et al. [11] which applied a strip of stochastic

momentum forcing at the wall. Since DNS is used as a numerical tool for boundary

layer analysis, a high-order, low-dissipation numerical method is used and is required

to accurately capturing the ampli�cation and growth of disturbances induced by

boundary layer instabilities. A similar approach is applied at 
ight conditions to help

provide an understanding of transition in 
ight at which simulation data could be

used for interpreting 
ight data once it becomes available.



Chapter 2

Numerical Method

This chapter introduces relevant numerical methods for calculating solutions with the

compressible Navier-Stokes equations, address the computational challenges related

to simulating the physical phenomena inherent to high speed compressible 
ows, and

numerical methodology required to properly simulate boundary layer instabilities in

three-dimensional boundary layers. This includes discussion of numerical methods for

obtaining accurate, high-�delity solutions by performing direct numerical simulation

with supporting test cases.

2.1 Navier-Stokes Equations

The governing equations solved in this thesis are the Navier-Stokes equations and are

valid for 
ows that satisfy the continuum assumption based on the local mean free

path (average distance molecules travel between collisions) being su�ciently small.

This is true for all problems in this thesis. Therefore, the equations that describe the

23
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conservation of mass, momentum, and energy are:

@�
@t

= �
@�uj

@xj
(2.1)

@�ui

@t
= �

@
@xj

(�u i uj + p� ij � � ij ) (2.2)

@E
@t

= �
@

@xj
((E + p)uj � � ij ui + qj ) (2.3)

The density is denoted as� and the velocity vector isuj with respect to the three

spatial directions,x j , in the Cartesian coordinate system. Thus, the three components

of velocity, uj , wherej = 1; 2; 3 are denoted asu; v; w.

The freestream conditions for the cases of interest investigated in this work have

a relatively low total enthalpy sinceO2 dissociation typically occurs around 2 MJ/kg.

Because the total enthalpy remains well below this value and temperature of the gas

is relatively low for all cases in this thesis, the gas does not contain a signi�cant

thermal energy increase to trigger reactions and energy relaxation at any appreciable

level. Therefore, the internal energy relaxation and potential chemical reactions are

insigni�cant in terms of the e�ect on the boundary layer state. Even though the gas

is not in chemical and thermal equilibrium, a gas in chemical and thermal equilibrium

would likely behave similarly under the conditions of this thesis. For this reason, the

cases in this thesis assumes air with the equation of state for a thermally perfect gas

where the pressure is calculated as,p = �RT . Temperature is calculated from the

speci�c internal energy, e = cvT. For a calorically perfect gas, the speci�c heat at

constant pressure and volume,cp and cv respectively, are assumed to be constant and

related by cp = R + cv. The ratio of speci�c heats, 
 , is 1.4 and obtained from the

gas constant for air,R = 287:05 J/(kg�K). Therefore, the speed of sound calculated

as a =
p


RT .

Vibrational and electronic excitation is neglected since the vibrational temperature
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of O2 is about 2239 K. For most cases, vibrational excitation ofO2 begins around

800 K and becomes increasingly signi�cant at higher temperatures. Furthermore,

this depends greatly on the leading edge radius of a vehicle and varies on a case-by-

case basis. Aside from this, we generally expect that vibrational excitation of oxygen

occurs for 
ows having a freestream enthalpy over 1 MJ/kg. Nevertheless, the total

energy per unit volume for the governing equations above takes into account the sum

of kinetic and internal energies de�ned as,

E =
1
2

�u i ui + �c vT: (2.4)

The viscous stress tensor,� ij , is represented as shear components of velocity taking

the form of a combination of �rst derivatives of each velocity component,

� ij = �
�

@ui
@xj

+
@uj
@xi

�
� �

@uk
@xk

� ij ; (2.5)

The dynamic viscosity,� , and bulk modulus,� , is related with Stokes' hypothesis

of zero bulk viscosity by� = � 2
3 � . The dynamic viscosity is assumed to be a function

of only temperature using Sutherland's law,

� (T) = � o
T3=2

T + To
: (2.6)

A reference viscosity of� o = 1:458x10� 6 kg/(m �s) and reference temperature of

To = 110:3K is assumed. The heat 
ux vector is derived from Fourier's Law of heat

conduction and related by the thermal gradient,

qj = � �
@T
@xj

= � (� tr + � rot )
@T
@xj

; (2.7)

The thermal conductivities for the translational and rotational energy modes are
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obtained from an Eucken relation,� tr = 5
2 �c v and � rot = �c v .

2.2 Finite Volume Method

Before boundary layer instabilities can be simulated, a converged mean 
ow state is

required. Since the governing equations are the Navier-Stokes equations which are

set of nonlinear partial di�erential equations (PDEs), a numerical method capable

of solving nonlinear hyperbolic equations is required. Historically, the most com-

monly used numerical methods are �nite di�erence and �nite volume methods. In

recent years, higher order methods such as Discontinuous-Galerkin (DG) methods

have shown potential in addressing some of the challenges encountered by �nite dif-

ference and �nite volume approaches. However, current DG approaches are still in the

early stages of development since they are often challenging to implement and deemed

to be computationally expensive. Despite these reasons, �nite di�erence and �nite

volume methods have received much more attention since they are relativity more

simple to implement. As a consequence, the development of a higher order method

is outside the scope of this work. Therefore, a �nite volume method is used where

the governing equations can be rewritten in conservation law form (or divergence law

form):

@U
@t

+
@Fj
@xj

= 0 (2.8)
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The vector of conservative variables and 
ux vector are represented by,

U =

8
>>>>>>>>><

>>>>>>>>>:

�

�u

�v

�w

E

9
>>>>>>>>>=

>>>>>>>>>;

; Fj =

8
>>>>>>>>><

>>>>>>>>>:

�u j

�uu j + p� 1j + � 1j

�vu j + p� 2j + � 2j

�wu j + p� 3j + � 3j

(E + p)uj + � kj uk � qj

9
>>>>>>>>>=

>>>>>>>>>;

(2.9)

The equations written in this form are then integrated over an arbitrary control

volume (Vi ) with an enclosed surface or boundary faces whereUi is the average over

the cell being evaluated,

Z

Vi

@U
@t

dV = �
Z

Vi

@Fj
@xj

dV (2.10)

This is referred to as the weak form of the conservation equations. Gauss' divergence

theorem is then applied to convert the volume integral on the right hand side into

a surface integral allowing for integration over the control volume and the boundary

surface.

Vi
@Ui
@t

= �
I

@Vi

F 0
f dS (2.11)

The surface normal 
ux, F 0
f = Fj � n̂, is the component of the 
ux vector in the

surface-normal direction which points outward with respect to the boundary. By

assuming that a control volume takes the form of a computational element, the above

integral expression can be represented approximately with a discrete summation of

the 
uxes at each element face,

@Ui
@t

= �
1
Vi

X

faces

F 0
f Sf (2.12)
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Figure 2.1: Naming convention for two neighboring, arbitrary �nite volume cells cor-
responding to discrete three-dimensional control volumes represented as hexahedral
elements. Element nodes are denoted by the grey spherical points located at the ver-
tices of each element. The cell-centers are represented by diamonds. The element face
normal is shown where the positive direction is pointed outward from the cell-center.
The shared face between elements is represented by the grey shaded face and is where
the 
ux is computed.

The subscripts i and i + 1 of Figure 2.1 represent the cell-centers of the cell

evaluated and neighboring cell for the 
ux at the shared face, respectively.Sf is the

face area and is denoted by the half-index naming convention such that the subscript

i + 1=2 is the face center. Therefore,F 0
f = Fj � n̂ represents the 
ux vector, Fj , at

face,Si +1 =2, which is dotted with the unit normal, n̂f , pointing from cell i to i + 1.

The �eld variables of the governing PDE's obtained from the integral form are

smoother than �eld variables obtained when calculating approximate solutions to the

weak form of the equations. Nonetheless, this allows the discrete form to handle


ow discontinuities that appear in compressible 
ows. This can arise due to the

nonlinearity of the convective terms which can allow waves to sharpen and result in the

formation of shock waves. Considering this, along with the above formulation, spatial

integration is performed by interpolating data stored at the cell-centers to derive a

spatial 
ux at the face. It is important to note that the terms of the spatial 
uxes are a
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combination of convective and di�usive terms resulting from the governing equations.

For compressible 
ows, this implies that the convective terms are hyperbolic in nature.

This means the solutions contain wave-like properties at which the information travels

along the PDE's characteristic directions. This allows for a formulation which de�nes

an inviscid portion of the spatial 
ux separately from the viscous portion. The purpose

of this is because the inviscid 
ux requires special treatment which takes into account

their hyperbolic nature and nonlinearity. As for the viscous terms of the spatial 
ux,

they behave elliptic in nature which allows for a relativity more simple and e�cient

implementation which will be discussed later on. Therefore, the 
ux vector then takes

the following form where prime denotes the surface normal directions:

F 0 = F 0
I + F 0

V (2.13)

Utilizing the Cartesian coordinate system, the inviscid and viscous components of the

spatial 
ux are written as [35],

F 0
I =

8
>>>>>>>>><

>>>>>>>>>:

� (un̂x + vn̂y + wn̂z)

�u (un̂x + vn̂y + wn̂z) + pn̂x

�v (un̂x + vn̂y + wn̂z) + pn̂y

�w (un̂x + vn̂y + wn̂z) + pn̂z

(E + p)(un̂x + vn̂y + wn̂z)

9
>>>>>>>>>=

>>>>>>>>>;

(2.14)
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F 0
V =

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

0

� xx n̂x + � xy n̂y + � xz n̂z

� yx n̂x + � yy n̂y + � xz n̂z

� zx n̂x + � zyn̂y + � zzn̂z

(� xx u + � xy v + � xz w � qx )n̂x +

(� yx u + � yyv + � yzw � qy)n̂y +

(� zxu + � zyv + � zzw � qz)n̂z

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

(2.15)

2.3 Inviscid Fluxes

2.3.1 Steger-Warming Flux Vector Splitting

Steger and Warming were some of the �rst to introduce 
ux vector splitting based

on the method of characteristics for the Euler equations which are known to be

homogeneous with respect to the vector of conserved quantities. Solutions can be

obtained where the eigenvalues of the system have wave speeds ofu + a, u, and u � a

which represent the wave speeds of fast acoustic waves, convective waves, and slow

acoustic waves, respectively [36]. This means that when 
ow is subsonic (a > u ),

waves may be allowed to travel in all directions. Whereas, when (a < u ), information

travels in a single direction.

Since the inviscid 
ux is hyperbolic, it is discretized using the method of charac-

teristics such that the solution of the inviscid 
ux allows for a solution to wave motion

with corresponding wave speeds represented by the eigenvalues of a Jacobian matrix.

Additionally, this method follows a special property which states that the 
ux is ho-

mogeneous. For example, considerF = F (U) where F is a function of a set of �eld

variables contained in vectorU. The matrix of partial derivatives, U0, is �U for any
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nonzero scalar,� . If F satis�es, F (U0) = � F(U), then F is said to be homogeneous

with respect to U. This means that the property satis�esF (�U ) = � (FU) such that

the Jacobian matrix, A, is @F=@U.

Therefore, we are assuming that the inviscid 
ux is homogeneous with respect

to the state vector, U, allowing us to de�ne a linearization exactly with a Jacobian

matrix as,

F 0
I =

@F0I
@U

U = A0U (2.16)

The partial, @F0
I

@U = A0, is the Jacobian matrix ofF 0
I with respect to U. The eigen-

values and eigenvectors of the 
ux Jacobian can be computed directly but requires

many steps for implementation. Therefore, a cleaner form is desired by rewritting the

elements of the Jacobian matrix in terms of the elements ofU and then taking the

partial derivatives. The purpose of this is because a diagonalization of the Jacobian is

required with an eigen-decomposition then the derivatives are computed along char-

acteristic directions using upwind biasing. Therefore, this is achieved by de�ning the

conserved variables ofU in terms of the primitive variables, V , such that U = U(V)

and V = [ �; u; v; w; p ]T . Therefore, the Jacobian matrix is expressed as,

A0 =
@U
@V

@V
@U

@F0I
@V

@V
@U

(2.17)

where

@V
@U

@F0I
@V

= C � 1� C (2.18)

is the diagonal form of the transformed Jacobian written in terms of primitive vari-

ables. It is observed that the matrix obtained from@V
@U

@F0
I

@V is a similar matrix to @F0
I

@U
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which both have the same eigenvalues. The reason we know this is because we choose

the invertible matrix @V
@U and its inverse to post- and pre-multiply the synthetic matrix

in question. This is the de�nition of similar matrices. It was further observed that

the synthetic matrix is easier to diagonalize. The matrix � is the diagonal matrix

of eigenvalues, � = diag(�; � + ; �; �; � � ) and � = u0; � + = u0 + a; and � � = u0 � a.

Here u0 is the characteristic propagation speed due to the bulk velocity andu0 � a

are the characteristic acoustic wave speeds. The columns ofC are the associated

eigenvectors. The 
ux Jacobian can then be written as,

A0 =
@U
@V

C � 1� C
@V
@U

= S� 1C � 1� CS (2.19)

whereS = @V=@Uis the transformation from conserved variables to primitive vari-

ables andS� 1 = @U=@V. The matricesC and S are de�ned in [37]. Next, we split

F 0
I into components associated with the direction of the characteristics determined

by the positive and negative eigenvalues of �.

F 0
I = F 0

I + + F 0
I � = A0

+ U + A0
� U (2.20)

This enables upwinding since the sign of the eigenvalues represents the local direc-

tion of propagation and the magnitude correspond to the linear waves of the 
ow�eld.

This is an important notion for realistic problems since slow acoustic waves are ca-

pable of having negative characteristic wave speeds within the subsonic portion of a

boundary layer. This is contrary to vorticity, entropy, and fast acoustic waves, which

are those that, by convention, we consider to have positive wave speeds. This is a

convention for how the orientation of the "normal direction" in a 
ow�eld is chosen

such that a numerical scheme capable in simulating compressible 
ow problems is
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successfully formulated. Therefore, the split Jacobians become,

A0
+ = S� 1C � 1

+ CS A0
� = S� 1C � 1

� CS (2.21)

The 
ux at each face can be constructed by evaluating the Jacobians with cell

centered or face centered data. The original Steger-Warming 
ux vector split scheme

used upwind biasing and data from the cell centers to evaluate the Jacobians,

FI
0
f = A0

+ i Ui + A0
� i +1 Ui +1 (2.22)

The scheme is �rst-order accurate since upwind data atUi and Ui +1 are used to

compute the 
ux at the face, i +1=2. As written, a second-order accurate scheme could

potentially be formulated if left and right data were used since symmetric schemes

are higher order. However, because the eigenvalues in the Steger-Warming scheme

choose data from only one side, a �rst-order scheme for celli is obtained. Therefore,

MacCormack and Candler [38] proposed a modi�cation to the scheme by using the

Jacobians evaluated at the face,

FI
0
f = A0

+ f Ui + A0
� f Ui +1 (2.23)

where the Jacobians are computed at the face by taking the arithmatic mean of the

states at the cell centers,Ui and Ui +1 ,

A �
0
f = A0

�

�
1
2

(Ui + Ui +1 )
�

(2.24)

This is commonly referred to as the modi�ed Steger-Warming 
ux scheme, and

results in less numerical dissipation; thus is more desirable for obtaining more accurate


ow calculations. In some cases, numerical stability may require more numerical
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dissipation such as near 
ow discontinuities. An example of this would be for a

high Mach number 
ow near strong shock waves. Therefore, the current upwind 
ux

used in this work smoothly varies between the original Steger-Warming 
ux at strong

shocks and reverts back to the modi�ed Steger-Warming 
ux in other regions of the


ow. This is achieved by evaluating the Jacobians,A0
+ and A0

� , with,

U+ = wf Ui + (1 � wf )Ui +1 U� = (1 � wf )Ui + wf Ui +1 (2.25)

wherewf 2 [1=2; 1] is a pressure-dependent weighting function that reaches a maxi-

mum value of 1 in the presence of sharp pressure jumps and is equivalent to the original

Steger-Warming 
ux. In other regions of the 
ow where the gradients remain smooth,

a dissipative 
ux with the dissipative properties of the modi�ed Steger-Warming 
ux

is achieved whenwf approaches 1/2.

As mentioned by Candler et al. [37], the introduced 
ux formulation may work

exceptionally for standard 1-D test problems but produces insu�cient accuracy for

realistic high Mach number 
ows on non-ideal grids. The scheme su�ers from an accu-

mulation of numerical error occurring when the eigenvalues of the Jacobian approach

zero near stagnation regions. This can be observed for high Mach number 
ows with

strong shocks waves where the numerical error may grow in magnitude and alter the


ow physics aphysically. One such example of this is a so-called carbuncle [39] may

arise in the solution and produce a large displacement of the bow shock wave near

the stagnation region of a blunt leading edge. This is associated with an aphysical

recirculation zone near the stagnation point. Typically, the problem is prevented by

aligning the grid with the bow shock wave to reduce numerical error contributed by

the 
ux calculation, and to limit the eigenvalues of the dissipative 
ux component

to reduce the potential growth of numerical error. In this work, the eigenvalues are
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augmented to prevent them from approaching zero using,

� 0
� ] =

1
2

�
� � �

q
� 2

� + � 2

�
(2.26)

where the eigenvalue,� � (either u0,u0 + a, or u0 � a), is an element of �� and the

sign depends upon whether the contribution is to �+ or � � . By observation, the

eigenvalues become larger in the direction information propagates meaning that 
ux

is added. The limiting value as� approaches zero is� = � oa and � o should be chosen

to be large enough to maintain the solution from becoming aphysical in stagnation

regions; typically, 0:1 � � o � 0:3. Furthermore, this type of eigenvalue limiting must

not be applied in boundary layers because it induces an arti�cial 
ux across the

boundary layer [37]. The solutions obtained in the results sections of this thesis, sets

� o to zero in the boundary layer, and is then increased to 0.3 outside of the boundary

layer along grid lines.

2.3.2 Higher-Order Spatial Accuracy

As brie
y discussed in the former section, there can be a number of issues that arise

when the introduced 
ux scheme is used for obtaining solutions under practical high

Mach number 
ow conditions and for non-ideal grids which are almost always used in

practice. It may be enticing to use a more dissipative scheme, such as the �rst order

accurate scheme of the last section, to obtain improved convergence for steady-state

problems. However, especially for unsteady DNS calculations, this is detrimental to

the resolved spatial length scales of the underlying 
ow physics which requires high-

order spatial accuracy. When resolving gradients for transition studies, the numerical

dissipation properties of the upwind Steger-Warming 
uxes smooths gradients and

acts as arti�cial viscosity. In the case of high Reynolds number 
ows, the arti�cial

viscosity (numerical dissipation) may obtain an inaccurate boundary layer pro�le that
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is representative of a much lower Reynolds numbers than what is actually simulated.

Therefore, one way to extend a spatial scheme to higher order is to use the Monotonic

Upstream-centered Scheme for Conservation Laws [40] (MUSCL) approach. This ap-

proach performs a higher order reconstruction of the piecewise constant data associ-

ated with a larger dataset by using a polynomial of low degree and a slope limiter

taking the form of a monotonic function to preserve the order of accuracy. Therefore,

higher order accuracy of the Steger-Warming scheme is achieved by increasing the

stencil size of the left and right states, which are no longer assumed to be local left

(UL = Ui ) and right (UR = Ui +1 ) cell centered data, with an extrapolation to the face

(i + 1=2):

F 0
I f = A0

+ f UL + A0
� f UR (2.27)

Figure 2.2: Schematic of stencil used to extrapolate to cell faces.

A higher order stencil approximatesUL and UR using neighboring cell-centered

data. For example, a second-order accurate reconstruction can be obtained on a 1-D

grid using a simple extrapolation to the face ati + 1=2 using neighboring data [37]

as seen in equation(2.28).

UL =
3Ui � Ui � 1

2
UR =

3Ui +1 � Ui +2

2
(2.28)

It should be noted that a second-order spatial approximation of the 
ux from
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Equation 2.27 will be attained even if a higher order reconstruction, such as a third

order spatial approximation, were obtained forUL and UR . This is because the

Jacobian matrix is evaluated with the arithmetic mean and as a consequence reduces

the overall accuracy of the 
ux [35]. Nonetheless, the numerical 
ux function is not

useful on its own for practical applications since aphysical overshoots and undershoots

arise near strong gradients. This is because the scheme de�es monotonicity making it

so the Total Variation Diminishing (TVD) property is no longer satis�ed. In order to

handle spurious behavior, the extrema of the left and right data is limited such that no

new extrema is produced to keep the 
ux physically meaningful. This is commonly

addressed with a so called slope limiter by comparing changes in the solution and

selecting a conservative value. Therefore, in this work the left and right states are,

UL = Ui +
1
2

� (r i )(Ui +1 � Ui ) UR = Ui +1 +
1
2

� (r i +1 )(Ui +2 � Ui +1 ) (2.29)

where the slope limiter,� (r ), will detect an aphysical solution near strong gradients

and modify UL and UR
1. This requires that the slope limiter be a function of the

smoothness parameter, r, which is a ratio of adjacent slopes to ensure the scheme

satis�es monotonicity. For the left and right, the smoothness parameter isr i =

(Ui +1 � Ui )=(Ui � Ui � 1) and r i +1 = ( Ui +2 � Ui +1 )=(Ui +1 � Ui ), respectively. Recall,

the 
ux function reverts to the �rst-order accurate 
ux scheme in particular regions

of the solution, such as near 
ow discontinuities. Therefore, it is important that a

su�cient slope limiter is used to refrain from applying a �rst-order accurate scheme

in regions of interest. In general, the choice of a limiter can have a signi�cant impact

on numerical behavior or a�ect numerical error which is directly related to the grid

resolution. This can lead to di�erent solutions for varying types of problems and so

the choice of limiter can be important. Consequently, a number of limiters have been

1An appropriate reformulation of the MUSCL scheme is used within US3D which does not become
singular.
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introduced in the literature and are summarized by Lee [41]. The most commonly

used limiters are the minmod, Van-Leer, and Superbee [42] since they are second-

order TVD [43]. The minmod limiter, � (r ) =max[0;min(1; r )], is utilized in this work

since it is more conservative such that it is more robust in the sense of handling strong

shock waves.

2.3.3 Low-Dissipation Flux Formulation

The previous section discussed that 
ux limiting is applied to allow for a higher-order

dissipative 
ux in smooth regions of the solution and revert to �rst-order accuracy

near 
ow discontinuities in order to maintain numerical stability. Historically, up-

wind methods have been utilized for compressible 
ows since they are stable and

capture shock waves. However, the amount of numerical dissipation associated with

the second-order upwind scheme would make a DNS calculation too costly to resolve

relevant wave properties and �ne scale structures if one were interested in studying

boundary layer transition or turbulence. Therefore, an adequate scheme must have

low amounts of numerical dissipation and be nonlinearly stable; that is, they must

be capable of resolving shock waves and relevant vortical structures. One way to do

this is by using a non-dissipative, central scheme in combination with a numerical

sensor that detects where shock waves are present to restrict the upwind scheme to

particular regions as required for numerical stability.

Following Candler et al. [37], the inviscid 
ux of Equation 2.27 is expanded using

the de�nitions from Equation 2.19 and re-arranging the expression as a sum of a
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symmetric and upwind components gives,

F 0
f = ( S� 1C � 1� + CS)UL + ( S� 1C � 1� � CS)UR

=
�

R� 1 � + + j� j
2

R
�

UL +
�

R� 1 � � + j� j
2

R
�

UR

= ( R� 1� R)
UL + UR

2
+ ( R� 1j� jR)

UL � UR

2

= A0

�
UL + UR

2

�
+

1
2

jA0j(UL � UR)

where the �rst term is the symmetric, non-dissipative portion and the second term is

the upwind, dissipative portion of the modi�ed Steger-Warming 
ux. This now allows

for the evaluation of each portion separately by replacing the symmetric portion with

the non-dissipative kinetic energy consistent 
ux which is a central scheme using

unbiased data obtained at the face [44]. To add dissipation in this work, the 
ux

at the face uses the upwind biasing of the previously introduced dissipative 
ux

formulation multiplied by a constant, � , computed by a shock sensor. The 
ux at

the face then takes the following form:

F 0
f = F 0

f; central � �
1
2

(R� 1j� jR)f (UL � UR) (2.30)

In theory, the symmetric portion only has dispersive error and no dissipation which

is ideal for problems involving the study of wave propagation phenomena present in

boundary layer transition and turbulence simulations2. Formally, the central scheme

is second-order accurate in space. To achieve higher-order accuracy, the symmetric,

non-dissipative portion uses a stencil and weights to acquire higher-order local 
uxes.

This requires a quality mesh (unstructured) that is smoothly varying since gradients

2The study of boundary layer transition phenomena requires that the amount of numerical dis-
sipation and dispersion error present in the solution is minimized to obtain a quality solution and
maintain accuracy
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are used to extrapolate cell-centered data, at which interpolated data is used to

construct the 
ux at the face. For example, consider gradient reconstruction for a

grid with minimal connectivity information where cell i only has access to neighboring

cells. The variables at cellsi � 1 and i + 1 are used to construct a 
ux with the

a larger stencil by linearly combining the neighboring cell gradients and the local

solution values:

� f = w1(� i + � i +1 ) + w2(r � i � � x f;i + r � i +1 � � x f;i +1 ) (2.31)

where x f;i is the spacing from the cell-center (i ) to the face center (f ) where the

direction points from i to f . The weight coe�cients of w1 and w2 gives di�erent

modi�ed wavenumber properties. By having access to the connectivity of a larger

data set, the stencil can be extended to construct higher-order schemes. In this work,

fourth-order and sixth-order gradient based interpolation can be achieved [45],

� i +1 =2 =
(� i + � i +1 )

2
+

(�� i + �� i +1 )
3

(2.32)

and

� i +1 =2 =
(� i + � i +1 )

2
+

8(�� i + �� i +1 )
15

�
(�� i � 1 + �� i +2 )

45
(2.33)

where�� i corresponds to the dot product of the gradient of� in cell i and the vector

from the cell center ofi to the face center (f ) at i +1=2. Bartkowicz [46] demonstrated

that the method exhibits fourth-order and sixth-order convergence by comparing the

error versus the number of grid points for a 1-D domain when convecting a density

pulse. Additionally, the importance of using a non-dissipative 
ux versus the second-

order TVD MUSCL scheme is exploited where the density gradients di�use from the

exact solution. Also, Subbareddy demonstrated that the sixth-order 
uxes resolve the
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relevant energy spectrum needed to acquire statistic 
ow quantities for a turbulent


at plate boundary layer [47]. In this work, sixth-order gradient based interpolation

is used for the majority of the results. Fourth-order accurate gradient interpolation

is used for a few calculations and will be clearly stated when used later on. The

fourth-order scheme has proven to obtain adequate results for studying instabilities

on BoLT in the past [11].

In general, � from Equation 2.30 should vary from zero in smooth areas of the

solution and approach one near sharp gradients. Ideally, a calculation would set� to

zero in smooth regions of the 
ow so that the solution contains minimal numerical

dissipation allowing for negligible wave damping properties. In fact, zero wave damp-

ing is achieved when setting� to zero with the formulation when applied to a 1-D grid

and assuming that the grid and temporal scheme respect the spatio-temporal scales.

However, for non-ideal grids of complex shapes, it may be impossible to obtained a

converged solution or the amount of dispersion error can lead to signi�cant cell-to-cell

oscillations near sharp gradients. Therefore, for practical applications a lower bound

for � almost always has to be set from either 0.001 to as high as 0.3, and is dependent

on the grid and 
ow structures present. However, this can be detrimental to resolving

high wavenumber content especially when propagating disturbances the length of a

domain for transition studies.

In the case of wave propagation problems, which typically involves introducing

some type of 
ow disturbance to a DNS calculation, it is a combination of the grid

resolution and numerical scheme that dictates the spatial wave damping character-

istics. For a coarse grid, the Nyquist frequency of the grid dictates the maximum

resolvable wavenumber. On the contrary, for a very �ne grid, the numerical scheme

may signi�cantly dampen higher frequency waves that convect through a domain.

For example, consider a 1-D domain where slow acoustic waves are convected at a

single frequency through the domain. The simulations utilize the sixth-order spatial
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uxes and vary the dissipative portion of the inviscid 
ux with � . Furthermore, a

su�ciently low time step with explicit RK3 time integration is used so that wave

damping is only associated with the spatial scheme. Based on theory for a slow

acoustic planar wave with a wave length of� , the perturbations depend upon the

characteristic wavenumber [19, 48]:

p0 = Aei (kx � !t )

where,k = !
u� c and ! = 2�f

0
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@
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1

� 1
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(
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1

1

C
C
C
A

p0 (2.34)

where A is the disturbance amplitude,p0 is the pressure perturbation amplitude, and

! is the angular frequency. The pressure perturbation takes the form of a plane

sinusoidal wave and is applied at the in
ow. The density and temperature adjust to

the pressure disturbance based on the linearized isentropic relations thus satisfying

the acoustic-mode.

Figure 2.3 shows how various resolutions resolve a single 800 kHz wave propagat-

ing the length of a 1 meter domain. The horizontal axis of the plots in Figure 2.3

is the distance that a disturbance travels. The vertical axis is the absolute value of

the density perturbation relative to the freestream value plotted on a log-scale. One

can clearly see that the magnitude of the wave amplitude drops dramatically when

using a resolution of 12 points per wavelength (ppw). This is because the 1-D grid

was purposely constructed to have a spacing that is near the limit of the high fre-

quency sinusoidal wave propagating the length of the domain with the speci�ed value

of � . Considering when� = 0:01, as denoted by the green line of a), the amplitude
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Figure 2.3: Planar acoustic wave damping of an 800 kHz slow acoustic wave on a
1-D domain. a) shows a grid with 12 points per wavelength (ppw) and b) shows a
grid with 24 points per wavelength with varying values of� . Whereas, c) shows the
e�ects of varying grid resolution with � = 0:01

drops nearly an order of magnitude. This is nearly equivalent to setting� = 0:05

with double the grid resolution of 24 ppw as seen in b) denoted by the orange line.

From experience, 16 points per wavelength (based on the freestream conditions) for

the maximum desirable frequency of a slow acoustic wave is su�cient for transition

studies in a given direction when using� = 0:01. Recall, for practical transition stud-

ies this depends upon the 
ow conditions, initial wave amplitude, three-dimensional

grid stretching, distance that disturbances must travel to excite boundary layer in-

stabilities, and location at which disturbances are introduced which will be discussed

in later chapters. This can make it challenging if one is interested in quantifying an

initial amplitude based approach for transition prediction using DNS.
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2.3.4 Shock Sensors

Many numerical methods utilize so called shock sensors to identify regions of the


ow which tune numerical dissipation to particular regions of a 
ow having sharp

gradients to maintain numerical stability. The design of a well performing shock

sensors continues to remain an open area of research for many numerical methods.

As a result, a number of shock sensors have been introduced in the literature. In

some cases, a poor choice of shock sensor will cause a high-order, low-dissipation

method to appear dissipative when it may be the sensor that is limiting the potential

of the scheme to obtain higher wavenumber resolution in crucial regions of the 
ow

�eld. However, many researchers fail to show how well a particular shock sensor

actually identi�es regions to apply numerical dissipation. Typically, a comparison of

solutions are shown but that is not e�ective for a general problem. This can lead

to a misconceptions that certain shock sensors are claimed to be e�ective when the

shock sensor in fact causes more numerical issues. Or, they can be more dissipative

for a particular problem than what the user may or may not admit. This of course is

problem dependent and must be explored for each case since even a slight amount of

tuning is typically required even for a well performing shock sensor. An e�ective shock

sensor for wave propagation transition studies must be only active where numerical

stability is needed, inactive in smooth regions of the 
ow where the high-order method

is applied, and avoid producing large amplitude numerical noise due to signi�cant

temporal variations. Most shock sensors that are commonly used in the literature

take into account 
ow gradients of one or more primitive 
ow variables. One example

is the shock sensor by Harten [49] which considered gradients of density and has a

few variations. Also, a shock sensor considering pressure gradients was introduced

by Jameson et al. [50]. Other physics-based sensors have been introduced which

detect sharp gradients for subgrid-scale features for unsteady turbulent 
ows of high-

order numerical methods. An overview of many shock sensors commonly used in the
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literature have been summarized by Pirozzoli [51]. Personal experience has found

that shock sensors which rely solely on gradients of a single primitive 
ow variable

tend to be very dissipative and tedious to tune. Often they require to be combined

with another shock sensor such as what was performed by Subbareddy and Candler

[47]. Nonetheless, one of the most widely cited is the shock sensor by Ducros et al.

[52] which is based on a dilatation to vorticity ratio.

� D =
(r � u)2

(r � u)2 + ( r � u)2 + �
(2.35)

This formulation on its own does not account well for 
ow �elds where the solenoidal

(vorticity) component is small and dilatation (acoustic) component is large for a

general problem with shock waves. Furthermore, the sensor identi�es regions of ex-

pansion as well which can be problematic since numerical dissipation can be added in

regions even if a dissipative scheme is not needed. To isolate regions of compression

by neglecting the expansion portion, Larsson et al. [53] introduced a variation taking

the following form,

� L =
� (r � u)

max
�

C1jr � uj; C2

h
a= 3

p
h

i� (2.36)

where C1 and C2 are tuning coe�cients, a is the local speed of sound, andh is the

cell volume. Quinlan et al. [54] introduced a variation which entailed tuning of the

coe�cients and setting bounds � L 2 [0; 1]. This shock sensor along with the others

mentioned previously are all computed at each time step. As a consequence, they

are susceptible to potentially generating large amplitude numerical noise on non-

shock aligned grids with stationary shocks. Therefore, Knutson et al. [55] introduced

a time-independent shock sensor which based on the divergence of velocity. This

�rst involves computing an initial solution with upwind 
uxes, storing the dilatation
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�eld of an initial solution, and setting � to be �xed in time with a user de�ned

dilatation value based on the initial solution. This works well for solutions where

sharp gradients remain relatively stationary such as for steady state solutions or

transition simulations which involve excitation of very small amplitude perturbations

post-shock to excite boundary layer instabilities. However, this approach can lead

to a number of numerical issues if small amplitude disturbances are passed through

shock waves or if regions of separation exist within the domain. Therefore, a shock

sensor capable of handling a wide variety of unsteady, compressible 
ow problems is

desirable since freestream disturbances are introduced to solutions later in this thesis.

Knowing that the value of � from Equation 2.30 can signi�cantly impact the

amount of numerical damping of high wavenumber content as seen from the previous

section, it is desirable to tune the numerical dissipation with the use of a shock sensor.

The desire is to activate the dissipative portion of the 
ux near sharp gradients and

minimize the numerical dissipation everywhere when propagating waves for transition

studies. In practice, it is straightforward to build accurate, local shock sensors, but

may be tedious if �ne tuning is demanded by the 
ow state which requires a high-

order, low-dissipation method. In order to e�ectively construct and show how well a

shock sensor performs, one must quantify the spatial location of numerical dissipa-

tion. This will help to understand where numerical dissipation is highest, and ensure

that the shock sensor does not 
icker (intermittently change in time) so as to not

introduce aphysical numerical oscillations to the solution for unsteady, compressible


ow problems. In the case of transition studies, it is possible for a shock sensor to

introduce an unknown amount of forcing which can then invalidate a result since the

amount of error can reach the same order of magnitude of small amplitude perturba-

tions or corrupt results if the error growth is induced by numerical oscillations of the

error which can then be ampli�ed by boundary layer instabilities. This may happen

if a shock sensor 
ickers near the bow shock wave and produce aphysical receptiv-
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ity mechanisms which could then enter the boundary layer and excite instabilities.

Therefore to understand the performance of a given shock sensor in the quantitative

sense, the shock sensor value,� , is plotted in space for a number of test cases to

con�rm that relevant compressible 
ow phenomena can be simulated. However, since

the shock sensor is computed at each cell face and depends on the direction of the


ux, the cell-centered value is plotted by taking the average of all the surrounding

cell faces for a given cell for visualization purposes.

2D Forward Facing Step

The �rst example is a 2D forward facing step case to investigate the tuning of a

compression based sensor with respect to the divergence of velocity. The spatial

scheme uses the sixth-order spatial 
uxes and RK3 explicit time integration with

a su�ciently low time step (CFL � 0:75). The 
ow setup and conditions can be

found in the paper by Hendrickson et al. [56] where the domain contains 1:344� 106

cells (Nx = 800 � Ny = 2000 � Nz = 1). For demonstration, the Ducros sensor

and compression based sensor are simulated with and without the divergence �ltering

step. The base compression shock sensor is a simple modi�cation to the sensor by

Larsson taking the following form,

� c =
� (r � u)

h
1:5jr � uj + 0:05a= 3

p
h

i (2.37)

The purpose of writing it in this way will be made clear in the next chapter where

a simple tuning is applied for boundary layer transition problems. For now, a �l-

tering step is applied for tuning to the base shock sensors of the Ducros sensor and

the compression-based sensor values by using the divergence of velocity, similar to
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Hendrickson et al. [56]:

� =
(r � u)2

(r � u)2 +
�

� ju j
h

� 2
+ �

(2.38)

where � is the tuning parameter and is set to 0.005. � is a very small value to

avoid division by zero. By using the base shock sensor value,� D and � c, from

Equations 2.35 & 2.37 and the dilatation �lter from Equation 2.38, the �ltered sensor

values are obtained,

� = [max(( � base � � ); 0)] � + � (2.39)

where� base is the base shock sensor value and� is a user de�ned parameter that sets

the minimum dissipation factor globally. For the current computations,� is set to

0.01 in order to maintain numerical stability. This means that an upper and lower

bound is set for� 2 [0:01; 1].

Figure 2.4: Comparison of the sensor values for a) Ducros sensor, b) Compression-
based sensor, c) Filtered Ducros sensor, and d) Filtered Compression-based sensor

Figure 2.4 clearly shows the Ducros sensor on its own performs quite poorly since
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Figure 2.5: Line extraction comparison aty = 0:5 m where the solid, red line denotes
the value of � and the dashed, black line denotes the density. The density gradient
magnitude from the solution obtained with the compression-based sensor is shown in
the upper left.

the dissipative portion of the inviscid 
ux is nearly set to one everywhere and therefore

should never be solely used without tuning for wave propagation problems. Not to

mention it 
ickers near the bow shock wave developing in front of the forward facing

step. Whereas, the �ltering step helps to correct this by tuning the sensor with the

help of the instantaneous velocity divergence �eld. The compression-based shock

sensor performs very well even without the �ltering step. Nearly identical results

were obtained with the Larsson sensor and variation introduced by Quinlan et al. [54]

but are not shown for brevity. Upon closer inspection, a line extraction taken at y =

0.5 m shows a quantitative comparison. One can see that the �ltered Ducros has a

small increase in� behind the strong bow shock betweenx = 0:5 m and 1 m due to

a region of expansion. This is not the case for the compression-based sensor. Also,
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Figure 2.6: Comparison of density gradient magnitude near the shear layer of the
shock-shock interaction producing a Kelvin-Helmholtz instability.

notice that the compression-based sensor adds dissipation just in front of the shock.

This is because the current grid is not aligned with the bow shock and so numerical

error is generated upstream of the shock resulting in the generation of numerical

oscillations. The compression-based shock sensor dampens the numerically generated

oscillations while the velocity divergence �lter does not add enough dissipation near

the shock and so the oscillations could potentially lead to numerical issues in practice

if the �ltering step is used in combination with a non-ideal grid. The only way to

eliminate the numerical error with the introduced numerical method is to align the

grid with the bow shock which will be discussed later. Lastly, Figure 2.7 shows that a

shock-shock interaction near the top portion of the domain produces an unstable shear

layer producing a Kelvin-Helmholtz instability. Notice that the resolved structures
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are sensitive to the shock sensor used where a Modi�ed Steger-Warming solution is

shown for reference to demonstrate that by solely using an upwind biased dissipative

scheme smooths out the density gradients and signi�cantly attenuates the instability.

2D Shock-bubble Interaction

Figure 2.7: 2D shock-bubble interaction test case showing the velocity dilatation on
the left (black compression and white as expansion) and the cell averaged value,� ,
of the shock sensor at the same time instance (right). Red is fully active and the blue
denotes the lower bound of� = 0:2.

The next problem considered for testing the compression-based shock sensor is

a 2D shock-bubble interaction where a normal shock passes through a region of low

density. The 
ow setup and initial conditions can be found at the following refer-

ence [57]. The total cell count is 7:68� 106 cells (Nx = 4800� Ny = 1600� Nz = 1).

The sixth-order inviscid 
ux is used along with explicit RK3 time integration. The

solution is advanced in time to 0.2 seconds using a time step of �t = 1 � 10� 5 seconds

corresponding to a CFL of approximately 0.33 for the grid used. The convecting nor-

mal shock passes over the low density region resulting in a spatio-temporal evolution

of the shock front. As the incident shock passes over the bubble, a spectrum of acous-
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