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Abstract. Herein, an averaging theory for the solutions to Cauchy

initial value problems of arbitrary order, "-dependent parabolic partial di�er-

ential equations is developed. Indeed, by directly developing bounds between

the derivatives of the fundamental solution to such an equation and derivatives

of the fundamental solution of an \averaged" parabolic equation, we bring forth

a novel approach to comparing x-derivatives of

@tu
"(x; t) =

X
jkj�2p

Ak(x; t=") @
k

xu
"(x; t); u"(x; 0) = '"(x)

on <d
� [0; T ] to like derivatives of

@tu(x; t) =
X
jkj�2p

A0

k(x) @
k

xu
"(x; t); u(x) = '(x)

(as "! 0) under general regularity conditions and our basic hypothesis that




Z t

0

Ak(x; s=")� A0

k(x) ds





 "!0

! 0

for each x; t (i.e. pointwise). The 
exibility a�orded by studying fundamen-

tal vis-�a-vis speci�c solutions of these equations not only permits "-dependent

Cauchy data and provides a uni�ed method of treating all x�derivatives of

u" up to order 2p� 1 but also proves an invaluable tool when considering re-

lated problems of stochastic averaging. Our development was motivated by

and retains a strong resemblance to the classical theory of parabolic partial

di�erential equations. However, it will turn out that the classical conditions

under which fundamental solutions are known to exist are somewhat unsuitable

for our purposes and a modi�ed set of conditions must be used.

�The author gratefully acknowledges support from NSF, LORAL Defense Systems, the Canadian
Laboratory for Research in Statistics and Probability, and NSERC (in the form of a postdoctoral
fellowship and funding from a collaborative grant in stochastic partial di�erential equations). This
work would not have been possible without this support.
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1. Introduction

Apparently, the method of averaging to compare a non-linear ordinary di�erential

equation
d

d�
z"(� ) = "F (z"(� ); � ) subject to z"(0) = x0 (1)

for small " > 0 over intervals like [0; T="] or, equivalently, the time-changed equation

d

dt
x"(t) = F (x"(t); t=") subject to x"(0) = x0 (2)

over compact intervals [0; T ]; with a time-homogeneous di�erential equation

d

dt
x(t) = F (x(t)) subject to x(0) = x0; (3)

was �rst used in celestial mechanics centuries ago. The primary additional regularity

justifying such a comparison as "! 0 is the ability to \average out" the t-dependence
on the right hand side of (1) and the de�nition

F (x) = lim
t!1

1

t

Z t

0

F (x; s) ds 8x 2 <d: (4)

However, precise conditions under which x" converges uniformly over [0; T ] to x0 were
not established until the works of Bogoliubov (see [4]), Gikhman [7], and Besjes [3].
Subsequently, averaging principles were extended (using probabilistic methods) by

Khas'minskii [8] to second order parabolic partial di�erential equations (pdes) with
the form

@tu
"(x; t) =

dX
i;j=1

aij(x;
t

"
)@xixju

"(x; t) +
dX

i=1

bi(x;
t

"
)@xiu

"(x; t) (5)

+c(x;
t

"
)u"(x; t) + d(x;

t

"
):

More recently, Bensoussan et al. [2] and Zhikov et al. [10] developed other averaging

principles for parabolic pdes and Watanabe [9] initiated investigations of stochastic
averaging principles for second order parabolic equations with random coe�cients.

In the present note, we extend the theory of (deterministic) averaging for parabolic
pdes by developing a theory directly for the derivatives of the fundamental solution

of arbitrary-order parabolic equations. For concreteness, we will use the multi-index
notation of L. Schwartz (see Section 2 to follow) and consider the CN -valued system

of parabolic equations (for each " > 0)

@tu
"(x; t) =

X
jkj�2p

Ak(x; t=")@
k
xu

"(x; t) + f "(x; t) subject to u"(x; 0) = '"(x) (6)
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with the limit equation

@tu(x; t) =
X
jkj�2p

A0

k(x)@
k
xu(x; t) + f(x; t) subject to u(x; 0) = '(x): (7)

Then, under general regularity conditions on the coe�cients (see Theorem A of Sec-

tion 2) fundamental solutions �" and � exist for (6) respectively (7), and, furthermore,

u"(x; t)
:
=
Z
<d
�"(x; t; �; 0)'"(�)d� �

Z t

0

Z
<d
�"(x; t; �; � )f "(�; � )d�d� (8)

and

u(x; t)
:
=
Z
<d
�(x; t; �; 0)'(�)d� �

Z t

0

Z
<d
�(x; t; �; � )f(�; � )d�d� (9)

are continuous solutions to respectively (6) and (7). By bounding the di�erence

@kx [�
"(x; t; �; � )� �(x; t; �; � )] 8x; � 2 <d; 0 � � � t � 1; " > 0; jkj < 2p; (10)

and making use of classical bounds for @kx�
"; jkj < 2p; " > 0 (see Theorem A of Section

2); our approach allows one to compare readily

@kxu
"(x; t)� @kxu(x; t) =

Z
<d
@kx�

"(x; t; �; 0) ['"(�) � '(�)] d� (11)

+
Z
<d
@kx [�

"(x; t; �; 0)� �(x; t; �; 0)]'(�)d�

�
Z t

0

Z
<d
@kx�

"(x; t; �; � ) [f "(�; � )� f(�; � )] d�d�

�
Z t

0

Z
<d
@kx [�

"(x; t; �; � )� �(x; t; �; � )]f(�; � )d�d�

simultaneously for all jkj < 2p without any apriori constraints on ';'"; f; f ": More-

over, in the stochastic setting Ak(x; t=") whence �"(x; t; �; � ) will not only be "-

dependent but also random. However, A0

k(x) and �(x; t; �; � ) will remain non-random
and the bounds on (10) applied almost surely will permit replacing the random "-

dependent kernel �"(x; t; �; � ) with the non-random, "-homogeneous, averaged kernel
�(x; t; �; � ) = �(x; t � �; �) in problems of stochastic averaging: This approach has

been employed in Dawson and Kouritzin [5].

In many applications the pdes of interest will not immediately have the desired
form but rather will satisfy equations like

@�v
"(x; � ) = "

X
jkj�2p

Ak(x; � )@
k
xv

"(x; � ) + g"(x; � ) subject to v"(x; 0) = '"(x): (12)
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However, (6) can easily be recovered via the substitutions t = �"; u"(x; t)
:
= v"(x; t=")

and f "(x; t)
:
= 1

"
g"(x; t="): Alternatively, in other applications the original pdes

may have higher order derivatives in t: However, by introducing new variables (see

e.g. pp. 238-9 of Friedman [6]) these equations can often be reduced to the case con-

sidered here.

Our proof will utilize several well-known bounds for fundamental solutions, in-

troduce supplementary equations where the x-dependence of the coe�cients in (6)

and (7) is replaced with an auxiliary parameter, and adhere to the long-established

parametrix method. Therefore, our development will retain many similarities to the

classical literature for parabolic pdes. On the other hand, our proof is not short of

novelties. For instance, through modest use of analysis and pde theory we reduce our
problem to that of establishing convergence for certain objects (de�ned in (34) and
(43) of Subsection 3.1) as " ! 0 on spaces of continuous functions with unbounded
domain. Relative compactness for these objects is then established by imposing only

a slightly strengthened version of the regularity conditions required for existence of
our fundamental solutions to (6) and (7). It is only then that we will require our
basic hypothesis that






Z t

0

Ak

�
y;
s

"

�
�A0

k (y) ds





! 0 as "! 0; (13)

for each y 2 <d and t 2 [0; T ] (i.e. pointwise) to show that the only possible limit
for either object in (34) or (43) is 0. Moreover, the classical conditions for existence
of fundamental solutions to (6) (for each ") which are uniformly bounded in " and

thereby useful for our problem would require an assumption like:
(A) For each jkj = 2p; (the principle coe�cient) Ak(x; t=") is continuous in t

uniformly with respect to (x; t; ") 2 <d � [0;1)� (0; 1]:

Obviously, this condition would not allow our principle coe�cients fAkgjkj=2p to de-
pend on t or " and our work would result in a rather uninteresting averaging theory.
Therefore, we eschew this condition entirely and instead show (in Lemma 5 of Subsec-

tion 3.4) that the classical theory still holds without Assumption (A) if one imposes

a slightly stronger uniform-parabolic-type condition than is customary.
Our note is organized as follows: Section 2 contains the notation and conditions

required to state and prove our result as well as the result itself. The proof of this
result is �rst sketched in Subsection 3.1 and then proved in Subsections 3.2 and 3.3.

To avoid complicating the proof unnecessarily several subsidiary lemmas have been

placed in Subsection 3.4. The reader may �nd it bene�ciary to keep a separate copy

of Subsection 3.1 handy while reading Subsections 3.2, 3.3, and 3.4.



Averaging for Fundamental Solutions of Parabolic Equations 5

2. Notation, Conditions, and Result

Throughout this note; p;N; and d are �xed positive integers; and j�j denotes absolute
value as well as modulus. For technical reasons it will be most convenient to de�ne

our norms on CN and Cd via

j�j :=
2
4 NX
j=1

j�j jr
3
5

1
r

and jxj :=
2
4 dX
j=1

jxjjr
3
5

1
r

; r =
2p

2p � 1
(14)

for all � 2 CN and x 2 Cd: Then, jj � jj will be used for the j�j �induced norm for CN�N
matrices. Moreover, for vectors k = (k1; k2; :::; kd) of non-negative integers, we de�ne

jkj := k1 + k2 + � � �+ kd (15)

and let \
P
jkj�2p" denote the summation over all possible d-tuples k of non-negative

integers such that jkj � 2p: (It will always be clear from the context whether j�j is
being used as absolute value, modulus, norm in CN , norm in Cd; or the sum of non-

negative integers). Next, letting ei
:
= (0; :::; 0; 1; 0; :::; 0)T 2 <d with the 1 in the i th

row, and k be as above, we de�ne

@kx
:
= @k1x1 @

k2
x2
� � � @kdxd 8 x 2 <d (16)

dx
:
= @x1 e1 + @x2 e2 + � � �+ @xd ed 8 x 2 <d: (17)

Likewise, for any vector � 2 Cd and d-tuple of non-negative integers k; we de�ne
�k

:
= (�1)

k1 (�2)
k2 � � � (�N)kd : (18)

Finally, ReA and ImA will denote the real and imaginary parts of a complex matrix
A, a_ b and a^ b will be used to denote the maximum respectively minimum of two

real numbers a; b; and am;n

n;m� bm;n will imply that there is a constant c > 0 such
that jam;nj � c jbm;nj for all n;m: The latest notation being a natural extension to the
Vinogradov symbol.

The following Conditions will be assumed throughout this note:
(C1) The system (6) is uniformly parabolic in the sense that

� sup
t�0

sup
x2<d

max
j

sup
j�j=1

�j(�;x; t) > 0; (19)

where f�j(�;x; t)g2Nj=1 are the (real) roots of the polynomial

det

0
@ X
jkj=2p

"
Re[Ak(x; t) +AT

k (x; t)] � Im[Ak(x; t)�AT
k (x; t)]

Im[Ak(x; t)�AT
k (x; t)] Re[Ak(x; t) +AT

k (x; t)]

#
(i�)k � � I2N

1
A
(20)
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for all �; x 2 <d; and t � 0, I2N being the identity matrix in <2N�2N :

(C2) (7) is uniformly parabolic in the sense that

� sup
x2<d

max
l

sup
j�j=1

Re
n
�0l (�;x)

o
> 0; (21)

where f�0l (�;x)gNl=1 are the roots of the polynomial

det

0
@ X
jkj=2p

A0

k(x) (i�)
k � � IN

1
A (22)

for all �; x 2 <d, IN being the identity matrix in CN�N :
(C3) For each jkj � 2p: (i) Ak is continuous in t over [0;1), and (ii) Ak and A

0

k

are uniformly bounded in <d � [0;1) respectively <d:

(C4) For each jkj � 2p, @xiAk and @xiA
0

k exist and are uniformly bounded in

<d � [0;1) respectively <d for i = 1; :::; d:
(C5) When jkj = 2p, @xiAk and @xiA

0

k are H�older continuous in xwith exponent
0 < & � 1 uniformly in <d � [0;1) respectively <d for i = 1; :::; d.

The following theorem is a variation on Theorems 2 and 3 in Chapter 9 of Friedman
[6]. It can be proved by combining Lemma 5 of Subsection 3.4 herein with the proofs

of said theorems on pp. 251-257 of [6]. Actually, this theorem would still hold under
a weaker version of (C4).

Theorem A: Suppose Regularity Conditions (C1-C4) hold. Then, there exist (for-

ward) fundamental solutions �" and � to the equations

@tz
"(x; t) =

X
jkj�2p

Ak(x;
t

"
)@kxz

"(x; t) and @tz(x; t) =
X
jkj�2p

A0

k(x)@
k
xz(x; t): (23)

Moreover, these fundamental solutions satisfy




@bx�"(x; t; �; �)



 _ 


@bx�(x; t; �; �)




� C

jt� � j d+jbj2p

exp

2
64�c

����� jx� �j2p
t� �

�����
1

2p�1

3
75 (24)

with constants C; c > 0 (depending only on the constants in (C1-C4) and, in partic-

ular, independent of " > 0) for all jbj < 2p; " 2 (0; 1]; 0 � � � t � T and x; � 2 <d:

Finally, suppose f "; f are continuous, bounded functions on <d� [0; T ] and '"; ' are

continuous, bounded functions on <d: Then, there exist continuous, bounded solutions

to (6) and (7) on <d � [0; T ] which are given by

u"(x; t)
:
=
Z
<d
�"(x; t; �; 0)'"(�)d� �

Z t

0

Z
<d
�"(x; t; �; � )f "(�; � )d�d� (25)
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u(x; t)
:
=
Z
<d
�(x; t; �; 0)'(�)d� �

Z t

0

Z
<d
�(x; t; �; � )f(�; � )d�d�: (26)

We now state the main result in this note which compliments Theorem A and is an

averaging principle for derivatives of such fundamental solutions. The phrase \slightly

strengthened version of the regularity conditions" in the second last paragragh of our

introduction refers to the fact that whereas Theorem A holds without (C5) and with

(C4) replaced by H�older continuity, Theorem 1 below requires (C4) and (C5) as stated

above.

Theorem 1. Suppose the Regularity Conditions (C1-C5) hold and for each y 2 <d

and each t 2 [0; T ] we have that






Z t

0

Ak

�
y;
s

"

�
�A0

k (y) ds





! 0 as "! 0: (27)

Then, for any 0 < �; � < 1 it follows that there exists a positive constant ec = ec�;�
and a <-valued function 
 (�) = 
�;�(�) satisfying lim

"!0

 (") = 0 such that




@bx[�"(x; t; �; �)� �(x; t; �; �)]



� 
 (") j1 + j�j2j�

(t� � )
d+jbj+�

2p

exp

2
64�ec

����� jx� �j2p
t� �

�����
1

2p�1

3
75 (28)

for all 0 � jbj < 2p; " 2 (0; 1]; 0 � � � t � T and x; � 2 <d, where �" and � are the

fundamental solutions introduced in Theorem A above.

Remark 1. By comparing the right hand side of (28) to that of (24), one can see that

they are of the same form with the exception that (28) has the extra multiplicative

term


 (")
���1 + j�j2���� (t� � )��=2p : (29)

Whereas the �rst factor in (29) establishes that @bx�
"will approach @bx� as "! 0 the

remaining two factors are required to allow a uniform result over all 0 � � � t � T

and x; � 2 <d: Indeed, it can be seen from the proof in the sequel that these factors

can be replaced by other functions that grow even slower as j�j ! 1 and t� � ! 0:

The only motivation for the present factors was to simplify the right hand side of

(28).

Remark 2. Of course, it is su�cient by continuity for (27) to hold in a dense subset

of <d � [0; T ] :
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3. Proof of Theorem 1.

Inasmuch as the value of T does not change the following proof in any signi�cant

way, we will take T = 1 in the sequel. Moreover, to ease the notation in the following

proof we de�ne

eAk (y; s)
:
= Ak (y; s)�A0

k (y) ; q
:
= 2p; (30)

and (c.f. Conditions (C1-C2))

�
:
= �1

2

(
sup
t�0

sup
x2<d

max
j;l

sup
j�j=1

h
�j(�;x; t) _ Re

n
�0l (�;x)

oi)
> 0: (31)

3.1. Sketch of Proof. Our proof relies heavily on the classical theory summa-
rized in Chapters 1 and 9 of Friedman [6]. Indeed, we will follow the general plan
outlined there by �rst, in Subsection 3.2, using Fourier transform techniques to es-

tablish bounds for the fundamental solutions of

@tv
" (x; t; y) =

X
jkj=q

Ak

�
y;
s

"

�
@kxv

" (x; t; y) (32)

for all y 2 <d: To make our presentation manifest, suppose Z" and Z denote the
(forward) fundamental solutions to (32) and

@tv (x; t; y) =
X
jkj=q

A0

k(y)@
k
xv (x; t; y) (33)

and V " respectively V denote the Fourier transforms of Z" and Z: Furthermore,
suppose �1 > 0 is a constant whose value will be �xed later and �1 2 (0; �) with

� as in (31). Then, Subsection 3.2 follows the following outline: (i) Using only
the Regularity Conditions (C1-5), show that (t; � ; y; �) ! �" (t; � ; y; �) ; " > 0 are

appropriately bounded and equicontinuous, where

�" (t; � ; y; �)
:
=  " (t; � ; y; �)

�
1 + jyj2

���
(34)

 "(t; � ; y; �)
:
= �"(t; � ; y; �) expf[�1 j�jq � �1 j�jq] (t� � )g (t� � )��1 (35)

and

�" (t; � ; y; �)
:
=
Z t

�
V " (t; s; y; �)

X
jkj=q

eAk

�
y;
s

"

�
V (s; � ; y; �)ds (36)

for all " > 0; 0 � � � t � 1; �
:
= � + i� 2 Cd and y 2 <d: (ii) Use (i) to show

that f�"g">0 is relatively compact in a space of continuous, bounded CN�N -valued
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functions with unbounded domain. Since this space will be complete the argument

reduces to showing f�"g">0 is totally bounded which is done by showing restrictions

onto compact sets are totally bounded and then convolving a �nite �
4
-net for such

restrictions with \nice" kernels to produce an appropriate net for the unrestricted

functions. (iii) Next, our main hypothesis (27) is used to show that the set of limit

points (as "! 0) for �" is the single point 0. The convergence of �" to 0 implied by

(ii) and (iii) will yield a desirable bound on �" (t; � ; y; �). (iv) Then, a variation-of-

constants-based argument is used to show that V "�V is bounded in terms of �" from

which it follows by taking inverse Fourier transforms and applying Cauchy's integral

theorem that for any d�vector of non-negative integers b there exists a constant

c = cb;�;� > 0 and a function 
1 (�) = 
1;b;�;� (�) independent of (x; t; �; �; y) and
satisfying lim"!0 
1 (") = 0 such that




@bx [Z" (x� �; t; y; � )� Z (x� �; t; y; � )]



 (37)

� 
1 (")

(t� � )(d+jbj+�)=q
exp

2
4�c

�����jx� �jq
t� �

�����
1

q�1

3
5 �1 + jyj2��

for all " 2 (0; 1]; x; y; � 2 <d, and 0 � � � t � 1.

In Subsection 3.3, we also follow the classical theory somewhat by using the
parametrix method to develop our desired bounds between the fundamental solu-
tions of (6) and (7). (v) Initially, we follow the program outlined in (i-iii) above.
However, we must rede�ne �" which requires some notation. First, we �x constants
c; C > 0 such that (37) with 0 � jbj � q as well as the classical-type bounds in Lemma
5 (i-iv) of Subsection 3.4 hold. Secondly, we �x vectors of non-negative integers m;k

such that 0 � jmj � q; 0 � jkj � q; make the simplifying de�nitions

A0

m (x; y)
:
= A0

m (x)�A0

m (y) ; eAk

�
y; �;

s

"

�
:
= eAk

�
y;
s

"

�
� eAk

�
�;
s

"

�
; (38)

bZ (x; t; y; s)
:
= Z (x� y; t; y; s) ; bZ" (x; t; y; s)

:
= Z" (x� y; t; y; s) (39)

(with Z and Z" as in the previous paragraph and also de�ned in (79) and (78) of

Subsection 3.2), and de�ne �" = �"m;k(x; t; y; s; �; � ) by

�"
:
=

8>>>><
>>>>:

@mx
bZ(x; t; y; s) eAk

�
y; s

"

�
@ky
bZ(y; s; �; � ) jmj ; jkj < q

@mx
bZ(x; t; y; s) eAk(y; �;

s
"
)@ky

bZ(y; s; �; � ) jmj < jkj = q

A0

m(x; y)@
m
x
bZ(x; t; y; s) eAk(y;

s
"
)@ky

bZ(y; s; �; � ) jkj < jmj = q

A0

m(x; y)@
m
x
bZ(x; t; y; s) eAk(y; �;

s
"
)@ky

bZ(y; s; �; � ) jmj; jkj = q

: (40)



Averaging for Fundamental Solutions of Parabolic Equations 10

Furthermore, for all x; y; � 2 <d and 0 � � � s � t we de�ne Y " = Y "
m;k(x; t; y; s; �; � )

by

Y " :
= �"m;k(x; t; y; s; �; � ) exp

8<
:c1

����� jx� �jq
t� �

�����
1

q�1

9=
; (t� � )

d+jmj^(q�&)

q ; (41)

where & is as in Condition (C5) and 0 < c1 < c is a constant, let

 "(x; t; �; � )=
Z �+t

2

�

Z
<d
Y "(x; t; y; s; �; � ) dy ds (42)

+
Z t

�+t
2

Z
<d
Y "(x; t; y; s; �; � ) dy ds

:
=  "

1
(x; t; �; � ) +  "

2
(x; t; �; � );

and de�ne

�"m;k (x; t; �; � )
:
=  "

m;k (x; t; �; � )
�
1 + j�j2

���
: (43)

Then, using only basic vector calculus, we show �"m;k converges to 0 in a space of con-
tinuous, bounded functions with unbounded domain according to the program in (i-iii)
above and conclude that there exists a function 
2 (�) independent of (x; t; �; �;m; k)
and satisfying lim"!0 
2 (") = 0 such that






Z t

�

Z
<d
�"m;k(x; t; y; s; �; � )dyds





 � 
2(") j1 + j�j2j�

jt� � j d+jmj^(q�&)

q

exp

8<
:�c1

����� jx� �jq
t� �

�����
1

q�1

9=
; : (44)

(vi) Next, on the basis of (37), (40), (44), standard bounds (Lemma 5 of Subsection
3.4), and a calculus-based bound (Lemma 4 (ii) of Subsection 3.4), one concludes that
there exists a function 
3 (�) independent of (x; t; �; � ) satisfying lim"!0 
3 (") = 0 such

that 




Z t

�

Z
<d
@mx

bZ(x; t; y; s) [K"(y; s; �; � )�K(y; s; �; � )] dy ds





 (45)

� 
3(") j1 + j�j2j�
(t� � )(d+jmj)=q

exp

8<
:�c1

����� jx� �jq
t� �

�����
1

q�1

9=
;

when jmj < q and






Z t

�

Z
<d
A0

m(x; y)@
m
x
bZ(x; t; y; s) [K"(y; s; �; � )�K(y; s; �; � )] dy ds





 (46)

� 
3(") j1 + j�j2j�
(t� � )1+(d�&)=q

exp

8<
:�c1

����� jx� �jq
t� �

�����
1

q�1

9=
;
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when jmj = q; where (as in Friedman [6] p. 252)

K"(y; s; �; � )
:
=
X
jkj=q

Ak(y; �;
s

"
)@ky

bZ"(y; s; �; � ) +
X
jkj<q

Ak(y;
s

"
)@ky

bZ"(y; s; �; � ) (47)

K(y; s; �; � )
:
=
X
jkj=q

A0

k(y; �)@
k
y
bZ(y; s; �; � ) + X

jkj<q

A0

k(y)@
k
y
bZ(y; s; �; � ): (48)

(vii) Next, de�ning (see Friedman [6] p. 252 for motivation) �;�" via the integral

equations

�(x; t; �; � ) = K(x; t; �; � ) +
Z t

�

Z
<d
K(x; t; y; s)�(y; s; �; � )dy ds (49)

�"(x; t; �; � ) = K"(x; t; �; � ) +
Z t

�

Z
<d
K"(x; t; y; s)�"(y; s; �; � )dy ds; (50)

�xing (�; � ); and letting

u"(x; t)
:
=






Z t

�

Z
<d
K(x; t; y; s) [�"(y; s; �; � )� �(y; s; �; � )]dy ds





 ; (51)

we can use (45) and (46) to bound u" recursively (in terms of u"(x; s) for s � t) and
then expand this using a little operator theory to get a non-recursive bound. It then
follows immediately from (45), classical bounds for �"; @bx

bZ (Lemma 5), this bound
for u"; and the triangle inequality that there are constants ec; eC > 0 with ec < c1 such
that 





Z t

�

Z
<d
@bx
bZ(x; t; y; s) [�"(y; s; �; � )� �(y; s; �; � )]dy ds





 (52)

�
eC
3(") j1 + j�j2j�
(t� � )(d+jbj)=q

exp

8<
:�ec

����� jx� �jq
t� �

�����
1

q�1

9=
; 8 0 � jbj � q:

(viii) Finally, noting (again see Friedman [6] p. 252 for motivation) that

�(x; t; �; � )
:
= bZ(x; t; �; � ) + Z t

�

Z
<d

bZ(x; t; y; s)�(y; s; �; � ) dy ds (53)

respectively

�"(x; t; �; � )
:
= bZ"(x; t; �; � ) +

Z t

�

Z
<d

bZ"(x; t; y; s)�"(y; s; �; � ) dy ds (54)
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form our fundamental solutions for (7) and (6), one �nds from the triangle inequality,

(37), a classical bound for �" (Lemma 5), Lemma 4 (ii), and (52) that

k@bx[�"(x; t; �; � )� �(x; t; �; � )]k � 
(") j1 + j�j2j�
(t� � )(d+jbj+�)=q

exp

8<
:�ec

����� jx� �jq
t� �

�����
1

q�1

9=
; (55)

for some 
 as in the statement of Theorem 1 and all jbj < q; " 2 (0; 1]; 0 � � � t � 1;

and x; � 2 <d as desired:

For expository reasons we have relegated much of the details in Subsections 3.2

and 3.3 to subsidiary lemmas in Subsection 3.4.

3.2. Bounds for the fundamental solutions of (32). We start by using Fourier

transform methods and de�ning V " and V by

V " (t; � ; y; �) = I +
Z t

�

X
jkj=q

Ak

�
y;
s

"

�
(i�)

k
V " (s; � ; y; �)ds (56)

and V (t; � ; y; �) = exp
nP

jkj=q A
0

k(y)(i�)
k(t� � )

o
= V (t� � ; y; �) so

V (t; � ; y; �) = I +
Z t

�

X
jkj=q

A0

k (y) (i�)
k
V (s� � ; y; �) ds (57)

= I +
Z t

�

X
jkj=q

A0

k (y) (i�)
k
V (t� s; y; �) ds

for all 0 � � � t � 1; � 2 Cd and y 2 <d: Now, letting � = � + i�, and recalling the
de�nition of � from (31), one �nds by Lemma 5 of Subsection 3.4 that

kV " (t; s; y; �)k";t;s;y;�� expf[� j�jq � � j�jq] (t� s)g (58)

and

kV (s; � ; y; �)k s;�;y;�� exp f[� j�jq � � j�jq] (s� � )g (59)

for some � > 0 and all 0 � � � s � t � 1; � 2 Cd and y 2 <d: Next, �xing a �1 > �;

recalling the de�nition of  " from (35), and de�ning

�
:
= � � �1; �

:
= �1 � �; (60)

we �nd from Lemma 6 of Subsection 3.4 that (t; � ; y; �)!  " (t; � ; y; �) ; " 2 (0; 1] are

equicontinuous and

k " (t; � ; y; �)k ";t;�;y;�� exp
n
�
h
� j�jq + � j�jq

i
(t� � )

o
(t� � )� (61)
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for all " > 0; 0 � � � t � 1; �
:
= �+ i� 2 Cd and y 2 <d:

Now, we recall de�nition (34) and show that f�"; 0 < " � 1g is totally bounded

in the Banach space of continuous, bounded CN�N -valued functions

 
CB(�); sup

�

k�k
!
; �

:
=
n
(t; �; y; �) 2 [0; 1]

2 �<d � Cd : � � t
o
: (62)

Indeed, letting � > 0 be an arbitrary positive constant and availing ourselves of (61)

and (34), we can �nd a C = C� > 1 such that k�" (t; �; y; �)k � �

4
for all " > 0; 0 �

� � t � 1; � = �+ i� 2 Cd and y 2 <d such that maxj=1;2;:::;d jyjj_ j�j j_ j�jj > C�1:

Now, for each r = 0; 1
2
; 1; we de�ne

�r :
=
n
(y; �; �) 2 <3d :

���yj��� _ ����j ��� _ ����j��� � C � r 8 j = 1; 2; :::; d
o

(63)


r :
= f(t; �; y; �+ i�) 2 � : (y; �; �) 2 �rg (64)

and consider the restrictions, �"j
0 ; of �" to 
0: Clearly, 
0 is a compact subset

and f�"j
0 ; 0 < " � 1g is relatively compact whence totally bounded in CB (

0) : Let

f�0
1
; :::; �0ng be a �nite collection of functions on all of � such that support(�0l ) = 
0

for each l = 1; 2; :::; n and f�0
1
j
0 ; :::; �0nj
0g forms a �

4
�net for f�"j
0 ; 0 < " � 1g :

Now, de�ne

�al (t; �; y; �+ i�)
:
=
Z
<3d

�0l (t; �; �; v+ i#) �a((y; �; �)��) d�; � = (�; v; #) (65)

for each a > 0; l = 1; 2; :::; n, 0 � � � t � 1, and y; �; � 2 <d where �a (�) ; a > 0 are
the Laplace distributions

�a (�)
:
=

�
a

2

�
3d

exp

8<
:�a

3dX
j=1

����j
���
9=
; ; � 2 <3d; a > 0: (66)

(The functions f�0
1
; :::; �0ng will be continuous on the interior of 
0 and 0 on (
0)

c
:

However, they will in general be discontinuous on the boundary @
0 and hence will

not be in CB(�): Therefore, we convolve them with nice kernels �a which approach

the Dirac delta distribution as a!1: Actually, there are a variety of other kernels

that could have been used instead of the Laplace distributions; the appeal of the
Laplace distributions is that they form a simple single parameter class.) Clearly,

f�0
1
; :::; �0ng are uniformly bounded by D > 0 say and one can �x an open ball of <3d

B = B(0; �) with 0 < � � 1

2
such that

n
(t; �; y � �; � � v � i#) : (t; �; y; �) 2 


1
2 ; (�; v; #) 2 B

o
� 
0 (67)
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and 


�0l (t; �; y � �; � � v � i#)� �0l (t; �; y; �)



 � �

4
(68)

for all l = 1; 2; :::; n; (t; �; y; �) 2 

1
2 ; and (�; v; #) 2 B: Finally,

Z
f�2<3d:j�jj�
g �

a (�) d� = expf�a
g (69)

for all a; 
 > 0 and j = 1; 2; :::; d so by (65), (68), and (69) it follows that there is

some a� > 0 such that


�0l (t; �; y; �)� �al (t; �; y; �)



 (70)

�
Z
B




�0l (t; � ; y; �)� �0l (t; � ; y � �; � � v � i#)



 �a (�) d�

+
Z
Bc

h
k�0l (t; � ; y; �) k+k�0l (t; � ; y� �; � � v � i#)k

i
�a(�) d�

� �

4
+ 2D exp

(
� a�

r
p
3d

)
<
�

2
8 (t; � ; y; �) 2 


1
2 ; l = 1; :::; n

provided a > a�; r being de�ned in (14). Hence, �xing an arbitrary " > 0 and �nding
an l such that 


�" (t; �; y; �)� �0l (t; �; y; �)




 < �

4
8 (t; �; y; �) 2 
0; (71)

we �nd by (70) and (71) that

sup


1
2

k�" (t; �; y; �)� �al (t; �; y; �)k < � (72)

for any a > a�. On the other hand; using (65), (71), and (69); and �xing a large

enough a (which is independent of "); we �nd that

sup
(
1=2)

C

k�" (t; �; y; �)� �al (t; �; y; �)k (73)

� �

4
+ sup

(
1=2)c

Z
(�1)c




�0l (t; �; �; v + i#)



 �a((y; �; �)��) d�

+ sup
(
1=2)c

Z
�1




�0l (t; �; �; v + i#)



 �a((y; �; �)��) d�

� �

4
+
�

2
+D exp

�
�a
2

�
< �:
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It follows easily by (72) and (73) that f�a
1
; :::; �ang forms a �nite �-net for f�"; 0 < " � 1g

and f�"; 0 < " � 1g is relatively compact in CB(�):

Now, we show that the only possible limit point for f�"; 0 < " � 1g as "! 0 is 0:

In fact, it follows from integration by parts, (56-59), Condition (C3), our hypothesis

(27) and the dominated convergence theorem that






Z t

�
V "(t; s; y; �)

X
jkj=q

eAk

�
y;
s

"

�
V (s; � ; y; �)ds







 (74)

�







Z t

�

X
jkj=q

eAk

�
y;
s

"

�
ds V (t; � ; y; �)








+








Z t

�
@sV

"(t; s; y; �)
Z s

�

X
jkj=q

eAk

�
y;
�

"

�
d� V (s; � ; y; �) ds








+








Z t

�
V "(t; s; y; �)

Z s

�

X
jkj=q

eAk

�
y;
�

"

�
d� @sV (s; � ; y; �) ds







! 0

for each �xed (t; �; y; �) and it follows by (34-36) that �" ! 0 in CB(�):
Next, we use this convergence to establish our bound between the fundamental

solutions of (32) and (33). Letting W " (t; � ; y; �)
:
= V " (t; � ; y; �) � V (t; � ; y; �), we

�nd by (56), (57), and (30) that

W " (t; � ; y; �) =
Z t

�

X
jkj=q

Ak

�
y;
s

"

�
(i�)kW " (s; � ; y; �)ds (75)

+
Z t

�

X
jkj=q

eAk

�
y;
s

"

�
(i�)k V (s; � ; y; �)ds

or by variation of constants and (36) that

kW " (t; � ; y; �)k � k�" (t; � ; y; �)k � j�jq 8" > 0; (t; �; y; �) 2 �: (76)

Consequently, using (76), (34-36), and the fact �" ! 0; one �nds that there exist

constants C; �2; �2 > 0 and a function 
1 (�) satisfying lim"!0 
1 (") = 0 such that

kV "(t; � ; y; �)� V (t; � ; y; �)k (77)

� 
1(") j�jq
(t� � )��1

expf[�1 j�jq � �1 j�jq] (t� � )g (1 + jyj2)�

� C 
1 (")

(t� � )�
exp f[�2 j�jq � �2 j�jq] (t� � )g (1 + jyj2)�
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for all " > 0; (t; �; y; �) 2 �. Now, one �nds (see Friedman [6] Section 2, Chapter 9)

that with any � 2 <d

Z"(x� �; t; y; � )
:
=

1

(2�)
d

Z
<d
expf(i�� �)(x� �)gV "(t; � ; y; �+ i�) d� (78)

Z(x� �; t; y; � )
:
=

1

(2�)
d

Z
<d
expf(i�� �)(x� �)gV (t; � ; y; �+ i�) d� (79)

form fundamental solutions for (32) and (33) respectively and, using (77) as well as

the argument on pp. 245-6 of [6], that for any vector of non-negative integers b there

exist constant c; C = cb;�;�; Cb;�;� > 0 such that




@bx [Z" (x� �; t; y; � )� Z (x� �; t; y; � )]



 (80)

� C 
1 (")

(t� � )(d+jbj+�)=q
exp

2
4�c

�����jx� �jq
t� �

�����
1

q�1

3
5 �1 + jyj2��

for all " 2 (0; 1]; x; y; � 2 <d, and 0 � � � t � 1:

3.3. Bounds in the Parametrix Method. For simplicity, we de�ne

Ak(y; �;
s

"
)
:
= Ak(y;

s

"
)�Ak(�;

s

"
) 8y; � 2 <d; 0 � s � 1; " > 0: (81)

Next, we recall from Subsection 3.1 that: (i) c; C > 0 are constants such that (80)
holds for all 0 � jbj � q and Lemma 5 (i-iv) of Subsection 3.4 also holds; and (ii)ec; c1 are constants satisfying 0 < ec < c1 < c. Then, we show that (44-46) and (55) of
Subsection 3.1 hold as follows: From (80) of Subsection 3.2, (39) of Subsection 3.1,
(81), Condition (C4), Lemma 5 (i), and Lemma 4 (ii) (both to follow), we �nd that

for small enough a > 0






Z t

�

Z
<d
@mx

bZ(x; t; y; s)Ak(y; �;
s

"
)@ky

h bZ"(y; s; �; � )� bZ(y; s; �; � )idy ds




 (82)

�
Z t

�

Z
<d

1

(t� s)(d+jmj)=q

����� jy � �jq
s� �

�����
1
q

exp

8<
:�a

�����jy � �jq
s� �

�����
1

q�1

9=
;

� 
1(") j1 + j�j
2j�

(s� � )(d+q�1+�)=q
exp

8<
:�c

����� jx� yjq
t� s

�����
1

q�1

� (c� a)

����� jy � �jq
s� �

�����
1

q�1

9=
; dy ds

";x;�;t;�� 
1(") j1 + j�j2j�
(t� � )(d+jmj+��1)=q

exp

8<
:�c1

����� jx� �jq
t� �

�����
1

q�1

9=
;
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for all " 2 (0; 1]; x; � 2 <d, and 0 � � � t � 1 when jmj < q and jkj = q: In a similar

manner, we discover that




Z t

�

Z
<d
@mx

bZ(x; t; y; s)Ak(y;
s

"
)@ky

h bZ"(y; s; �; � )� bZ(y; s; �; � )i dy ds




 (83)

� 
1(") j1 + j�j2j�
(t� � )(d+jmj+��1)=q

exp

8<
:�c1

����� jx� �jq
t� �

�����
1

q�1

9=
; when jmj ; jkj < q;






Z t

�

Z
<d
A0

k(x; y)@
m
x
bZ(x; t; y; s)Ak(y;

s

"
)@ky

h bZ"(y; s; �; � )� bZ(y; s; �; � )idyds




(84)

� 
1(") j1 + j�j2j�
(t� � )1+(d+��2)=q

exp

8<
:�c1

����� jx� �jq
t� �

�����
1

q�1

9=
; when jmj = q; jkj < q;

and 




Z t

�

Z
<d
A0

k(x; y)@
m
x
bZ(x; t; y; s)Ak(y; �;

s

"
)@ky

h bZ"(y; s; �; � )� bZ(y; s; �; � )idyds




(85)

� 
1(") j1 + j�j2j�
(t� � )1+(d+��2)=q

exp

8<
:�c1

����� jx� �jq
t� �

�����
1

q�1

9=
; when jmj ; jkj = q:

Moreover, recalling de�nitions (41-43) and availing one's self of Lemma 2 of Subsec-

tion 3.4, one establishes (44) of Subsection 3.1. Hence; combining (40) and (44) with
(82-85); recalling de�nitions (47) and (48); and making use of Minkowski's inequality;
we can now establish (45) and (46) of Subsection 3.1: Consequently, an additional
application of (48) together with Condition (C3) yields a C > 0 such that

w"(x; t; �; � )
:
=






Z t

�

Z
<d
K(x; t; y; s) [K"(y; s; �; � )�K(y; s; �; � )] dy ds





 (86)

� C
3(") j1 + j�j2j�
(t� � )1+(d�&)=q

exp

8<
:�c1

�����jx� �jq
t� �

�����
1

q�1

9=
;

for all " 2 (0; 1]; x; � 2 <d; 0 � � � t � 1: Moreover, �xing ("; �; � ); recalling

de�nitions (49-51); interchanging the order of integration; utilizing the bound (1 +

jzj2)� z;�� (1+ j�j2)�+ jz � �j2� for all z; � 2 <d; and using (86), Lemma 5 (iii), (ii) and

Lemma 4 (ii); one �nds that there exist constants C > 0; c2 2 (ec; c1) independent of
("; �; �; x; t) such that

u"(x; t) � w"(x; t; �; � ) +
Z t

�

Z
<d
w"(x; t; z; �) k�"(z; �; �; � )k dz d� (87)
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+
Z t

�

Z
<d
kK(x; t; y; s)k u"(y; s) dy ds

� C
3(") j1 + j�j2j�

(t� � )
1+

d�&
q

exp

8<
:�c2

����� jx� �jq
t� �

�����
1

q�1

9=
;

+
Z t

�

Z
<d

C

(t� s)
1+

d�1
q

exp

8<
:�c2

����� jx� yjq
t� s

�����
1

q�1

9=
;u"(y; s) dy ds

for all x 2 <d; t 2 [�; 1]:

Next, letting (�; � ) remain �xed, we use our recursive bound in (87) to establish an

absolute bound for u": First, we let a; faigq+di=0 be constants such that ec < a < ai+1 <

ai < c2, let fCW;igq+di=0
denote the Banach spaces of continuous <-valued functions '

on <d � (�; 1] such that

j'ji := sup
x;t

8<
:j'(x; t)j (t� � )1+(d�&�i)=q exp

8<
:ai

�����jx� �jq
t� �

�����
1

q�1

9=
;
9=
; <1; (88)

and de�ne the operators Ti : CW;i ! CW;i+1 (c.f. Lemmas 3 and 4 (ii) of Subsection
3.4) by

Ti'(x; t)
:
=
Z t

�

Z
<d

C

(t� s)1+
d�1
q

exp

8<
:�c2

�����jx� yjq
t� s

�����
1

q�1

9=
; '(y; s) dy ds: (89)

(The completeness of each CW;i follows from the completeness of the space of contin-
uous, bounded funtions on <d� (�; 1] and isometry.) Now, it follows by (51), Lemma
5 (ii), (iii), and Lemma 4 (ii) that

u"(x; t)
";x;t;��� 1

jt� � j q+d�2
q

exp

8<
:�c1

����� jx� �jq
t� �

�����
1

q�1

9=
; (90)

for all " 2 (0; 1]; x 2 <d; � � t � 1: Hence, it follows by Lemmas 3 and 4 (ii) that

v"(x; t)
:
= Td+q�1 � � � T0u"(x; t) and g"(x; t) := Td+q�1 � � � T0f "(x; t); (91)

where

f "(x; t)
:
=
C
3(") j1 + j�j2j�

(t� � )1+
d�&
q

exp

8<
:�c2

����� jx� �jq
t� �

�����
1

q�1

9=
; ; (92)
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are well de�ned. Moreover, letting CB(<d � [�; 1]) be the Banach space of bounded,

continuous <-valued functions with supremum norm and kj�jk denote the operator

norm on CB(<d � [�; 1]); we �nd from (87), (89), and (91) that

u"(x; t) � f "(x; t) +
d+q�2X
j=0

TjTj�1 � � �T0f "(x; t) + v"(x; t) (93)

and

v"(x; t) � g"(x; t) +
n�1X
i=1

Sig"(x; t) + kjSnjk� jv"jCB 8n = 1; 2; :::; (94)

where S : CB(<d � [�; 1])! CB(<d � [�; 1]) is also de�ned by

S'(x; t)
:
=
Z t

�

Z
<d

C

(t� s)1+
d�1
q

exp

8<
:�c2

����� jx� yjq
t� s

�����
1

q�1

9=
; '(y; s) dy ds: (95)

Now, it follows from (89), (91), (92), and Lemma 3 as well as Lemma 4 (ii) that there
is a c3 2 (ec; a) such that

d+q�2X
j=0

Tj � � � T0f "(x; t) + g"(x; t)
x;t;";�;�� 
3(") j1 + j�j2j�

(t� � )1+
d�1�&

q

exp

8<
:�c3

����� jx� �jq
t� �

�����
1

q�1

9=
; (96)

and for some C 0 > 0

Sn'(x; t) �

8>>><
>>>:

R t
�

R
<d

C0

(t�s)
1+

d�n
q

exp

�
�an

��� jx�yjq
t�s

��� 1
q�1

�
j'(y; s)j dy ds n < q + d

R t
�

R
<d

C 0An

�(1+n�d
q )

exp
�
�a

��� jx�yjq
t�s

��� 1
q�1

�
j'(y; s)j dy ds n � q + d

(97)
for all ' 2 CB(<d � [�; 1]) so

kjSnjk n� An

�
�
1 + n�d

q

� ! 0 as n!1: (98)

Therefore, letting n!1 in (94), substituting the resultant into (93), exploiting (97)
and estimates for the gamma function, applying (92), (96) and (91), and availing

ourselves of Lemma 3 as well as Lemma 4 (i), one �nds that

u"(x; t) � f "(x; t) +
d+q�1X
j=0

h
Tj � � � T0f "(x; t) + Sjg"(x; t)

i
(99)
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+
Z t

�

Z
<d

1X
j=d+q

C 0Aj

�
�
1 + j�d

q

� exp
8<
:�a

�����jx� yjq
t� s

�����
1

q�1

9=
; g"(y; s) dy ds

x;t;";�;�� 
3(") j1 + j�j2j�

(t� � )1+
d�&
q

exp

8<
:�c3

����� jx� �jq
t� �

�����
1

q�1

9=
; 8x 2 <d; t 2 [�; 1]:

Piecing everything together, we �nd by (49-51), the fact
���1 + jzj2���� z;��

���1 + j�j2���� +
jz � �j2� for all z; � 2 <d; (45), and (99) as well as Lemmas 5 (i),(iii) and 4 (ii) that





Z t

�

Z
<d
@bx
bZ(x; t; y; s) [�"(y; s; �; � )� �(y; s; �; � )]dy ds





 (100)

�





Z t

�

Z
<d
@bx
bZ(x; t; y; s) [K"(y; s; �; � )�K(y; s; �; � )]dy ds






+

Z t

�

Z
<d






Z t

�

Z
<d
@bx
bZ(x; t; y; s) [K"(y; s; z; �)�K(y; s; z; �)]dyds





 k�"(z; �; �; � )kdzd�

+
Z t

�

Z
<d




@bx bZ(x; t; y; s)



u"(y; s) dy ds

";x;t;�;�� 
3(") j1 + j�j2j�
(t� � )(d+jbj)=q

exp

8<
:�ec

����� jx� �jq
t� �

�����
1

q�1

9=
;

for all " 2 (0; 1]; 0 � jbj < q; 0 � � � t � 1; and x; � 2 <d: Finally, from (54),
(53), and (39) of Subsection 3.1, (80) of Subsection 3.2, Lemma 5 (iii), the fact that
(1 + jyj2)� � (1 + j�j2)� + jy � �j2�, Lemma 4 (ii), and (100) it follows that


@bx [�"(x; t; �; � )� �(x; t; �; � )]




 � 


@bx h bZ"(x; t; �; � )� bZ(x; t; �; � )i


 (101)
+
Z t

�

Z
<d




@bx h bZ"(x; t; y; s)� bZ(x; t; y; s)i


 k�"(y; s; �; � )k dy ds

+






Z t

�

Z
<d
@bx
bZ(x; t; y; s) [�"(y; s; �; � ) � �(y; s; �; � )]dy ds






� 
(") j1 + j�j2j�

(t� � )(d+jbj+�)=q
exp

8<
:�ec

�����jx� �jq
t� �

�����
1

q�1

9=
;

for all " 2 (0; 1]; 0 � jbj < q; 0 � � � t � 1; and x; � 2 <d:

3.4. Subsidiary Results. Our �rst lemma is used in Subsection 3.3 to estab-
lish �"; as de�ned in (43), converges to 0 in the space of bounded, continuous
�jmj;jkj�qCN�N -valued functions 

CB(�
1); sup

�1

k�k
!
; �1 :

=
n
(x; t; �; � ) 2 <d � [0; 1]�<d � [0; 1] : � � t

o
: (102)



Averaging for Fundamental Solutions of Parabolic Equations 21

Lemma 2. Suppose �" is de�ned as in (43) of Subsection 3.1 and Conditions (C1-5)

are satis�ed. Then, �" ! 0 in CB(�
1):

To ease the notation in the following proof we de�ne

� = �m
:
=
jmj ^ (q � &)

q
and � = �k

:
=
jkj ^ (q � 1)

q
; (103)

where & is the constant of Condition (C5).

Proof. Suppose C; c > 0 are constants such that Lemma 5 (i-iv) hold and, as in

Subsection 3.1, c1 2 (0; c): Then, it follows from (41), (42), Lemma 5 (i), Conditions

(C3) and (C4), and both parts of Lemma 4 that there exist constants C2; c2 > 0 such

that




 "
m;k(x; t; �; � )




 � exp

8<
:�c2

����� jx� �jq
t� �

�����
1

q�1

9=
; (104)

Z t

�

Z
<d

(t� � )�+
d
q dy ds

(t� s)�+
d
q (s� � )�+

d
q

exp

8<
:�c3

����� jx� yjq
t� s

�����
1

q�1

� c3

����� jy � �jq
s� �

�����
1

q�1

9=
;

� C2(t� � )1=q exp

8<
:�c2

 jx� �jq
t� �

! 1
q�1

9=
; ;

for all (";x; t; �; � ;m;k); where c3
:
= c� c1� c2 > 0: Now, we show that the functions

(x; t; �; � ) !  "(x; t; �; � ); 0 < " � 1 are equicontinuous in CB(�
1). First, we �x

arbitrary 0 � � � t � 1 and 0 � � 0 � t0 � 1 such that t � t0 and claim that (104)
implies that

k "(x; t; �; � )k+ k "(x; t0; �; � 0)k � 2C2 � 2
1
q

�
jt� t0j 1q + j� � � 0j 1q

�
(105)

when t0 � t+�
2

or � 0 � t+�
2

or � � t0+� 0

2
: (To show for example the case t0 � t+�

2
one

could consider the subcases � 0 � � and � � t0+� 0

2
separately and note that t0+� 0

2
� � 0:)

On the other hand; assuming for the moment that there exist bc; bC > 0 such that

kd�Y "
m;k(x; �; y; s; �; � )k �

8>>><
>>>:

bC
(���)(s��)

�+ d
q
exp

�
�bc ��� jy��jq

s��

��� 1
q�1

�
s � �+�

2

bC (���)���

(��s)
1+�+ d

q
exp

�
�bc ��� jx�yjq

��s

��� 1
q�1

�
s � �+�

2

(106)

for all x; y; � 2 <d; 0 � � � s � � � 1; " 2 (0; 1]; jmj; jkj � q; we would �nd thatZ t

t0

Z �+�
2

�

Z
<d
kd�Y "(x; �; y; s; �; � )kdy ds d� (107)

";x;�;�;t;t0�
Z t

t0

1

� � �

Z ���
2

0

s��ds d� � (t� � )
1
q � (t0 � � )

1
q � (t� t0)

1
q
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when t0 � t+�
2

and

Z t

t0

Z t0

�+�
2

Z
<d
k d�Y "(x; �; y; s; �; � ) kdy ds d� (108)

";x;�;�;t;t0�
Z t

t0

Z t0

�+�
2

(� � s)
���1

ds (� � � )
���

d�

";x;�;�;t;t0�
Z t

t0

"
(� � t0)

�� �
�
� � �

2

���#
(� � � )

���
d�

";x;�;�;t;t0�
Z t

t0
(� � t0)

�(�_�)
d� � (t� t0)&=q

when t0 � t+�
2
: Furthermore, availing ourselves once again of (91), Conditions (C3-

C4), and Lemmas 5 (i) and 4 (i), we would �nd that






Z t

t0

Z
<d
Y "(x; t; y; s; �; � ) dy ds





 ";x;�;�;t;t0�
Z t�t0

0

(t� � )���

s�
ds (109)

�
Z t�t0

0

s�(�_�)ds� (t� t0)
&
q

when t0 � t+�
2
: Therefore, it would follow from (105) when t0 � t+�

2
or otherwise from

(42), and (107-109) that

k "(x; t; �; � )�  "(x; t0; �; � )k ";x;�;�;t;t0� jt� t0j &q (110)

for all " 2 (0; 1] and x; � 2 <d; if 0 � � � t0 � t � 1: Moreover, postulating existence
of constants bc; bC > 0 such that

kd�Y "
m;k(x; t

0; y; s; �; �)k �

8>><
>>:

bC
(s��)1+�+d=q

exp

�
�bc ��� jy��jq

s��

��� 1
q�1

�
s � t0+�

2bC (t0��)����1

(t0�s)�+d=q
exp

�
�bc ��� jx�yjq

t0�s

��� 1
q�1

�
s � t0+�

2

(111)

for all (";x; t; y; s; �; �;m;k) and repeating the above arguments, one would �nd that

k "(x; t0; �; � )�  "(x; t0; �; � 0)k ";x;�;�;� 0;t0� j� � � 0j &q (112)

for all " 2 (0; 1] and x; � 2 <d if � � t0: Combining (105), (110), and (112), we would

�nd that

k "(x; t; �; � )�  "(x; t0; �; � 0)k ";x;�;�;� 0;t;t0� jt� t0j &q + j� � � 0j &q (113)
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for all " 2 (0; 1], 0 � � � t � 1, 0 � � 0 � t0 � 1, and x; � 2 <d. Next; suppose there

exist constants bc; bC > 0 such that

k@�iY "
m;k(x; t; y+ �; s; �; � )k � bC exp

�
�bc ��� jyjq

s��

��� 1
q�1 � bc ��� jx��jq

t��

��� 1
q�1

�

(t� � )
1
q (s� � )1+

d�&
q

(114)

for any i = 1; 2; :::; d if s � t+�
2

and jkj � q�1, with & being the constant of Condition

(C5);

k@�iY "
m;k(x; t; y; s; �; � )k � bC exp

�
�bc ��� jy��jq

s��

��� 1
q�1 � bc ��� jx��jq

t��

��� 1
q�1

�

(s� � )1+
d�1
q

(115)

for any i = 1; 2; :::; d if s � t+�
2

and jkj < q � 1; or

k@�iY "
m;k(x; t; y; s; �; � )k �

bC (t� � )����
1
q

(t� s)�+
d
q

exp

8<
:�bc

����� jx� yjq
t� s

�����
1

q�1

9=
; (116)

for any i = 1; 2; :::; d if s � t+�
2
: Then, we would �x �0; � 2 <d, de�ne

�i
:
= (�1; :::; �i�1; �

0
i; :::; �

0
d)

T ; i = 0; 1; :::; d+ 1; (117)

and note that

k "
1
(x; t; �; � )�  "

1
(x; t; �0; � )k �

dX
i=1




 "
1
(x; t; �i+1; � )�  "

1
(x; t; �i; � )




 : (118)

However, in the case jkj � q � 1 and �i � �0i, it would then follow by (42), (117),
(114), and H�older's inequality that


 "

1;m;k(x; t; �
i+1; � )�  "

1;m;k(x; t; �
i; � )




 (119)

�
Z �i��

0
i

0

Z t+�
2

�

Z
<d




@�iY "
m;k(x; t; y+ �i + u ei; s; �

i + u ei; � )



 dy ds du

�
Z j�i��0ij
0

Z t+�
2

�

ds

(t� � )
1
q (s� � )1�

&
q

exp

8<
:�c

����� jx� �i � u eijq
t� �

�����
1

q�1

9=
; du

�
Z j�i��0ij
0

(t� � )
&�1
q

����� jx� �i � u eijq
t� �

�����
&�1
q

du

�
Z j�i��0ij
0

jxi � �0i � uj&�1du � j�i � �0ij&
2
�Z

1

0

jxi � �0i � uj �1
1+& du

�1�&2
";x;t;�;�;�0� j� � �0j&2
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for all i = 1; :::; d; " 2 (0; 1]; 0 � � � t � 1; and x; �0; � 2 <d with j� � �0j � 1: The

cases jkj < q � 1; and jkj � q � 1; �i < �0i can be handled similarly if one substitutes

(115) for (114) when jkj < q � 1: Moreover, one would �nd by (42), (116) as well as

substitutions of variables that

k@�i "
2
(x; t; �; � )k (120)

�
Z t��

2

0

(t� � )����1=q

s�

Z
<d

1

sd=q
exp

8<
:�bc

�����jyj
q

s

�����
1

q�1

9=
; dy ds� 1

for all i = 1; 2; :::; d; 0 � � � t � 1; and x; � 2 <d: Hence, it follows easily from (120),
the mean value theorem, (118) and (119) that

k "(x; t; �; � )�  "(x; t; �0; � )k ";x;�;�0;�;t� j� � �0j&2 (121)

for all " 2 (0; 1]; 0 � � � t � 1; and x; �0; � 2 <d with j� � �0j � 1: Finally; assuming
existence of constants bC; bc > 0 such that

k@xiY "
m;k(x; t; y; s; �; � )k �

bC
(t� � )

1
q (s� � )1+

d�1
q

exp

8<
:�bc

����� jy � �jq
s� �

�����
1

q�1

9=
; (122)

for any i = 1; 2; :::; d if s � t+�
2
;

k@xiY "
m;k(x; t; y + x; s; �; � )k � bC exp

�
�bc ��� jyjq

t�s

��� 1
q�1 � bc ��� jx��jq

t��

��� 1
q�1

�

(t� � )�+
1
q
��(t� s)�+

d
q

(123)

for any i = 1; 2; :::; d if s � t+�
2

and jmj � q � 1; or

k@xiY "
m;k(x; t; y; s; �; � )k � bC exp

�
�bc ��� jx�yjq

t�s

��� 1
q�1 � bc ��� jx��jq

t��

��� 1
q�1

�

(t� � )��� (t� s)�+
d+1
q

(124)

for any i = 1; 2; :::; d if s � t+�
2

and jmj < q� 1; one would �nd by (122-124), and an

argument similar to the previous one that

k "(x; t; �; � )�  "(x0; t; �; � )k ";x;x0;�;�;t� jx� x0j&2 (125)

for all " 2 (0; 1]; 0 � � � t � 1; and x; x0; � 2 <d with jx� x0j � 1: Equicontinuity

on �1 follows from (125), (121), and (113) and one can easily adapt the arguments



Averaging for Fundamental Solutions of Parabolic Equations 25

in (62-73) of Subsection 3.2 (with aid of (104), (43), and this equicontinuity) to

discover that f�"; 0 < " � 1g ; de�ned by (43), is relatively compact in CB(�
1). To

show �" ! 0 as " ! 0 we only have to show �"m;k (x; t; �; � ) ! 0 for a dense set of

(x; t; �; � ;m;k). To do this we note by (43), (42), and the argument used in (104) as

well as the dominated convergence theorem that we only have to show

Z t

�
Y "
m;k(x; t; y; s; �; � ) ds! 0 as "! 0 (126)

for almost all (x; t; �; � ; y;m;k). Indeed, suppose jmj < q; jkj = q; x 6= y and y 6= �:

Then, noting by Lemma 5 (i) that lims!t @
m
x
bZ(x; t; y; s) = lims!� @

k
y
bZ(y; s; �; � ) = 0

(pointwise); one �nds from integration by parts that
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�
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�
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s

"

�
@ky
bZ(y; s; �; � )ds (127)

= �
Z t

�
@mx

bZ(x; t; y; s) Z s

�
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�
y; �;

�

"

�
d� @s@

k
y
bZ(y; s; �; � )ds

�
Z t

�
@s@

m
x
bZ(x; t; y; s) Z s

�

eAk

�
y; �;

�

"

�
d� @ky

bZ(y; s; �; � )ds
for all 0 � � � t � 1: Now, using (39), (79), and (57), we discover that

@s@
m
x
bZ(x; t; y; s) = � X

jbj=q

A0

k(y) @
b+m
x

bZ(x; t; y; s) (128)

and, adding Condition (C3) and Lemma 5 (i), that




@s@mx bZ(x; t; y; s)


 s� 1

(t� s)
2+

d�1
q

exp

8<
:�c

�����jx� yjq
t� s

�����
1

q�1

9=
; s� 1 (129)

(since x 6= y): Hence, after creating similar bounds for the other bZ terms, we �nd by

such bounds, (40), (41), (38), (30), our hypothesis (27), and the dominated conver-

gence theorem that

Z t

�
Y "
m;k(x; t; y; s; �; � ) ds! 0; jmj < q; jkj = q (130)

as "! 0 provided x 6= y and y 6= �. The cases jmj < q; jkj < q; jmj = q; jkj < q; and
jmj = q; jkj = q are handled similarly and it only remains to establish (106), (111),

(114), (115), (116), (122), (123), and (124).
Inasmuch as the proofs of all eight bounds under all combinations of the condi-

tions: jmj < q or jmj = q; and jkj < q or jkj = q are very similar, we will only prove
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(106) under the conditions jmj = q; jkj = q and (114) under the conditions jmj < q;

jkj = q here: The remaining bounds follow through similar arguments. For (106) with

jmj = q; jkj = q, it follows from (41), (40), an entirely similar argument to (128-129),

Lemma 5 (iii), Condition (C4), and Lemma 4 (i) that there are 0 < c1 < c2 < c andbc > 0 such that
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for all (";x; t; y; s; �; � ) and (106) follows by considering s � t+�
2

and s � t+�
2

sepa-
rately.

Now for (114) with jmj < q; jkj = q, one �nds by (38), Conditions (C4) and (C5)
as well as Lemma 5 (i), (iv) that there are 0 < c2 < c and C;C 0 > 0 such that
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for all x; y; � 2 <d; 0 � � � s � 1 and, de�ning z = x � y � �, � = y + �, one �nds
by Lemma 5 (i),(iv) that
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for all x; y; � 2 <d; 0 � s � t � 1: Hence, since s � t+�
2

we �nd by (41), (40), (133),

(132), Lemma 5 (i), and Lemma 4 (i) that there are 0 < c1 < c 3
2
< c2 < c and ĉ > 0

such that
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for all " 2 (0; 1]; x; y; � 2 <d; and 0 � � � s � t � 1 such that s � t+�
2
:

Lemma 3. Suppose n is a positive integer; �; C; c2; a; and faigq+di=1 are non-negative

constants satisfying 0 < a < ai+1 < ai < c2 for all i = 1; :::; q + d � 1; and (U;D(U))
is the operator on the vector space of continuous functions on <d � [�; 1] de�ned by
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for all ' 2 D(U); t 2 [�; 1]; x 2 <d; D(U) being an appropriately de�ned domain:

Then; for any ' 2 D(U) such that Um' 2 D(U) for m = 1; 2; :::; n� 1; we �nd that
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for all t 2 [�; 1]; x 2 <d; where B > 0 does not depend on x; t or '; B 0 := Bq+d; and

A
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Proof. (136) holds for n = 1 so we assume that it holds for all 1 � n � n0 < q+d:

Then, we �nd by (135), (136), and Lemma 4 (ii) that
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for all t 2 [�; 1]; x 2 <d provided B > C is large enough: Moreover, if (136) holds for

all 1 � n � n0 with n0 � q+ d then by (135), (136), and Lemma 4 (i), it follows that
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The following lemma is used throughout Subsections 3.3 and 3.4. Part (i) follows
inter alia from the proof of Theorem 2 (see the equation following Equation (4.15)
on p. 254) in Friedman [6]. Part (ii) is a simple consequence of Lemma 7 p. 253 of
Friedman [6].

Lemma 4. Let 0 � �; � < 1; q be an even positive integer;
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and Ja
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= Ja(x; t; �; � ) be de�ned by
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and for any 0 < a0 < a there exists a Ma0 =Ma0;�;� > 0 such that

(ii) Ja � Ma0
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for all 0 � � � t � 1; and x; � 2 <d:

Proposition 5. Suppose Conditions (C1-C4) of Section 2 are satis�ed and V "; V

are as de�ned in (56) and (57). Then, there exist �;K > 0 independent of " 2 (0; 1];

0 � � � t � 1; � = �+ i� 2 Cd; and y 2 <d such that

kV "(t; � ; y; �)k _ kV (t; � ; y; �)k � K exp f[�j�jq � �j�jq](t� � )g ; (142)

where � > 0 is the constant of (31). Moreover, bZ; bZ";K;K";�; and �", as de�ned in

(39) and (47-50), exist as continuous function on
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bZ and bZ" are continuously di�erentiable to any order with respect x, and there exist
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(iv)
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for all (x; t; �; � ) 2 �1; " 2 (0; 1]; j = 1; :::; d and 0 � jaj � 2q (say):

Proof. Suppose we showed that there is a constant �0 > 0 such that

kV "(t; � ; y; �)k � N exp f[�0j�jq � �j�jq](t� � )g (148)
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for all (x; t; �; � ) 2 �1; 0 � � � t � 1; y 2 <d; � = � + i�; and " 2 (0; 1]:

Then, a similar bound for V could be established by elementary methods and (142)

would follow. Furthermore, since the theory on pp. 245-246 of [6] does not require

Assumption (A) of the introduction once (142) has been established, (i) above would

follow. (ii) would follow from (i), (47-48), and Conditions (C3-C4) and (iv) would

follow from Condition (C4) and (3.11) of Friedman [6]. Finally, (iii) would result

from (ii) and the development on pp. 252-255 (top) of Friedman [6]. Hence, it only

remains to show (148).

To establish (148) we adapt the method of Agarwal and Gupta [1] pp. 174-5.

Thus, we de�ne the norm

kjBjk =
vuut NX
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jBm;nj2; (149)

Bm;n representing the (m;n) th element of B; for all CN�N -matrices B and let

R"(t; �; y; �) = Re[V "(t; � ; y; �)]; I"(t; �; y; �) = Im[V "(t; � ; y; �)] (150)

so V " = R"+ iI": Then; suppressing the dependence on (y; �) for V "; R"; I"; recalling

de�nition (56); letting
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Ak(y; s) (i�)
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and utilizing properties of symmetric and skew-symmetric matrices; one �nds that
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th column of R"(s; � ) and S(�) = S(�; �; y) is de�ned
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for all 0 � � < 1; y 2 <d; and � 2 Cd: Now, it follows from Condition (C1), (31),

and Friedman [6] Lemma 1, p. 242 that the maximum eigenvalue of S(�; �; y) satis�es
�max(S(�; �; y)) � �� j�jq + �0 j�jq (154)

for all 0 � � <1; � = � + i� 2 Cd; and y 2 <d; where � > 0 is the constant of (31)

and �0 > 0 does not depend on �; �; or y: Hence, it follows by (152) and (154) that
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h
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i
� 0 (155)

for all 0 � � � t � 1; " 2 (0; 1]; y 2 <d; � 2 Cd; and (148) follows since kjV "(�; � ; y; �)jk2 =
N:

Lemma 6. Suppose  " is as de�ned in (35) of Subsection 3.1; and �; � are as in

(60) of Subsection 3.2. Then, under Condition (C1-5) of Section 2 it follows that

(t; � ; y; �)!  "(t; � ; y; �); " > 0 are equicontinuous and

k " (t; � ; y; �)k ";t;�;y;�� exp
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h
� j�jq + � j�jq

i
(t� � )

o
(t� � )� : (156)

Proof. (156) follows immediately via (36), (35), Condition (C2) and (58-60).
Moreover, as a result of this argument one �nds that

k�" (t; � ; y; �)k ";t;�;y;�� expf[� j�jq � � j�jq] (t� � )g (t� � ) : (157)

In preparation for the equicontinuity argument, we note that it follows from the
argument in (75-76), Equations (56-60), and Condition (C4) that

kV " (t; s; y; �)� V " (t; s; y0; �)k (158)
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and

kV (s; � ; y; �)� V (s; � ; y0; �)k s;�;y;�� jy � y0j expf[�1 j�jq � �1 j�jq] (s� � )g (159)

for all " 2 (0; 1]; y; y0; �; � 2 <d; � = � + i� and all 0 � � � s � t � 1. Hence, it fol-
lows from (36), Minkowski's inequality, (58), (59), (158), (159), (30), and Conditions
(C3) and (C4) that
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(160)
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from which it follows immediately from (35) that

k " (t; � ; y; �)�  " (t; � ; y0; �)k ";t;�;y;y0;�� jy � y0j (161)

for all " 2 (0; 1]; y; y0 2 <d; � 2 Cd; and 0 � � � t � 1. As for � = � + i�, we note

by (56), variation of constants, Condition (C3) and (58) that
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and a similar bound holds for @�jV (s; � ; y; �) so by (36), (60), and Condition (C3)
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 ";t;�;y;�� (t� � ) expf[�1j�jq � �1j�jq] (t� � )g (163)

for all j = 1; 2; :::; d, " 2 (0; 1]; y; �; � 2 <d; and 0 � � � t � 1: Furthermore, since

d� j�jq = q j�j q(q�2)
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(164)

so we easily discover through (35), the mean value theorem, (163), (157), and (164)
that

k " (t; � ; y; �+ i�)�  " (t; � ; y; �0 + i�)k (165)

� (t� � )��1 kd� [�" (t; � ; y; �� + i�) exp f[�1 j��jq � �1 j�jq] (t� � )g] (�� �0)k
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";t;�;y;�;�0� j� � �0j
for all " 2 (0; 1]; y; �; �0; � 2 <d; and 0 � � � t � 1, where �� is some point on the

line connecting � and �0. A similar bound can be established in terms of �: Next,
we consider the uniform continuity in the pair (�; t): Indeed, one �nds by Condition
(C3), (58), and (59) that
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for all 0 � � � t0 � t � 1 and by (56), (58-60), and Condition (C3), that
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for all 0 � � � t0 � t � 1: Therefore, it follows by (35), (36), (60), (166) and (167)
that

k " (t; � ; y; �)�  " (t0; � ; y; �)k ";t;t0;�;y;�� (t� t0)
�

(168)

for all " 2 (0; 1]; y 2 <d; � 2 Cd; and 0 � � � t0 � t � 1. In exactly the same manner,

we �nd that

k " (t0; � ; y; �)�  " (t0; � 0; y; �)k ";t;� 0;�;y;�� j� � � 0j� (169)

for all " 2 (0; 1]; y 2 <d; � 2 Cd; and 0 � � � � 0 � t0 � 1 or 0 � � 0 � � � t0 � 1.
Moreover, if t0 < � then t� � � t� t0 and t0 � � 0 � � � � 0 and it follows from (156),
(168), and (169) that

k " (t; � ; y; �)�  " (t0; � 0; y; �)k ";t;t0;� 0;�;y;�� jt� t0j� + j� � � 0j� (170)

for all " 2 (0; 1]; y 2 <d; � 2 Cd; 0 � � � t � 1 and 0 � � 0 � t0 � 1: Hence,
it follows easily from (161), (165), and (170) that (t; � ; y; �) !  " (t; � ; y; �) are

equicontinuous.
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