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Abstract 

 
 

Temperatures of shallow groundwater depend on ground surface 
temperatures and water recharge temperatures. Important heat 
transfer processes that contribute to groundwater temperatures are 
conduction from the soil surface into the ground(water), infiltration of 
warm surface water, and advection by the horizontal flow in the 
aquifer. Shallow groundwater temperatures respond to ground 
surface temperatures and infiltration regimes. Both of these are 
modified by urban development and climate change. In this paper we 
explore concepts and relationships by which shallow groundwater 
temperature change can be analyzed or predicted. We estimate the 
projected seasonal temperature change in an aquifer of given depth, 
thickness and flow velocity (permeability) and below a vegetated 
(grassy) surface when a paved surface (parking lot) of given size is 
added on the ground surface. The analysis is in 2-D, and 
groundwater temperatures are simulated as a function of horizontal 
and vertical distance in the aquifer, and as a function of time of the 
year. Results are explained and presented in a form useful for 
practical applications, and examples are presented. 
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1. Introduction 
 
Coldwater streams in a natural or agricultural landscape often provide 

habitat for trout. They are threatened when urban development encroaches into 
the watershed. The threats are related to changes in hydrology and rising water 
temperatures. The water source for many coldwater streams is groundwater from 
shallow aquifers (Figure 1.1). Shallow aquifers often depend on local infiltration 
and recharge. They are also heated and cooled from the ground surface. 

 

 
Figure 1.1 Schematic of shallow groundwater aquifer feeding a coldwater stream, 
before and after urban development. The groundwater is heated from the ground 
surface (from W. Herb). 
 

Surface cover affects ground surface temperatures and, hence, the 
temperatures below the surface. Asphalt surfaces have much lower reflectivity 
than surfaces with plant cover, and therefore reach much higher surface 
temperatures during summer when solar radiation levels are high. Asphalt 
surfaces have both higher mean annual temperature (Tm) and higher seasonal 
temperature amplitude (∆T) than surfaces with vegetation covers under the same 
climate conditions. Grass provides enough shade to maintain surface 
temperatures similar to agricultural or undeveloped land (Herb et al. 2006). As a 
result, most vegetated surfaces have similar surface temperature regimes 
regardless of the type of vegetation (Figure 1.2).  
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Figure 1.2 Seasonal cycles of asphalt and grass surface temperatures in the 
Twin Cities. 

 
A network of roads, driveways and parking lots constructed in a new urban 

development creates areas with substantially higher mean ground surface 
temperatures in summer than is typical for undeveloped or agricultural 
(vegetated) land. These surface areas heat the soil and the shallow groundwater 
below by conduction. In winter, paved surfaces and vegetated surfaces are likely 
to have similar temperatures, especially if they are covered by snow. If they are 
cleared of snow paved surfaces are likely to be warmer on sunny days and 
cooler at night or on cloudy days. 

 
The construction of residential or commercial buildings also has an impact 

on ground surface temperatures that in turn affect groundwater. In the composite 
landscape of an urban environment, complex interactions exist between the 
warmer or cooler ground surface areas and the shallow groundwater. The net 
effect is most likely the heating of the soil and of shallow aquifers to temperatures 
above predevelopment conditions (Taniguchi and Uemura 2005, Taylor and 
Stefan 2008). 

 
In this study we address the question “What horizontal distance is required 

downstream from a paved surface such that the shallow groundwater does not 
feel the presence of the warmer surface?” Figure 1.1 is a basic depiction of the 
system. It is a vertical section through a shallow aquifer that feeds a coldwater 
stream. To determine this distance at which there is negligible shallow 
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groundwater temperature change, we consider the case of a single asphalt strip 
(e.g. a road or parking lot) bordered on each side by a large vegetated (grass) 
surface. Figure 1.3 illustrates this simplified condition. 

 

 
Figure 1.3 Illustration of a shallow groundwater flow being heated by an asphalt 
strip bordered on either side by grass. 

 
The higher surface temperature of the asphalt strip causes a warmer 

temperature plume to form. The plume originates from the asphalt strip then 
penetrates into the groundwater where it is swept downstream under the 
adjacent grass surface. To quantify the heating of the groundwater due to the 
asphalt strip, we introduce the concept of an excess temperature. The excess 
temperature is the maximum temperature difference throughout the season 
between the local temperature with the asphalt strip and the local temperature 
without the asphalt strip for any given point in the domain. The excess 
temperature plume tracks the excess temperatures throughout the domain and 
can be used to determine a maximum distance at which the groundwater no 
longer feels the effects of the asphalt strip. 
 
2. Formulation of model for groundwater temperature field 
 
2.1 Basic heat transport equation 
 
 The temperature plume in the groundwater can be described by the 2D 
heat advection/dispersion equation (1). This governing equation includes 
dispersion both vertically in the soil/groundwater (z-direction) and horizontally in 
the direction of the groundwater flow assumed parallel to the ground surface (x-
direction). We assume that the groundwater flow in the shallow aquifer is at a 
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uniform velocity. The groundwater table is approximated as flat and parallel to 
the surface. 
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where: T = temperature (°C) 
 t = time (day) 
              x = distance in the direction of groundwater flow (m) 
              z = vertical distance from the surface (m) 
              u = groundwater velocity in the x direction 
             αx = thermal diffusivity (dispersivity) in the x direction (m2/day) 
             αz = thermal diffusivity (dispersivity) in the z direction (m2/day) 
 
2.2 Boundary and Initial Conditions 
 

The local temperatures in the domain illustrated in Figure 1.3 are given by 
the solution T(x,y,t) of equation (1) . The upper boundary condition in Figure 1.3 
is the seasonal surface temperature cycle T(x,0,t), which will  approximated by a 
cosine wave. The equations for the upper boundary conditions for the grassed 
surface (equation 2a) and for the asphalt strip (2b) are of the same form, but the 
mean surface temperatures and seasonal temperatures amplitudes of grass and 
asphalt are different (Taylor and Stefan 2008, Herb et al. 2006). The reason is 
that ground surface temperatures are determined from a heat balance at that 
surface, and the heat flux terms for radiation, convection, conduction, and 
evaporation used in that heat balance are vastly different for asphalt and grass 
surfaces It is assumed that the ground surface temperatures T(x,0,t)  in the grass 
and asphalt regions are spatially uniform. 

The bottom boundary, at a depth z = h of the aquifer, is assumed to be 
adiabatic (∂T/∂z = 0), i.e. vertical heat transfer has vanished. The downstream 
boundary condition is that the groundwater temperature is no longer changing in 
the x-direction (∂T/∂x = 0). The upstream boundary condition T(0,z,t) is a given 
temperature profile T(z,t) defined by the one-dimensional solution for the soil and 
groundwater temperatures for an infinitely long grass surface as discussed by 
Taylor and Stefan (2008). That temperature profile also has a seasonal 
periodicity. 
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where:  t0 = period (365 days) 
 Tm,g = mean annual temperature of grass surface (°C) 
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 ∆Tg = seasonal temperature amplitude of grass surface (°C) 
 Tm,A = mean annual temperature of asphalt surface (°C) 
 ∆TA = seasonal temperature amplitude of asphalt surface (°C) 
 
 
As initial condition it is assumed that the entire domain has a spatially uniform 
temperature equal to the mean annual temperature of the grass surface. Since 
the system is quasi-steady state the initial condition is arbitrary. The model is run 
through several cycles to allow time for the system to initialize before any results 
are recorded. The number of initializing cycles is dependent on groundwater 
velocity and the size of the domain (i.e. the residence time of the domain). 
 
2.3 Normalized heat transport equation 
 

To reduce the number of variables of the problem, a normalized 
(dimensionless or unitless) form of the governing heat transport equation is 
generated with the following dimensionless variables. 
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where: S = distance from the ground surface to the groundwater table (m). 
The reference length is S, the reference time t0 is the annual period (365 days), 
and the reference temperature is ∆Tg  is the seasonal temperature amplitude of 
the grass surface. 
 
 Substituting the dimensionless variables (3) into the governing equation 
(1) gives equation (4). 
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Since the mean annual surface temperature (Tm) is constant, its derivative 

terms are equal to zero.  The dimensionless governing equation can then be 
simplified to equation (5). 
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where: 
S
tuu 0* ⋅

≡  = normalized groundwater velocity 
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αα  = normalized thermal diffusivity in the x-direction 
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αα  = normalized thermal diffusivity in the z-direction 

 
 It is important to note that equation (5) written for the dimensionless 
variables defined by equation(s) (3) has three dimensionless parameters (u*, α*x 
and α*z) which, when changed, will give different numerical solutions for the 
dimensionless groundwater temperature T*. 
 

It is also important to note that the diffusivities in the groundwater and in 
the dry soil above the groundwater table are different. Equation (5) will apply to 
both of these regions. The different diffusivities are distinguished by adding a 
subscript ‘D’ for dry soil and ‘G’ for groundwater. Because there is no 
groundwater in the region of the dry soil, the velocity term in the dry soil will be 
set equal to zero (u* = 0). 
 
2.4 Normalized Boundary Conditions 
 

Using the dimensionless variables (3) in the equation (2) gives equation 
(6) which is the dimensionless form of the upper boundary condition for the grass 
regions. The upper boundary condition for the asphalt strip can be made 
dimensionless by the same method, but mean surface temperature and seasonal 
amplitude need to be adjusted to place them in the same scale as the 
dimensionless variables. Equation (7) is the dimensionless form of the upper 
boundary condition for the asphalt strip. 
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 To fit the dimensionless variables (3) the domain also has to be modified. 
The width of the asphalt strip W and the thickness of the aquifer h are not direct 
boundary conditions for equation (5), but they have to be normalized to W* = W/S 
and h* = h/S to define the normalized domain for which the normalized 
temperature field will be calculated. 
 
2.5 Discretization and solution of the normalized heat transport 
equation 
 

The dimensionless governing equation (5) can be solved numerically 
using an alternating direction implicit method with a central difference scheme 
spatially, and a forward difference scheme temporally. This method solves for 
temperatures throughout the domain using two halftime steps. The first half time 
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step solves (updates) in the x-direction, while the second halftime step solves in 
the y-direction. The dimensionless governing equation (5) is discretized and the 
solution method is discussed in Appendix A. Because the initial conditions are 
arbitrary, the solution is run for several years until a quasi-steady state condition 
is achieved. The discretized spatial steps in the horizontal (flow direction) and 
vertical directions are 0.1, The computational time step, ranging between 0.001 
and 0.000001, is adjusted on a case by case basis to minimize both error and 
computational run time. 
 
3. Example Solutions 

 
Although the problem is solved using dimensionless variables examples 

will be presented in their dimensional form for illustration. First consider a 200m 
wide asphalt strip in an otherwise vegetated (grass-covered) surface. The aquifer 
below this surface is 20m thick and the groundwater table is one meter below the 
ground surface. The groundwater flows at a velocity u = 2m/day. The thermal 
diffusivities are estimated as follows: in the unsaturated soil above the water 
table (α Dx =  α Dy = 0.07m2/day) and in the groundwater (αGx = 0.42m2/day, αGy = 
0.14m2/day).  

The diffusivity in the unsaturated zone is assumed to be similar to the 
diffusivity found in the soil at the University of Minnesota, St. Paul campus 
weather station (Baker and Baker 2002, Taylor and Stefan 2008). The diffusivity 
in the groundwater in the x-direction is magnified by a multiple of six due to 
saturated pore spaces and longitudinal hydrodynamic dispersion (See Bear 1972 
or appendix of Taylor and Stefan 2008). The diffusivity in the groundwater in the 
z-direction is one-third of the diffusivity in the x-direction because of the ratio of 
transverse to longitudinal hydrodynamic dispersion. Hydrodynamic dispersion in 
the groundwater is best described by a dispersion tensor; however a ratio of 1:3 
(transverse: longitudinal) has been used as a reasonable approximation (Zheng 
and Bennett 1995, Benekos 2005, Qian and Stefan 2008, and Taylor and Stefan 
2008). 
 

The upper boundary condition for the asphalt strip (7) depends on the 
differences in the seasonal surface temperature parameters between an asphalt 
surface and a grass surface. Since the boundary condition is for a seasonal cycle 
the period (t0) is set to 365 days. Values chosen for the temperature parameters 
were typical of central Minnesota (Tm,A = 12.3°C, Tm,g = 9.7°C, ∆TA = 17.3°C, ∆Tg = 
13.0°C). This results in the following upper boundary condition for the asphalt 
strip: 
 ( )** 2cos33.12.0 tT ⋅⋅+= π  (8) 
 

Using the 1-D solution for temperatures below a grass surface (Taylor and 
Stefan 2008), the temperature penetration profiles and the maximum seasonal 
temperatures under the grass surface were determined (Figures 3.1 and Figure 
3.2, respectively).  
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Figure 3.1 Temperature penetration profiles under a grass surface (S = 1.0m, h = 
20m, αDx = αDy = 0.07m2/day, αGx = 0.42m2/day, αGy = 0.14m2/day, Tm,g = 9.7°C, and 
∆Tg = 13.0°C) 
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Figure 3.2  Maximum annual temperatures (°C) under a grass surface (S = 1.0m, 
h = 20m, αDx = αDy = 0.07m2/day, αGx = 0.42m2/day, αGy = 0.14m2/day, Tm,g = 9.7°C, 
and ∆Tg = 13.0°C). 
 

 
The 2D solution scheme discussed in Section 2.5 was used to calculate 

the local soil or groundwater temperatures in the domain throughout the entire 
annual cycle. Four snapshots of the temperature field at 3-month intervals are 
given in Figures 3.3 a-d. The left-hand edge of each plot at x = -300m in Figures 
3.3 a-d shows the temperature distribution below an infinite grass surface. By 
comparing the entire plot to the 1D grass only solution on the left edge of the 
plot, the extent of the temperature penetration from the asphalt can be gauged. 
 

 
Figure 3.3a Instantaneous temperature field given by isotherms in the 
unsaturated zone and groundwater domain for February 15. Asphalt extends 
from x = -200m to 0m. Groundwater is flowing in the x-direction. Parameter values 
are: W = 200m, S = 1.0m, h = 20m, u = 1.0m/day, αDx = αDy = 0.07m2/day, αGx = 
0.42m2/day, and αGy = 0.14m2/day. 
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Figure 3.3b Instantaneous temperature field given by isotherms in the 
unsaturated zone and groundwater domain for May 15. Asphalt extends from x = 
-200m to 0m. Groundwater is flowing in the x-direction. Parameter values are: W = 
200m, S = 1.0m, h = 20m, u = 1.0m/day, αDx = αDy = 0.07m2/day, αGx = 0.42m2/day, 
and αGy = 0.14m2/day. 
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Figure 3.3c Instantaneous temperature field given by isotherms in the 
unsaturated zone and groundwater domain for August 15. Asphalt extends from x 
= -200m to 0m. Groundwater is flowing in the x-direction. Parameter values are: W 
= 200m, S = 1.0m, h = 20m, u = 1.0m/day, αDx = αDy = 0.07m2/day, αGx = 0.42m2/day, 
and αGy = 0.14m2/day. 

 
Figure 3.3d Instantaneous temperature field given by isotherms in the 
unsaturated zone and groundwater domain for November 15. Asphalt extends 
from x = -200m to 0m. Groundwater is flowing in the x-direction. Parameter values 
are: W = 200m, S = 1.0m, h = 20m, u = 1.0m/day, αDx = αDy = 0.07m2/day, αGx = 
0.42m2/day, and αGy = 0.14m2/day. 
 

The 2D solution scheme discussed in Section 2.5 was also used to 
determine the maximum annual temperatures at each point of the entire domain. 
Figure 3.4 is an example of these maximum temperatures and illustrates how the 
warmer asphalt surface temperatures propagate downwards through the soil into 
the aquifer, and how the warmer water is carried away by the flow. The left-hand 
edge of Figure 3.4 at x = -300m shows the temperature distribution below a grass 
surface previously given in Figure 3.1. The mechanisms of heat transport in the 
system are reflected in the shapes of the isotherms. The “dips” in the isotherms 
are due to heat diffusing vertically downward from the asphalt surface. The 
horizontal widening of the “dips” with depth into the aquifer is due to the effective 
diffusion of the penetrating heat. Below the groundwater table, i.e. z > 1m, the 
“dips” translate to the right with depth due to advection in the groundwater. The 
bends in the 20 and 22-degree isotherms as they cross the groundwater table 
reflect the difference in the effective diffusivity between the saturated and 
unsaturated zones. 
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Figure 3.4 Maximum seasonal temperatures (°C) below composite grass-asphalt-
grass surface. The groundwater is flowing in the positive x-direction. The 
downstream (right) edge of the asphalt strip is located at x = 0. Parameter values 
are: W = 200m, S = 1.0m, h = 20m, u = 2.0m/day, αDx = αDy = 0.07m2/day, αGx = 
0.42m2/day, and αGy = 0.14m2/day. 

 
In the next computational step, the temperature at each point in the 

domain computed for each time step in the annual cycle was compared to the 1D 
grass only solution at the same depth and time, and the temperature difference 
between the composite site (grass-asphalt-grass) and the grass only site was 
then calculated for each point in the domain and each time step. The maximum 
of these instantaneous temperature differences was then recorded for each point 
and plotted in Figure 3.5. The region where there are higher temperatures for the 
composite site than for the grass only site can be thought of as an “excess 
temperature plume.” A review of the results in Figure 3.5 indicates that at 
distance greater than 300m downstream of the asphalt, the maximum annual 
temperature at any depth is less than 0.5°C higher than the maximum annual 
temperature for a grass only site at that same depth. The penetration depth of 
the 0.5°C maximum annual excess temperature is about 12m. 
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Figure 3.5 Excess temperature plume for a composite grass-asphalt-grass 
surface cite. The excess temperature (°C) is the increment above the 
temperature of a grass only site at the same location/depth. (W = 200m, s = 1.0m, 
h = 20m, u = 2.0m/day, αDx = αDy = 0.07m2/day, αGx = 0.42m2/day, and αGy = 
0.14m2/day) 
 

In order to evaluate the effect of the size of a paved surface (parking lot) 
and of the groundwater velocity on the temperature field, the model was run 
again with the same parameter values, except that the asphalt width and velocity 
were reduced by half, i.e. W = 100m and u = 1.0m/day. The maximum annual 
temperatures for the grass only site are the same as in Figure 3.2). The 
maximum annual temperatures for the composite (grass-asphalt-grass) site and 
the excess temperature plume do change, however. They are shown in Figure 
3.6 and Figure 3.7, respectively. 
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Figure 3.6 Maximum annual temperatures (°C) below a grass-asphalt-grass 
surface. Asphalt extends from -100m to 0m in x-direction. The downstream (right) 
edge of the asphalt strip is located at x = 0. Groundwater is flowing in the x-
direction. Parameter values are: W = 100m, S = 1.0m, h = 20m, u = 1.0m/day, αDx = 
αDy = 0.07m2/day, αGx = 0.42m2/day, and αGy = 0.14m2/day. 
 

 

 
Figure 3.7 Excess temperature plume for a composite grass-asphalt-grass 
surface cite. The excess temperature (°C) is the degrees above the temperature 
of a grass only site at the same location/depth. Parameter values are: W = 100m, 
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s = 1.0m, h = 20m, u = 1.0m/day, αDx = αDy = 0.07m2/day, αGx = 0.42m2/day, and αGy = 
0.14m2/day. 
 

A comparison of Figure 3.4 with Figure 3.6 and of Figure 3.5 with Figure 
3.7 indicates that the wider asphalt strip and the higher groundwater velocity 
have little effect on the excess temperature penetration depths. The penetration 
depth of the 0.5°C contour is still about 12m after the asphalt strip width has been 
cut in half. The narrower asphalt strip and lower groundwater velocity significantly 
decrease the distance to which the excess temperature is transported 
downstream. Figure 3.7 indicates that the 0.5°C maximum annual excess 
temperature reaches a distance of 150m downstream of the asphalt strip. This 
distance was reduced by half when the asphalt width and groundwater flow 
velocity were reduced by half. 
 
4. Range of values for variables and parameters 
 

Before we develop a general and widely applicable set of solutions from 
the normalized equations, we need to consider a range of values for the 
parameters and variables in the general problem. The purpose of this section is 
to give these values. 

 
There are two sets of parameters needed to solve for the groundwater 

temperature field: the surface temperature (annual mean, seasonal amplitude, 
and period) and physical properties (asphalt or parking lot width, water table 
depth, aquifer depth, groundwater velocity, thermal diffusivities). 
 

Ranges of values considered for the dimensional and non-dimensional 
parameters are given in Tables 4.1 and 4.2, respectively.  Values selected for our 
study are also given in Tables 4.1 and 4.2.  
 
Table 4.1 Meaningful ranges and selected ranges of necessary variables and 
parameters  
Variable or parameter Range Selected range 

W (m) 1 – 1000 10 – 200 
h (m) 10 – 30 20*S 
S (m) 0 – 15 1 – 10 

∆TA (°C) 14 – 20 17.3 
∆Tg (°C) 10 – 16 13.0 
Tm,A (°C) 9 – 15 12.3 
Tm,g (°C) 7 – 13 9.7 
t0 (days) 1 or 365 365 
u (m/day) 0 – 200 0 – 2 

αDx, αDz (m2/day) 0.01 – 0.60 0.03 – 0.40 
αDx/αGX 1/10 – 1 1/10 – 1 
αGx/αGz 1/10 – 1/2 1/3 
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Table 4.2 Possible ranges and selected ranges of necessary dimensionless 
variables and parameters 
Variable or parameter Range Selected range 

W* 1 – 1000 10 – 200 
h 10 – 30 20*S 

∆TA/ ∆Tg 0.87 – 2.00 1.33 
(Tm,A - Tm,g)/ ∆Tg 0 – 1.14 0.20 

u* 0 – 73,000 0 – 730 
αDx*, αDz* 0.016 – 219 0.44 – 146 

αDx/αGx 1/10 – 1 1/10 – 1 
αGx/αGz 1/10 – 1/2 1/3 

 
A lot of consideration was given to the selected ranges of the parameters. 

The width of the asphalt strip (W) is limited to the reasonable width of a paved 
road or parking lot. The depth to the groundwater table (S) is limited by the 
temperature fluctuations. For depth less than S = 1m, the diurnal fluctuations 
become significant. At depths greater than S = 10m, the seasonal amplitude 
fluctuations become quite small. The seasonal mean temperatures and 
amplitudes for the grass and asphalt surfaces were chosen as typical values for 
the Twin Cities area. The period (t0) is set as 365 days, since the seasonal cycle 
in the primary concern. The groundwater velocity (u) is limited by expected 
groundwater velocities in the region of the Vermillion River, MN, and the 
computational runtime of the model. The diffusivities chosen for the unsaturated 
zone (αDx, αDz) are similar to the diffusivity found in the soil at the University of 
Minnesota, St. Paul campus weather station. The ratio of vertical diffusivities 
between the unsaturated zone and the groundwater (αDx/αGx) is limited by the 
presence of water in the pore spaces, the size of the sand particles, and the 
groundwater velocity. The ratio of horizontal to vertical diffusivity in the 
groundwater (αGx/αGz) is the accepted value by Zheng and Bennett (1995), 
Benekos (2005), Qian and Stefan (2008) 
 
5. Numerical results for the selected range of parameter and 
variable values 
 

Default values were also chosen for the dimensionless parameters in 
Table 4.2. Holding all of the parameters constant at the default value, except 
one, it is possible to evaluate the effect of that single variable parameter on the 
results. The default parameters are as follows: W* = 100, u* = 365, α* = αDx* = 
αDz* = 25.55, αDx/αGX = 1/6. 
 
5.1 Excess Temperature Plots 
 

Figures 5.1 to 5.5 give maximum annual excess temperature results in the 
same format. To recall, excess temperature is the temperature difference 
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between a local annual maximum temperature for the composite (grass-asphalt-
grass) surface and the grass only surface. Each line in each figure represents the 
numerical simulation results for an excess temperature plume plot similar to 
Figures 3.5 and 3.7, except that results in Figures 5.1 to 5.4 are given in 
dimensionless form. In Figures 5.1 and 5.2 excess temperatures are normalized 
to the seasonal temperature amplitude ∆Tg  according to the definition of 
dimensionless temperatures in equation (3). For a seasonal temperature 
amplitude at the grass surface of ∆Tg = 13°C, a dimensionless excess 
temperature of 0.05 therefore represents 0.05 x 13 = 0.65°C. Each point on the 
line represents the maximum excess temperature over the entire annual cycle 
and the entire depth of the aquifer at that the specified distance x* downstream 
of the asphalt strip. Figures 5.1 to 5.4 therefore represent the worst-case excess 
temperature for the specified set of model input parameters. 

 
In all four figures the excess temperatures drop off quite quickly with 

distance from the asphalt strip. Most noticeable in Figure 5.1, the excess 
temperature plot levels off for a bit before continuing to decrease. This apparent 
irregularity is actually caused by the lower adiabatic boundary. When the higher 
heat from the asphalt strip penetrates vertically through the entire domain, it is 
reflected by the lower adiabatic boundary back into the domain and, therefore, 
heats the system. This is a rather extreme case, since in a natural system the 
lower boundary would be bedrock or a low permeability layer (leaky layer). Both 
bedrock and leaky layers will have lower diffusivities than the aquifer and will 
reflect some, but not all, of the heat back into the system. Consequently, in a 
natural system, some of the heat will continue to penetrate into the system below 
the aquifer, thereby reducing the amount of “leveling off” observed. 
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Figure 5.1 Maximum excess temperatures at any depth for the case with varying values of αDx*. All other model input 
parameters are specified by the default values in Table 4.2. 
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Figure 5.2 Maximum excess temperatures at any depth for the case with varying values of U*. All other model input 
parameters are specified by the default values in Table 4.2. 
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Figure 5.3 Maximum excess temperatures at any depth for the case with varying values of W*. All other model input 
parameters are specified by the default values in Table 4.2. 
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Figure 5.4 Maximum excess temperatures at any depth for the case with varying values of αDx/αGx. All other model input 
parameters are specified by the default values in Table 4.2. 
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Figure 5.5 Maximum excess temperatures at any depth for the case with u* = 730 and varying values of W*. All other 
model input parameters are specified by the default values in Table 4.2. 
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5.2 Critical distance from asphalt surface for negligible impact 
 

Given enough distance from the asphalt strip (paved surface) the 
maximum seasonal excess temperature will go to zero, meaning that the 
groundwater temperatures are essentially unaffected by the asphalt strip. 
Considering Figures 5.1 through 5.5 the distance of “zero impact” may be very 
substantial. Instead, it seems appropriate to consider a distance at which the 
presence of the asphalt strip has “little impact” on the groundwater temperatures. 
This critical distance is taken to be the distance at which the maximum 
normalized excess temperature at all depths (as defined earlier) becomes less 
than 0.05. In the example problem a normalized excess temperature of 0.05 
equated to a dimensional excess temperature of 0.65°C. Some would, however, 
consider this a significant excess. It should also be noted, thought, that the 
groundwater only approaches the maximum excess temperature at one depth for 
a few days out of the year. 

 
The critical distances, thus defined, are obtained in our simulations and 

are shown in Figures 5.6 to 5.9. The sudden shifts in critical distances shown in 
Figures 5.6 and 5.9 reflect the leveling off seen in Figures 5.1 and 5.4. These 
shifts are caused by reflection of heat at the lower boundary of the aquifer as 
explained earlier. Figure 5.7 indicates that, over the range of groundwater 
velocities considered, the critical distance plateaus and even decreases at higher 
velocities. The groundwater flow acts to push the excess temperature plume 
downstream. Intuitively one might expect that the critical distance would increase 
with higher groundwater velocities; however, a higher groundwater flow velocity 
also causes a smaller heat flux into the groundwater as it passes underneath the 
asphalt layer. Figure 5.8 indicates that the critical distance has a nearly linear 
dependence on the asphalt width. Figure 5.9 indicates that there is little 
dependence on the x-direction diffusivity ratio between the dry and saturated soil. 
Figures 5.6 and 5.9 suggest that the delivery rate of the surface heat to the 
groundwater table is more important to the critical distance than then horizontal 
diffusivity in the aquifer. The plateau in Figure 5.7 and the lack of dependence in 
Figure 5.9 speak to the complex interaction of advection and diffusion/dispersion 
on the transport of heat in the aquifer. 

 
 

 



 27

 
Figure 5.6 Critical normalized distance from pavement (x*) vs. normalized 
thermal diffusivity in the dry soil (αDz*) (corresponding to Figure 5.1) 

 
Figure 5.7 Critical normalized distance from pavement (x*) vs. normalized 
groundwater flow velocity (U*) (corresponding to Figure 5.2). 
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Figure 5.8 Critical normalized distance from pavement (x*) vs. normalized 
pavement width (W*) (corresponding to Figures 5.3 and 5.5). 
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Figure 5.9 Critical distance from pavement (x*) vs. diffusivity ratio in x-direction 
(αDx/αGx) (corresponding to Figure 5.4). 
 
5.3 Application of numerical results 
 

Figures 5.1 though 5.9 give some insight into the complex interactions 
and effects of climatic, soil and hydrologic parameters on the shape of an excess 
shallow groundwater temperature plume downstream from a “hot” parking lot 
surface simulated as an asphalt strip. Regulators need an answer to the question 
“How much horizontal distance is required from a paved surface to a coldwater 
stream such that the groundwater (temperatures) that discharges into the stream 
is not impacted by heat conduction and advection from the paved surface.” It 
would be quite difficult (if not impossible) to develop a closed form expression for 
the critical distance that encompasses all of the controlling parameters. Instead 
we have simulated a wide range of practical cases. Because in all cases studied, 
and summarized in Figures 5.6 through 5.9, the critical distance is never greater 
than three times the width of the asphalt we propose that, for the chosen range of 
parameters, a reasonable approximation for the maximum critical distance is 
three times the width of the asphalt strip (paved surface). 
 
6. Conclusions 
 

The coldwater source of many coldwater streams is an aquifer. If the 
aquifer is shallow and can therefore be warmed from the ground surface, a 
coldwater stream may become warmer when the ground surface becomes 
warmer, e.g. by paving over previously vegetated land. We analyzed the heating 
of shallow groundwater when an asphalt strip is placed through a surface 
covered by grass only. The asphalt strip heats the soil and groundwater below 
and generates an excess temperature plume. Our analysis indicates that, for the 
range of parameters explored, a reasonable approximation of the maximum 
critical distance is three times the width of the asphalt strip. In other words, 
groundwater at a distance downstream larger than three times the width of the 
asphalt strip will experience a minimal impact from the presence of the warmer 
asphalt surface. This result provides a reasonable approximation of the buffer 
width that should be maintained between a coldwater stream and an asphalt 
surface, such as a parking lot. 
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Appendix A – Discretization of the governing equation 
 
The dimensionless governing equation (5) can be solved numerically using an 
alternating direction implicit method with a central difference scheme spatially 
and a forward difference scheme temporally. This method solves for 
temperatures throughout the domain using two half time steps. The first half time 
step solves (updates) in the x-direction, while the second half time step solves in 
the y-direction. There are really two solution domains that are solved 
simultaneously. These domains are the region above the groundwater table (dry 
soil, subscript “D”) and the region below the groundwater table (groundwater, 
subscript “G”). The groundwater table itself can be thought of as a boundary. 
The two domains are both described by the same governing equation and 
solution. The only difference is that in the dry region there is no velocity term (u* 
= 0) and the diffusivities in the x-and y-directions are equal (αDx = αDy).  
 
The discretization in the dry and groundwater domains is as follows. 
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( ) ( ) ( )n
ki

n
ki

n
ki

zn
ki

n
ki

n
ki

xn
ki

n
ki

n
ki

n
ki TTT

z
TTT

x
TT

x
u

t
TT

1..1,2
2/1

.1
2/1

.
2/1

,12
2/1

,1
2/1

,1
.

2/1
. 2*2*

2
*

2/ −+
+

−
++

+
+

−
+

+

+

+−
∆

++−
∆

=−
∆

+
∆

− αα

 

( )n
ki

n
ki

n
ki

zn
ki

n
ki

xn
ki

xn
ki

x

TTT
z

T
t

T
xx

uT
xt

T
x

u
x

1..1,2.

2/1
.12

2/1
.2

2/1
,12

2*2

*
2

**2
2

**

−+

+
+

++
−

+−
∆

+
∆

=

⎟
⎠
⎞

⎜
⎝
⎛

∆
−

∆
+⎟

⎠
⎞

⎜
⎝
⎛

∆
+

∆
+⎟

⎠
⎞

⎜
⎝
⎛

∆
−

∆
−

⇒

α

ααα

L

K

 

 
xi

n
kixi

n
kixi

n
kixi rhsTcTbTa =++⇒ +

+
++

−
2/1

.1
2/1

.
2/1

,1  
 

Second ½ time step: 
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For any time step the boundary condition at the ground surface is a known 
temperature determined by equations (6 and 7). For the boundary condition at 
the bottom of the aquifer, Hoffmann and Chiang (2004) introduce a virtual 
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boundary that facilitates a second order accurate central difference discretization, 
which yields: 

 

1*
1

1*
1

*

1*
1

1*
1

*

*

0
2

+
−

+
+

+
−

+
+

=⇒

=
∆⋅

−
=

n
k

n
k

n
k

n
k

MAXMAX

MAXMAX

TT
z
TT

dz
dT

 

 
where kMAX -1 denotes the point one step above the lower boundary 
 kMAX +1 denotes an imaginary point one step below the lower boundary 

 
Equation (3.7) and the lower boundary condition result in the following tri-

diagonal matrix: 
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This tri-diagonal matrix can be numerically solved quite efficiently.  Tri-diagonal 
matrix solver algorithms are readily available for most programming languages.  
The upper boundary condition is cyclical.  This means that the initial condition 
throughout the rest of the domain is arbitrary because its effect on the solution 
will diminish over long enough time spans.   




