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Brownian Models of Open Queueing Networks with
Homogeneous Customer Populations

J. M. Harrison
Stanford University

R. J. Williams
University of California at San Diego

Abstract

We consider a family of multidimensional diffusion processes that arise as
heavy traffic approximations for open queueing networks. More precisely, the
diffusion processes considered here arise as approximate models of open queueing
networks with homogeneous customer populations, which means that customers
occupying any given node or station of the network are essentially indistinguish-
able from one another. The classical queueing network model of J. R. Jackson fits
this description, as do other more general types of systems, but multiclass network

models do not.

The objectives of this paper are (a) to explain in concrete terms how one
approximates a conventional queueing model or a real physical system by a
corresponding Brownian model, and (b) to state and prove some new results
regarding stationary distributions of such Browmnian models. The part of the
paper aimed at objective (a) is largely a recapitulation of previous work on weak
convergence theorems, with the emphasis placed on modeling intuition. With
respect to objective (b), several important foundational issues are resolved here
and under certain conditions we are able to express the stationary distribution
and related performance measures in explicit formulas. More specifically, it is
shown that the stationary distribution of the Brownian model has a separable
(product form) density if and only if its data satisfy a certain condition, in which
case the stationary density is exponential, and all relevant performance measures

can be written out in explicit formulas.
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Brownian Models of Open Queueing Networks with

Homogeneous Customer Populations

J. M. Harrison
Stanford University

R. J. Williams

University of California at San Diego

1. Introduction.

This paper is devoted to the study of some multidimensional diffusion
processes that play an important role in queueing theory. The diffusions in ques-
tion are of a type most often referred to as reflected Brownian motions [4, 12, 13,
14, 21, 24, 25, 26, 30]. It has been suggested in [10] that regulated Brownian
motion is actually a better name, and here we shall use the neutral acronym
RBM. We are concerned here with a special class of RBM’'s that arise as diffusion
models of open queueing networks. The queueing theoretic interpretation of these
processes will be reviewed, and then a systematic study of their stationary distri-

butions will be undertaken.

In the title of the paper we have emphasized the fact that the processes stu-
died here correspond to queueing networks with homogeneous customer popula-
tions. which means that customers occupying any given node or station of the
network are essentially indistinguishable from one another. (The exact meaning
of this phrase will become apparent shortly.) The classical model of J. R. Jackson
[16, 17] fits this description, as do other more general systems to be described
later. In contrast, Baskett et. al. [2], Kelly [19] and others have considered net-
works in which several distinct customer classes are served at one or more sta-
tions. Such a multiclass queueing network gives rise to a substantially more com-
plicated type of Brownian system model, the study of which is only just beginning
[11, 22]. When we refer to queueing network models hereafter, the restriction to

homogeneous customer populations is implicit.
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Our objectives here are (a) to explain in concrete terms how one approxi-
mates a conventional queueing model or a real physical system by a corresponding
RBM, and (b) to state and prove some new results regarding stationary distribu-
tions of RBM’s. The part of the paper aimed at objective (a) is largely a recapi-
tulation of Reiman’s (23] heavy traffic limit theorem, which has also been dis-
cussed at some length in the survey papers of Lemoine [20], Flores [9], and
Coffman-Reiman [6]. Limit theorems of this type provide a rigorous justification
for the use of Brownian system models under heavy traffic conditions (the mean-
ing of this phrase will be explained later), but their intuitive content tends to be
obscured by the technical apparatus employed. Thus, in the current discussion of
approximation procedures, we shall emphasize modeling intuition and operational
content rather than mathematical rigor. With respect to (b), it must be said that
no general formula has yet been found for the stationary distribution of an RBM,
nor do we give a general procedure for its computation. However, the issues of
existence and uniqueness are resolved here. and determination of the stationary
distribution is reduced to solution of a concrete analytical problem. Moreover,
building on results proved earlier in [14, 30], we obtain necessary and sufficient
conditions on the data of the RBM for its stationary distribution to have a separ-
able density function. Under these conditions, the stationary density is exponen-
tial and all standard performance measures can be written out in explicit formu-

las.

By putting into one place all the information described in the previous para-
graph, we hope to give a clear picture of the useful quantitative results that are
already available for analysis of queueing networks by means of Brownian system
models. In addition, we shall identify the important open problems whose solu-
tion would yield a truly comprehensive theory of performance modeling via RBM.
The remainder of this paper consists of sections dealing with conventional system
models, the Brownian system models that correspond to them, stationary distribu-
tions for those Brownian models, a summary of performance analysis procedures
based on results for Brownian system models, and some miscellaneous concluding

remarks, including a list of important open problems.

We conclude this introduction with an account of some notational and termi-
nological conventions used throughout the paper. The letter e will often be used
to denote a vector of ones, and the dimension of this vector will always be clear

from context. Vectors are understood to be column vectors unless something is
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said to the contrary, and transposes are denoted by primes. Vector (in)equalities
are to be interpreted componentwise and a vector-valued function is non-
decreasing (or non-increasing) if and only if each component has this property.
The inner product between two k-dimensional vectors v and w will be denoted by
v+ w (= v’ w for column vectors). For a vector v, diag(v) will denote the diag-
onal matrix whose diagonal entries are given by the components of v, and for a
square matrix A, diag(A4 ) will denote the diagonal matrix with the same diagonal
entries as A. We shall use D¥[0, oc) to denote the space of functions
z:|0, 0) = R¥ that are right continuous on [0, c0) and have finite left limits on
(0, oc). Consider this space endowed with the Skorohod topology [3, 8]. Weak
convergence of probability measures on DK[O, o0) is defined as in Billingsley (3,
Chapter 1] or Ethier-Kurtz [8, Chapter 3]: a sequence of probability measures
{P,} converges weakly to a probability measure P on D¥[0, 00) if and only if for
each real-valued bounded continuous function f on DK[O, oc), we have

lim f [ dP, = ff dP. Weak convergence of stochastic processes whose sample

n—0oc
paths lie in DK[O, oc) is equivalent to weak convergence of the probability meas-

ures they induce on D¥ 0, ).

The following enumeration scheme is used in this paper. Within each sec-
tion, equations, theorems, lemmas, propositions and corollaries are labelled
according to a single numbering system. The designation (n) refers to the item
labelled (n) in the current section, whereas in referring to other sections the nota-

tion (m.n) is used to indicate the entity with label (n) in section m.

2. An Open Network Model of Conventional Type.

We consider a network of K single-server stations in which customers occu-
pying any given station at any given time are essentially indistinguishable from
one another. The term class k customers is used to mean customers occupying
station k, either waiting or being served. At each station customers are served
one at a time, and the server remains busy so long as there are customers of the
relevant class to be worked on. Upon completing service a customer either moves
on to a different station or else departs the system. No particular assumption is
made about the order in which customers are served, but it is easiest to think in
terms of a first-in-first-out (FIFO) discipline at each station. Our concern here is

with open networks, in which customers are generated by exogenous arrival
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processes and remain in the system for just a finite amount of time. One focus of
study is the K-dimensional queue length process @ = {Q(t), t > 0} whose k'
component @, (t) gives the number of class k customers present at time t. We
are also concerned with the K-dimensional busy time process B = {B(t),t > 0}
whose k" component B, (t) gives the total amount of time that server k is busy
within the interval [0, t]. It is assumed for convenience that Q(0) = 0, but the

modifications required to accommodate an arbitrary initial state will be obvious.

Our first task is to give a precise mathematical description of the processes Q
and B. The usual procedure in constructing such processes is to start with a pro-
bability space on which are defined mutually independent sequences of interar-
rival times, service times and routing indicators [23]. In the construction to fol-
low, however, higher level quantities are taken as primitive model elements, which
makes for a more general and more economical treatment. In particular, each sta-
tion of the network is characterized by a vector flow process, or input-output pro-
cess, whose distribution depends on both service time and routing characteristics.
The other primitive element in the construction is a vector arrival process. The
probabilistic assumptions imposed here are very weak by conventional standards:
it is assumed that each of the vector flow processes underlying the model, includ-
ing the arrival process, satisfies a functional central limit theorem (FCLT), and
that these processes are mutually independent. It is the mean vectors and covari-
ance matrices appearing in the FCLT’s that we view as the fundamental system
parameters. Later in this section, just after equation (19). our setup will be

related to the more restrictive requirements of standard queueing network models.

For a precise mathematical definition of the queue length and busy time
processes, we take as primitive a family of K-dimensional flow processes
FI = {Fj(t),t >0} indexed by 7 =0.1,...,K. The k'™ component
(k=1,...,K) of the vector process F’(t) is denoted F{(t). We interpret
FQ(t) as the total number of class k customers who have arrived from outside the
system up to time t. For j, k =1,...,K we interpret F/(t) as the total flow
out of class k (expressed as a number of customers) resulting from the first ¢ units
of busy time at station j, with negative values signifying inflow. Thus F ]J(t) is
simply the number of services completed in the first ¢ units of busy time at sta-
tion j, and the other components of the vector F’(t) are non-positive integers
whose absolute values tell how many of those class j services have resulted in

immediate transitions to the various other classes. Formally, our assumptions



-7 -
regarding the primitive flow processes are the following. (At this point readers
may wish to review the notational and terminological conventions listed at the

end of section 1.)

(1) Each component of F 7 is integer valued and right-continuous, and F’ (0)=0
(7=0,1,...,K).

(2) Each component of the vector arrival process F 0 is non-decreasing.

(3) For each j=1,...,K the process F]j is non-decreasing and has unit
jumps, and all other components of F 7 are non-increasing. Moreover,
e - (F/(t)— Fi(t-)) >0forallt >0 andall j=1,...,K.

(4) The vector flow processes F° F!' ... F¥ are mutually independent.

(5) Foreach j =0,1,...,K there exists a K-vector o’ and a KxK covari-

ance matrix '/ such that
E[Fj(l‘)] ~a’t  and Cov[Fj(t)] ~T7t ast-ox.

(6) Define the centered flow processes £¢7(t) = F’(t) — a’t. For each
7 =0,1,...,K the scaled processes n_l/zfj(mf)5 t>20 (n=1,2,...),
viewed as random elements of DK[O, o), converge weakly as n—oo to a

(0, T?) Brownian motion.

Assumptions (1)-(3) concern the path structure of our primitive flow processes,
and each of these restrictions is natural in light of the interpretations given ear-
lier. Assumptions (4)-(6), which concern the distributional properties of the flow
processes, will be discussed further below. Hereafter a’ and TI'/ will be called the
mean vector and covariance matriz respectively of F’i, although that terminology
is somewhat imprecise. (The terms asymptotic mean vector and asymptotic
covariance matriz would be more accurate.) Using language that is now standard

in probability theory [3], we paraphrase (6) by saying that each of our vector flow

processes satisfies a functional central limit theorem.

Thus far there is nothing in our assumptions to distinguish the system as an

open queueing network. Even before the necessary additional assumptions are
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introduced, however, we can formally define the processes of interest here. Using
only the path structure assumptions (1)-(3), one can show by induction that there

exists a unique pair of K-dimensional processes @ and B that jointly satisfy
K .

(7) Q(t) = F°(t) — Y, F’(B,(t)), forall t >0, and
j=1

t
(8) B,(t) = f 1{g,(s)>0y ds forallt >0 and k =1,... K.
0

Relationships analogous to (7) and (8) have been used previously by Reiman [23]
in constructing the queue length process for an open network, but the notational
system used here is more efficient than Reiman’s. A definitional system similar to
that employed here is used in [11] to treat the more general case of multiclass net-
works. Readers should satisfy themselves that these formal definitions are indeed

consistent with the informal interpretations advanced earlier, and that the process
Q defined by (7) and (8) satisfies

To compactify notation, we define a K xK input-output matriz R = (Ry;)

via
(10) Ryj=af for j,k=1,...,K.

Observe that Ry, represents the average rate at which server j depletes the stock
of class k customers when he is working, with negative depletion interpreted as
augmentation. To connect with the notation that is customary in queueing

theory, we also define K-vectors A = (A\;) and u = (u;) via
(11) A, =af and u; =af for k=1,...,K.

In light of (5), we call A; and y; the long run average arrival rate (from outside
the system) and long run average service rate, respectively, for class k customers.
We assume that p,,...,ug are strictly positive, and that units have been
chosen so that the service rates and non-zero arrival rates are all moderate in size
(of order 1). Next, let us define a K x K matrix P = (Pj) via



0 if 7 =k
(12) Py = _akj//ﬂj otherwise.

From (5) and the interpretation of F J given earlier, it follows that Pj represents
the long-run fraction of customers who, upon completing service at station j, go
next to station k. Thus we call P the transition frequency matriz, or switching
matriz, for our queueing network model. In general. however, customer routing is
not assumed to be Markovian, as we shall discuss later. It follows from (3), (5)
and (11) that P is non-negative and substochastic. As the final definitive proper-

ties of the open network model, the following two properties are assumed to hold.
(13) At least one component of X is strictly positive.
(14) The substochastic matrix P is transient (spectral radius less than one).
The meaning of (13) is obvious, and (14) is interpreted to mean that the average
number of services required to complete the processing of any given initial popula-
tion is finite.

Before the assumptions of the open network model are discussed further, it

will be useful to record some basic relationships. First. defining the K » K diago-

nal matrix

one can use (11) and (12) to write (10) in matrix form as
(16) R = (I - P')D.

From (14) and (16) it follows that R is invertible and
(17) R '= D YI+P+P*+...)".

Thus there exists a unique K-vector p = (p;) satisfying the system of linear equa-

tions

(18) X = Rp,
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and moreover the solution p = R™'A is non-negative by (17). From (5), (10),
(11) and (18) it follows that, if each server k works an average of p, hours per
hour of elapsed time over the long run, then the overall average rates of flow into
and out of each class will just balance. Thus one might describe p as the vector
of average activity rates required to maintain material balance. It is customary in
queueing theory to call p, the traffic intensity at station k. One naturally expects
that long-run stability will be achievable if and only if p, < 1 for all k, and we
shall assume hereafter that this is the case. This assumption can be expressed in

vector form as

(19) p<e.

Let us consider now the probabilistic assumptions (4)-(6) that underlie our
system model. Assumption (4) says that operations at the various nodes of the
network are independent of one another. except for such dependencies as may be
induced by the unavailability of work. This assumption is implicit in all standard
models of queueing networks. Assumptions (5) and (6) are also satisfied by the
standard models, but developers of conventional theory have no particular
motivation to comment on that fact. To put the discussion of (5) and (6) on a
concrete footing, let us consider the generalized Jackson network treated by Rei-
man |23, and others. In this model (a) the components of the vector arrival pro-
cess F° are independent renewal processes whose interarrival times have finite
second moments, (b) service times at each station are IID random variables with
finite second moments, and (c) customer routing is Markovian. (The last phrase
means that a customer completing service at station j goes next to station k with
probability P, independent of all previous history.) A Jackson network is
characterized by the additional assumptions that all arrival processes are Poisson
and all service time distributions are exponential. For a generalized Jackson net-
work, Reiman [23] shows how to calculate the mean vectors o’ and covariance
matrices '/ that appear in (5) and (6). Those calculations, which involve only
the switching probabilities and the first two moments of the interarrival and ser-
vice time distributions, are repeated in section 4 of [11], where the notational sys-
tem is similar to that used here. Using the functional central limit theorem for
renewal processes [3], Reiman [23] also shows that (6) holds for a generalized

Jackson network.
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Although the assumptions of the generalized Jackson network are mild by
conventional standards, there are several good reasons for focusing on the broader
class of system models satisfying (1)-(6). First, as Iglehart and Whitt [15]
emphasized in their pioneering work, it is (4)-(6) that express the essential distri-
butional properties of the queueing system model for those interested in Brownian
approximations. To minimize reader disorientation, most authors prefer to
deduce properties like (5) and (6) from stronger probabilistic assumptions of a
more familiar type, but any such approach has the ultimate effect of obscuring
what is essential with irrelevant special structure. Second, if one is interested in
Brownian system models, the essential data characterizing any station j is the
pair (e, T'/) appearing in (5) and (6), and it is unnatural to express these data in
terms of more elementary quantities, even when such an expression is possible.
Moreover, if one starts with a real physical system and wishes to fit a Brownian
model. the economical procedure is to determine (aj, I"j) directly from gross
input-output measurements. rather than computing these values from more
detailed quantities. Finally, there exist interesting and important types of queue-
ing networks that satisfy (1)-(6) but are not generalized Jackson networks, as that
term was defined in the preceding paragraph. This point was emphasized by Rei-
man [23] in the final section of his paper. Consider, for example, a three-station
network where all customers enter at station 1 and are served on a- first-in-first-
out basis. even numbered customers go to station 2 for a second service, odd num-
bered customers go to station 3 for a second service, and all customers depart
after completing two services. If interarrival times and service times at the three
stations are mutually independent IID sequences with finite second moments, then
assumptions (1)-(6) are all satisfied. but this is obviously not a system with Mar-
kovian routing. The switching matrix P is given in this case by P, = P53 = 1/2
and Pj = 0 otherwise. The difference between this system and one with Marko-
vian switching at the same average frequencies shows up in the covariance matrix
I'!') as readers may verify for themselves. Other types of models that do not fit
the description of a generalized Jackson network but may still satisfy (1)-(6)
involve batch arrivals, dependencies between arrival streams, server breakdown
and repair. and routing that is correlated with service time. See section 6 of Rei-

man [23] and section 10 of Harrison [11] for further discussion.

For future reference, it will be useful to express the K-dimensional queue
length process Q(t) in terms of the centered flow processes e, ¢ ..., X intro-

duced in (6). Toward that end, let us first define a K-dimensional cumulative
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idleness process I = {I(t),t > 0} by setting
(20) I(t) =1t — By(t), t 20, k=1,...,K.

From the fundamental identity (7) we have that

(21) Q) = F(t) - L FI(B(t))
1=1

€(1) + M] — $3(€(B, (1)) + o B, (1)

J=1

K . K K .
= &(t) = L E(B;(1)) + (A - Yeal)t + Yal(t - By(t))
=1 j=1
= &(t) - f}f"(Bj(t)) + (A — Re)t + RI(t).

Also, in preparation for future developments, we conclude this section by stating a

functional central limit theorem for the K-dimensional process
K

(22) £(1) = €(t) - X € (pst), t 20
7=1

Of course &, &', ..., ¢H are independent by (4), and thus it follows from (5)
that Cov[é(t)] ~ Tt ast — oc, where

K .
(23) T =T°+ 35,17
7j=1

Moreover, the following is immediate from (4) and (6).

(24) The processes n‘l/zf(nt), t>0, (n=1,2,...), viewed as random ele-
ments of D¥[0, oc), converge weakly as n-—oc to a (0,T) Brownian

motion.
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3. Rescaling Under Heavy Traffic Conditions.

For open networks, the condition required for a good Brownian approxima-
tion is that the traffic intensity be near unity for each station. This means that
the total load imposed on each station by the exogenous arrival processes is
approximately equal to the station’s capacity, which one might describe as a con-
dition of balanced heavy loading. In mathematical terms, this additional assump-

tion can be expressed as follows:

(1) there exists a large integer n such that max n'2|1 - p,| <1

For example, if p, lies in the range between 0.9 and 1.0 for each k, one can choose
n = 100 and satisfy (1). In all that follows, readers should think in terms of this
canonical situation: the total load on each station is within 10% of capacity and
n = 100.

In the literature of queueing theory it is customary to describe (1) as a heavy
traffic condition, and we shall employ that terminology hereafter. Readers should
recognize that the probabilistic assumptions imposed earlier in section 2 (in par-
ticular, that each of the primitive flow processes obeys a functional central limit
theorem) have nothing to do with heavy traffic. Condition (1) requires that the
traffic intensity be near unity for every station of the network, but the theory
extends easily to networks where some but not all stations are heavily loaded.

This will be explained in section 10.

Let us suppose hereafter that a large integer n satisfying (1) has been fixed.
Using n as an essential system parameter, we now define scaled versions of vari-
ous key processes. In essence, this scaling amounts to re-expressing time in multi-
ples of n and re-expressing queue lengths as multiples of nl/2, Consider, for

example, the K-dimensional scaled queue length process
(2) Z(t) = nV2Q(nt), t > 0.

If n = 100 and time is measured in hours in the original model, then Z,(t) tells us
how many tens of type k customers are in the system after ¢ hundred hours of

operation. Similarly, define a scaled version of the K-dimensional cumulative
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idleness process I via

(3) Y(t) = nY2I(nt).

Combining (2) and (3) with (2.21), readers may verify that

(4) Z(t) = X(t) + RY(t),

x

(5) X(t) = n"12nt) - g U2l (n(t)) + 6,

(6) B;(t) = n"'B;(nt), and

(7) 6= n"% () - Re).

Recall from (2.18) that A = Rp. Thus (7) can be rewritten

(8) 0=n""R(p-¢)=R[n"*p- ¢)],

and it follows from this and (1) that cach component of 8 is of moderatc sizc.

To form an approximating Brownian system model. one first uses the fact
(this is not easy to prove) that B;(t)/t — p, almost surely as t - oc. Moreover.
if n is large then the scaled busy time process 3,(t) behaves approximately as the
deterministic process p,t. If one simply substitutes p,t for ﬂ]-(t) in the definition
(5) of X(t), the right-hand side reduces to n~'/2¢(nt) + 6t, and (2.24) says that
n,“l/zf(nf) is distributed approximately as a (0. ') Brownian motion when n is
large. Thus we are led to approximate X(t) by a (6, I') Brownian motion, and
more generally, to approximate the scaled triple (X, ¥, Z) by the Brownian sys-
tem model (X, Y, Z) to be defined in the next section. (By using exactly the
same notation in defining the Brownian system model, we intend to emphasize
the interpretation of its constituents in terms of the original queuing network,
hoping that this re-use of notation will avoid rather than create confusion.) For a
rigorous justification of this approximation, one may invoke the limit theorem
proved by Reiman [23], but readers should note one difference between Reiman’s

treatment and ours. Reiman approximates the scaled busy time process [ J-(t) by
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t, which leads to an approximating Brownian system model (X, Y, Z) with a
slightly different covariance matrix: the factors p; that appear in our formula
(2.23) for the covariance matrix I' are replaced by ones in Reiman’s formula.
Because we consider only the case where p; is near one for each station j, the
difference between the two formulas is small (asymptotically negligible in heavy
traffic), but we feel that our proposed approximation represents a refinement of
that advanced by Reiman. See section 10 for further discussion that tends to

confirm this view.

Before turning to a discussion of the Brownian system model, let us observe
that, by (8), the anticipated stability condition p < e can be equivalently

expressed as
(9) R'4<o0.

The data for our Brownian system model will be the input-output matrix R, drift
vector 6, and covariance matrix I' defined in this section and its predecessor.
Based on the meaning of those quantities in the queueing network setting, we

expect the Brownian model to be asymptotically stable if and only if (9) holds.
4. The Brownian System Model.

Let 6. T and R be defined in terms of queueing system data as in sections 2
and 3. Recall that T is a non-degenerate covariance matrix, and that
R = (I-P)’'D. where P is a transient substochastic matrix with zeros on the
diagonal and D is a diagonal matrix with strictly positive diagonal elements.
(This special structure of R is critical for the development that follows.) Let
X ={X(t).t >0} be a (4, T) Brownian motion with X(0) = 0. Harrison and
Reiman [12] have shown that there exists a unique pair of K-dimensional

processes Y and Z that jointly satisfy
(1) Z(t)=X(t)+ RY(t) 20 forall ¢t >0,

(2) Y, is continuous and non-decreasing with ¥, (0) = 0for k =1,...,K, and

e &}

(3) ka(t)dYk(t) =0 fork=1,...,K.
0
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We paraphrase (3) by saying that Y, increases only when Z, = 0. In the current

context, the triple (X, Y, Z) will be referred to as a Brownian system model.

The process Z has state space S = R f and it behaves like a (f, I') Brownian
motion on the interior of S. That is, the increments of Z are the same as those of
X while Z is in the interior of S. When the boundary is hit, some component of
Y increases, which causes an instantaneous displacement in accordance with the
basic system equation (1). Specifically, if the boundary face {z, = 0} is hit, it is
Y, that increases, the direction of displacement is given by the k' column of R ,
and the magnitude of the displacement is the minimal amount required to keep
-Z, non-negative. As stated earlier, Reiman [23] has shown that, given the heavy
traffic condition (3.1), the Brownian system model (X, Y, Z) is distributed
approximately as the triple of scaled queueing processes denoted by the same sym-
bols in section 3. (This statement is formally expressed by a weak convergence
theorem involving a sequence of queueing systems.) Readers should check that
the features of the Brownian system model described in this paragraph are all

consistent with the queueing network interpretations of the processes X, Y and
Z.

For ease of exposition, in the preceding discussion of the queueing network
model and the approximating Brownian system model. we have confined ourselves
to the case Z(0) = X(0) = 0. However, all of the results (including the heavy
traffic limit theorems) can be generalised to allow an arbitrary initial state in
S = Rf. In particular, as described more precisely in section 5. by allowing the
initial state of the Brownian system model to run over all states in S, one obtains
a diffusion process Z satisfying (1)-(3). Following the terminology of Harrison-
Reiman [12], we shall describe Z as an RBM with state space S, drift 6, covari-
ance matrix I', and reflection matrizr R. It is the stationary distribution of this
diffusion that is studied in sections 6 through 9, where the major results are as fol-

lows. First, defining
(4) ~v=-R7'.

we show that, starting from the origin, Z(¢) converges in distribution as t oo if

and only if

(5) >0,
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which is precisely the stability condition (3.9) anticipated on the basis of queueing
theoretic considerations. When (5) holds, the limit distribution is also the unique
stationary distribution of Z, as one would expect. When (5) fails, at least one
component of Z(t) diverges almost surely as t »o0o, and there is no stationary dis-

tribution.

In the case where (5) holds, it will be shown that any stationary distribution
of Z must satisfy a certain basic adjoint relation (BAR). We do not know how to
solve (BAR) in general but, motivated by the important role of product form sta-
tionary distributions in the classical theory of queueing networks [2, 16, 17, 19],
we shall determine conditions under which the stationary distribution has a separ-
able density function (in the usual Cartesian coordinates). Specifically, given (5),
it will be shown that the stationary distribution has a separable density if and

only if the covariance matrix I' satisfies
(6) 2F]k = *(Pk]'rkk + P]kF]J) for ] ?(5 k.

In this case it will be shown that the stationary distribution of Z has density

function
- h’
(7) p(z) = TI 2% exp(—mp2). 2 €8,
k=1
where
(8) mk = 2w /T (k=1,... K).
(In the specification of our Brownian system model, the parameters u,, . . ., ug

enter as the diagonal elements of the matrix R.) That is, if (5) and (6) hold, then
the stationary distribution of Z has independent, exponentially distributed com-
ponents with means I'y;/2u 7, . . . , T g /2ug Vg respectively. The significance
of these results for stationary performance analysis of open queueing networks will

be sumimarized in section 10.
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5. Additional Notation and Preliminaries.

In this section, we introduce some additional notation and preliminary results

that will be used in sections 6-9.

For each k€{l, ...,K}, let F,={zcRF:z =0} denote the ;b

face of Rf. For each non-negative integer n and G cC RY (d > 1), let
C"(G) denote the set of real-valued functions that are n-times continuously
differentiable in some domain containing G. Let C}(G) denote the set of func-
tions in C"(G) that together with their partial derivatives up to and including
those of order n are bounded on G. Let C!(G) denote those functions in
C/(G) that have compact support in Re. If n =0, the superscript n will be

omitted. Define the differential operators

(1) L:iﬁr & +§K]0-—9—
2 5 7 0z,;0z, 27 0
and
(2) D, *H;(ai— Y Py —} LAY
5 20 M e

where v, i1s the kt'h column of the matrix R.

To establish a rigorous foundation for the proofs to follow, we now give a
more precise description of the diffusion process Z introduced in section 4. Sup-
pose X = {X(¢).t >0} is a continuous d—dimensional process defined on some
measurable space (1, F) with an associated family of probability measures
{P,,z €8} such that X(0,w)€S=RX for al we and for each
reS, X is a (6,T) Brownian motion on (2. F, P,) satisfying
X(0) =z P,-as. Let C, denote the space of continuous functions
z : [0, 00) — R¥ satisfying z(0) € S, and let Cg denote the space of continuous
functions z : [0, ©) - S. In [12], Harrison and Reiman proved the following
path-to-path mapping result: there is a wunique pair of functions
(®,¥): Cy » Cg x Cg such that for each z € Cy, y = ®(z) and 2z = ¥(z)

satisfy the following three conditions:

(3) z(t)=z(t) + Ry(t) € S for all t >0,
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(4) yj is continuous and non —decreasing with y,(0) =0, for k=1, ..., K,

(5) zk(t)dyk(t)=0 for ]C:l,...,K-

Thus, by setting ¥ = ®(X) and Z = ¥(X), we obtain the unique pair of
(pathwise) solutions to (4.1)-(4.3). It follows from the results proved in [12] that
Y and Z are adapted to X, and Z (together with the family of probability
measures {P,, z € S}) defines a continuous strong Markov process on S that has
the Feller property, namely, for each f € C;(S), z — E,[f(Z(t))] is bounded
and continuous on S. Here, as in the sequel, E, denotes expectation with respect
to P,.

An alternative characterization of the pair (Y, Z) is aﬁ'c;rded by a result of
Reiman (see the appendix to [23]). In fact, since Z is defined from X and Y by
(4.1), it suffices to characterize Y. For this, let I denote the set of all continuous,
non-decreasing functions y : [0, o) » S satisfying y(0) = 0. Now, for each
we, Y(-,w)is the least element of I such that X(¢{,w) + RY(t,w) € S for
all t > 0, 1.e., Y(,w) is minimal in the sense that for any function V( -, w) €1
satisfying X (¢, w) + RV (t,w) € S for all t > 0, we have Y (t,w) < V(t,w) for
all t > 0. This alternative characterization of the pair (1, Z) will be used in

sections 6 and 8.

In the following. the o—field of Borel subsets of the state space S = RF will
be denoted by Bg.

6. Existence of Stationary Distributions.

Definition. A stationary distribution for Z 1is a probability measure 7 on

(S, Bg) such that for each bounded Borel measurable function f on S,

(1) lEz[f(Z(t))]da'r(:c) =ff(:r)d7r(:c) for all t > 0.

S

(2) Theorem. Z has a stationary distribution if and only if condition (4.5)
holds.
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To simplify the proof of this theorem, we first perform a linear transforma-
tion of the state space. Let Z'=R1'Z, X" =R'X and
S* ={R7'z: 2z €S} Then (4.1) is equivalent to

(3) Z'(t)=X'(t) + Y(t)e S” for all ¢t >0.

Here S*Cc S =RYX since R™! is given by (2.17) and the matrices P and
D! have non-negative entries. Since Z and Z* are related by an invertible
linear transformation, Z has a stationary distribution if and only if Z* has one.
Preliminary to the proof of Theorem (2), we establish some lemmas on steady-
state limits for Z*. Here we use P, to denote the probability measure associ-
ated with X* starting from 2z € S° (or equivalently, X Starting from
Rz € S). Note that P, = P,,.

The proof of the following stochastic monotonicity result uses time-reversal
and the alternative characterization of the solution of (4.1)-(4.3) given in section

5. For this, recall the definition of 1 given in section 5.

4) Lemma. For each z° € 8°, Po(Z*(t) < z’) decreases monotonically as
(4) 0 y

t - oc and

(5) F(:)=lim, Po(Z (1) <z2")

t—=oc

—Pw: V(- w) el 2 - X7 (t,w) - V(t,w) €5 YWt >0}
Proof. Fix t € [0, oc) and define

(6) X(s)=1x(s) - X(0)  for s

X(t) - X(t-s) for 0<s <,

(s) ={ > t.

Then, under P, = P, X isa (#,T) Brownian motion starting from the ori-
gin. Let (Y, Z) = (®(X), ¥(X)), the solution of (4.1)-(4.3) with X in place of
X. Then under P, Z is equivalent in law to Z and so under Py, Z'=R7'Z is
equivalent in law to Z*. Thus it suffices to prove the lemma with Z”* in place of
Z*. For this, let X = R71X. Then by the alternative pathwise characterization
of Y (see section 5), for each w € Q, ¥( -, w) is the least element of I such
that
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X'(s,w) + Y(s,w) €S for all s >0.

Thus, forany 2z~ € S” and t > 0,

(8) {w:Z (t,w) <z}

—fw: V(W) e, X (s, 0)+V(s,w) €S s 20, X*(t,w)+V(t,w) <27}
It follows from [12] that any continuous non-decreasing function V(‘,w) on
[0, t] satisfying V (0, w) = 0 and

(9) X(s,w) + RV(s,w) €S

for all s € [0.t], can be extended to a member of I such that (9) holds for all
s > 0. Thus. the event in (8) is equal to

(10) {w: IV(-,w) eI, X (s,w)+V(s,w) €S Vs €0, t], X (t,w)+V(t,w) < 2"}
“{w IV W e X (s, w)+V(s,w) €S Vs €[0,t]. X (t,w)+V(t,w) =2}

The last equality follows because any V( -, w) € 1 satisfying the conditions in the

event (10) can be continuously increased to a V( -, w) € I satisfying the condi-

tions of the last event above. Now. X' (s) = X (1) - X ' (1—s) for s ¢ [0. 1]
and X' (1) = X' (1) Pg—as. Moreover, y € I if and only if § € I where

. y(t) - y(t-s) for s€l0,1]
v(s) = y(s) for s > t.

Let F° denote the completion of F with respect to P;. Then (10) is Pj—a.s.

equal to the following event contained in F”:

(11) {w: IV(-,w)el, X7 (t,w) - X (t-s,w) + V(t,w)-V(t-s,w)€S"
ws €]0,t], X (t,w) + V(t,w) =27}

and by a change of variable from s to t —s, the above is equal to

{w: JAV(-,wel, X' (t,w) + V(t,w) - X (s,w) — V(s,w) €S Vs €0, t],
X'(t,w) + V(t,w) = 2"}.
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={w: dV(-,wel, 2" - X"(s,w) - V(s,w) € S" Vs €0, t],

27 - X'(t,w) - V(t,w) =0}

={w: AV(-,wel, 2" - X"(s,w) - V(s,w) €S* Vs €0, t]}.

The last equality follows by similar reasoning to that used in the sentence follow-
ing (10). Since the above event decreases to the event in the last line of (5) as ¢

increases, the desired result follows. O

The next two lemmas show that the limit in (5) is non-trivial if and only if
“condition (4.5) holds. Here 3S~ denotes the boundary of S*.

(12) Lemma. Suppose = —R7'60>0. Then there is a K-vector 6 >0 such
that forall 27 € S7,

K *2(5ka
(13) F (2)21- Y exp

k=1 Tie
where 2z, = (Rz"), 20 for k=1,...,K.

Proof. Since ~ > 0, by the continuity of R~! we can choose a K-vector é > 0
sufficiently small that R7'6<~. Then a=~-R'>0 and V' defined by
V' (t) = at forall t >0 is an element of 1. Combining this with (5), we have

for each z° € S7,
F'(z)2Pyz — X" (t) - V' (t)eS" ¥t =0
_ Po(R(z" - X"(1) = V'(t)) €S Wit 30)
= Py(z — X(t) —Rat 20 Yt 2 0),

where z = Rz” > 0. Now under P,, X(t) = W(t) + 6t forallt > 0 where W
is a (0, T) Brownian motion starting from the origin in R¥. Substituting this in

the above and noting that —8 — R = 6, we obtain
F'(2*) 2 Po(z — W(t) +6t 20 Yt >0)
= Po(z, + Bi(t) >0 Yt >0, k=1,... K),

where for each k, under P, B(t) = —W,(t) + ét is a (&, ) Brownian

motion on R and it is transient to +oc since §, > 0. Thus,

F(2') 21— Py(z + inf By(t) <0 forsomek € {1,...,K})
£>0
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K
>1- Y, Po(z + inf B,(t) <0)
k=1 t20
K —26, z,
=1 — E exp —kk_ .
P! Tk

To obtain the last equality, we have used the formula for the probability [10, p.
43] that a one-dimensional Brownian motion with drift 6, and variance 'y, does

not go below the level zero. O

Remark. It follows from Lemma (12) that when ~ > 0 the limit distribution of

Z* has an exponential tail and hence has finite moments of all orders.

(14) Lemma. If 4 3> 0, then for each z°,2" € S,

(15) P, (Z(t)<z)—=0 as t = o0.

Proof. The pair (Y, Z°) satisfies (4.1)-(4.2) with X’ and I in place of X
and R, respectively. By the well known pathwise construction of a one-
dimensional reflected Brownian motion [4, section £.2], the solution (Y. Z) of

(4.1)-(4.3) with data (X, I) in place of (X, R) is given by

(1) = (max (X (s)}|". Z(t)=X"(t) + ¥(t), forallt >o0.

0<s<t

1l

Then by the alternative characterization of this pair given in section 5. it follows
that for each 2z~ € S*, P_. —a.s. '

z

Y(t)< Y(t) and 2Z(t) < Z7(t) forall t > 0.

Now suppose ~; = —(R'6), <O for some k¢ {1, ...,K}. Then Z, isa
one-dimensional reflected Brownian motion on R. with non-zero variance and
drift —~, and so is either null recurrent or transient as ~, =0 or =, < 0.

Since Z' dominates Z, it follows that (15) holds for any z*,2" € §*. ©

(16) Corollary. If 4 % 0, then for each z,2z € S,

P,(Z(t)<z)—0 as t — .
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Proof. This follows immediately from Lemma (14) and the fact that for each
2€8,{Z(t) <z} Cc{Z(t) < R 'z}, since R™! has only non-negative entries.
o

Proof of Theorem (2). If 43 0, then it follows immediately from (16) and

(1) that Z cannot have a stationary distribution.

Conversely, suppose <~ >0. Then, by Lemmas (4) and (12), F*
corresponds to a probability measure 7" concentrated on (S*, Bg.) , which is

the limit distribution of Z* under Pgj. Define the probability measure 7 on
(Sa BS) b}'

m(A) =7 (R™'A) for all A € Bg.

Since Z° starting from 0 converges in distribution to #° as t — oo, it follows
that Z starting from O converges in distribution to 7 as t — oc. Thus, for
any f € Cy(S) and t 20,

lim Ey[f (Z(s+t))]

!d?.’(:r) /(z) 5'_'00

lim Eo[Eg,)[f (Z(1))]]

§—0C

fdvr ) (1 (2(1))]

I

Il

where we have used the Markov property of Z to obtain the second equality and
the Feller continuity in deducing the third equality. It follows by a monotone
class argument that (1) holds for all bounded Borel measurable functions f on

S and hence 7 is a stationary distribution for Z. O

7. Uniqueness of Stationary Distributions.

(1) Theorem. Any stationary distribution for Z 1is unique.

Before proving this theorem, we establish some preliminary lemmas.

(2) Lemma. Foreach z €S,
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(3) Ezlf 165(2(3))(13] - 0.

Proof. It suffices to prove for each j € {1, ..., K},
(4) f lgoy(n;-Z(s))ds =0 P,—as. foreach ¢ >0 and z €S,
0

where n; is the inward unit normal to the jth face F;. For this, fix

z€S,t>0 and let ¢¢€ CHR,) such that ¢” is non-increasing on

RJr, ¢”(U):1 for Oéu g%, (}S”(u):o for u 21’ ¢'(U):f¢”(v)du
1

u
and ¢(u qu v)dv, sofor u >1, ¢’(u) =0 and ¢(u) = 0. By applying
1

Ité’s formula to =z — a’)(c']n] z) for ¢>0 and using the semimartingale

representation (4.1) of Z, we obtain P,-a.s.

=~
I
—

! ‘Tn; ¢ (¢ n;-Z(s))ds.

m|»—A

Recall that v, is the vector given by the kth column of R. Since X 1is a
(6. T) Brownian motion and ¢, ¢  are bounded, it follows that when multiplied
by €2, all but the last term in the above equation tends to zero almost surely or

in L? (with respect to P,) as ¢ — 0. Hence,
t

(6) lim %nf n; Tn; ¢ (e tn
€— 0

The desired result (4) then follows from Fatou’s lemma and the facts that
n;'T’n; =T;;>0, ¢7(0)=1 and ¢” 20 on R,. DO

(7) Lemma. Foreach €S and t >0,
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(8) P,(Z(t) €9S) = 0.

Proof. This follows from (3) by standard arguments using Fubini’s theorem and
the fact that Z is a continuous strong Markov process that behaves like a (4, T')

Brownian motion in S\3S. O

Let m denote Lebesgue measure on S.

(9) Lemma. Foreach z € S,t >0 and Borel set A in S we have

(10) P,(Z(t)eA) =0 < m(4)=0.

Proof. Since m(dS) = 0 and (8) holds, it suffices to consider A C G where
G is a compact subset of S\9S. Let
r=inf{s 20:Z(s)€0S}, o =inf{s 20:Z(s) € G}, 0, =0 and for each
n>1, let r, =0, y+7:0, and o, =71, +0 -0, where 6. denotes the
usual shift operator for Z. Then, for each z €5, 7, T P,-as. as n - o

and

(11) E,

flA(Z(’))dt] = i £, f 14(Z(t))dt
0 n=1 g,

From Lemma (7), the strong Markov property of Z, and the fact that Z
behaves like a (f, I') Brownian motion until the time of its first exit from S\ 35S,
it follows that the left member of (11) is zero if and only if m(A) = 0. The
desired result (10) is then obtained in a similar way to that in which (7) is
deduced from (2). ©

Two measures will be called equivalent if they are mutually absolutely con-

~

tinuous. The symbol =~ will be used to denote equivalence of measures.
(12) Lemma. Suppose 7 ts a stationary distribution for Z. Then 7 = m.

Proof. Since =7 is stationary, for any Borel set A C S,

(13) nu):lpgmneAwﬂn.
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It follows from this and the fact that (10) holds for t = 1 and every z € S that
7(A) =0 ifand only if m(4)=0. O

Remark. The above result extends immediately to the case where 7 1is a

o—finite invariant measure for Z.

Proof of Theorem (1). Suppose 7 is a stationary distribution for Z. Then it
follows from Lemmas (9) and (12) (cf. [31, p. 389-390]) that Z is ergodic on S
and for each z € S and [ € Cy(9),

The uniqueness of 7 follows immediately from this representation. O

8. A Necessary Condition for Stationary Distributions.

In this section we establish a basic adjoint relation (BAR) that must be
satisfled by any stationary distribution for Z. Here o, denotes (K-1)-

dimensional Lebesgue measure (surface measure) on the face F,.

(1) Theorem. Suppose 7 is a stationary distribution for Z. Then, for each
ke{l, ....K}, there is a finite Borel measure v, on F, such that

v, = o, and for each bounded Borel function f on F, and t > 0.

=

(2) E;

' 1

f(z dY = —t dv,.
[ #126e) k(s»] TREL
Moreover, for each [ € CE(S),

.
(BAR) [ Lf d7r+%l§l)£Dkfduk - 0.

S

Remark. The % in (2) and (BAR) matches the % in L. It has been intro-

duced here to simplify later manipulations.
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The following lemmas will be used in proving this theorem. For the proofs of
these, we need to introduce the usual o-field M and filtration {M,, ¢ > 0} asso-
ciated with the strong Markov process Z. Let M° = 6{Z(s) : 0 < s < oo} and
M/ =0{Z(s):0< s <t}, for each t > 0. For each probability measure u on
(S,Bg) and for P, defined by P, = sz du(z), let M* denote the P,-
completion of M’ and let M/ be the smallest o-field containing M/ and all of

the P, null sets in M¥. Define M = M| M* and M, = My M{ for all ¢ > 0. For
H p
the definitions of additive process/functional used below, see [5].

(3) Lemma. For each k € {1, ..., K}, there is a continuous additive func-
tional f'k of Z such that for each z € S, f’k s P,-indistinguishable from Y,.

Moreover, the support of f'k is contained in F,.

Proof. For each z € §, Z is a continuous P,-semimartingale relative to the
filtration generated by X (cf. (4.1)), and hence [7, VII-60, p. 268|, Z is a P,-
semimartingale on (02, M, {M,}). It follows from [5, Theorem 3.12| that there is
a continuous {M, }-adapted process that for each £ € S is a version of the P,-

stochastic integral process

f ls\as(Z(s))dZ(s). t 2 0.
0

Let X denote the sum of this {M,}-adapted process with Z(0), so that for each
r € S we have P, -a.s. for allt 2> O: |

X(t) = Z(0) + f lg\as(Z(s)) dZ(s).
0

In the integral above, dZ can be replaced by dX since Y increases only when Z
is on 8S (cf. (4.3)). and then, by Lemma (7.2) and the fact that X is a
Brownian motion under P,, the integrand can be replaced by 1. It follows from
this that X s P,-indistinguishable from X for each =z € S5. Define
Y=RYZ-X). Then Y is continuous, {M,}-adapted and P,-
indistinguishable from Y for each z € S.
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Now R7}(Z(-) - Z(0)) is a continuous additive process relative to Z. It
then follows from the decomposition of this semimartingale and [5, Theorem 3.18]
that R™Y(X(-) - X(0)) and Y can also be chosen to be additive. In this case,
since Y is non-decreasing, each component I7k of ¥ will be a (non-decreasing)
continuous additive functional of Z. Condition (4.3) implies that the support of

Y, is contained in F, for each k. O

(4) Lemma. There is a constant C € (0, 00) such that for each
zeS, ke{l, ...,K} and t 20

E,[Y,(t)] < C(t+1).

Proof. For each t >0 and k € {1, ..., K}, let M, (t) = {max (— X,(s))},

0<s<t
and let

V(t)= RIM(t).

Then, X(t) + RV(t) € S for all t > 0 and by the alternative characterization

of YV (cf. section 5), as shown in Reiman [23, p. 457]. we have for each k,

K

(3) Yi(t) < Vi(t) < R max M;(1).
J=1
K K
where | R7' || = mfi E ,]l For each j, P,—as., M; is less than or

equal to the maximum of a one-dimensional Brownian motion that starts from
the origin and has drift —6,. and so there are constants C]-l, C]-Z, C]~3 € (0,0c) (not
depending on z) such that

6)  E,M(t)] <Nt + CH < CR(t+1) forall t 20

=

The desired result then follows by combining (5) and (6). O

(7) Lemma. Foreach ke€{l, ...,K} and € S

f 1r.nr,(Z(s)) dYy(s) =0 P,—as. for all j # k.
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Proof. See Reiman-Williams |24, Theorem 1]. O

Proof of Theorem 1. By Lemma (3), it suffices to prove (2) with ¥ in place of
Y. Moreover, by Lemmas (3) and (4), for each k, Y, is a continuous additive
functional of Z with support in F, and ¥,(¢) has finite expectation with
respect to E, for each t > 0. Hence [1], there is a finite Borel measure v, on
F, such that (2) holds for all bounded Borel functions f on F, andallt > 0.

Fixk € {1,...,K}. Toprove v, = oy, it suffices to prove

(8) E,flA(Z(s))dYk(s)]w < af4)=0

0

for all Borel sets A C Fy,t >0 and z € S. In view of Lemma (7), it suffices to
prove this for sets A that are a positive distance from the other sides F,j # k.
But this follows by localization and the analogous property for a Brownian

motion reflected in the direction v, on a half-plane containing Fy.

Now suppose [ € C(S). Then by Ité’s formula and the semimartingale

representation (4.1) of Z, for each z € S we have P,—as. forall t > 0:

t

(9) 1(2(t) - 1(2(0)) = [ Vf (2(s))-dW(s)

0

where W(t) = X(t) - 6t is a (0,T) Brownian motion and D;, L are given
by (5.1)-(5.2). Since V/f is bounded, the stochastic integral with respect to d W
in (9) defines a martingale and so its expectation under P, is zero. Thus, taking
expectations with respect to P, in (9) and integrating with respect to the sta-

tionary distribution 7, we obtain

K
0-Ly E[Dkfduk+thfd7r,
2 oy

S
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where (2) was used to obtain the first integral term and Fubini’s theorem together
with (6.1) for the second. Dividing by ¢t > 0 yields (BAR). ©

9. Product Form Solutions.

Recall from Lemma (7.12) that any stationary distribution for Z is

equivalent to Lebesgue measure m on &.

Definition. We say a stationary distribution for Z 1s of product form (or has a

separable density) if and only if
K .
(1) p(z) = —=—(z) = TI px(z)., z=1(z1, ..., %) €S,

where p; 1s a probability density function relative to Lebesgue measure on R,
fork =1,... K.

(2) Theorem. Z has a product form stationary distribution if and only if
(4.5)-(4.6) hold. In this case. the density p for this distribution is given by

(4.7)-(4.8)

The proof of Theorem (2) is divided into two parts. The only if part is
proved in Theorem (3) below using a Laplace transform relation derived from the
necessary condition (BAR) of section 8. For the if part, proved in Theorem
(23), we first perform a linear transformation to remove the correlation between
the components of X and then appeal to [30] where it is verified that conditions
(4.5)-(4.6) are sufficient for the transformed process to have an exponential form
(a special case of product form) stationary density, and hence for the original pro-
cess to have one. We note in passing that if (BAR) could be shown to be
sufficient as well as necessary for 7 to be a stationary distribution for Z, then the

proof of Theorem (3) would also yield the if part of Theorem (2).

(3) Theorem. Suppose Z has a product form stationary distribution w. Then
(4.5)-(4.6) must hold and the density p of m relative to m is given by (4.7)-
(4.8), and for each k € {1, ..., K},

dl/k

(4)

(z) = 2% TI n,exp{-n;z;} for all z¢€ Fy.
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Proof. In this proof only, for notational convenience, the symbols Q@ and A\ will

have different meanings from those assigned in section 2.

By Theorems 6.2 and 8.1, (4.5) and (BAR) must hold. Now, for
AeRX f(z) =exp{-)-z} isin CZ(S). Thus, we may substitute such func-
tions in (BAR) to obtain the following transform relation as necessary for 7 to

be a stationary distribution of Z:

(5) QN1 (A - f] Ly (Mvg(A ) = 0 for all XeRE,
k=1

(8) Q(\) =ATXr—240

(7) LA = |- D PG Al k=1, ... K
1%k

(8) 77 (A) =£exp{—A-z}d7r(z)

(9) vi(A x) = 7[exp{—xz}duk(z), k=1, ...,K.

Here ), denotes the (K—1)-vector formed by deleting the Kt entry in .
This notation is used to emphasize the fact that (A ;) does not depend on

A since z, =0 on Fj.

Suppose the density p of 7 relative to m 1is separable, as in (1). Then
substituting this in the above, dividing (5) by A, > 0 for a fixed k, and letting

Ay — o¢ ., we obtain

(10) I‘kk Cr H 'ﬂ’;(/\j) = /lkl/k*(/\lk) for k = 1, e s K,
J#k

where

(1) wjAy) = [ eV pi(z)dzy, G # K,
0

(12) ¢, = lim X 7m0 (A),

/\‘—»oo

and we have used the fact (cf. Theorem (8.1)) that v; does not charge F, N F;

for 7 # k so that Alim I/;(/\l ;) = 0. After substituting the expressions for the
§ 00
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vk(A|x) from (10) in (5), we obtain for all A € R,

03) QW TT 7)) = B L) Tuawi T 00 - o
7=1 =1 i#

By setting A, = 0 for j # k and solving for 7,();), we obtain

(14)  77(%) = D for all A, >0, k =1 K
kAr) = k s =1, ..., 4.
rkk/\k — 20k =+ Ek P]'er'J'C]'
3%

By the uniqueness of Laplace transforms for probability densities, it follows from
(14) that

(15) Pr(2) = nyexp(-mnx2), k=1, ... K,

where

(16)  np = (=20, + Y PuyTjin;)/T

J7#k
and
(17) ¢, =m > 0.
The equation (16) for n = (n;, ..., ng)  may be rewritten in matrix form:

(18)  (I-P)An = —26,

where A is a diagonal matrix with the same diagonal entries as TI'. Since

I — P" =R D! isinvertible and v = —R 16, equation (18) is equivalent to:
(19) 7n=-20"'DR7'=2A""'D~.

Note that (15), (19) are equivalent to (4.7), (4.8), and » > 0 if and only if v > 0.
After substituting 7/(A;) = n;/(A; +7;) in (10) and invoking the uniqueness of
Laplace transforms for measures with L! densities relative to surface measure
o, on F,, weobtain (4). Thus, v, is a normalized trace of the measure 7 on

Fy. Now, substituting the above expression for =;(A;) in (13) and dividing

K
through by [] 7;(};), we obtain
71=1
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(200 QA - N(UI-P')A(A+7) = 0.

When (18) is substituted in (20), the latter reduces to

(21)  ATA-X(I—P’)AX=0.

After symmetrizing (I — P°)A, we see that (21) holds for all A€ R¥ if and

only if
(22) 2 =2A — P’A — AP,

which is equivalent to (4.6). This completes the proof of the necessity of (4.5)-
(4.8) and (4) for 7 to be a product form stationary distribution of Z . ©

(23) Theorem. Suppose (4.5)-(4.6) hold. Then Z has a product form station-
ary distribution and its density p relative to m s given by (4.7)-(4.8).

Proof. To allow use of the results in [30], we first perform a linear transforma-
tion of the state space to remove the correlation between the components of X.
Let U be the rotation matrix whose rows are the orthonormal eigenvectors of

the covariance matrix I' and let A be the corresponding diagonal matrix of
1

eigenvalues such that T' = U’AU, where U’ = U"'. Let V A_?L' and
define Z=VZ, X=VX and R=VR. Then X is a (V#,I) Brownian

motion and the kth row of the matrix

1
2

1
AU A?

(24) N

is the inward unit normal to the face of the state space of Z on which Y,

increases. Here A = diag(T'), as in the proof of Theorem (3). Resolving the kth

column of R into components that are normal and tangential to the kth face of

the state space of Z, we  obtain R = (]V “+Q “JH, where
1
diag(NQ°) = 0, H = diag(NR) = A 2D and
21
Q" =RH'-N"=4 *U(I-P)A

1 1

1
2 _ AU 2,

It was shown in [30] that if the following skew symmetry condition holds
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(25) NQ +QN =0,

then Z has an invariant measure # such that d#(%) = exp(—#-z)d?, where
n = —2(I—N_1Q)‘1V0 . Moreover, when exp(—7-Z) is integrable over the
state space of Z, 7 (suitably normalized) yields the unique stationary distribu-
tion for Z. Simple algebraic manipulations show that (25) holds if and only if
(22) holds. Moreover, when (22) holds,

V' =2V (2I-V(@L-A+P’A)V') Ve

I

2VI(V(I-P)AV) Ve
=20 'DR716 = n,

where 7 is given by (19). Since Z and Z are related by the invertible linear
transformation V', it follows that when (22) holds and exp{- (V' %)z} is

integrable over S (i.e., > 0), then Z has a product form stationary distribution
with density given by (4.7)-(4.8). ©

10. Summary of Performance Analysis Procedures.

Consider an open queueing network of the type described earlier in section 2,
assuming that p, is less than one but near one for each station # =1,... K.
Let n be a large integer satisfying (3.1). and define a drift vector §, covariance
matrix I' and reflection matrix R in terms of the queueing network’s parameters
as in sections 2 and 3. Finally, let Z be a K-dimensional RBM defined in terms
of #, T and R as in section 4. Consider Z starting from the origin and let Q@ (o)
and Z(oc) denote the weak limits of Q(t) and Z(t), respectively, as t — oc.
(Note that the necessary and sufficient condition (4.5) for Z to have a limit distri-
bution is satisfied since this is equivalent to the condition p < e.) The heavy
traffic limit theorem alluded to in section 3 shows that the scaled queue length
process {n—lﬂQ(nt), t > 0} is distributed approximately as Z, and thus we are
led to approximate (in the distributional sense) n '/?Q(x) by Z(oc).
Equivalently, the heavy traffic limit theory leads us to approximate Q(o0) by
nl/ZZ(oo). Unfortunately, the distribution of Z(oc) is not known for general
values of 6, T and R, but if I' and R jointly satisfy condition (4.6), equations
(4.7) and (4.8) say that Z,(c0), ..., Zg(oc) are independent and exponentially
distributed with E[Z;(00)] = Ty, /24,7, . Thus, given that T and R jointly
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satisfy (4.6), we are led to the approximation E[Qj(o0)] ~ nl/zrkk/Zuk’yk. By
(4.4) and (3.8), this is equivalent to

(1) E|Qx(0)] = T /2uk(1 — py) for k=1,...,K.

A similar but somewhat different approximation scheme has been proposed by
Whitt [28] for analysis of generalized Jackson networks, and that scheme is imple-

mented in the software package called QNA.

We have seen that formula (1) flows directly out of heavy traffic limit
theory in the case where (4.6) holds, and the courageous might venture to apply
(1) regardless of whether the network data satisfy (4.6). A virtue of formula (1),
like the QNA approximation scheme, is that it uses both first and second moment
information. In contrast, many practically oriented users of performance analysis
methodology simply apply the formulas derived by Jackson [16, 17] when they
wish to evaluate a proposed network configuration. These formulas are based on
the assumption of Poisson arrivals and exponential service time distributions, and
to apply them one need only estimate the mean arrival rates and mean service
times at the various stations of the network. The result is that second moment
information is either ignored or never gathered. It may be, incidentally, that the
QNA approximation for E[Q,(o)] is nearly equivalent to (1) when (4.6) holds

and p, is near one for all k, but we have not investigated this matter.

Let us consider now a network where p, is less than one but close to one for
some stations k, whereas p, is substantially less than one for all other stations.
Hereafter the former class will be referred to as eritical stations, or the bottleneck
subnetwork, and the latter class will be referred to as non-critical stations. Intui-
tively, one feels that the congestion and delay associated with non-critical stations
will be negligible compared with those arising in the bottleneck subnetwork, and
the formal results of Iglehart-Whitt [15] and Johnson [18] strongly confirm that
view. More specifically, these results show that, for certain restricted classes of
networks, one can simply delete non-critical stations from one’s model, as if pas-
sage through such stations were instantaneous. (In the reduced model, of course,
the flow processes F’ must describe statistically the flow of customers between
successive critical stations.) The papers referenced above justify this procedure
only for special classes of networks, but the extension to the general class of net-

works described in section 2 is presumably straightforward.
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11. Concluding Remarks and Open Problems.

As a consistency check on the results presented in this paper, readers might
wish to consider the case of an open Jackson network, characterized by Poisson
arrival processes, exponential service time distributions, and Markovian routing.
In that case, it is known that @ (oc) has a product form distribution, so one would
expect the approximating RBM to have a product form stationary distribution as
well, which is equivalent to saying that (4.6) holds. A tedious verification shows
that the covariance matrix I' and reflection matrix R associated with a Jackson
network do indeed satisfy (4.6). This would not be true, incidentally, if one used
the expression for I' advanced in Reiman’s [23] original treatment; with Reiman’s
formula for T, (4.6) holds for Jackson networks only in the limit as p, — 1 for all
stations k. We feel that this tends to confirm the view, expressed earlier in sec-
tion 3, that our formula (2.23) represents a refinement of the formula for T

advanced by Reiman.

We conclude the paper with some conjectures and open research problems,
all of which involve stationary distributions for the class of RBM’s defined in sec-
tion 4. Given that a stationary distribution 7 exists, we would like to establish
that 7 has a density function p on S such that the boundary measure v, has
density u;'Typ on F, (k=1,...,K). It has been shown that this is the
case when (4.6) holds (see section 9), and we conjecture that it is true generally.

If so, then the basic adjoint relation (BAR) of section 8 takes the form

1 K
(BAR) l.r,f p dr + EEI

ui Ty, )[ D.f pdo, = 0 forall f ¢ CS).
k

where o, denotes (K —1)-dimensional Lebesgue measure on F,. Having justified
the expression of (BAR) in this simplified form, another open problem is to show
that a probability density function p is the stationary density of the RBM under
study if and only if it satisfies (BAR). Only the necessity has been established in
section 8. The final open problem, of course, is to solve (BAR), which presum-
ably means developing efficient numerical methods for computing important per-
formance measures associated with the stationary density p, such as the means of

the marginal distributions.
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