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Abstract 

Traffic congestion is a national issue in the United States and has gotten worse in regions 

of all sizes. Now, more and more intersections are operated in oversaturated situations 

where the traffic demand exceeds the capacity of the system. Although a significant 

amount of literature has been devoted to how to manage oversaturated traffic signal 

systems, our understanding of the characteristics of oversaturation remains limited, 

particularly with regard to identification of oversaturation and the transition process from 

under-saturated condition to oversaturation. It has become increasingly obvious that 

successful traffic management requires efficient methods to identify and model 

oversaturated conditions.  

 

This research moves towards a better understanding of oversaturation, by 1) providing 

coherent methodologies to quantify oversaturation and 2) developing a simplified model 

to describe oversaturation at signalized intersections based on high-resolution traffic 

signal data collected by the SMART-SIGNAL (Systematic Monitoring of Arterial Road 

Traffic Signals) system. In particular, the research focuses on the following four areas: 

 

1) Quantification of oversaturation: Traditional definitions of oversaturation are not 

applicable for existing detection systems. This research circumvents this issue by 

quantifying the detrimental effects of oversaturation on signal operations, both 

temporally and spatially. In the temporal dimension, the detrimental effect is 

characterized by a residual queue at the end of a cycle, which occupies a portion of green 

time in the next cycle. In the spatial dimension, the detrimental effect is characterized by 

a downstream spillover, which blocks the traffic and reduces usable green time. From 

these observations, we derive two types of an oversaturation severity index (OSI): one 

temporally-based (T-OSI) and one spatially-based (S-OSI). Both T-OSI and S-OSI are 

designed to yield a ratio between the unusable green time due to detrimental effects and 

the total available green time in a cycle, using high resolution traffic signal data. T-OSI is 

quantified by estimating the residual queue length; and S-OSI is quantified by measuring 
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the time period of spillover. Since different types of OSI (T-OSI or S-OSI) point to 

different underlying causes of oversaturation, this research has the potential to provide 

guidance for the mitigation strategies of signal oversaturation. 

 

2) Real-time queue length estimation for congested intersections: To quantify T-OSI, 

this research proposes a novel shockwave-based algorithm to estimate time-dependent 

queue length even when the signal links are congested with long queues, a situation that 

the traditional input-output approach for queue length estimation cannot handle. Using 

high-resolution “event-based” traffic signal data, the new algorithm first identifies traffic 

state changes; and then applies Lighthill-Whitham-Richards (LWR) shockwave theory to 

estimate maximum and minimum (i.e. residual) queue length. This algorithm is also 

applicable for other aspects of arterial performance such as travel time, delay, and level 

of service. 

 

3) Queue-Over-Detector (QOD): To quantify S-OSI, we study a phenomenon we call 

Queue-Over-Detector (QOD). QOD occurs when a vehicle stops and rests on a detector 

for a period of time creating a large occupancy value. This research demonstrates that a 

main cause of QOD is spillover from downstream intersections. Thus QOD identification 

can be used to quantify oversaturation in the spatial dimension, i.e. S-OSI. This research 

also briefly studies the relationship between QOD and the cycle-based arterial 

fundamental diagram (AFD) by microscopically investigating individual vehicle 

trajectories derived from event-based data. Results show that proper treatment of QOD 

results in a stable form of the AFD which clearly identifies three different regimes, 

under-saturation, saturation, and over-saturation with queue spillovers. Achieving a stable 

form of the AFD is of great importance for traffic signal control because of its ability to 

identify traffic states on a signal link. 

 

4). Traffic flow modeling for oversaturated arterials: The culmination of this research 

project is a simplified traffic flow model for congested arterial networks, which we call 

the shockwave profile model (SPM). Unlike conventional macroscopic models, in which 

space is often discretized into small cells for numerical solution, SPM treats each 
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homogeneous road segment with constant capacity as a section; then categorizes the 

traffic within each section simply as free-flow, saturated, or jammed. Traffic dynamics 

are analytically described by tracing the shockwave fronts which explicitly separate these 

three traffic states. SPM is particularly suitable for simulating traffic flow on congested 

signalized arterials, especially with queue spillover problems. In SPM, queue spillover 

can be treated as either extending a red light or creating new smaller cycles. Since only 

the essential features of arterial traffic flow, i.e., queue build-up and dissipation, are 

considered, SPM significantly simplifies arterial network design and improves numerical 

efficiency. For these reasons, we fully expect this model to be adopted in real-time 

applications such as arterial performance prediction and signal optimization.  
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i
: Average density of arrival flow during the i
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 cycle 
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kjam
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 ŵ
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1 Introduction  

1.1 Problem Statement 

 

Traffic congestion is a national issue in the United States and has gotten worse in regions 

of all sizes (Texas Transportation Institute, 2009). Now, more and more urban and 

suburban intersections are operated in congested conditions and situations where the 

traffic demand exceeds the capacity of the system. Under this condition of oversaturation, 

typical traffic control strategies do not work as efficiently as necessary. As indicated by 

the results of the 2007 Traffic Signal Operation Self Assessment surveys (Institute of 

Transportation Engineers, 2007), the majority of agencies involved in the operation and 

maintenance of traffic signal systems are already stretched thin and challenged to provide 

adequate service to drivers in their jurisdictions. Oversaturated conditions present an 

additional burden for practitioners that lack adequate tools for addressing such situations. 

 

Although a significant amount of literature has been devoted to how to manage 

oversaturated traffic signal systems, our understanding of the characteristics of 

oversaturation, particularly identification of oversaturation and the transition process 

from under-saturated condition to oversaturation, is limited. As a result, there is a critical 

need for new methods to identify and model oversaturation. 

 

This research moves towards a better understanding of oversaturation by providing 

coherent methodologies to quantify and model oversaturation at signalized intersections. 

Two major themes are the focus of this dissertation: 

 

1). Quantification of oversaturation. Previous research studies using traffic data from 

signal systems to diagnose and identify oversaturation are mostly qualitative and 

incomplete. Conceptual definitions of oversaturation, which define an oversaturated 

traffic intersection as one where traffic demand exceeds the capacity, cannot be applied 

directly to identify oversaturated intersections because traffic demand under congested 
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conditions is not measurable, particularly with fixed-location sensors. Furthermore, 

successful mitigation strategies require the ability both to detect the onset of 

oversaturation and to quantify its severity. Thus it is imperative to have an implementable 

and quantifiable metric of oversaturation as well as a coherent methodology to identify 

such situation.  

 

2). Modeling of oversaturation. Compared to the continuous and intensive research 

efforts on modeling of freeway traffic, there have been far fewer reported efforts to study 

arterial traffic flow. Existing traffic flow models are designed to model continuum 

freeway traffic, and thus have deficiencies when applied to congested arterials where 

traffic is interrupted by traffic lights. This is particularly true for large arterial networks 

during oversaturated conditions. Since traffic flow modeling serves as the foundation for 

all signal optimization schemes, there is a need for a quick and approximate approach, 

with sufficient descriptive power, to model oversaturated traffic flow dynamics in a 

signalized network for real-time applications. 

 

The research to address these issues is built upon the high-resolution traffic signal data 

collected and archived by the SMART-SIGNAL (Systematic Monitoring of Arterial Road 

Traffic Signals) system developed by the University of Minnesota (Liu & Ma, 2009; Liu 

et al., 2010; Wu et al., 2010a; Wu et al., 2010b; Wu et al., 2010c). Without the real-time 

data collected by this system, our project would not have been possible. 

 

1.2 Research Contributions 

 

This thesis makes contributions in the areas of arterial performance measurement, arterial 

traffic flow theory, and arterial signal control. Specifically: 

 

1) It proposes a systematic approach to quantify oversaturation. Traditional 

definitions of oversaturation are not applicable for existing detection systems. This 

research circumvents this issue by quantifying the detrimental effects of oversaturation 
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on signal operations, both temporally and spatially. The detrimental effect is 

characterized either temporally by a residual queue at the end of a cycle, which occupies 

a portion of green time in the next cycle; or spatially by the spillover from downstream 

traffic which reduces usable green time due to the downstream blockage. An 

oversaturation severity index (OSI), based either on the temporal dimension (T-OSI) or 

spatial dimension (S-OSI), can then be calculated as the ratio between the unusable green 

time due to detrimental effects and the total available green time in a cycle. T-OSI is 

quantified by estimating the residual queue length; and S-OSI is quantified by measuring 

the time period of spillover. Since different types of OSI (T-OSI or S-OSI) point to 

different underlying causes of oversaturation, this research is expected to provide 

guidance for strategies to mitigate signal oversaturation. 

 

2) It develops a shockwave-based intersection queue length estimation algorithm. 

The traditional input-output approach for queue length estimation can only handle queues 

that are shorter than the distance between the vehicle detector and intersection stop line, 

because cumulative vehicle counts for arrival traffic are not available once the detector is 

occupied by the queue. To estimate queue length under congested conditions, a novel 

shockwave-based queue estimation algorithm is developed in this research. Using high-

resolution “event-based” traffic signal data, the new algorithm first identifies traffic state 

changes that distinguish queue discharge flow from upstream arrival traffic; it then 

applies Lighthill-Whitham-Richards (LWR) shockwave theory to estimate maximum and 

minimum (i.e. residual) queue length. Since this approach can estimate time-dependent 

queue length even when signal links are congested with long queues, we use it to quantify 

T-OSI. This algorithm can also be used to measure other aspects of arterial performance 

such as travel time, delay, and level of service. 

 

3) It identifies the Queue-Over-Detector (QOD) phenomenon and its significance. 

This work is the first to study the QOD phenomenon. We demonstrate the relationship 

between QOD and spillover, and then propose an algorithm to quantify S-OSI by 

identifying QOD. This research also studies the impact of QOD on the cycle-based 

arterial fundamental diagram (AFD) by microscopically investigating individual vehicle 
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trajectories derived from event-based data; analysis reveals that proper treatment of QOD 

yields a stable form of AFD which clearly identifies three distinct regimes: under-

saturation, saturation, and over-saturation with queue spillovers. Having a stable form of 

AFD is of great importance for traffic signal control because of its ability to identify 

traffic states on a signal link. 

 

4) It builds a shockwave profile traffic flow model for congested arterial networks. 

The culmination of this work is a new traffic flow model for congested arterial networks, 

the shockwave profile model (SPM). Unlike conventional macroscopic models, in which 

space is often discretized into small cells for numerical solution, SPM treats each 

homogeneous road segment with constant capacity as a section, and then categorizes 

traffic in a section into three distinct states: free-flow, saturated, and jammed. Traffic 

dynamics are analytically described by tracing the shockwave fronts which explicitly 

separate the three traffic states. SPM is particularly suitable for simulating traffic flow on 

congested signalized arterials, especially those with queue spillover problems. In SPM, 

queue spillover is treated as either extending a red light or creating new smaller cycles. 

Since it only considers the essential features of arterial traffic flow, i.e., queue build-up 

and dissipation, SPM greatly simplifies the process of network design and improves 

numerical efficiency. For these reasons, adoption of this model can reasonably be 

expected in a number of real-time applications such as arterial performance prediction 

and signal optimization.  

 

1.3 Dissertation Organization 

 

The rest of the dissertation is organized as follows: Chapter 2 briefly reviews the 

SMART-SIGNAL System. Chapter 3 introduces a quantifiable measurement of 

oversaturation - oversaturation severity index (OSI). In Chapter 4, a novel algorithm is 

proposed for queue length estimation at congested intersections. The algorithms to 

quantify OSI in both temporal and spatial dimensions are described in Chapter 5. Chapter 

6 proposes our shockwave profile traffic flow model for oversaturated arterials. Chapter 7 

concludes this dissertation and lays out the direction of future research. 
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2 Background – SMART-SIGNAL 

The SMART-SIGNAL (Systematic Monitoring of Arterial Road Traffic and SIGNAL) 

system, developed by the University of Minnesota, offers an easily implementable 

approach to collect and archive continuous and high-resolution traffic data on signalized 

arterials (Liu et al., 2008). In this system, a complete history of traffic signal control, 

including all vehicle actuation events and signal phase change events, is archived and 

stored. Based on the event-based data, arterial performance measures, such as arterial 

travel time, intersection queue length, and level of service, are produced. The SMART-

SIGNAL system has been installed on 11 intersections along France Avenue in Hennepin 

County, Minnesota, and 6 intersections along Trunk Highway 55, Minnesota, since 

February 2007. Event-based traffic data are being collected in a 24/7 mode and then 

archived in a database system, thus yielding a tremendous amount of field data available 

for research. This chapter will briefly introduce the system architecture, data collection 

hardware, and data processing procedure of the SMART-SIGNAL.  

 

2.1 System Architecture 

 

As illustrated in Figure 2-1, the SMART-SIGNAL system has three major components, 

data collection, performance measurements, and performance presentation through user 

interfaces. The data collection component collects high resolution raw data directly from 

the field on an event-by-event basis. Signal phase change events and vehicle-detector 

actuation events are acquired separately from data collection units located in traffic signal 

cabinets. The data are recorded in daily log files and sent to a data server at the master 

cabinet by serial port communication. The daily log files are finally transmitted to a 

database located at the Minnesota Transportation Observatory (MTO) lab at the 

University of Minnesota through the Digital Subscriber Line (DSL) or wireless 

communication. The second component of the SMART-SIGNAL system is performance 

measure calculation using the field-collected data. Analysis of the stored data log files 
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yields a set of performance measures, one covers intersection level measures (e.g. queue 

length) and a second related to arterial level measures (e.g. travel time). Once all 

performance measures have been derived from the raw data, the results are made 

accessible to a variety of users.  

 

 

UMN TRAFFIC LAB

(MTO)

(Web Interface)

 

Figure 2-1 SMART-SIGNAL System Architecture (Source: Liu & Ma, 2009) 

 

2.2 Data Collection Unit 

 

The key element of the SMART-SIGNAL is the data collection unit, which consists of an 

industrial PC and a data acquisition card. At each intersection, an industrial PC with a 

data acquisition card is installed, and event data collected at each intersection is 

transmitted to the data server in the master controller cabinet through the existing 

communication line (in this case, spare twisted pair) between signalized intersections. 

The data acquisition cards (PCI-6511 from National Instruments (2006)) used in the 
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SMART-SIGNAL system, as shown in Figure 2-2a, have 64 input channels. If the total 

number of detector inputs and signal phases for one intersection exceed 64, an additional 

data acquisition card needs to be installed. A terminal box is used in order to limit the 

input direct current (DC) to a safe range and establish the connection between the data 

acquisition card and back panel of the traffic cabinet, as shown in Figure 2-2b. The 

terminal box allows digital voltage changes on the back panel, which indicate different 

traffic events in the field, to be captured by the data acquisition card installed in the 

industrial computer. A traffic event recorder software program, developed using the 

Microsoft Visual C# program, runs on the industrial computer in the field to record the 

events (for example, a phase 1 green change from “ON” to “OFF”) into a log file.  

 

 

Figure 2-2 Demonstration of the Traffic Data Collection Components 

 

Data communication between two controller cabinets is done using the existing twisted 

pair communication lines. A protocol of RS-485 is used to transmit data and synchronize 

time between cabinets (B&B Electronics, 2007). After the data in the local cabinets is 

transferred to the master cabinet, DSL or a wireless unit installed in the master cabinet is 

used to send the data back to the database located in the MTO. 

 

A sample of data is shown in Figure 2-3. Each logged event starts with a time stamp that 

includes the date, hour, minute, second and millisecond based on the computer system 

time, followed by different types of event data including phase changes, detector 

actuation and pedestrian calls. A complete history of traffic signal events is thus recorded.  
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08:09:15.012, D8 on, 7.902s 

08:09:15.481, D8 off, 0.468s 

08:09:16.761, G3 off, 29.389s 

08:09:16.761, Y3 on, 179.021s 

08:09:17.620, D9 on, 2.686s 

08:09:18.151, D10 on, 2.593s 

08:09:18.307, D9 off, 0.687s 

08:09:18.823, D10 off, 0.671s 

08:09:20.244, Y3 off, 3.482s 

08:09:21.649, D22 on, 80.953s 

08:09:22.008, D22 off, 0.359s 

08:09:23.242, G1 on, 172.806s 

Detector #8 on at 08:09:15.012;
Vacant time is 7.902s

Green Phase #3 off at 08:09:16.761;
Green duration time is 29.389s

Detector #9 off at 08:09:18.307;
Occupy time is 0.687s

Yellow Phase #3 off at 08:09:20.244;
Yellow duration time is 3.482s

Green Phase #1 on at 08:09:23.242;
Red duration time is 172.806s  

Figure 2-3 Sample Data (Source: Liu et al., 2010) 

 

2.3 Data Processing Procedure 

 

The raw data collected from the field needs to be preprocessed and converted to an easy-

read format before the performance measures can be derived. Based on event data, the 

signal phase duration can be calculated from the time difference between the start and 

end of a signal event. The time interval between the start and end of a vehicle actuation 

event is the detector occupancy time, and the time interval between the end of a vehicle 

actuation event and the start of a following vehicle actuation event (from the same 

detector) is the time gap between two consecutive vehicles crossing the detector. Further 

processing can be done to determine second-by-second volume, occupancy, and cycle-

by-cycle signal timing plan. The processed data can now be used to generate performance 

measures, such as queue length and average vehicle delay for intersections and travel 

time for arterial links. Figure 2-4 demonstrates the data flow of the SMART-SIGNAL 

system.   
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Raw Data
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Intersection
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......

......

Arterial
Performance Measures
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......
 

Figure 2-4 Data Flow of SMART-SIGNAL System (Source: Liu et al., 2008) 

 

Although many existing signal control systems are capable of generating data to support 

performance assessment, most do not make it “easy” for the managing agencies to 

prioritize improvements and plan for future needs. The SMART-SIGNAL System fills 

this gap. The high-resolution event data collected by the system is extremely valuable. As 

will be explained in the following chapters, the data is used to estimate real-time 

intersection queue length, identify queue spillover, and quantify the severity of 

oversaturation. 
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3 A QUANTIFIABLE MEASURE OF 

OVERSATURATION 

3.1 The Conventional Definition of Oversaturation 

 

Conventionally, an oversaturated intersection is defined as one where the demand 

exceeds the capacity (Gazis, 1964). The degree of saturation, i.e. the volume/capacity 

ratio, is defined as:  

j

j

j

VOL
X

CAP
   (3.1) 

where Xj is the degree of saturation for lane group j and VOLj and CAPj are the demand 

flow rate and capacity for lane group j, respectively. A lane group is oversaturated when 

Xj >1. 

 

For a single intersection with two competing streams, Gazis (1964) expanded this 

concept by proposing the following inequality: 

1 2

1 2

1 ( )
q q LT

S S C
     (3.2) 

where q1 and q2 are the arrival rates for two conflicting directions, S1 and S2 are the 

saturation flow rates for the two directions, LT is the total lost time, and C is the cycle 

length. 

 

Direct application of these two definitions to detect the onset of oversaturation and 

quantify its duration and extent is difficult, however. This is partly due to the uncertainty 

of the capacity and saturation flow, and partly due to the difficulty of measuring the 

arrival flow using current data collection systems during oversaturated situations (the 

very condition that we are trying to identify). Most existing detection systems, 
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particularly those with inductance loop detectors, provide observations of traffic flows at 

a fixed point on a link when they are not fully occupied. Traffic demand is simply not 

measurable when a fixed-location detector is occupied with a vehicular queue.  

 

Alternatively, some researchers have characterized oversaturation as “a stopped queue 

that cannot be completely dissipated during a green cycle” (Gazis, 1964), or as “traffic 

queues that persist from cycle to cycle either due to insufficient green splits or because of 

blockage” (Abu-Lebdeh & Benekohal, 2003). However, these authors provided no 

methodology for measuring queue length or identifying the existence of such situations.   

 

Another measure that can potentially be used to detect oversaturation is green phase 

utilization. If a signal phase is oversaturated with a long queue, once the green light 

starts, vehicles will continue to discharge at the saturation flow rate until the end of the 

effective green. The ratio between the “used” green time and the green phase duration 

can be treated as an indicator of saturation for a particular approach. This concept has 

been incorporated into several adaptive traffic control systems, for example, SCATS 

(Sydney Coordinated Adaptive Traffic System) (Sims & Dobinson, 1980) and ACS-Lite 

(Adaptive Control Software Lite) (Luyanda, et al., 2003; Gettman, et al., 2007). This 

method, however, cannot estimate the degree to which a certain traffic phase is 

oversaturated. The indicator simply identifies that green time is insufficient to serve the 

traffic demand, but the severity of oversaturation is unknown. In addition, it is necessary 

to point out that high green utilization of a given phase is not necessarily an indicator of 

oversaturation. In some cases, well-coordinated signalized intersections can also generate 

high values of green utilization.  

 

To the best of our knowledge, previous research studies using traffic data from signal 

systems to diagnose and identify oversaturation are mostly qualitative and incomplete. 

Conceptual definitions discussed above are either not applicable in the real world or have 

other deficiencies. Since detection of the onset of oversaturation as well as quantifying 

the severity of oversaturation is a critical step before appropriate mitigation strategies can 

be applied, it is imperative to have an implementable and quantifiable measure of 
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oversaturation as well as a coherent methodology to identify such situations. We believe 

our research begins to fill this gap.  

 

3.2 A Quantifiable Measure of Oversaturation 

 

Since the general definition of oversaturation, i.e. traffic demand exceeding the capacity 

of a facility, cannot be applied directly to detect the occurrence of oversaturation, we 

propose a measure of oversaturation by quantifying its detrimental effects. The 

detrimental effects of oversaturation are any effects which lead to the reduction of usable 

green time in a cycle for a signalized approach. These effects can be described from 

either a temporal or a spatial perspective. 

 

A detrimental effect of oversaturation in the temporal dimension is characterized by a 

residual queue at the end of a cycle. The residual vehicles, which are part of a discharging 

platoon and supposed to pass through the intersection in the current cycle, cannot be 

discharged due to insufficient green splits, thereby creating detrimental effects on the 

following cycle by occupying a portion of green time. The portion of green time utilized 

by the residual queue then becomes unusable for the traffic arrivals during that cycle. 

 

A detrimental effect of oversaturation in the spatial dimension can be characterized by a 

spillover from downstream traffic. When spillover happens, a downstream link of the 

intersection is blocked and vehicles cannot be discharged from the intersection even in a 

green phase. Here again, a portion of the green time becomes unusable with detrimental 

effects. While spillover is common when vehicular queues fully occupy a downstream 

link, oversaturated conditions occur only if spillover from a downstream intersection 

leads to unusable green time. 

 

Therefore, in our approach, the condition of oversaturation is characterized 1) by a 

residual queue at the end of a cycle that creates detrimental effects on the following 

cycle, and/or 2) by a downstream spillover within a cycle that creates detrimental effects 

on upstream traffic facilities. To quantify the detrimental effects in either temporal or 
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spatial dimensions, we introduce the oversaturation severity index (OSI) by using the 

ratio between unusable green time and total available green time in a cycle. OSI will be a 

non-negative percentage value between 0 and 100, with 0 indicating no detrimental effect 

for signal operation, and 100 denoting the worst case where all available green time 

becomes unusable.  

 

We further differentiate OSI into T-OSI and S-OSI. T-OSI describes the detrimental 

effects created by residual queue, i.e. the detrimental effect in the temporal dimension; 

and S-OSI describes the detrimental effects caused by spillover, i.e. the detrimental effect 

in the spatial dimension. Although both T-OSI and S-OSI can be calculated using the 

ratio between unusable green time and total available green time, the meanings of 

“unusable” are different. For T-OSI, the “unusable” green time is the equivalent green 

time to discharge the residual queue in the following cycle, in which case vehicles are 

discharged at saturation flow rate during that time period. By contrast, for S-OSI, the 

“unusable” green time is the time period during which a downstream link is blocked, in 

which case the discharge rate is zero.  

 

Since T-OSI quantifies the detrimental effect of oversaturation on the following cycle, 

the persistence, duration, and frequency of T-OSI greater than zero becomes an important 

indicator of traffic congestion at the intersection level. On the other hand, S-OSI 

describes the detrimental effect of oversaturation caused by downstream queue spillover, 

indicating the spatial extent that traffic congestion has spread network-wide.  

 

The differentiation of T-OSI and S-OSI may also help to identify the causal relationship 

of arterial traffic congestion. For example, for an intersection, a positive T-OSI indicates 

that the available green time is insufficient for queue discharge and a residual queue is 

generated at the end of a cycle. Subsequently, in the following cycles, the queue may 

grow and spill over to an upstream intersection, resulting in an S-OSI at the upstream 

intersection that is positive. Clearly in this case a positive S-OSI at the upstream 

intersection is caused by the downstream bottleneck. Note that the downstream 

bottleneck may lead to a situation in which both the S-OSI and T-OSI are greater than 
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zero, simply because a portion of the green time is wasted due to downstream blockage 

(i.e. S-OSI> 0), and a residual queue may be generated (i.e. T-OSI> 0) due to the 

reduction of green time. Here positive T-OSI and S-OSI indicate that traffic congestion 

may start to spread even further upstream.  

 

With the proposed oversaturation severity index, the focus of the identification 

algorithms shifts from measuring travel demand to quantifying detrimental effects in both 

temporal and spatial dimensions. It is necessary to point out that the ability to classify and 

quantify the detrimental effects created by oversaturation is very important for traffic 

management, because different oversaturated situations may call for different strategies 

to mitigate congestion. For example, for an isolated intersection with positive T-OSI 

values, extension of green time to discharge residual queue may be sufficient (Quinn, 

1992). By contrast for an arterial corridor with multiple overloaded intersections, 

simultaneous or even negative offsets (see Pignataro, et al. 1978) may be needed to 

prevent further deterioration of the oversaturated condition. Since the focus of this study 

is to identify and quantify oversaturated conditions, how to map OSI with different 

mitigation strategies is left for future research.  

 

In the following two chapters, we propose two algorithms for the identification and 

quantification of oversaturated conditions, one that estimates residual queue length, and a 

second that detects spillover conditions. Our focus here is not only to identify 

oversaturation qualitatively, but also to quantify its severity. 
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4  Real-Time Queue Length Estimation for 

Congested Intersections  

It has long been recognized that vehicular queue length is crucial both for measuring 

signal performance in terms of vehicle delay and stops (Webster & Cobbe, 1966; Cronje, 

1983a and 1983b; Balke et al., 2005), and for signal optimization (Webster, 1958; Gazis, 

1964; Newell, 1965; Green, 1968; Michalopoulos & Stephanopolos, 1977a, b; Chang & 

Lin, 2000; Mirchandani & Zou, 2007). Over the years, many researchers have dedicated 

themselves to this topic, and two types of queue estimation models have been developed. 

The first one, which is based on the analysis of cumulative traffic input-output to a signal 

link, was proposed by Webster (1958) and later improved by a number of researchers 

(Newell, 1965; Robertson, 1969; Gazis, 1974; May, 1965; Catling, 1977; Akcelik, 1999; 

Strong, et al., 2006; Sharma, et al., 2007; Vigos et al., 2008). This type of model is 

commonly used to describe traffic queuing processes, but, as noted by Michalopoulos & 

Stephanopolos (1981), “it is insufficient for obtaining the spatial distribution of queue 

lengths in time.” In addition, cumulative input-output techniques can only be used for the 

estimation of queue length when the rear of the queue does not extend beyond the vehicle 

detector. Since the techniques can only handle relatively short queues, applications of the 

approach are limited.  

 

The second model is based on traffic flow theory, which was first demonstrated by 

Lighthill and Whitham (1955) and Richards (1956) for uninterrupted flow; and later 

expanded by Stephanopolos & Michalopoulos (1979 & 1981) to signalized intersections. 

Essentially, this model estimates queue lengths by tracing the trajectory of shockwaves 

based on continuum traffic flow theory. Although shockwave theory-based models can 

successfully describe the complex queuing process in both temporal and spatial 

dimensions, these elegant theoretical models have had limited practical applications as 
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they require “perfect” input information. Specifically, these models assume known 

vehicle arrivals. This requirement is often impossible to satisfy, however, because vehicle 

arrivals cannot be measured once a detector is fully occupied, which is usually the case 

with congested arterials. Without arrival information, existing shockwave models cannot 

be used to estimate intersection queue lengths.  

 

To estimate queue lengths longer than the distance from an intersection stop bar to an 

advance detector, Muck (2002) used a linear regression model that describes the 

relationship between queue size and “fill-up” time, i.e., the time that “passes from the 

beginning of the red time of a signal until continuous occupancy of a detector.” The 

evaluation results showed that this method can estimate queues up to 5-10 times further 

upstream from the actual detector location. However, Muck’s heuristic approach is based 

on the premise that the arrival rate of traffic flow is constant within a cycle. This means 

that the measured fill-up time can be proportionally inversed to the queue build-up. Such 

an approach could be problematic when the arrival rate of traffic flow fluctuates greatly, 

which is not unusual with the “gating effect” of an upstream traffic signal.   

 

More recently, Skabardonis and Geroliminis (2008) proposed a method to estimate 

intersection queue length using aggregated loop detector data in 30-second intervals. 

Their method for determining queue rear ends entails examining the data for flow and 

occupancy changes. The problem is that 30-second aggregation smoothes out variations 

for between-vehicle gaps, making it difficult to identify a queue rear unless the arrival 

traffic flow is significantly different with the queue discharge flow. In addition, since 

queue length estimation is only part of their travel time estimation model, no evaluation 

results are reported in their paper to verify the accuracy of their queue length estimation 

method.  

 

The research presented here provides a method for estimating long queues (meaning 

queues “longer than the distance between an intersection stop line and the vehicle 

detectors”). We are particularly interested in the estimation of maximum queue length, 

i.e. the distance from the intersection stop line to the position of the last vehicle that has 
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to stop in a cycle. The proposed methodology relies on high resolution traffic signal data, 

which has become increasingly available in recent years. For example, second-by-second 

detector data has been used by ACS-Lite (Adaptive Control Software Lite) (Luyanda, et 

al., 2003).  

 

Even more significant for our work is the availability of event-based data (including both 

vehicle-detector actuation events and signal phase change events) can now be 

automatically collected and archived by the SMART-SIGNAL system. High-resolution 

traffic data is valuable because it potentially allows us to recover the event history of a 

traffic signal; it thus can help provide a basis to analyze the relationship between signal 

phase changes and traffic flow during queue formation and discharge. In particular, high 

resolution data reveals some “break points” that identify traffic flow pattern changes. 

These break points represent concrete positions of some major shockwave and contribute 

significantly to our approach of the long queue estimation. Indeed, we will demonstrate 

with such data that simple shockwave theory, originally developed by Lighthill and 

Whitham (1955) and Richards (1956), can be successfully applied to estimate intersection 

queue length. 

  

It should be noted that our queue length estimation methods are designed to work with 

typical detector configurations for signal operation, i.e., with either stop-bar detectors for 

vehicle presence detection or advance detectors (detectors placed a few hundred feet 

upstream from a stop-line) for green extension, or both. We make no provisions for link 

input detectors, i.e., detectors placed sufficiently upstream so that input traffic flow to the 

traffic signal can be measured. With link input detectors, input-output approaches can be 

used for queue estimation. In addition, such detectors are usually not available in the real-

world.    

 

This chapter begins with a review of shockwave theory, followed by data description and 

“break points” identification. The analytical model is presented in Section 4.2, along with 

two expansion models that allow variations of high-resolution traffic signal data to be 
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used for specific real world scenarios. The testing results are given in Section 4.3 

followed by discussion and conclusions. 

 

4.1 Shockwave Analysis & Break Points Identification 

 

4.1.1 Shockwave Analysis 

 

Traffic shockwave theory is derived from the Lighthill-Whitham-Richards (LWR) traffic 

flow model. LWR hypothesizes that flow is a function of density at any point of the road. 

A shockwave is defined as “the motion (or propagation) of an abrupt change 

(discontinuity) in concentration” (Stephanopolos & Michalopoulos, 1979). Traffic 

shockwave theory is derived from LWR model by applying the method of characteristics 

to analytically solve the partial differential equation (PDE) in the LWR model. Basically, 

when characteristic curves (along which, the density is constant) interact, a shockwave is 

formed and whose velocity can be determined by the equation:  

2 1 2 2 1 1

2 1 2 1
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 
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  

  (4.1) 

where q1 (q2), k1 (k2), v1 (v2) represent, respectively, the flow, density and velocity of the 

upstream (downstream) region. A traffic shockwave can also be illustrated with a 

fundamental diagram (flow-density curve). The tangent of the chord drawn between any 

two points on the curve defines the shockwave speed, as shown in Figure 4-1 (We will 

explain w1, w2, and w3 in the following).   
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Figure 4-1 Representation of Shockwaves in the Fundamental Diagram 
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Figure 4-2 Shockwave Propagation 

 

Signalized intersections generate multiple shockwaves due to the stop-and-go traffic 

caused by signal changes. For a more complete explanation, assume that a queue has 
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been fully discharged during the last green phase. In the following red interval, vehicles 

are forced to stop, which creates different flow and density conditions between the arrival 

and stopped traffic. Such interruption of traffic flow, as indicated in Figure 4-2a, forms a 

queuing shockwave (w1 in Figure 4-1) moving upstream with velocity 

1

0 i

a

i

jam a

q
w

k k





  (4.2) 

where 0 and kjam represent the jammed flow and density; and qa
i
 and ka

i
 are the average 

arrival flow rate and density during the i
th

 cycle (subscript a means “arrival traffic”). In 

Figure 4-2a, Tg
i
 and Tr

i
 indicate the end time and the start time, respectively, of the 

effective green during the i
th

 cycle.  

 

Queuing shockwave w1 continues to propagate to upstream. At the beginning of the 

effective green (Tr
i
 in Figure 4-2b), and assuming there is no congestion downstream, 

vehicles begin to discharge at the saturation flow rate, thereby, forming a second shock 

wave, or discharge shockwave (w2 in Figure 4-1), at the stop line that travels upstream 

with speed 
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where qs and ks
 
are the saturation flow (capacity) and density.  

 

Discharge shockwave w2 usually has higher speed than w1, so the two waves will meet at 

time Tmax
i
 (in Figure 4-2c), which is the time at which this approach has the maximum 

queue length. As soon as the two shockwaves meet, a third wave (known as a departure 

shockwave, w3 in Figure 4-1) is generated propagating toward the stop line with speed 
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At the end of this cycle, i.e., the start of the red phase of the next cycle, if the queue 

cannot be fully discharged, a residual queue is formed, which builds a fourth wave w4
 

(defined as a compression wave, Figure 4-2d) at the stop line moving upstream with 

speed 
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Shockwave w4 illustrates the queue compression process. Waves w3 and w4
 
have inverse 

directions therefore they meet at time Tmin
i
 (Figure 4-2e), which is the time the approach 

has minimum queue length, i.e., the residual queue. As soon as the two waves meet a 

fifth wave w5 forms a new queuing wave of the (i+1)
th

 cycle, and moves upstream with 

similar speed as shock wave w1. 
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A similar process is repeated in the following cycles as indicated from Figure 4-2a to f.  

 

It is clear that the tail end of the queue follows the trajectory of shockwaves w1 and w3. 

However, the queue dynamics can be analytically calculated only if accurate vehicle 

arrivals are known. As we mentioned before, in the real world, once a vehicular queue 

spills back to detectors, traffic arrival information at the detector location in the current 

cycle is unavailable until the queue starts to discharge.  

 

The shockwave motion described above demonstrates the repetitive queuing and 

discharging process at a signalized intersection. The queues begin to accumulate at the 

start of a red interval and discharge at the beginning of a green phase. Maximum queue 

length is achieved shortly after the green start, while minimum queues (residual queues) 

form after a red start. The repeated nature of this process suggests that if some crucial 

“break points” can be identified utilizing detector data, the queuing and discharging 

process can be recovered for past cycles. As indicated in Figure 4-3, most waves 

propagate through the detector line (if there exist waves that do not cross the detector 

line, then this link either has short queues or is oversaturated, which will be discussed 

later). Points A, B, and C in Figure 4-3 represent the times that traffic flow changes at a 

detector location. If recognized, these break points can be used to recover the queuing 

process in this cycle. In particular, we are interested to estimate the maximum queue 
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length in a cycle, i.e., point H in Figure 4-3. As will be explained in Section 4.1.2, if 

high-resolution event-based traffic signal data can be stored and archived, such data can 

be used to identify these points and estimate queue length in the immediately preceding 

cycle. 
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Figure 4-3 Break Points A, B, C, & Traffic Shockwaves at an Intersection 

 

4.1.2 Identification of Break Points 

 

The high-resolution data utilized in this research was collected by the SMART-SIGNAL 

system. As introduced in Chapter 2, SMART-SIGNAL can continuously collect and 

archive high resolution event-based data including vehicle and signal events (Figure 2-2). 

Event data provides the start and end times of every vehicle-detector actuation “event” 

and every signal phase change “event”. Therefore, the time difference between the start 

and end of a signal event represents a phase interval. The time interval between the start 

and end of a vehicle actuation event, which is the time it takes for a vehicle to pass the 

detector, is the detector occupancy time. By assuming an effective vehicle length, the 

occupancy time can be used to calculate travel speed. Finally, a vehicle gap is the time 

interval between the end of a vehicle actuation event and the start of a following event (at 
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the same detector). In other words, it is the time interval between two consecutive 

vehicles crossing the detector. 

 

As noted in Section 4.1.1, “break points” A, B, and C represent the time instants that a 

traffic condition changes within a cycle. (Here we define a cycle start as the effective red 

start and a cycle end as the effective green end). In detail, the time at which point A 

appears (TA) is the moment that the queuing shock wave w1 propagates backward to the 

loop detector line. Between Tg
i
 (the end of green in the i

th
 cycle) and TA, the vehicles pass 

the loop detector with the arrival traffic state (qa
i
, ka

i
). By contrast, between TA

 
and Tmax

i
 

(the time that maximum queue is achieved), no vehicle can pass the loop detector because 

of the jam traffic condition (0, kjam). Point A can be used to judge whether there is a long 

queue or not, because if point A does not exist, which means that the queuing shockwave 

does not propagate to the detector, then the queue length must be less than the distance 

between the stop line and the advance detector. Point A is not difficult to identify since 

after TA, the detector is occupied for a relatively long time, making the value of the 

detector occupancy time is relatively large as well.  

 

For practical application, a threshold value for point A identification is necessary. In this 

study, we observed that 3-second is long enough to check whether point A exists. If the 

detector occupancy time is longer than 3 seconds after Tg
i
, then the intersection has a long 

queue; and vice versa.  

 

Figure 4-4a demonstrates “event-based” detector occupancy time in a sample signal 

cycle. As indicated in the figure, after the queue spills back to the advance detector, the 

occupancy time is significantly greater than 3 seconds (about 45 seconds in this particular 

cycle). We should point out that second-by-second occupancy data can also be used to 

identify point A, i.e., the occupancy remains 100% for more than 3 seconds. 
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Figure 4-4 (a) Detector Occupancy Time Profile in a Cycle; (b) Time Gap between Two 

Consecutive Vehicles in a Cycle.  

 

Point B indicates the time (TB) that the discharge shockwave passes the detector. Between 

effective green start time (Tr
i
) and TB, the traffic state over the detector is (0, kjam); after 

TB, vehicles are discharged at saturation flow rate and the traffic state changes to (qs, ks). 

It is also not difficult to identify point B using high-resolution data. After the green starts 

and before TB, traffic volume is zero, and detector occupancy time is high (larger than 3 

seconds) or second-by-second occupancy continues to be 100% for more than 3 seconds. 

After TB, queued vehicles begin to discharge over the detector, detector occupancy time 

significantly drops (as indicated in Figure 4-4a), making break point B easy to spot.  

 

Most importantly, it is to identify break point C. As will be explained in the next section, 

we can use the time of point C (TC), combined with the discharge shock wave w2, to 

estimate the maximum queue length and re-construct the queue forming and discharging 

process. Point C indicates the time (TC) when the rear end of the queue passes the 
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detector. The time duration between TB and TC is closely related to the estimation of 

maximum queue length. As noted earlier, wave w3 is the interface between the saturation 

traffic state (qs, ks) and the arrival traffic state (qa
i
, ka

i
).  Therefore, before point C 

appears, vehicles discharge at the saturation flow rate at the location of the loop detector, 

i.e., the traffic state is (qs, ks). After the wave propagates to the detector location, the 

traffic condition becomes (qa
i
, ka

i
), i.e., the arrival traffic states.  

 

A threshold should be selected to identify the two different traffic states (qs, ks) and (qa
i
, 

ka
i
). Based on our observation, the time gap between two consecutive vehicles is sensitive 

to traffic state change. As indicated in Figure 4-4b, traffic separates two states by break 

point C. Before TC, the time gaps between vehicles are small (less than 2.5 seconds) and 

the variance is small. This means that most of vehicles are discharged at the saturation 

flow rate. But after TC, the vehicle gaps become much bigger and the variance is 

significantly increased. More importantly, there usually exists a time lag between the 

saturated queue discharge flow and newly arrived traffic, as shown in Figure 4-4b.  

 

Ideally, statistical analysis of vehicle gap data (for example, comparing the means and 

variances of time gaps of two vehicle groups) would be used to recognize a traffic state 

change. However, for simplicity and practicality, we determined a threshold value for the 

time lag between saturated queue discharge flow and arrival traffic based on our 

observations. In this study, if the value of a time gap is greater than 2.5 seconds, we 

consider that the end of the queue has propagated forward and reached the detector line, 

therefore TC is identified. Considering the variation of time gaps, using a single value to 

separate traffic states may result in large errors. In our implementation, if the time gap is 

between 2.5 seconds and 3 seconds, the system will continue searching the second and 

third points with time gaps over 2.5 seconds to make sure that the traffic state has really 

changed. It should also be noted that the method described above is still feasible if only 

second-by-second data is available. This is true because we know that a gap larger than 

2.5 seconds means 0% occupancy for at least two consecutive seconds.   
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Figure 4-5 Two Other Examples of Occupancy time & Gap Data – (a) Oversaturation; (b) 

Platoon Arrival 
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Two other examples of occupancy time and gap data which indicate two interesting 

situations are demonstrated in Figure 4-5, one where the break point C cannot be found; 

and the other where vehicles arrive as a platoon. In Figure 4-5a, during the green phase, 

the traffic pattern does not change and vehicles keep discharging at the saturation flow 

rate. This could occur for two reasons: 1) the vehicle queue cannot be discharged 

completely and this approach at this cycle is possibly oversaturated; 2) a vehicle platoon 

arrives within a small time lag so that a large vehicle gap cannot be found. The second 

situation, as indicated in Figure 4-5b, is that although the break point is easy to find, the 

traffic pattern before and after the break point is nevertheless similar. The explanation is 

that a platoon discharged from an upstream intersection arrives after the queue has been 

discharged. This situation, sometimes, will lead to errors to our queue estimation model, 

an issue we discuss in later sections. 

 

4.2 Queue Estimation Models 

 

The queue estimation models proposed here are based on the identification of breakpoints 

A, B, and C. As indicated in Figure 4-3, the crucial task is figuring out how to estimate 

the coordinate of point H, the maximum queue, in both spatial (Lmax
i
) and temporal (Tmax

i
) 

dimensions. Point H is the intersection point of three waves and its coordinate can be 

determined by any two of them. As mentioned above, wave w1 is a queuing wave, which 

highly depends on traffic arrival. Although wave w3 is also related to arrival flow (see 

Eq.(4.3)), it represents the arrival traffic after queue discharge. Since discharging process 

is more stable compared with queuing process and the traffic state during discharging 

process can be estimated using detector data, this research uses waves w2 and w3, instead 

of w1, to identify the coordinate of point H.  Note that wave w2, according to Eq.(4.4), has 

a constant velocity if we assume that saturation flow rate (qs), saturation density (ks), and 

jam density (kjam) are known a priori. In this section, we present our basic model plus two 

expansions, especially designed for some practical applications. 
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4.2.1 Basic Model 

 

To estimate shockwave speeds w2 and w3, we need to “mine” more information from the 

high resolution event-based data from one single loop detector. w2 can be estimated using 

the distance between advance detector and stop-bar (Ld) and the time difference between 

the green start (Tr
i
) and the time when discharge wave propagates back to advance 

detector (TB), i.e. w2=Ld/(TB –Tr
i
). w2 can also be estimated using Eq.(4.3) with assumed 

saturation flow rate (qs), saturation density (ks), and jam density (kjam). 

 

To estimate shockwave speed w3, we will need to estimate two traffic states (qs, ks) and 

(qa
i
, ka

i
) and apply Eq.(4.4). We know we can estimate traffic states because event-based 

data contain both the occupancy time and gap between consecutive vehicles passing the 

loop detector. Occupancy time is used to estimate the speed of individual vehicles by 

assuming an effective vehicle length; and the sum of occupancy time and vehicle gap, 

i.e., headway, is used to estimate the average flow. Density can then be estimated by 

average flow and space mean speed. The equation for estimating the space mean speed 

(vs), flow (q) and density (k) is (4.7) 
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 (4.7) 

where, to,j and tg,j are the detector occupancy time and time gap of vehicle j, respectively; 

vj, hj are the speed and time headway of vehicle j, respectively; De is the effective vehicle 

length, i.e., the sum of average vehicle length and detector length, which may require 

calibration; and N is the number of vehicles identified as having the same traffic state.  
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As we discussed before, the traffic state is (qs, ks) between TB and TC, and (qa
i
, ka

i
) after 

TC (and before Tg
i+1

). We estimate values of qs, ks, qa
i
, and ka

i
 by applying Eq.(4.7). Note 

that we use observed data to estimate traffic state (qs, ks) instead of assuming the constant 

values; this is because the capacity or saturation flow rate will decrease if the traffic is 

affected by downstream intersections. The velocity of wave w3 is calculated based on the 

two estimated traffic conditions (Eq.(4.4)). Using estimated w3 
and w2, the maximum 

queue length Lmax
i
 and time Tmax

i
 during i

th
 cycle can be calculated as: 

max
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  (4.8) 

where dL is the distance from the stop line to the loop detector. 

 

The minimum queue length Lmin
i
 and time Tmin

i
 (if a residual queue exists) during i

th
 cycle 

can be also calculated: 
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  (4.9) 

where w4 is the velocity of shock wave w4, which has same value as velocity of the shock 

wave w2 (Eq.(4.3)). 

 

The dynamic queue discharging process after Tmax
i
 (before Tmin

i
) is easy to formulate 

because we know the wave speed w3; and the queuing process before TA has been 

recorded by loop detectors (as we can see in Figure 4-6, the arrival may not be constant). 

The problem now is to estimate the queue length between points A and H. Without any 

other information, we can assume a constant velocity for wave w1, which can be 

estimated by 
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With w1, w2, w3, and w4, the entire queue accumulation and discharge processes can be 

fully described. 

 

Distance

Time

1w

2w

i

gT i

rT
max

iT 1i

gT 

3w

min

iT

5w

1i

rT 

4v

A B CLoop

Detector

H

AT
BT

CT

dL

max

iL

D

min

iL

1w

A'

 

Figure 4-6 Basic Model for Intersection Queue Length Estimation 

 

4.2.2 Expansion I – Using Second-by-second Detector Data 

 

In the basic model, event-based data is required to identify the shockwave speeds; such 

requirement may not be satisfied in the real world. With second-by-second detector data 

and signal phase data available (such as the ACS-Lite system), we can use Model 

Expansion I, which provides a simple alternative to calculate maximum and minimum 

queue length, without the need to estimate traffic states using Eq.(4.7), as explained 

below.   

 

We know that most of the vehicles passing loop detectors before TC, belong to maximum 

queue Lmax
i
, while a small portion of vehicles joined the queue after the tail end of the 
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original maximum queue began to move. This small portion of vehicles theoretically 

makes no contribution to the maximum queue length, but these cars are affected by the 

queue. Therefore, an approximation can be made to treat all vehicles passing the detector 

between the green start and TC as queued vehicles. Because the number of vehicles can be 

easily obtained using second-by-second detector data, by assuming a constant jam 

density, we can directly estimate maximum queue length (Lmax
i’
) and time (Tmax

i’
) as well 

as wave speed w3
’
 under such an approximation. 
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  (4.11) 

where N is the number of vehicles passing a detector between Tg
i
 and TC.  

 

By using a constant shockwave speed w4, Eq.(4.9) can then be applied to estimate 

minimum queue length (Lmin
i’
) and time (Tmin

i’
) as well as wave speed w1

’
.  

 

Essentially, Expansion I is a simplified queue estimation model. As demonstrated in 

Figure 4-7, point H represents the true maximum queue, while H’ is an approximation. 

Theoretically, the expanded model overestimates the maximum queue length since it 

includes some portion of vehicles which do not belong to the stopped vehicle queue. 
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Figure 4-7 Expansion I for Intersection Queue Length Estimation 

 

4.2.3 Expansion II – Dealing with Wired-together Detectors  
 

The expanded model II is specifically designed to deal with cases where detectors in 

different lanes (but the same approach) are wired together, or where a single detector 

covers multiple lanes. In this case, vehicles traveling in different lanes are counted only 

once if they pass the detector at the same time. This detector configuration is common for 

many signalized intersections in Minnesota. Under such a design, break points can still be 

successfully identified using second-by-second or event-based detector occupancy, but 

the vehicle counts are no longer accurate; rendering the basic Model and Expansion I 

unworkable. An approximation is made here to deal with this problem. This 

approximation is based on the assumption that after the tail end of a maximum queue 

begins to move, no additional vehicles can join the queue. In this case, the trajectory of 

the last stopped vehicle is actually shockwave w3
’’
. We can analytically derive this 

trajectory by assuming a priori known constant acceleration speed (3.5 ft/sec, for 

example).  
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Depending on whether the last vehicle in the queue reaches maximum speed at point C, 

the time interval between Tmax
i’’

 and TC (tx in Figure 4-8) can be estimated using the 

following equation: 
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where vf and a are free flow speed and acceleration speed, respectively. 

 

Then the maximum queue length (Lmax
i’’

) and the time (Tmax
i’’

) can be estimated by:   

max 2

max

( )i

d C B x

i

C x

L L w T T t

T T t

    


  

  (4.13) 

 

Similar formulations are used to estimate the minimum queue length (Lmin
i’’

) and the time 

(Tmin
i’’

) as well as wave speed w1
’’
. 

 

Clearly, the assumption made in this model may not be true in reality. As with Expansion 

I, Expansion II will sometimes overestimates the maximum queue. As indicated in Figure 

4-8, point H is the real maximum queue length, and estimated maximum queue length 

(H’’) is actually an overestimation. 
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Figure 4-8 Expansion II for Intersection Queue Length Estimation 

 

4.3 Implementation 

 

4.3.1  Implementation Procedure 

 

Figure 4-9 illustrates the implementation procedure for the queue length estimation 

algorithms. The first step is to check whether break point A exists. If point A cannot be 

found, it is a short queue case and a simple input-output method can be applied to 

estimate queue size. This simple method counts number of vehicles passing loop detector, 

assumes saturation flow rate discharging when signal turns green, and calculates the 

residual number of vehicles within the area between stop line and the location of the 

advance detectors. Queue length can then be estimated by simply assuming an effective 

vehicle length in the jam traffic state. If point A exists, then points B and C must be 

identified. Actually, it may not be necessary to identify point B because the wave 

speed 2v for most situations is a constant value. If point C can be identified, one of the 

models is chosen to estimate the long queue, depending on the resolution of the detector 
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data. If point C cannot be identified, as we discussed in the last section, the approach is 

considered to be under oversaturated. The queue length under oversaturated conditions is 

difficult to estimate, and requires a modified model that will be introduced in the next 

chapter.   
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Figure 4-9 Flow Chart of Implementation Procedure for Intersection Queue Length 

Estimation  

 

4.3.2 Field Evaluation & Results by the Research Team  

 

We tested our models to see how well they estimated intersection queue lengths. The 

intersection of Trunk Highway 55 and Rhode Ave. in Minnesota was selected as the 

testing site because of the frequent occurrence of extended queues in the west bound 

direction (from Glenwood Ave. to Rhode Ave.) during morning peak hours. Figure 4-10a 

is a map of the intersection (including six coordinated intersections on Trunk Highway 
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55) and Figure 4-10b shows the detector layout of the intersection. Data was collected 

from detectors #9 and #10 during two morning peak hours with fixed cycle-length 

(180sec) on June 11
th

, 2008 (Wednesday). The data was used to estimate the intersection 

queue length. The estimated values were then compared with the ground truth data, 

which was recorded by a camera installed at the intersection. The maximum queue length 

for each cycle was manually extracted from the video. Since the data collected by the 

detectors was event-based, all three models (basic, expansion I, and expansion II) were 

applied. The results of maximum queue length are presented in Figure 4-11. Table 

4-1shows the Mean Absolute Percentage Error (MAPE) which is calculated by 

1
100%

m

Observation Estimation
MAPE

m Observation


   (4.14) 

where m is the total sample size. 

 

As showed in Figure 4-11, the basic model successfully estimates the maximum queue 

length for both left and right lane; and the average MAPE is around 7% (Table 4-1). 

However, as predicted, Expansion I and Expansion II overestimate the maximum queue; 

and the MAPEs are about 14% and 20%. Regarding their ability to capture queue 

dynamics, we can clearly see in Figure 4-12 that the proposed models successfully 

describe queue formation and discharge. In addition, Table 4-2  presents the time 

differences when the maximum queue length is reached, using the three proposed models 

and real-world observations. The absolute errors for the three models are around 5 sec, 

which is quite respectable.  
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Figure 4-10 (a) Data Collection Site; (b) Detector Layout 
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Figure 4-11 Testing Results – Maximum Queue Length Comparison 
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Table 4-1 Mean Absolute Percentage Errors of Three Models 

MAPE of Maximum Queue Length Basic Model Expansion I Expansion II 

Left Lane (Detector #10) 6.5% 15.9% 22.3% 

Right Lane (Detector #9) 8.7% 13.4% 18.8% 
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Figure 4-12 Queue Trajectories Estimated by Three Models 

Table 4-2 Absolute Errors of Time of Maximum Queue Length 

Absolute Errors of Time of Maximum 

Queue Length 
Basic Model Expansion I Expansion II 

Left Lane (Detector #10) 6 sec 6 sec 5 sec 

Right Lane (Detector #9) 5 sec 6 sec 4 sec 

 

4.3.3 Independent Evaluation Results by Alliant Engineering, Inc. 

 

To verify our results, the Minnesota Department of Transportation (Mn/DOT) hired a 

Minneapolis-based Transportation Consulting firm, Alliant Engineering, Inc. to conduct 

an independent evaluation of the queue length estimation algorithm. Alliant sent 

observers to the field (the Rhode Island intersection) during morning peak (7:00am-

9:00am) on three randomly selected days in 2008: Jul. 23
rd

, Oct. 29
th

, and Dec. 10
th

. 

These observers manually counted each vehicle as it entered the queue and recorded the 

time when the queue was maximum. They were instructed to count a stopped vehicle as 

one that was traveling at less than 5 mph. Figure 4-13 compares the time and length of 
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the maximum queues estimated by the basic model and the independently conducted 

observations (only right lane results are presented here). As can be seen, the proposed 

model tracks the trend of cycle-based queue dynamics successfully. The MAPE is 

relatively high (14.93%, on average, Table 4-3) compared with our own evaluation due to 

two possible reasons: 1) The collected queue size data (i.e., the number of queued 

vehicles) was converted to queue length by simply multiplying 25 ft (the assumed 

constant effective vehicle length). Variation of actual vehicle length in the field may 

bring in conversion errors. For example, it was not unusual that when a detector was 

occupied (equivalent to a queue length of 400 ft), there were only 10 or 12 vehicles 

within the area between the stop bar and the detector line (equivalent to a queue length of 

250 or 300 ft). 2) Engineering judgment was required during data collection to identify 

whether vehicles had joined the queue. This may also involve some errors. Overall, the 

proposed model accurately tracked the changes of cycle-based queue length for all three 

testing scenarios.  
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Figure 4-13 Comparison of Maximum Queue Length Obtained from the Basic Model & 

Independent Observers 

Table 4-3 Mean Absolute Percentage Errors of Maximum Queue Length 

 Jul.23
rd

, 2008 Oct.29
th

, 2008 Dec.10
th

, 2008 Average 

MAPE 12.89% 9.34% 22.03% 14.93% 
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4.4 Discussion 

 

Our queue length estimation models exhibit some limitations which need to be discussed. 

 

1) Breakpoint C identification. When arrival traffic is at saturation flow rate and the 

time lag between the arrival flow and queue discharge is equal to saturation headway, an 

identification error can occur. Fox example, as indicated in Figure 4-14, a platoon 

discharged from an upstream intersection arrives right after the tail of a queue starts to 

discharge. In such situation, break point C cannot be identified, potentially leading to 

estimation errors. However, the likelihood of this occurrence is very small.      

 

Distance

Time

Original Queue

Another Platoon

Detector

 

Figure 4-14 Immediate Platoon Arrival after Queue Discharge 

 

2) Oversaturation. A failure to identify point C suggests that the intersection is 

potentially oversaturated, a situation our current model has limitation to deal with. A 

modified model will be presented in the next chapter. 
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3) Accuracy comparison among models. Theoretically, the basic model is most accurate 

of the three proposed. This is also supported by the testing results. However, since the 

basic model uses pre-determined effective vehicle length to estimate individual vehicle 

speed, queue estimation may be incorrect if the effective vehicle length is not accurate. 

By contrast, since Expansion I does not need the parameter of effective vehicle length, it 

may be more accurate. For the situations of frequent platoon arrivals, since the trajectory 

of the last queued vehicle is identical to that of shockwave trajectory, Expansion II is 

more accurate.  

 

4) Detector errors. We need to point out that the proposed models do not consider the 

impact of detector errors, such as miscounting or over-counting. An error filtering 

method, such as the Kalman Filter, may improve the reliability of the proposed model. 

Such research is left for future study.  

 

4.5 Summary 

 

In this chapter, we proposed an innovative approach to estimate intersection queue length 

using existing detectors. A key methodological contribution of our approach is that it can 

estimate time-dependent queue length even when the signal links are congested with long 

queues. By applying LWR shockwave theory to high-resolution traffic signal data, we are 

able to distinguish different traffic states at the intersection, so that queue length 

estimation under congested conditions becomes possible. Two expanded models are also 

provided for practical applications to deal with cases where only second-by-second data 

is available or that if the detectors are wired together. The three models were evaluated 

by comparing the estimated maximum queue length with the ground truth data recorded 

by camera and human observers. The results indicate that all three models can accurately 

estimate intersection long queues, but the basic model is more accurate. Limitations of 

the proposed models are also discussed.  

 

In the next chapter, this proposed model will be applied to quantify the severity level of 

oversaturation in temporal dimension, i.e. T-OSI.  
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5 Quantification of Oversaturation  

Chapter 3 introduced T-OSI (oversaturation severity index in the temporal dimension) 

and S-OSI (oversaturation severity index in the spatial dimension). This chapter will 

propose two algorithms to measure T-OSI and S-OSI.  Note that the identification 

algorithms discussed in this chapter will work with typical size 6 ft x 6 ft detector  

configurations for a vehicle-actuated signalized intersection, i.e., with either stop-line 

detectors for vehicle presence detection or advance detectors (a few hundred ft upstream 

from the stop line) for green extension, or both. We assume advance detectors are 

available and we note the necessary changes to be made if the only available detector is 

located at the stop-bar. Although the algorithms presented in this chapter are 

demonstrated using event-based data from the SMART-Signal system, they are also 

applicable to second-by-second signal data coming from any other traffic signal 

management system.  

 

This chapter is organized as follows. The next section adopts the queue length estimation 

method discussed in the last chapter to quantify the severity of oversaturation in the 

temporal dimension (T-OSI). In Section 5.2, we first experimentally examine Queue-

Over-Detector (QOD) phenomenon, which is crucial for oversaturation identification; 

and then introduce an approach to quantify the severity of oversaturation in the spatial 

dimension (S-OSI). Section 5.3 presents the results from a field test, followed by a 

summary in Section 5.4. 

 

5.1 Algorithm for Residual Queue Length Estimation  

 

A residual queue at an intersection refers to those vehicles that are part of the discharging 

platoon that cannot pass the intersection during the green time. Residual queue also 

represents the minimum queue length at the end of a cycle. Vehicles in the residual queue 

will then occupy a portion of green time in the next cycle for discharging. The ratio 
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between the residual queue discharging time and the total available green time is thus 

denoted as T-OSI, as discussed in Chapter 3.  

 

Estimation of residual queue length requires the reconstruction of the queue length profile 

within a cycle, including the maximum queue length that was reached. As the traditional 

input-output approach for queue length estimation can only handle queues shorter than 

the distance between vehicle detector and intersection stop line, we adopt the queue 

length estimation method described in the last chapter. We should note that the queue 

estimation method needs to be modified for the case of queue spillover from downstream, 

as will be discussed in Section 5.2. 

 

The queue estimation method is based on the identification of traffic state changes and 

the associated shockwaves presented in a cycle. As described in the last chapter, if break 

point C can be identified, the maximum queue (both length Lmax
i
 and time Tmax

i
) and the 

minimum queue (both length Lmin
i
 and time Tmin

i
) during i

th
 cycle can be calculated by the 

following equations: 
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  (5.2) 

where Ld is the distance from the stop line to the loop detector; and Tg
i+1

 is the green end 

of the  (i+1)
th

 cycle. 

 

The presence of a residual queue at the end of a cycle must be determined before the 

calculation of the minimum queue length: 
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For severely congested traffic conditions, break point C may not be found during the 

green phase. In such cases, the traffic pattern does not change during the green phase and 

vehicles keep discharging at the saturation flow rate. This means that a residual queue 

must exist, at least, between the detector location and the stop line. Eq.(5.1) does not 

work since we are not able to estimate shockwave speed v3. Under such conditions, the 

complete queue profile cannot be recovered from the detector data. However, since the 

entire green time has been used for queue discharge, the number of vehicles passing 

detector locations during the green time can be counted (between TB and Tg
i+1

), so that a 

minimum of the maximum queue length, i.e. min(Lmax
i
), can be estimated by simply 

taking the end of cycle (Tg
i+1

) as TC (see Figure 5-1). Since the space headway at jammed 

traffic conditions (djam) and the velocity of the discharge wave (w2) are assumed constant, 

the following equation holds: 

 
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max

max

2

min( )
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 (5.4) 

where N is the traffic count between TB and Tg
i+1

; djam is the space headway at jammed 

traffic conditions (assumed as a known constant); and Tr
i
 is the end of the red phase of an 

i
th

 cycle. 
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Figure 5-1 Calculation of Residual Queue Length when Point C cannot be Identified 

 

Then v3 can be calculated by Eq.(5.5):  

 
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min
If point C cannot be identified: 

min
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 (5.5) 

 

The coordinate of the minimum of the residual queue length, i.e. min(Lmin
i
) and min(Tmin

i
) 

for Point D, can then be estimated using Eq.(5.2). 

 

If a residual queue exists at the end of a signal cycle, some portion of the green time in 

the following cycle will be used to discharge the residual vehicles, thereby becoming 

“unusable” green time for that cycle. The unusable green time can be calculated by taking 

the number of vehicles in the residual queue multiplied by the saturation discharge 

headway (around 2 seconds). The detrimental effect caused by the residual queue can 

therefore be quantified by the oversaturation severity index in temporal dimension (T-

OSI): 
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min /  
T-OSI 100% 100%

   

i

jam sL d hunusable green time

total available green time G


     (5.6) 

where G is the effective green time, and hs is the saturation discharge time headway.   

 

We should note that when only stop-line detection is available, a residual queue will exist 

as long as break point C cannot be identified within the green time. Although the length 

of the residual cannot be measured with the stop-line detection only, it is sufficient to say 

that oversaturation may have occurred at this intersection for this cycle, i.e. T-OSI > 0. 

 

5.2 Algorithm for Identification of Spillover 

 

Spillover creates detrimental effects for the operation of upstream traffic signals. 

Identification of spillover is particularly important because it indicates that traffic 

congestion has started to spread out in the network involving multiple intersections. To 

identify spillover using traffic signal data, we first need to illustrate the concept of 

Queue-Over-Detector (QOD), i.e. the complete occupation of a detector for a relatively 

long time due to a vehicular queue.  

 

5.2.1 Queue-Over-Detector (QOD) 

 

When a vehicular queue spills back to the location of a detector at a signalized link, one 

of the vehicles may stop and “sit” on the detector for a period of time. This relatively 

prolonged time period can affect detector occupancy values significantly. We call this 

phenomenon “Queue-Over-Detector” (QOD). Identifying the causes of QOD gives us a 

means to evaluate the severity of a traffic spillback. 

 

Generally, there are two types of QOD. QOD-I is caused by cyclic red signal phases, 

which cause vehicles to slow down and stop before resuming their travel when the light 

turns green and the queuing wave propagates back. If one vehicle in the queue “sits” on 

the detector because of a red light, occupancy time recorded by detector could increase 

continuously. The second type QOD (QOD-II) is caused by spillover. When a queue 
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spills back upstream from a downstream intersection, the upstream intersection may be 

blocked and vehicles cannot discharge even when the signal is green. Some vehicles will 

remain stopped on the detector for a relatively long time, creating prolonged detector 

occupancy time. QOD-II represents an arterial link that is truly congested, while QOD-I 

only reflects the presence of transient queues. 

 

5.2.2 Relationship between QOD & Cycle-based Arterial Fundamental Diagram (AFD) 

 

To better understand the effects of QOD, we experimentally examined the relationship 

between QOD and the cycle-based AFD, which describes cycle-based flow-occupancy 

relationship (Wu et al., 2010b). We studied the impacts of QOD on AFD, because we 

wanted to understand the relationship between QOD and congestion, especially queue 

spillover; and congestion can be clearly identified in the fundamental diagram. 

 

Due to frequent stop-and-go, cycle-based flow-occupancy diagrams are greatly scattered. 

To illustrate, we extracted one-day (Nov. 17
th

, 2008) loop detector data from a stop-bar 

detector (Detector #1) and an advance detector (Detector #2) at the intersection of Rhode 

Island Ave (see Figure 5-2) and then plotted the data, as shown in Figure 5-3a and b. 

Both diagrams are greatly scattered (AM data (7:00am ~ 9:00am) and PM data (3:30pm ~ 

6:30pm) are colored in purple and yellow respectively for comparison).  
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Figure 5-2 Data Collection Site on TH55 in Minneapolis, Minnesota 
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Figure 5-3 Cycle-based AFDs: (a) Data Collected by Stop-bar Detector; (b) Data 

Collected by Advance Detector 

 

The scatter is presented by some data points with low flow rates staying in the middle 

region of the diagram. To understand why these points stay in the middle region, we can 

explain the reasons for the scatter in the diagram; and we also can find whether these 

points with relatively high occupancy values indeed represent that the arterial link is 

congested. So we carefully compared two data points in the flow-occupancy diagram 
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with the same flow (600 veh/h) but different occupancy values (0.213 vs. 0.064)  as 

highlighted in Figure 5-3b. Apparently, aggregated macroscopic traffic flow data was not 

enough. More detailed microscopic vehicle trajectories were required. We thereby 

derived detailed microscopic vehicle trajectories. The vehicle trajectories were estimated 

using event-based data and application of a simplified car-following model, similar to the 

one proposed by Newell (2001). In the simplified model, lane-changing behaviors were 

not taken into account because we were only estimating the trajectories for a relatively 

short distance (for example, from the location of an advance detector to a stop line). 

Vehicles were assumed to accelerate if their speeds are less than free flow speed (55mph, 

in this study), and decelerate if speeds were higher than free-flow. The distance between 

any two vehicles had to satisfy a safety distance constraint, which was determined by 

current speeds of two consecutive vehicles, reaction time (about 1.0 sec), and stop 

distance (assumed 25 ft). Finally, a vehicle’s decision whether to pass an intersection or 

not during yellow time was modeled as a function of its current state including its speed, 

yellow time left, distance to the front vehicle, etc. 

 

We now derived all vehicle trajectories for the two cycles with flow-occupancy data 

(600, 0.213) and (600, 0.064) based on the model described above. As shown in Figure 

5-4, during the cycle with flow-occupancy data (600, 0.064) (Figure 5-4b), only a small 

number of vehicles arrived during the red phase and the queue is not long enough to 

occupy the advance detector, thereby creating 0% occupancy until the next vehicle 

arrives during green. By contrast, in the cycle with flow-occupancy data (600, 0.213) 

(Figure 5-4a), more vehicles arrive during red creating a long queue; and one vehicle 

stops at the advance detector (QOD-I) generating an occupancy value of 100% until the 

discharge shockwave propagates back to the detector. Note that these two cycles have 

same flow, but the dramatic change in occupancy values shifts some data points with 

relatively small flows from the low occupancy area in the AFD to the high occupancy 

region, creating occupancy fluctuations. 
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Figure 5-4 Vehicle Trajectories for Two Cycles: (a) Data Point at AM - (600, 0.213); (b) 

Data Point at PM - (600, 0.064)  

 

The above experiment indicates that QOD-I is the main cause of the occupancy 

expansion in the AFD. This finding is further verified by a simple experiment that 

removes QOD-I’s impact. In this experiment, we simply move the vehicle stopped on the 

detector a little bit forward or backward for those cycles with a long queue (i.e. queue 

length longer than the distance from the stop line to the advance detector). The overall 

flow and queue length do not change, but since the detector is not occupied by any 

vehicle now, occupancy suddenly changes from 100% to a smaller value near 0% for a 

period of time, reflecting the removal of the QOD-I factor.  
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We need to emphasize here that this experiment only removes the occupancy expansion 

caused by QOD-I. If QOD is caused by spillover, its impact should not be removed. In 

detail, the occupancy time created by the queues because of red signal is replaced by a 

normal occupancy time equivalent to the time required by a free-flowing vehicle that 

passes detector. The removed time period starts when a vehicle arrives at the detector and 

ends when the discharge shockwave propagates to the detector (i.e. the time interval 

between point B and C in Figure 5-5). Note that the maximum time interval which can be 

removed is the length between two shockwaves (i.e. between points A and B in Figure 

5-5, which is equivalent to one red interval). If vehicles arrive before time A or stay on 

the detector after time B, spillover from the downstream intersection occurs. In such 

situations, only the portion within A and B can be replaced by a regular passing time. 
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Figure 5-5 Maximum Replaceable QOD-I Time 

 

With our high-resolution event-based data, we can determine the occupancy expansion 

for each cycle by Eq.(5.7). Essentially, the expanded occupancy time is the interval 

between time TO and TB in Figure 5-5.  

exp

,
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
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where exp

,i nOcc  is the expanded occupancy within the i
th

 cycle at the n
th

 intersection; ,i nC is 

the cycle length for the i
th

 cycle at the n
th

 intersection; and TA , TO , and TB are time 

instants as presented in Figure 5-5. 

 

Assuming the velocity of discharge shockwave (w2) and compression shockwave (w4) is a 

known constant, then: 
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where Tr,n
i
 and Tg,n

i
 are the time instants when the effective red and green phases end for 

the i
th

 cycle at the n
th

 intersection; Ld is the distance between the stop-bar and the location 

of the advance detector; and w is the velocity of discharge shockwave (see Figure 5-5). 

 

We then applied the QOD-I removal procedure to the raw flow-occupancy diagram 

previously shown in Figure 5-3. The revised diagrams for both the advance and stop-bar 

detectors are presented in Figure 5-6. Compared with the diagrams drawn from raw data 

(Figure 5-3), the AFDs after removing QOD-I are significantly changed. In particular, the 

highly scattered cloud in the flow-occupancy diagram for both detectors disappears, and 

the two revised flow-occupancy diagrams now have a similar shape. 

 

Our analysis above shows that the plotting of some data points in the raw AFD in the 

congested regime with high occupancy values does not necessarily indicate that the signal 

link is saturated or oversaturated due to QOD-I. It may only mean local congestion in the 

proximity of the detector, but no occurrence of downstream queue spillback. Only the 

right hand side of the revised diagrams, in which the QOD-I’s impact has been removed, 

can be said to adequately represent a congested situation caused by blockage on a 

downstream link. 
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Figure 5-6 AFDs after Removing QOD-I: (a) Data Collected by Advance Detector; (b) 

Data Collected by Stop-bar Detector. 

 

Another important benefit of QOD-I removal is that it unveils an orderly and stable form 

of AFD. The left-hand side of the AFD indicates under-saturated traffic and the right-

hand side implies oversaturation, specifically, spillover from downstream intersections. 

Such an AFD is also observed using two-week’s historical data collected from Rhode 

Island intersection (Figure 5-7). The appearance of the diagram seems to suggest a 

trapezoidal form, which is consistent with traditional understanding of the AFD. 

However, due to limited data source in congested regimes, we are not able to clearly 

identify the shape of the right hand side in the AFD. This deserves more effort and is left 

for future research.  
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Figure 5-7 also indicates that the data collected from advance and stop-bar detectors 

generate an almost identical form of the AFD (after removing QOD-I). This is very 

significant because, as traffic in a signalized arterial link is inhomogeneous, the form of 

the AFD usually depends on where the data is collected, and how the data is aggregated. 

That is why the raw AFDs generated by advance and stop-bar detectors differ so 

significantly (Figure 5-7a & b). But by applying QOD-I removal, we uncover a stable 

form for the AFD. The diagram now essentially represents the traffic characteristics of an 

arterial link, rather than just that of the street nearest the detector. In other words, the data 

can be collected from a set of different detectors (stop-bar, advance or entrance), possibly 

widely spaced, and generate the similar “answers” about the conditions of the traffic, as 

long as the impact of QOD-I is removed.  
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Figure 5-7 A Stable AFD (Based on Two-Week’s Data: From Nov. 10
th

, 2008 to Nov. 

21
st
, 2008, weekdays’ data only) 

 

Essentially, what our study of the relationship between QOD and AFD reveals is that true 

oversaturation states are characterized by spillover, or QOD-II.  This observation 
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suggests a potentially important approach to quantify the severity of oversaturation as 

will described in the following section.  

 

5.2.3 Quantifying Spillover using High-resolution Data 

 

As found in the last section, QOD-II represents spillover. Therefore the detrimental effect 

of a spillover can be quantified by measuring the duration of QOD-II. 

 

It is not difficult to identify QOD using high resolution data, since it is evident by a 

relatively large occupancy time (or percentage occupancy value remaining at 100% for 

some time). In our implementation, we identify QOD using a threshold value of 3 

seconds (roughly equivalent to 5mph of speed assuming a 22ft effective vehicle length). 

 

We need to first distinguish two types of QOD so that we can eliminate the one that does 

not indicate spillover. Figure 5-8 demonstrates both types of QOD with drawings of each 

vehicle trajectory starting from upstream to downstream. Since QOD-I is caused by a red 

signal, the maximum occupancy time is the red signal interval. When we consider the 

residual queue from the last cycle and the queue propagation at the green start, QOD-I 

can only occur within the range of time between two parallel shockwaves (compression 

shockwave v4 and discharge shockwave v2, which have the same velocity, see Figure 

5-1). Therefore if QOD occurs between (Tg
i
+Ld/w4) and (Tr

i
+Ld/w2), it is of the first type. 

 

QOD-II occurs outside of the time interval [Tg
i
+Ld/w4, Tr

i
+Ld/w2]. Therefore, if the QOD 

starting time Tstart
QOD

 or ending time Tend
QOD

 falls outside of the time interval [Tg
i
+Ld/w4, 

Tr
i
+Ld/w2], it is a QOD-II event. QOD-II indicates that a spillover has happened at a 

downstream location. This creates unusable green time, meaning that vehicles cannot be 

discharged during the green time because of downstream congestion. When a QOD-II 

event is identified, the event is classified as spillover. An example of QOD-II is 

demonstrated in Figure 5-8. 
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Figure 5-8 Two Types of Queue-Over-Detector Events 

 

Once QOD-II is identified, we can measure the severity of a spillover using the 

oversaturation severity index in space dimension (S-OSI): 

 , ,  
S-OSI 100% 100%

   

QOD QOD

end j start jT Tunusable green time

total available green time G


   


 (5.9) 

where Tstart,j
QOD

 and Tend,j
QOD

 are the starting and ending times of the j
th

 occurrence of 

QOD-II.  

 

In order to improve the robustness of spillover identification, we should also estimate the 

maximum queue length of the downstream intersection. If the estimated maximum queue 

length is longer than or equal to the link length, then oversaturation is confirmed. This 

verification process can be used to avoid some diagnosis errors caused by “incidents” (for 

example, a detector occupied by a broken vehicle for a relatively long time). These 

“incidents” may generate QOD-II, but do not necessarily indicate an oversaturated 

condition. 
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5.2.4 Queue Length Estimation with Downstream Spillover 

 

We should note that the queue length estimation method discussed in Section 5.1 cannot 

be applied directly to an intersection with queue spillover originating downstream. With 

spillover, queued vehicles can only be discharged when the downstream blockage is 

cleared and while the signal light remains green. For the example shown in Figure 5-9, 

when the traffic light turns green at intersection n (Tr
i,n

),  queued vehicles start to 

discharge, but the discharging process is disturbed because the queue at downstream 

intersection (n+1) is growing and eventually spills over to the upstream intersection n. 

The advance detector will identify a QOD-II, starting at time Tstart
QOD

 and ending when 

the spillover is cleared, i.e. at time Tend
QOD

. Under such oversaturated conditions, the 

queue estimation method needs to be modified because there is a new shockwave profile 

generated. Before spillover happens, we first indentify break points A, B, and C and then 

estimate the coordinates of point H and D. But after spillover happens, we need to re-

identify break points A’, B’, and C’ (as shown in Figure 5-9), then recalculate the new 

maximum queue (point H’) and minimum queue (point D’). Original equations (Eq.(5.1)-

(5.5)) will remain valid for spillover cases.   
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Figure 5-9 Shockwave Profile with Downstream Spillover 
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5.3 Field-Testing & Results 

 

5.3.1  Data Collection  

 

We conducted field tests to verify our approaches of the quantification of OSI. The test 

site was six intersections along Trunk Highway 55 (TH55) in Minneapolis, Minnesota. 

Figure 5-10 shows the detector layout of four of the intersections where oversaturation 

has been known to recur. The six intersections were equipped with vehicle-actuated 

traffic controllers, with advance detectors on the major approach and stop-bar detectors 

on the minor approach, for the purpose of traffic signal operations. Stop-bar detectors 

were used to detect the presence of vehicles and advance detectors were located about 

400 ft upstream from the stop line to detect vehicles for green extension on the 

coordinated phases. For the purpose of verification of the estimated queue length, we 

have installed stop-bar and link entry detectors along TH55 at the six intersections (see 

Figure 5-10 for the detector configurations at the four intersections of interest).  These 

additional detectors were not used for regular traffic signal operations, but for data 

collection to provide further evidence for the results presented below.     
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Figure 5-10 Detector Layout in Data Collection Site 

 

High-resolution event data including signal phase changes and vehicle-detector 

actuations were continuously collected from the six intersections and archived by the 

SMART-Signal system and then transmitted back to the University of Minnesota lab in 

real-time. The event data were used to derive signal timings, occupancy times, and time 

gaps between two consecutive vehicles crossing the detector. 



60 

 

5.3.2  Results of  Residual Queue Length Estimation 

 

As introduced in Section 5.1, we apply a residual queue length estimation method to 

quantify T-OSI. This section presents some oversaturation cases to demonstrate how to 

calculate T-OSI.  

 

Figure 5-11 presents an oversaturation case based on the data collected by an advance 

detector in the eastbound direction at the intersection of Glenwood Ave. on Feb. 28
th

, 

2008. As can be seen, residual queues appeared at the end of the first two cycles, 

meaning that these two cycles were oversaturated. In this particular case, oversaturation 

was due to signal preemption, which created a shorter cycle length in the second cycle 

(the cycle length was 132 seconds during the preemption, 48 seconds less than the normal 

cycle length). Due to the insufficient green time, some queued vehicles could not be 

discharged until the next cycle, creating detrimental effects on the following cycles.  

 

Using the residual queue length estimated by our method, we calculate OSIs for these 

two cycles of 7.5% and 7.0%, meaning that at least 7.5% and 7.0% of green time in these 

cycles was needed for the discharge of the residual queue. In the calculation of these 

severity indices, we assumed a space headway of 25ft for the jammed condition and a 

saturation time headway of two seconds. 

 

It should be noted that the estimated maximum queue lengths (500 - 600ft) during the 

three cycles were not long when compared with the link length (1777ft from Glenwood to 

Rhode Island). However, the fact that residual queuing occurred at the end of the first two 

cycles despite these relatively short queue lengths tells us that the traffic volume joining 

the discharge platoon after the last stopped vehicle had started to move was rather high.  

A portion of those newly arriving vehicles joined the discharge platoon but could not pass 

the intersection during the green phase, thus forming the residual queue. 
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Figure 5-11 Estimation Results of Residual Queue for Eastbound Approach at Glenwood 

 

As we discussed previously, if the entire green time is used for queue discharge, the 

departure shockwave cannot be identified.  In this case we can only measure the 

minimum of the maximum queue length within a cycle. We present 5 cases in Figure 

5-12. The data was collected from an advance detector in the eastbound direction at the 

intersection of Boone Ave. on Feb. 28
th

, 2008. During the first five cycles, the departure 

shockwaves could not be identified, so we can only estimate the minimal values of the 

maximum queue length. The queue lengths in this case are quite long, averaging around 

1500ft in the first five cycles. The minimum values of the residual queue length are also 

estimated, as shown in Figure 5-12. The minimal oversaturation severity indices (T-OSIs) 

are estimated at 9.8%, 19.4%, 10.5%, 11.3%, and 10.3% for these five cycles. The 

oversaturated condition persists until the sixth cycle.   
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Figure 5-12 Estimated Residual Queue Length for Eastbound Approach at Boone Ave. 

 

5.3.3 Results of Spillover Detection  

 

As introduced in Section 5.2, we need to identify QOD-II in order to quantify S-OSI. 

This section presents some cases to demonstrate how to identify QOD-II and how to 

calculate S-OSI.  

 

We use occupancy time recorded by detectors to identify QOD-II, as discussed in Section 

5.2. In Figure 5-13, we present the detector occupancy time within a cycle for an 

afternoon peak hour on Nov. 17
th

, 2008 for westbound TH55 at Rhode Island Ave. As 

shown in the figure, QOD-II is found. This means that vehicles cannot be discharged 

from the intersection although the traffic light is green, due to a spillover happening in 

the downstream link. Oversaturation is therefore identified at this intersection for this 

cycle. 
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Figure 5-13 Identification of QOD-II using Detector Occupancy Time Data 

 

To further verify that there is a spillover happening in the downstream link, vehicle 

trajectories were derived based on the vehicle events collected by the advance detector at 

the same intersection of Rhode Island Ave. The estimated vehicle trajectories starting 

from the advance detector line at the intersection of Rhode Island Ave. and ending at 500 

ft downstream from the intersection of Winnetka Ave. are presented in Figure 5-14. As 

clearly indicated in the figure, the queue spills back from Winnetka to Rhode Island and 

blocks the Rhode Island intersection during green time, confirming a QOD-II event. 
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Figure 5-14 Vehicle Trajectories in the Case of Spillover from Winnetka to Rhode Island 
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We also applied AFD to identify spillover cycles. As presented in Figure 5-15, after 

QOD-I removal, there are still 9 cycles (indicated by letters A – I) staying in the 

congested regime. We further investigated the event data for these 9 cycles and found 

QOD-II consecutively occurred in these cycles. From the figure, we can see that the 

spillover started at 17:06:31, stayed about 30 minutes, and ended at 17:36:31. Spillover 

was further confirmed by looking at the queue length profiles at the downstream 

intersection at Winnetka Ave. during these cycles. As shown in Figure 5-16, the 

maximum queue lengths for these 9 cycles are around 1200 – 1500ft, which is 

significantly longer than the link length (842ft). This indicates that, during these cycles, 

the Rhode Island intersection must have been blocked for a portion of green time (S-OSI 

> 0). Interestingly, because of the reduction of usable green time, residual queues were 

also generated at the Rhode Island Intersection for some cycles (i.e. T-OSI > 0). This 

suggests that an oversaturated traffic condition at Winnetka (T-OSI > 0 and S-OSI = 0) 

had spread upstream, leading to insufficient green at Rhode Island Intersection to 

discharge the queue (T-OSI > 0 and S-OSI > 0). Please see Table 5-1 and Table 5-2 for 

oversaturation severity indices at Winnetka and Rhode Island. Note that for Winnetka, 

since there was no downstream blockage, S-OSI was always zero during that time period.    
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Figure 5-15 AFD – After QOD-I Removal 
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Figure 5-16 Queue Length Profile at the Intersection of Winnetka 
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Table 5-1 Oversaturation Severity Indices (OSI) for Winnetka Ave. Intersection 

Winnetka Ave 

Cycle 

Start 

Available 

Green 

(sec) 

OSI: Created by Residual Queue OSI: Created by Spillover 

Residual 

Queue (ft) 

Unusable 

Green (sec) 

T-OSI 

(%) 

Unusable 

Green (sec) 

S-OSI 

(%) 

17:06:14 101 0.0 0.0 0.0 0.0 0.0 

17:09:14 101 180.3 0.0 0.0 0.0 0.0 

17:12:14 101 178.8 14.4 14.28 0.0 0.0 

17:15:14 101 0.0 14.3 14.16 0.0 0.0 

17:18:14 101 149.1 0.0 0.00 0.0 0.0 

17:21:14 101 157.6 11.9 11.81 0.0 0.0 

17:24:14 102 156.4 12.6 12.36 0.0 0.0 

17:27:14 106 130.1 12.5 11.81 0.0 0.0 

17:30:14 101 153.4 10.4 10.31 0.0 0.0 

17:33:14 105 0.0 12.3 11.69 0.0 0.0 

17:36:14 102 0.0 0.0 0.00 0.0 0.0 

 

 

Table 5-2 Oversaturation Severity Indices (OSI) for Rhode Island Intersection 

Rhode Island 

Cycle 

Start 

Available 

Green 

(sec) 

OSI: Created by Residual Queue OSI: Created by Spillover 

Residual 

Queue (ft) 

Unusable 

Green (sec) 

T-OSI 

(%) 

Unusable 

Green (sec) 

S-OSI 

(%) 

17:06:31 136 0.0 0.0 0.0 0.0 0.0 

17:09:31 136 0.0 0.0 0.0 3.0 2.2 

17:12:31 136 89.6 0.0 0.0 28.0 20.6 

17:15:31 136 164.3 7.2 5.3 28.8 21.2 

17:18:31 136 0.0 13.1 9.7 15.0 11.1 

17:21:31 136 180.4 0.0 0.0 41.7 30.6 

17:24:31 135 165.3 14.4 10.7 34.1 25.2 

17:27:31 139 138.2 13.2 9.5 25.2 18.1 

17:30:31 120 125.3 11.1 9.2 16.3 13.6 

17:33:31 141 0.0 10.0 7.1 8.6 6.1 

17:36:31 135 0.0 0.0 0.0 0.0 0.0 
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5.4 Summary 

 

In this chapter, we proposed two algorithms to identify oversaturated signalized 

intersections, one for the estimation of residual queue length using a shockwave based 

method and the second for detection of spillover by identifying long detector occupancy 

time during green phase. We defined an oversaturation severity index using the unusable 

green time caused by residual queue or spillover. Our field-test results from a major 

arterial in the Twin Cities area demonstrate that the developed algorithms are very 

effective in identifying oversaturated conditions. We should note that, although the 

identification algorithms focus on a single approach of a signalized intersection, the 

proposed methodology can be easily expanded to identify oversaturation of an 

intersection with multiple approaches, an arterial, or a network of intersections.   

 

This chapter also briefly studies the relationship between QOD and the cycle-based AFD 

by microscopically investigating individual vehicle trajectories derived from event-based 

data.  We show how a stable form of AFD can be produced which clearly identifies three 

different regimes: under-saturation, saturation, and over-saturation with queue spillovers. 

The ability to represent traffic states on a signal link is of great importance for traffic 

signal control. 
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6 Traffic Flow Modeling for Oversaturated 

Arterials 

In the previous chapters, we talked about how to quantify the severity of oversaturation 

using high-resolution data. This chapter aims to develop a traffic flow model, which will 

serve as a foundation of all signal optimization schemes. This model should be able to 

provide a quick and approximate approach, with sufficient descriptive power, to simulate 

oversaturated traffic flow dynamics in a signalized network for real-time applications. 

 

6.1 Background 

 

Over the last fifty years, following the seminal works of Lighthill & Whitham (1955) and 

Richards (1956), continuum traffic flow theories have been studied by many researchers. 

For a recent review of current continuum traffic flow models, we refer to Zhang (2001). 

Although LWR-type models have been criticized for their inability to account for the 

acceleration and deceleration process of traffic flow, it has commonly been argued that 

simple continuum models are sufficient to describe traffic behavior in signalized 

networks, because, as one author puts it, "traffic flow dynamics are dominated by 

external events (red traffic lights) rather than by the inherent traffic flow dynamics” 

(Papageorgiou, 1998). An extensive literature search also indicates that compared to the 

continuous and intensive efforts to model freeway traffic flow, far less work has been 

done to understand dynamics of arterial traffic flow. A notable exception is 

Michalopoulos et al. (1980), in which an analytical solution was derived for describing 

the evolution of the queue length on a signalized link, based on the continuum principle 

and method of characteristics. Despite the theoretical appeal of the method of 

characteristics, there has been almost no field testing to evaluate the potential 
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effectiveness of this approach. As has been repeatedly stressed in the literature (Beskos et 

al., 1984; Yi et al., 2001; Liu et al., 2009), the main obstacle is the lack of comprehensive, 

large scale, and detailed traffic data on signalized arterials. 

 

Other obstacles that have confronted researchers are numerical errors and computational 

efforts. For numerical reasons, the solutions of LWR-based continuum traffic flow 

models usually involve the discretization of space and time to describe the spatio-

temporal variations of traffic flow and density. The well-known cell transmission model 

(CTM), indicated by its very name, applies the finite difference method to simulate the 

evolution of traffic density in each cell, whose length is equal to the distance traveled by 

a free-flowing vehicle in one time interval (Daganzo, 1994, 1995). When CTM is applied 

to model arterial flow, however, numerical errors often occur because it is not uncommon 

that a signalized link cannot be decomposed into an integer number of cells. Although 

this may not be a problem if the cell size is small, using small sizes increases the number 

of cells for an arterial link, thereby compromising computational efficiency.  

 

In this study, we propose a section-based approach to model arterial traffic flow 

dynamics, based on the LWR shockwave theory (as introduced in Chapter 4). Instead of 

using the usual differential approach, however, we integrate traffic over finite road 

sections. Therefore a signalized road section will no longer be decomposed into uniform 

cells; rather, each homogeneous road segment with constant capacity is treated as a 

section and the major shockwaves generated within a section or between two adjacent 

sections are traced explicitly. We call our approach the shockwave profile model (SPM). 

We should note that the concept of a “section-based” traffic flow model was initially 

proposed by Helbing (2003), but it was applied to study freeway traffic flow for travel 

time analysis.   

 

The purpose of SPM is to provide a quick and approximate approach, with sufficient 

descriptive power, to model traffic flow dynamics in a signalized network for a number 

of real-time applications. As indicated in Dell'Olmo and Mirchandani (1996), for real-

time applications, signal control strategies need to be evaluated quickly. Therefore, we do 
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not aim to track traffic densities in each small cell, which, we argue, it is not necessary; 

rather, we are more interested in the position of the tail of an intersection queue, because 

queue length is a key indicator for traffic performance at an intersection, from which 

vehicle delay and level of service can be calculated accordingly. As we observed, for 

signalized arterials, because of traffic lights, repetitive shockwaves for queue build-up 

and dissipation clearly separate a road section into three different traffic states: free-flow, 

saturated, and jammed. The proposed model takes advantage of these simplified traffic 

states to describe traffic dynamics. Such simplification allows us to derive an analytical 

solution for queuing dynamics, while reducing computational costs significantly.  

 

SPM is particularly suitable for simulating traffic flow on congested signalized arterials 

especially with queue spillover problems, where the steady-state periodic pattern of 

queue build-up and dissipation process may break down. However, depending on when 

and where the spillover happens along a signalized arterial, a large number of queuing 

patterns may be possible. Therefore the conventional approach tracking of shockwave 

fronts, as shown in Michalopoulos et al. (1980), becomes tedious and time consuming. 

To overcome the difficulty of spillover, a novel approach is proposed as part of SPM, in 

which queue spillover is treated as either extending a red light or creating new smaller 

cycles, so that the analytical solutions for tracing the shockwave fronts can be easily 

applied. 

 

SPM has been empirically validated using real-world traffic signal data, which were 

collected and archived using the SMART-SIGNAL system. We compared estimation 

results from SPM against the field data for a PM peak during which a nine-cycle queue 

spillover occurred (Wu, et al., 2010b). The results clearly demonstrate the effectiveness 

and accuracy of the model.  

 

Section 6.2 of this chapter introduces the SPM model for a signalized approach with or 

without downstream spillover. A discussion on the issues of model implementation 

follows in Section 6.3. In Section 6.4, we present a simple numerical example that 

demonstrates the difference between CTM and SPM in dealing with congested arterial 
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traffic. Field validation results are given in Section 6.5. Finally, Section 6.6 concludes 

this chapter with some remarks.  

 

6.2 The Shockwave Profile Model (SPM) 

 

In this section, we present our shockwave profile model to describe the traffic flow 

dynamics within a signalized arterial link. Without loss of generality, Figure 6-1 shows 

three one-way signalized intersections, n-1, n, and n+1, connected by two links with 

lengths Ln and Ln+1. These three intersections could be part of a large urban traffic 

network. For simplicity, we use a one-way network as an example; but the proposed 

model can handle two-way networks as long as the boundary conditions have been given. 

 

We assume that traffic signal control parameters for all three intersections are known in 

advance for the time duration [0, T], where T is the ending time of simulation. For any 

time [0, ]t T , we let On(t ) be the start time of the effective red (or the end of effective 

green) in the current cycle for the through movement of link Ln at intersection n, and let 

rn(t) and gn(t) be the effective red and green intervals for the same approach in the same 

cycle. In Figure 6-1, qn-1(t) represents the flow rate at the entrance of link Ln (i.e., inflow 

rate) at time t, and ( )nq t and ( )m

nq t the departure flow rates at intersection n (i.e. outflow 

rates) at time t for the major and minor approaches, respectively.      
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Figure 6-1 Layout of a Signalized Arterial with Three Intersections 
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To describe traffic flow dynamics, i.e., the trajectories of queue formation and dissipation 

on signalized links, we assume that the inflow rates at network boundaries are given. For 

the three-intersection network shown in Figure 6-1, inflow rates at network boundaries 

including 2 1 1( ), ( ), ( ), and ( )m m m

n n n nq t q t q t q t   are assumed known. The initial condition of the 

network (i.e. traffic states within each link at the beginning) should also be given a priori. 

We now need to derive the outflow and inflow rates at all the intersections 

(i.e., 1 1 1( ), ( ), ( ), ( ), ( )n n n n nq t q t q t q t q t   and 1( )nq t ) in addition to queue trajectories of each 

link. We should note that here every signalized link is a section, within which the road 

segment is homogeneous with constant capacity. A link with turning bays will be 

discussed in Section 6.3. 

 

Similar to previous macroscopic traffic flow models, the foundation of SPM is the flow 

conservation law. For a signalized link Ln between time t1 and t2, assuming no sinks and 

sources between the link entry and exit, the following flow conservation equation holds:  

2 2

1 1
1 1 2( ) ( ) ( ) ( )

t t

n n n n
t t

q t dt N t q t dt N t       (6.1) 

where Nn(t) is the number of vehicles within link Ln at time t. Note that, instead of using 

the differential form of the conservation law as most previous studies do, we use the 

integral form.  

 

However, traffic dynamics cannot be fully described using solely the flow conservation 

equation. It must be supplemented by additional relations, such as the flow-density 

relation (i.e. the fundamental diagram) or a momentum equation describing the evolution 

of traffic speed. Our model, however, is built upon the observation that traffic dynamics 

at signalized intersections can be represented by a shockwave profile which describes 

queue build-up and dissipation. Due to the cyclic disruption introduced by traffic lights, 

there exists a clear pattern of the first-order shockwaves at signalized intersections. These 

shockwaves clearly divide traffic states into free-flow, saturated, and jammed conditions. 

SPM therefore takes advantage of the simplified traffic states to describe traffic dynamics 

based on a shockwave profile.  
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Consequently, the following assumptions are made: (1) vehicles travel at free-flow speed 

before reaching the tail of a queue; (2) vehicles in a queue discharge at the saturation 

flow rate (when they are not constrained by downstream congestion); and (3) the velocity 

for a queue discharge shockwave is assumed to be known.   

 

It is necessary to differentiate the above assumptions from those underlying traditional 

fundamental diagram (FD), which hypothesizes a flow-density relationship. Our 

assumption (1) actually indicates that the left hand side (uncongested area) in the FD is a 

straight line. This assumption is consistent with many empirical observations, i.e., 

vehicles are free-flow traveling when traffic is uncongested. The second and third 

assumptions imply known capacity and jam density, only two points in the FD. Except 

for these two points, the precise function of the congested regime for the FD does not 

need to be known. Indeed, till now, the exact shape of the right hand side of the FD has 

been unknown, especially for signalized arterials (Wu et al., 2010b). Although much 

research has been devoted to this topic, whether the shape is linear (for example, the 

piecewise linear function applied in CTM by Daganzo (1994 & 1995)), concave (for 

example, the parabolic function proposed by Greenshields (1935)), or some other form, is 

still an open question. This research presented here avoids this question by simplifying 

congested traffic conditions into two states: saturated or jammed. These assumptions for 

traffic flow on a signalized link significantly simplify the model design and improve 

computational efficiency.  

 

6.2.1  SPM for Intersections without Spillover from Downstream Links 

 

The model for an individual intersection without downstream spillover is introduced in 

this section. SPM is built upon the cyclic shockwave profile on a signalized link. As 

introduced in Chapter 4, a shockwave is derived when applying the method of 

characteristics to analytically solve the partial differential equation (PDE) in the LWR 

model. Basically, when characteristic curves (along which the density is constant) 

interact, a shockwave is formed and wave velocity can be determined using Eq.(6.2): 
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2 1

2 1

q q
w

k k





  (6.2) 

where q1 (q2) and k1 (k2) are the traffic flow rate and density of upstream (downstream) 

respectively. 

 

Due to the cyclic nature of signal phase changes, the shockwave profile at a signalized 

intersection also has a cyclic pattern. As indicated in Figure 6-2a, at the beginning of red 

(for better explanation, we assume there is no residual queue at the beginning of a cycle), 

a queuing shockwave (w1) is generated and propagates backward. The queue reaches its 

maximum length when the queuing shockwave meets a discharge shockwave (w2), 

which also propagates backward from stop-bar after a green light starts. As soon as these 

two waves meet, a third shockwave called a departure wave (w3) is generated and 

propagates forward to the stop line. If a queue does not fully discharge by the end of a 

cycle, a residual queue is formed (Figure 6-2b). The minimum queue will be achieved 

some time after the start of the red light for the next cycle when the departure wave meets 

a compression wave (w4). The compression wave has the same speed as the discharge 

wave, as both waves are generated from the discontinuity between the saturated and 

jammed traffic conditions. The velocities of all waves can be estimated using Eq.(6.2). 

The fact the shockwave patterns in this queuing process repeat from cycle to cycle makes 

them potentially very useful for simulating traffic dynamics in signalized settings. 
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Figure 6-2 Shockwave Profile of Single Intersection: (a) Without Residual Queues; (b) 

With a Residual Queue 
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Specifically, a shockwave profile can be used to identify traffic states on a signalized 

link. Figure 6-2 shows the shockwave profiles of one intersection with and without 

residual queues. In region I of both diagrams, vehicles are free-flow traveling before 

reaching the front of queuing wave w1 or departure wave w3. Since a linear flow-density 

relationship is assumed for uncongested traffic, the density in region I can be 

approximated by integrating traffic flow entering this area. Between the front of queuing 

wave w1 (or compression wave w4, if there is a residual queue at the end of the previous 

cycle) and the stop line (or the front of discharge wave w2), i.e., the shadowed region II in 

the figure, vehicles cannot move and traffic density reaches the maximum (jam density). 

By contrast, in the shadowed region III, which is from the front of discharge wave w2 and 

departure wave w3 to the stop line (or the front of compression wave w4, if there is a 

residual queue at the end of the current cycle), vehicles are discharged at the saturation 

flow rate.  

 

Before discussing the SPM model, some important notation in this section is introduced 

below:  

w: the velocity of a shockwave; there are four major shockwaves: queuing wave (w1), 

discharge wave (w2), departure wave (w3), and compression wave (w4); 

 jw

nl t : the distance from the front of shockwave wj (j = 1, 2, 3, or 4) to the stop line of 

intersection n at time t; 

 ŵ

nl t : the queue length, defined as the distance from the front of shockwave w1 or w3 to 

the stop line of intersection n at time t, i.e.,      31ˆ
or

www

n n nl t l t l t ; 

qs
n
, kjam

n
, and ks

n
: saturation flow rate, jam density, and saturation density at link Ln; 

vf : free-flow speed. 

 

By integrating vehicles over a shockwave profile using Eq.(6.1) and applying the 

shockwave theory (Eq.(6.2)), the velocities of the four shockwaves w1, w2, w3, and w4 at 

time t can be derived based on the current signal status and locations of the shockwave 

fronts. Note that these waves only exist within certain time intervals, which are 

determined not only by signal status but also by other shockwaves. 
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where w
*
 is a constant and can be calculated by Eq.(6.7): 

n

s

n n

jam s

q
w

k k

 


  (6.7) 

 

Notice that the velocity of w3 automatically becomes vf  if the maximum flow rate (i.e. 

the capacity) keeps the same before and after traffic breaks down due to congestion. But 

if the capacity drops after traffic breaks down, the velocity of w3 will be smaller than vf . 

 

Based on the values of w1(t) and w3(t), and the current queue length (  ŵ

nl t ), the queue 

length at the next time step (t+Δt), i.e.,  ŵ

nl t t , can be updated using Eq.(6.8). Note 

that the distance should be neither negative nor longer than the link length. 
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Similarly, based on the values of w2(t) and w4(t), and the current wave front positions of 

w2 and w4 (    2 4and w w

n nl t l t ), the wave front positions at the next time step (t+Δt), i.e. 

   2 4and w w

n nl t t l t t  , can be updated using Eq.(6.9): 
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Once the wave positions are updated, the shockwave profiles can be constructed. The 

shockwave profiles are then used to determine the outflow from the intersection: if the 

signal is red, the outflow rate is zero; when the signal turns green, the departure rate is 

equivalent to the saturation rate if there is a queue, or determined by the arrival flow with 

a time lag (Ln /vf) after the queue has been fully discharged. Considering that the 

intersection output may also be constrained by the downstream capacity, the following 

equation summarizes the results: 
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  (6.10) 

 

Given a known turning percentage (βn) for the through movement at link Ln, the input for 

the downstream intersections can be easily derived based on the output from the upstream 

intersections:  
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where  m

nq t is the departure flow rate of minor streets at intersection n. 

 

6.2.2  SPM for Intersections with Spillover from Downstream Links 

 

For multiple intersections, the main issue is how to deal with spillover from downstream 

traffic. When a spillover from downstream happens, the cyclic process of queue build-up 

and dissipation is disrupted. The shockwave profile for an urban network with more than 

one intersection could be very complicated. Depending on when spillover happens and 

how long spillover lasts, it can be treated as either extending the original red time or 

creating new small cycles, as described in the following:   

 

Case I: Extending the red phase: The first case, as presented in Figure 6-3a, describes a 

situation in which the queue at downstream intersection (n+1) spills back to upstream 

intersection (n), the signal at intersection n is red, and the spillover persists after the 

signal turns green. In this case, vehicles cannot be discharged when the signal turns green 

until a discharge wave generated at the downstream intersection propagates back to the 

upstream intersection. In other words, the red phase has to be extended to the time when 

the discharge wave arrives.    

 

Case II: Creating new small cycles: Unlike Case I, the second case represents a situation 

where the queue from the downstream intersection (n+1) spills back to the upstream 

intersection (n), and the signal at the upstream intersection is green (Figure 6-3b). 

Vehicles are forced to stop until the discharge wave generated at the downstream 

intersection propagates back to the upstream intersection, rendering a portion of the green 

time unusable. As shown in Figure 6-3b, once spillover happens, a compression wave 

(w4) is generated at the n
th

 intersection; this wave propagates backward and will meet the 

original departure wave (w3), creating a new queuing wave (w1). Note that if the queue at 

the n
th

 intersection has been fully discharged before the spillover occurs, a new queuing 

wave (w1), not a compression wave (w4), will be generated. When the spillover dissipates, 
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a new discharge wave (w2) will be generated, propagating backward and eventually 

meeting up with the new queuing wave (w1). The structure of this shockwave profile 

becomes much more complex compared with those without spillover. However, as 

clearly indicated in Figure 6-3b, spillover essentially creates a new cycle, in which the 

new red phase starts when spillover occurs and ends when the discharge wave from 

downstream intersection arrives at the upstream intersection. Within the new cycle, the 

shockwave profile presents the same pattern as described in Figure 6-2 for the situation 

without spillover.    
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Figure 6-3 Two Interpretive Cases for Spillover: (a) I: Extending the Red Phase; (b) II: 

Creating New Cycles 

 

The basic idea to deal with these two spillover cases is to update signal timing at the time 

when queue spills back to upstream intersection (i.e.    ˆ ˆ

1 1 1

w w

n n nl t L l t t      or 

   4 4

1 1 1

w w

n n nl t L l t t     ) and when discharge wave propagates back to upstream 

(i.e.    2 2

1 1 1

w w

n n nl t L l t t      ). However, since SPM updates traffic states at each time 

instant t, when spillover happens, the duration of spillover is not known. For modeling 

convenience, we can treat the rest of time in the cycle as red when spillover happens, and 

let the rest of time in the cycle as green when spillover dissipates. Note it is possible to 

have a situation in which the signal is red when the discharge wave (w2) propagates back 

to the upstream intersection. For this situation, we cannot set all the rest time in the cycle 
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as green; instead, the left time for the red signal is considered as the new red period and 

the green remains the same. Eq.(6.12) summarizes all situations. 
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  (6.12) 

 

Note that by comparing ( ( ) ( )n nO t r t t  ) and 0, we can know whether there is red time 

left when discharge wave (w2) propagates back upstream. 

 

Once the signal status is updated, the model introduced in Section 6.2.1 can be applied to 

describe traffic dynamics with spillover. We should point out that the above module 

specifically designed for spillover is crucial for SPM. As we noted earlier, the shockwave 

profiles with spillover for multiple intersections are extremely complicated. Figure 6-4 

presents two potential shockwave profiles for an arterial with three intersections, but 

there are many other possible profiles depending on when spillover happens, how long 

spillover lasts, and whether there is a residual queue at the end of the cycle. It is 

infeasible to enumerate all the possible profiles and apply the model described in Section 

6.2.1 to estimate the traffic dynamics. However, all spillovers can be categorized as either 

an extension of red phase (Case I) or a creation of new cycles (Case II). The complicated 

cases with spillover can then be easily converted to cases without spillover by updating 

signal timings using Eq.(6.12). This is tremendously beneficial for large network 

applications since the simple model introduced for non-spillover situations can be 

directly applied no matter how complicated the shockwave profiles are. 
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Figure 6-4 Shockwave Profiles for Three Intersections with Spillovers 

 

6.3 Network Representation 

 

6.3.1 Nodes & Arcs 

 

To complete the model, we need to choose an appropriate method to represent an arterial 

network. Since SPM treats each homogeneous road segment as a section, it is convenient 

to use nodes to represent road sections with arcs between two adjacent nodes to indicate 

the direction of vehicle transfer. Here nodes carry most of the physical data including 

arterial link length, parameter values (such as jam density, saturation rate, etc.), and 

signal timing plans. The data is then used to construct shockwave profiles, to derive 

potential departure rates, and to determine arrivals for downstream nodes. Arcs, by 

contrast, play only a minor role, as they simply indicate travel directions to ensure 

vehicles are properly transferred among nodes. Figure 6-5 gives an example of a single 

intersection represented by nodes and arcs. 
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Figure 6-5 Nodes & Arcs 

 

Note that a signal link should be subdivided into sections if the number of lanes changes; 

since new shockwaves may be generated at the location where traffic heterogeneity 

exists. The connecting point between two consecutive sections is modeled as a virtual 

intersection with an all-green phase. The model introduced in Section 6.2 can then be 

applied.  

 

6.3.2  Network Representations for Intersections with Turning Bays 

 

One case we have not addressed yet in our model is intersections with turning bays. A 

signal link with turning bays cannot be treated simply as two sub-sections because 

turning movements may have different signal timing with through movement; and more 

importantly, spillover from turning bays may lead to the blockage of through movement. 

In order to apply the SPM model described in Section 6.2, we divide the link into three 

sections as shown in Figure 6-6a: Ln
U
, Ln

B
, and Ln

A
 , representing upstream through 

movement (starting from the link entrance to the separation point U), downstream 

through movement (starting from the separation point U to the stop line), and turning 

bays, respectively (note Ln
B 

= Ln
A
). These three sections are represented by three nodes as 

described in Figure 6-6b. Separation point U is treated as a virtual intersection with all-

green, as shown in Eq.(6.13). The equations presented in Section 6.2 can then be applied.  
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where T is the whole simulation period. 
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Figure 6-6 (a) Layout of an Intersection with Turning Bay; (b) Network Representation 

 

An example of a shockwave profile for a signal link with turning bay is shown in Figure 

6-7. When the queuing wave on the turning section Ln
A
 (represented by the purple line) 

propagates back to the separation point U (see Figure 6-6a), a shockwave profile on 

section Ln
U
 (represented by the dark blue line) is generated. Meanwhile the shockwave 

profile on section Ln
B
 (represented by the light green line) has also been impacted as there 

are no more vehicles coming from upstream. 
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Figure 6-7 Shockwave Profiles for an Intersection with Spillover at Turning Bays 

 

However, when a queue spills back from turning bay Ln
A
 to the separation point U and 

the section of Ln
U
 has multiple lanes, usually only the leftmost lane on Ln

U
 is blocked and 

the other lanes remain open (see Figure 6-8a). Under such circumstances, section Ln
U
 

needs to be split into two parallel sub-sections, Ln
V1

 
and Ln

V2
, representing the blocked 

and unblocked lane(s) respectively (see Figure 6-8b). The inputs for the two sub-sections 

(qn
V1

(t) and qn
V2

(t)) are assigned directly at the entrance of section Ln
U
 based on known 

turning percentages; and the output is determined by the signal timings at two virtual 

intersections (i.e. points V1 and V2) and shockwave profiles in two sub-sections Ln
V1

 
and 

Ln
V2

. Note we need to introduce a dummy node (with zero section length) to represent 

traffic flow coming from upstream intersections before we split section Ln
U
  into two sub-

sections based on turning percentage (see Eq.(6.14)).  
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Figure 6-8 Layouts of Intersections with Turning Bays – Through Movement are Partially 

Blocked 

 

It must be noted that the lane-based section design is only an approximation of the real 

world. We assume that vehicles have been assigned to different lanes (or lane groups) at 

the entrance of the link in order to avoid dealing with complex lane-changing behaviors. 

Although this assumption is not exactly true, it is still a reasonable one as when one lane 

is blocked, it is very likely that vehicles will make a lane choice earlier. A more 

sophisticated lane-changing model could increase accuracy, but at a cost. The model we 

propose is more numerically efficient and robust, and thus more appropriate for large 

arterial network applications.   

 

6.4 Numerical Example Comparing SPM & CTM 

 

To demonstrate the capability of SPM, we provide a small numerical example, in which, 

we compared results generated by SPM and CTM. For the experiment, we used a simple 

arterial with two intersections and two links but no turning movements, as shown in 

Figure 6-9a. The second link was designed relatively short in order to create spillover. 

The model inputs, including arrival flow at the entrance of the first intersection, signal 
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timings, free-flow speed, jam density, discharge wave velocity, saturation flow, and flow-

density relation for CTM, are presented in Figure 6-9b-d.  
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Figure 6-9  (a) Layout of the Two-Intersection Example; (b) Signal Timing Parameters; 

(c) Input Flow Rate;  (d) The FD for CTM 

 

6.4.1  CTM 

 

We first briefly introduce CTM and its cell design. Essentially, CTM applies the 

following equations for the simulation of traffic dynamics. 
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 (6.15) 

where xj(t), fj(t), Qj(t), and Zj(t) denote the number of vehicles, the actual inflow, the 

inflow capacity (the maximum allowable inflow), and the holding capacity (the 

maximum allowable number of vehicles) in cell j at time t. Essentially, the first equation 

describes the flow conservation for each cell; and the second represents the possible 

number of vehicles entering a cell based on a hypothesized piecewise linear fundamental 

diagram. 

 

One of the most important steps in CTM is to discretize links into homogenous cells such 

that the cell length is equal to the distance traveled by a free-flowing vehicle in one time 
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interval. Generally, CTM will generate more accurate results when cell length is 

relatively short. In this example, we use a one-second time interval and a cell length of 

58.67 ft under the assumption that the free-flow speed is 40 mph. Figure 6-10a presents 

the cell design for the two-link arterial. Note that the last cell (the blue one) has infinity 

holding capacity so that the departure from the upstream cell is not restricted. Compared 

with the section design for SPM (Figure 6-11), the cell design for CTM (Figure 6-10) is 

much more complicated.   
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Figure 6-10 Cell Design for CTM  
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Figure 6-11 Section Design for SPM 

 

6.4.2 Results 

 

The results presented here are only for the first link (L1 = 704ft) from one of the signal 

cycles. Since CTM provides the density for each cell at each time interval, we show the 

density contour in Figure 6-12a. Figure 6-12b displays the corresponding shockwave 

profile. As can be seen, the shockwave profile closely matches the density contour from 

CTM. Figure 6-13 presents the output flow from the stop-bar at the first intersection for 

both models. These results are also very consistent. Note that a downstream spillover 

occurs in this cycle and the purple bar represents the updated red phase due to spillover. 
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All these comparisons demonstrate that SPM can accurately describe traffic dynamics but 

with much simpler network design. 
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Figure 6-12 (a) CTM Density Contour (Time Interval: 1sec); (b) Shockwave Profile 

Generated by SPM.  
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Figure 6-13 Output at the Stop-bar for the First Intersection 
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6.5 Field Test Results 

 

6.5.1  Field Data Collection 

 

We further validated the SPM model using the field data collected from Trunk Highway 

55 (TH55). To review, the installation on TH55 included advance detectors on the major 

approaches (about 400 ft upstream from the stop line) to detect vehicles for green 

extension, and stop-bar detectors installed on minor streets (right behind the stop line) to 

detect the presence of vehicles. For research purposes, we also installed stop-bar and link 

entrance detectors on major approaches. Figure 6-14 shows the detector configurations 

for three intersections of interest (Winnetka Ave., Rhode Island Ave., and Glenwood 

Ave.). We do not include the advance detectors in the figure since no information was 

used from them in this testing.   

 

All three intersections are installed with the SMART-Signal system, which continuously 

collects and archives high-resolution event-based traffic signal data in real time. The 

event data provide start and end times of each vehicle-detector actuation and signal phase 

change, making it possible to extract time-dependent traffic volume, turning percentage, 

and signal phase information at each intersection from the raw data. 
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Figure 6-14 Layout of TH55 Test Site 

 

The data we selected to test the model was collected during an afternoon peak on Nov. 

17
th

, 2008. This day was specifically selected because a nine-cycle spillover was known 
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to have occurred that day between 17:06:31 and17:36:31 in the westbound of the 

intersection TH55/Rhode Island Ave, as shown in Chapter 5 (also see Wu et al., 2010a 

for a detailed discussion of spillover and oversaturation). The input data to the SPM 

model includes the time-dependent traffic volume at the arterial boundaries, the turning 

percentage at each intersection, and the signal phase information for each approach. The 

inflow at boundaries was collected by the entrance detectors at the eastbound link of the 

intersection of Winnetka Ave. and the westbound link of the intersection of Glenwood 

Ave., and by the stop-bar detectors at all minor streets (see Figure 6-14).  

 

6.5.2 Network Representation 

 

The three intersections of interest on TH55 are represented as a network in Figure 6-15. 

Since there are turning bays, each link between two intersections is divided into two 

sections represented by two nodes and two arcs. The start or end nodes at boundaries are 

treated as dummy nodes, which have infinite length to store vehicles.  
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Figure 6-15 Network Representation of the Three Intersections on TH55 
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6.5.3  Results 

 

The model simulated traffic dynamics for three hours (16:00:00 -19:00:00), but only two 

hours of data (16:30:00 -18:30:00) for the westbound of TH55 are presented here for 

demonstration purposes. In this study, the saturation flow rate, free flow speed, and jam 

density were set to 2100 veh/hr/ln, 45 m/hr, and 176 veh/m/ln, respectively. 

Consequently, the discharge shockwave speed used in this study is 16.2 m/hr. All of these 

parameters can be verified by the high-resolution data collected from the SMART-Signal 

system. The time interval we used for SPM was one second. 

 

Figure 6-16 compares the simulated traffic volumes with the ground truth collected by 

the entrance and stop-bar detectors for the three intersections for every signal cycle 

between 16:30:00 and18:30:00. The comparisons for both detectors indicate that SPM 

generates consistent results with the ground truth. Table 6-1 also shows the mean 

percentage error (MPE) and mean absolute percentage error (MAPE) (Eq.(6.16)). The 

results validate that SPM can accurately describe traffic flow propagation. 

1
100%

1
100%

m

m

Observation Estimation
MPE

m Observation

Observation Estimation
MAPE

m Observation

  
  

  


  





 (6.16) 

where m is the sample size. 
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Figure 6-16 Comparison of Observed & Simulated Traffic Volumes 

 

Table 6-1 Comparison of Error Rates of Traffic Volumes for Two Detector  

 MPE MAPE 

Entrance Detectors 5.51% 12.3% 

Stop-bar Detectors 4.25% 13.8% 

 

This test also demonstrates that SPM can accurately simulate traffic dynamics with 

spillovers. As clearly presented in Figure 6-17, SPM creates small new red phases 

(marked as the pink bars in the figure) for spillover cycles. Figure 6-18 compares the time 

duration of the spillovers. The results indicate that SPM estimates a longer oversaturation 

period as spillover starts one cycle early and ends one cycle late. The reason could be the 

numerical errors generated at some time instants. For example, vehicles cannot be 

transferred from one section to another if the free-flow travel distance within a time 

interval is longer than the distance between the tail of the downstream queue and the 

section entrance. But in reality, vehicles can move slower (less than free-flow speed) and 

join the downstream queue. So SPM requires a little bit longer time to discharge queues 

at the upstream, particularly when the downstream section is congested. 
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Figure 6-17 Shockwave Profiles for Nodes 15, 17, 18, & 20 
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Figure 6-18 Comparison of Time Lengths Occupied by Spillovers  

 

6.6 Summary 

 

In this chapter, we propose a simplified shockwave profile model (SPM), which 

simulates the traffic dynamics in a congested urban network. Taking advantage of the fact 

that traffic states within a congested link can be simplified as free-flow, saturated, and/or 

jammed conditions, SPM simulates the traffic dynamics by deriving the trajectories of 

shockwaves analytically. Each link with the same number of lanes is treated as a section 

in this model. The queuing dynamics within each section are described by tracing the 

shockwave fronts which explicitly separate the three traffic states. SPM is specifically 
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designed to deal with saturated or oversaturated arterials. In this model, a novel design is 

developed to treat spillover as either extending a red time or creating new smaller cycles. 

This model is promising for analytical investigations of traffic in congested signalized 

arterials especially with queue spillover. The field test results verify that SPM can 

successfully and accurately replicate spillover situations. Therefore, SPM is highly 

appropriate for large network real-time applications, especially when traffic is 

oversaturated.   

 

We expect that SPM can be applied in both arterial performance prediction and traffic 

signal optimization. Since SPM traces the shockwave fronts on a signalized link, the 

intersection queue length can be calculated easily. Given queue length information, other 

performance measures such as travel time, delay, and stops can be derived accordingly. 

As a traffic flow model, SPM also provides a way to bridge the relationship between 

signal timing and intersection performance, so that a signal optimization program can be 

formulated by maximizing benefits (travel time savings, intersection throughput, etc.) or 

minimizing costs (queue, travel time, delay, etc.). 
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7 Conclusions & Future Research 

7.1 Conclusions 

 

This dissertation serves as a critical first step in mitigating oversaturation. Building upon 

the high-resolution traffic signal data recently collected by the University of Minnesota, 

this research first proposes a systematic approach to identify and quantify oversaturation, 

and then develops a simplified traffic flow model to describe traffic dynamics under 

oversaturated conditions. In particular, this research makes contributions in four main 

areas:  

 

1) Oversaturation quantification. This research first proposes a quantifiable measure of 

oversaturation by focusing on its detrimental effects in both temporal and spatial 

dimensions. The temporal detrimental effect is characterized by the occurrence of 

residual queue and the spatial detrimental effect is referred to the spillover from 

downstream intersection to upstream. The oversaturation severity index (OSI), in either 

temporal dimension (T-OSI) or spatial dimension (S-OSI) can then be measured by the 

ratio between the unusable green time due to detrimental effects and the total available 

green time in a cycle. T-OSI is quantified by estimating the residual queue length; and S-

OSI is quantified by measuring the time period of spillover. Two algorithms are applied 

to identify oversaturated signalized intersection. Field-test results from a major arterial in 

the Twin Cities area demonstrate that these two algorithms are very effective in 

identifying oversaturated conditions.  

 

2) Real-time queue length estimation for congested intersections. To quantify T-OSI, 

an innovative approach is proposed to estimate intersection queue length using existing 

detectors. A key methodological contribution of this approach is that it can estimate time-

dependent queue length even when signal links are congested with long queues. By 
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applying LWR shockwave theory with high-resolution traffic signal data, this approach 

distinguishes different traffic states at the intersection, and then estimates queue length by 

constructing a shockwave profile. We evaluated the model by comparing the estimated 

maximum queue length with the ground truth data recorded by camera and human 

observers. The results that the proposed model can accurately estimate intersection queue 

length for congested intersections.  

 

3) Queue-Over-Detector (QOD): To quantify S-OSI, we studied the QOD phenomenon. 

We demonstrated the relationship between QOD and spillover. From that we proposed an 

algorithm to quantify S-OSI by identifying QOD. We also briefly studied the impact of 

QOD on the cycle-based arterial fundamental diagram (AFD); and found a stable form of 

AFD that clearly identifies three distinct regimes: under-saturation, saturation, and over-

saturation with queue spillovers. The stable form of AFD is of great importance for traffic 

signal control because of its ability to identify traffic states on a signal link. 

 

4) Traffic flow modeling for congested arterials. Based on the better understanding of 

oversaturation gained from above three points, this dissertation further develops a 

simplified shockwave profile model (SPM), which can simulate the traffic dynamics in 

an oversaturated urban network. To construct the model, we take advantage of the fact 

that traffic states within a congested link can be simplified as free-flow, saturated, and 

jammed conditions. SPM simulates these three dynamic states by analytically deriving 

the trajectories of shockwaves. Each link with the same number of lanes is treated as a 

section in this model. The queuing dynamics within each section are described by tracing 

the distinctive shockwave fronts which explicitly mark each traffic state. SPM is 

specifically designed to deal with saturated or oversaturated arterials. The model uses a 

novel design that treats spillover as either extending red time or creating new smaller 

cycles. This model is promising for analytical investigations of traffic in congested 

signalized arterials especially with queue spillover. The field test results verify that SPM 

can successfully and accurately replicate spillover situations. Therefore, SPM is highly 

appropriate for large network real-time applications, especially when traffic is 

oversaturated.   
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7.2 Future Research 

 

This dissertation lays a foundation for the development of computationally based 

strategies to mitigate arterial traffic congestion. Future research will need to address: 

 

1) Mapping OSI with mitigation strategies. The current research demonstrates that 

different types of OSI (T-OSI or S-OSI) and different levels of OSI may require different 

mitigation strategies. Therefore, one future research task is to map identified OSI values 

with various mitigation strategies for better management of traffic signals under 

oversaturated conditions. 

 

2) Understanding the transition process from cycle to cycle in the AFD. In the cycle-

based AFD, each point represents the traffic state of a cycle. Our research reveals a stable 

form of the AFD; but the transition process from cycle to cycle is unclear. Research 

efforts are needed first, to discover characteristics of the congestion regime of the AFD, 

and second, to build a model that describes the transition process from cycle to cycle. 

 

3) Optimizing traffic signals for oversaturated arterials. The arterial traffic flow 

model (SPM) developed in this research provides a bridging relationship between signal 

timing and intersection performance. It will be important to study how to apply SPM to 

optimize traffic signals, especially for oversaturated arterials. This requires deriving 

additional arterial performance measures including intersection delay, stops, and arterial 

travel time; and then optimizing signal control by maximizing benefits (travel time 

savings, intersection throughput, etc.) or minimizing costs (queue, travel time, delay, etc.). 

For real-time applications, we will need to continue looking for ways to mine the riches 

of real-time traffic data, such as using the information of OSI. 
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