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Abstract

As the SARS-CoV-2 virus mutated and spread around the world, scientists and

public health o�cials were faced with the responsibility of making health recommen-

dations as they studied the novel disease in real time. One such recommendation was

the use of face masks of varying types as a method of reducing disease spread in public

spaces. Evaluating the e�ectiveness of such measures requires accurate data collection

of the proper facemask usage. The use of computer vision models to detect and clas-

sify face mask usage can aid in the collection process by monitoring usage in public

spaces. However, training these models requires accurate and representative datasets.

Pre-COVID-19 datasets and synthetic datasets have limitations that a�ect the accu-

racy of models in real world settings such as inaccurate representations of occlusion and

limited variety of subjects, settings, and masks. In this work we present a new dataset

Masked Faces in Context (MASON) of annotated real-world images focusing on the

time period of 2020 to the present and baseline detection and classi�cation models that

outperforms the current state of the art. This dataset better snapshots mask wearing

under covid with greater representation of di�erent age groups, mask types, common

occlusion items such as face shields, and face position. Our experiments demonstrate

increased accuracy in face mask detection and classi�cation.
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Chapter 1

Introduction

In 2019, the novel virus SARS-CoV-2 spread around the world leaving scientists and

public health o�cials scrambling. The resulting disease, known as COVID-19, posed a

formidable adversary in its infectiousness and deadliness [3]. Developing disease control

guidelines with a limited understanding of the precise virus mechanisms was necessary,

and could be adjusted as the e�ect was observed. One such method was the imple-

mentation of masking mandates [4]. However, lacking proper tools to evaluate public

mask-wearing itself makes it nearly impossible to analyze the e�ects of mask usage on

disease spread.

One promising approach is to use computer vision detection and classi�cation models

to collect mask-wearing data in an accurate and timely manner. These types of mod-

els have been successfully applied in other areas such as autonomous vehicles, airport

security, and visual health diagnoses [5, 6, 7]. An application in mask usage analyses

would require training a model to detect faces and classify the masking, which in turn

requires appropriate training data. Unfortunately, with the COVID-19 pandemic being

the �rst widespread pandemic in the modern world, there are limited datasets suited to

this problem. Many are either synthetic adaptations of face datasets or created before

the pandemic, both of which come with concerns about bias and e�cacy.

To aid in this challenge, we developed a new dataset Masked Faces in Context (MA-

SON), and a baseline model for mask detection that can detect masked and unmasked

faces in real-world images. In this new dataset, we focused on collecting real-world
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images o� the web that re
ect common masking practices under COVID-19. The im-

ages are presented in two forms: full images with bounding box labels for the visible

faces in the image, and cropped images to only contain visible faces with labels for

masking type. In our comparisons with existing datasets, we found models trained on

MASON outperform that of existing datasets in both the face detection and masking

classi�cation tasks.

The following chapters are organized as follows:

ˆ Chapter 2 covers a literature review of previous work including an analysis of

existing datasets consisting of masked faces and their limitations.

ˆ Chapter 3 covers our methods of creating MASON to address identi�ed limita-

tions.

ˆ Chapter 4 covers the results of our contributions and comparisons to previous

work.

ˆ Chapter 5 covers the conclusion, limitations of our work, and future steps.



Chapter 2

Previous Work

While masking classi�cation and masked face detection methods used the existing

datasets such as MaskedFace-Net [8, 9], RMFD [10, 11], and MAFA [12, 13], a larger

number chose to collect, annotate, and use smaller privately collected datasets [14, 15,

16, 17, 18, 19, 20, 21, 22]. These datasets often contained less than 2000 cropped images

of masked and unmasked faces, and some contained less than 150 unique subjects. This

pattern indicates that the drawbacks outlined below are signi�cant to the face detection

and mask classi�cation problem and need to be addressed.

In this section, we review existing masked face datasets with their strengths and

limitations. We then present an overview of the existing state-of-the-art face mask

detection models associated with these datasets.

Existing Datasets

The three most commonly referenced masking datasets are the 2020 synthetic dataset

MaskedFace-Net, the 2017 occlusion dataset Masked Faces (MAFA), and the 2020 mask-

ing dataset Real World Masked Face Dataset (RMFD). This section describes these

datasets in detail and outlines their strengths and weaknesses regarding the masked

face detection and classi�cation problems.
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MaskedFace-Net

(a) (b) (c) (d) (e) (f)

Figure 2.1: Example images from the MaskedFace-Net dataset.

The MaskedFace-Net dataset created in 2020 consists of 133,782 face images taken

from the face dataset Flickr-Faces-HQ (FFHQ) each with a blue surgical mask digitally

superimposed over the face. About half of these masks are correctly placed, forming

the Correctly Masked Face Dataset (CMFD). The other half, the Incorrectly Masked

Face Dataset (IMFD), either shows an uncovered chin, uncovered nose, or uncovered

nose and mouth [8].

Since MaskedFace-Net uses the well-established FFHQ as a base, many strengths

from FFHQ apply to MaskedFace-Net as well. Namely, the large size and diversity of

subjects [23]. However, there are some signi�cant limitations to this dataset. Since the

dataset was formed by digitally adding a mask to every face, each mask has the same

appearance. The variety in pattern, shape, texture, lighting, and color that appear in

real-world masks is not re
ected in this dataset. The second major issue with synthetic

datasets such as MaskedFace-Net is the handling of occlusion. The masks in this dataset

appear over occluding objects such as hands, microphones, and glasses. Occlusion or

non-forward-facing face pose in the original face image can also cover key facial land-

marks used for the mask placement leading to unrealistic warping of the mask. Finally,

as purely a masking classi�cation dataset, this set only contains close-up headshots of

people's faces, removing the potential for noisy backgrounds or other interacting objects

and occlusions as well as lacking labels for masked face detection.

Figure 2.1 exempli�es some of the drawbacks listed above. Images (a) and (c) show

misaligned masks on side-facing faces and image (b) has unnatural warping down the

center of the mask as well as an extra sliver across the women's nose. The next three

images show how the dataset does not account for occluding objects with the masks
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covering a microphone in image (d), a bus seat in image (e), and the man's hands in

image (f). This collection of images also demonstrates the lack of variety in masks and

the focus on clear headshots.

Overall these de�ciencies make it more di�cult to train e�ective models for masking

classi�cation because the data isn't representative of what real-world mask-wearing

looks like.

Masked Face Dataset (MAFA)

(a) (b) (c) (d)

(e) (f)

Figure 2.2: Example images from the MAFA dataset.

Masked Face Dataset (MAFA) was created in 2017 before the Covid-19 pandemic to aid

in the detection of faces under occlusion. It consists of 30,811 images containing 35,806

masked faces [12]. The labels for this dataset consist of information regarding occlusion,

gender, race, face orientation, mask location, and mask type. For this dataset, \mask"

is more broadly de�ned as any face-occluding object.

The detailed labeling for this dataset makes it a good candidate for the masked
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face detection problem. However, because the dataset was created with a more broad

purpose in mind, it does not correspond well to the masking classi�cation problem.

Some \masked" images do not include any masks but rather other sources of occlusion,

making it impossible to di�erentiate between adequate and inadequate masking by

Covid-19 standards with the currently available labels. The images with masked faces

in 2017 tended towards occupational masking such as healthcare or construction as

masking was not as widespread as it became post Covid-19. Focusing on these groups

resulted in many of the photos being stock photo images which tend towards non-

occluded forward-facing faces and less noisy backgrounds.

As seen in Figure 2.2 images (a), (b), and (c) feature healthcare and construction

stock photos with unnaturally posed faces and the masks most commonly associated

with each profession. Images (d), (e), and (f) are all \masked" images with a non-mask

occluding object such as a fan, a hand, and a theater mask.

All in all, MAFA contains a limited sample of the variety of people, masks, and

settings applicable to Covid-19.

Real-World-Masked-Face-Dataset (RMFD)

(a) (b) (c) (d) (e) (f)

Figure 2.3: Example images from the Real World Masked Face Recognition Dataset

(RWMFD) and Simulated Masked Face Recognition Dataset (SMFRD).

Real World Masked Face Dataset (RMFD) is broken into three sub-datasets: the Masked

Face Detection Dataset (MFDD), the Real-world Masked Face Recognition Dataset

(RMFRD), and the Simulated Masked Face Recognition Dataset (SMFRD) [10]. MFDD

contains 24,771 real-world images collected from the internet of human faces along with

annotations of the masking classi�cation and face location. The second group, RMFRD,

contains 5,000 real-world masked images and 90,000 real-world unmasked images of 525
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public �gures. The only annotations for this group are the masking classi�cation for each

image. The �nal group, SMFRD, is a synthetic mask dataset that consists of existing

face datasets such as Labeled Faces in the Wild (LIW) and Webface with masks digitally

added to each face. This dataset contains 500,000 images of 10,000 digitally masked

faces.

Of the three datasets in this family, the MFDD appears to be the most appropriate

for the masking classi�cation and masked face detection problems as it has suitable an-

notations and is relatively large. However, this dataset was not made publicly available

for use. Between RMFRD and SMFRD, RMFRD has the advantage of using real-world

images while SMFRD struggles with many of the same limitations as MaskedFace-Net

as it is digitally generated. Despite its large size, RMFD is limited by its unbalanced

nature between masked and unmasked images and lacks diversity in its subjects since

it only contains 525 unique faces. The images are also not all headshots and the labels

do not re
ect a di�erence between cropped images and non-cropped images.

Figure 2.3 exempli�es some of the drawbacks listed above. Images (a), (b), (c), (d),

and (e) from RMFD are an example of a collection of images containing the same face.

While the �rst three display some variation in the face pose of the subject, everything

else appears about the same. The last two are also of the same subject and even though

they are not as cropped as images (a), (b), and (c), the annotations are the same. Image

(d) is an example image from SMFRD where the blue mask has been digitally added

onto the woman's face.

In summary, MFDD is unavailable for our tasks, RMFD lacks diversity and balance,

and the synthetic option SMFRD maintains the same design issues as MaskedFace-Net

that make it unsuitable for these tasks.

Face Detection

The localization of faces in images is a well studied problem in object detection. Many

of the commonly known state-of-the-art deep learning models such as the one stage

detector YOLO [24] (and variants) and the two-stage detector RCNN [25] (and variants)

are commonly used in general object detection applications thanks to their accuracy and

speed [26, 27, 28, 29]. With the highly variant and often low resolution nature of faces
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in images, more face-speci�c detection methods exist as well. HyperFace [30] builds on

these ideas but also integrates in face landmark localization, pose estimation, and gender

recognition. RetinaFace [31] also applies face landmark localization in addition to 2D

and 3D reconstruction. These methods were a step above earlier methods that used

Haar-like features [32]. For problems speci�cally dealing with lower resolution faces,

approaches that use generative adversarial networks (GANs) [33], training detectors

are di�erent scales [34], and custom loss functions with deep pyramid single shot face

detectors [35].

The majority of the new approaches to masked face detection for classi�cation use

with an o�-the-shelf face detector such as YOLO family [16, 18, 21, 36, 22] or RCNN

family [13]. Other works that made further improvements to their detectors through

training utilized backbones from the ResNet family such as RetinaFace and [1, 37, 38].

To compare the performance of our new dataset to the existing datasets, we opted to

also use this approach and used ResNet50 as the backbone for our baseline.

Masking Classi�cation

Image classi�cation is another well studied problem. AlexNet, VGG16, and VGG19 are

common CNN architectures trained on large datasets and are often used in classi�ca-

tions problems [26]. Another such network, MobileNetv2 [39] uses an inverted residual

with a linear bottleneck making more e�cient than its predecessor for easier real-life ap-

plications. One of the more popular models, ResNet50 [40] harnesses residual learning

to improve on the existing deep neural network architectures. Combining these net-

works with transfer learning techniques is widely used in image classi�cation problems

[41, 42, 43].

For the masking classi�cation task, many of the new approaches to masked face

classi�cation use transfer learning with a pretrained model such as the VGG family

[14, 16, 9], MobileNet family [15, 18, 20, 9], or ResNet family [21, 44, 22, 45]. Some

opted to train a custom CNN from scratch [11, 19], or use an existing pretrained model

for feature extraction and trained custom neural net for classi�cation [16]. A di�erent

approach used by the baseline model of the MaskedFace-Net dataset, among others,

detects facial landmarks and determines mask label based on which landmarks are
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visible [46, 47]. For our comparisons, we opted to use the most popular approach

among the masking classi�ers which applies transfer learning to a pretrained backbone.

With the even distribution of backbone choice among the existing methods and no clear

frontrunner, we opted to use an Xception backbone for its ease of use and competitive

performance [2].



Chapter 3

Method

As outlined in Chapter 2, the major challenges we identi�ed in existing datasets are

ˆ Synthetic datasets improperly handle occlusion, any side or down-turned face

orientation, and lack the mask variety seen in the real world.

ˆ Older datasets are heavily skewed to masks in an occupational setting and stock

photos, lacking the mask and subject variety seen in the real world during the

pandemic. The masks can also sometimes be inappropriate for disease prevention.

ˆ Newer datasets are lacking in diversity in their subjects.

To address these concerns, we have compiled a new dataset Masked Faces in Context

(MASON) which is more representative of everyday public mask usage worldwide.

This section will cover the methodology for the creation of the new dataset. We

will also summarize the key characteristics of the dataset and compare it to the existing

datasets outlined in the Previous Works chapter.
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