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Abstract 

 Forest ecosystems are dynamic entities that are subject to a variety of biotic and 

abiotic environmental changes. Invariably, climate is one of the principal factors 

controlling the distribution of ecosystems and past fluctuations in climate are known to 

have shaped the Midwestern United States forests. The Upper Great Lakes region of 

North America includes Minnesota, Wisconsin, and Michigan, and is characterized by a 

gradual south to north climatic gradient that defines the eastern deciduous forests (oak-

hickory) to the south, the northern mixed hardwood forests (maple, hemlock, and beech) 

in northern Michigan and Wisconsin, and the sub-boreal forest (spruce-fir) in the far 

northern parts of the region. Additionally, the Upper Great Lakes region lies at the 

intersection of three major contrasting air masses: the cold, dry, polar continental air 

mass descending from the north; the dry, continental westerlies; and the warm, moist, 

tropical maritime air mass coming from the Gulf of Mexico. Interactions among these 

three air masses have created a southwest to northeast climatic gradient across the region 

resulting in a drier and warmer environment in southwest Minnesota as opposed to wetter 

and cooler conditions in Upper Michigan. It is in this context that the Upper Great Lakes 

region ecosystems were formed. They include the prairie-forest border (Zone 1), a 

transition zone between the tall grass prairies and the northern forests in Minnesota; the 

forest interior (Zone 2), which extends beyond the prairie-forest border into northern 

Wisconsin; and the deep forest (Zone 3), which lies in Michigan’s Upper Peninsula. In 

recent years, numerous concerns about global environmental changes and their impact on 

the Upper Great Lakes northern hardwood forests have emerged. Increases of 
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temperature caused by ongoing climate change, along with the proliferation of white-

tailed deer (Odocoileus virginianus) populations and invasive European earthworms are 

predicted to drastically change the overstory and understory of northern hardwood 

forests. Sugar maple (Acer saccharum) is a common late successional species in the 

Great Lakes region and is widespread in dry mesic to mesic northern temperate forests. 

Sugar maple forests provide habitat for many wildlife species while trees are valued for 

their products (e.g. timber and syrup). This PhD dissertation aims to advance the 

understanding of the Upper Great Lakes northern hardwood forests by studying sugar 

maple forest community dynamics across an environmental gradient from prairie-forest 

border to interior forest biome and discuss their future in a context of global 

environmental changes. Rather than adopting a field-based approach, 3515 plots 

including tree and seedling data from the Forest Inventory and Analysis (FIA) program 

were studied, with 378 plots in Zone 1, 1823 plots in Zone 2, and 1314 plots in Zone 3. 

Analyses incorporated a combination of ordinations (Bray-Curtis and successional vector 

overlay), Ordinary Least Squares (OLS) regression models, and Aikaike's Information 

Criteria (AIC) provided a means for model selection. 

 Chapter 1 investigated the contemporary overstory and understory forest 

composition of sugar maple communities and successional dynamics across the Upper 

Great Lakes region, and considered three hypotheses: (1) hardwood forests form a series 

of distinct communities via association of sugar maple with other tree species in the 

overstory across the Upper Great Lakes region; (2) sugar maple dominates the understory 

and succession to sugar maple is occurring in all of the communities—therefore the 
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overstory communities identified are not stable; and (3) mesophication (which was used 

as a broad concept to include increasing maple proportion within mixed maple-oak 

forests) in sugar maple-red oak communities is progressing towards greater dominance of 

sugar maple. Sugar maple dominated forests were identified in association with red oak, 

bur oak-aspen, and basswood at the prairie-forest border, red oak-red maple, quaking 

aspen, and basswood in the forest interior, and quaking aspen, red maple-balsam fir, and 

hemlock-yellow birch-white cedar in the deep forest of Upper Michigan. Mesophication 

is occurring in most sugar maple-red oak communities of the prairie-forest border and 

sugar maple regeneration dominates in combination with white ash, ironwood, and 

bitternut hickory (Zone 1), red maple, balsam fir, and ironwood (Zone 2), and balsam fir 

(Zone 3), indicating that the distinct overstory communities may not be stable and that 

sites are trending towards relative homogeneity. However, despite the regeneration 

success of sugar maple, some stands had no sugar maple regeneration and we predict a 

decline in future sugar maple abundance resulting from the long term effects of deer 

browsing, earthworm invasion, and increased drought effects due to global environmental 

change. 

 In Chapter 2, tree and seedling richness-site productivity relationships were 

examined in sugar maple forests of the Upper Great Lakes region. First, the form of the 

species richness-site productivity relationship of the overstory and understory of sugar 

maple forests was investigated on three data sets (i.e. whole data set, upper 90th quantile 

subset, and random sample subset) by testing the null hypothesis that the species 

richness-site productivity is flat. The alternative hypotheses were that the richness-site 
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productivity relationship is 1) hump-shaped, 2) positive monotonic, 3) negative 

monotonic, and 4) U-shaped. Second, after noticing that sugar maple abundance 

approached 100% on some plots, the existence of threshold effects of sugar maple 

abundance on species richness was investigated by testing the null hypothesis that no 

threshold effect exists (i.e. species richness decreases linearly with increase sugar maple 

abundance) against that alternative that there is a threshold effect of sugar maple 

abundance (i.e. species richness display threshold responses to increase basal area). 

Results varied across zones and data sets, indicating that sample size might be 

influencing the results. Overall, there was a significant positive relationship between tree 

richness and site productivity but a flat seedling richness-site productivity relationship. 

The addition of sugar maple basal area to the models greatly improved the results. There 

was no apparent threshold effect but sugar maple abundance had very strong negative 

effect on species richness, which appeared to increase from the prairie-forest border 

towards Upper Michigan.  

 Chapter 3 focused on the ecological niche of sugar maple seedlings from the 

prairie-forest border to the interior of the forest biome. Sugar maple seedling sensitivity 

to current forest structure and composition (sugar maple basal area and stand age), as 

well as site level environmental conditions (sand proportion, soil depth, slope, and 

TRASP - an index related to aspect) was assessed under the hypothesis that sugar maple 

seedlings respond differently to environment variables across the region and have a 

broader environmental niche in the Upper Peninsula of Michigan than at the prairie-forest 

border. As expected, basal area of sugar maple was generally positively related to sugar 
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maple seedling density, while the effects of % sand and soil depth varied across the three 

zones. TRASP, an index related to aspect, had a strong negative influence on seedling 

abundance at the prairie-forest border and interior zones (Zones 1 and 2, respectively), 

but had no influence in the deep interior zone (Zone 3). The overall interpretation of the 

models and patterns across the climate gradient indicated that sugar maple seedling 

abundance is currently insensitive to environmental variables (i.e. has a very broad 

environmental niche) in Upper Michigan, with many stands currently growing on sites 

with relatively high percent sand content, shallow soils, and southerly slopes. The 

expected shift in future climate would make the climate of Upper Michigan like that of 

the prairie-forest border by late 21st century, thereby reducing the probability of seedling 

establishment on many sites currently with high dominance of sugar maple. Additionally, 

high deer populations and earthworm invasion will narrow the niche of sugar maple in 

Upper Michigan even more so than changing climate alone. 
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Sugar maple (Acer saccharum) communities and successional dynamics across the 

Upper Great lakes region 
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 Successional patterns and community dynamics of mesic hardwood forests in the 

Upper Great Lakes Region are responding to a variety of changes including fire exclusion 

near the prairie-forest border and logging followed by fire during the late 1800s to early 

1900s, as well as high levels of deer browsing, invasive species, and early phases of 

climate change. Predictions made during the mid-1900s were that sugar maple would 

increase in abundance in a variety of mesic hardwood forest communities, from relatively 

warm oak-maple at the edge of the prairie to cool and moist hemlock and mixed boreal-

hardwood communities deep in the interior of the forest biome. However, no large-scale 

analysis has been done to assess the status of community structure and successional 

patterns across this climate gradient. In order to asses forest compositional changes in 

hardwood forests across the Upper Great Lakes region, we used Forest Inventory and 

Analysis (FIA) data and a combination of Bray-Curtis ordination and successional vector 

overlay methods to test the hypotheses that (1) hardwood forests form a series of distinct 

communities via association of sugar maple with other tree species in the overstory 

across the Upper Great Lakes region; (2) sugar maple dominates the understory and 

succession to sugar maple is occurring in all of the communities—therefore the overstory 

communities identified are not stable; and (3) mesophication (which was used as a broad 

concept to include increasing maple proportion within mixed maple-oak forests) in sugar 

maple-red oak communities is progressing towards greater dominance of sugar maple. 

Our results supported all three hypotheses. Sugar maple dominated forests were identified 

in association with red oak, bur oak-aspen, and basswood at the prairie-forest border, red 

oak-red maple, quaking aspen, and basswood in the forest interior, and quaking aspen, 
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red maple-balsam fir, and hemlock-yellow birch-white cedar in the deep forest of Upper 

Michigan. Mesophication is occurring in most sugar maple-red oak communities of the 

prairie-forest border and sugar maple regeneration dominates in combination with white 

ash, ironwood, and bitternut hickory (Zone 1), red maple, balsam fir, and ironwood (Zone 

2), and balsam fir (Zone 3), indicating that the distinct overstory communities may not be 

stable and that sites are trending towards relative homogeneity. However, despite the 

regeneration success of sugar maple, some stands had no sugar maple regeneration and 

we predict a decline in future sugar maple abundance resulting from the long term effects 

of deer browsing, earthworm invasion, and increased drought effects due to global 

environmental change. 

 

Introduction 

 Succession has long been a focus of ecological research. It refers to the directional 

change in species composition of a plant community over time and leads to different 

species assemblages (Glenn-Lewin et al. 1992; Connell and Slayter 1977). On mesic sites 

in the Upper Great Lakes region (Minnesota, Wisconsin, and Upper Peninsula of 

Michigan), succession progresses from short-lived, shade-intolerant early-successional 

species such as quaking aspen (Populus tremuloides), bigtooth aspen (Populus 

grandidentata), and paper birch (Betula papyrifera) to long-lived, shade-tolerant late-

successional species such as sugar maple (Acer saccharum) or basswood (Tilia 

americana) (Heinselman 1954). 
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 Modern species assemblages of the Upper Great Lakes region result from glacial 

and interglacial phases of the Quaternary period (Davis 1983). Over the past 21,000 

years, plant associations appeared and disappeared and plant abundance fluctuated in 

response to environmental changes (Williams et al. 2004). Species’ ranges and 

abundances responded individualistically to late-Quaternary environmental changes 

rather than as ecological communities (Webb et al. 1983; Davis 1981; Davis 1976) thus, 

creating some unique plant associations that no longer exist today (Williams et al. 2001; 

Overpeck et al. 1992). The current northern mesic forest of the Upper Great Lakes region 

has subsisted as a dominant assemblage for 5,000-8,000 years and, except near the 

prairie-forest border, was relatively stable until European settlement (Davis 1981; Davis 

1976). It is dominated by sugar maple and includes yellow birch (Betula alleghaniensis), 

basswood, American elm (Ulmus americana), northern red oak (Quercus rubra), red 

maple (Acer rubrum), white ash (Fraxinus americana), hemlock (Tsuga canadensis), and 

American beech (Fagus grandifolia); although Minnesota is mostly missing the latter 

three species and has lesser amounts of yellow birch (Curtis 1959). Pollen records show 

that drastic changes in the Great Lakes forests started in the mid-19th century with the 

disruption of historic disturbance regimes following European settlement, and that the 

magnitude of change during the last 150 years is 2.4 times greater than changes over the 

past 1,000 years (Cole et al. 1998).  

Oak forests with frequent fires close to the prairie-forest border had been slowly 

invaded by maple over the past several hundred years, in response to a slowly cooling 

climate, but the locations and timing of maple invasion were determined by climate 
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variation and firebreaks, establishing patchy co-dominance of maple and oaks across the 

landscape (Umbanhowar 2004; Grimm 1984; Grimm 1983). This process of maple 

advance into oak forests has accelerated during the last several decades due to fire 

exclusion, cessation of understory burning by Native Americans, and a period of 

relatively wet climate, including even those areas to the south and west of fire breaks 

where oaks had maintained dominance up until European settlement (McEwan et al. 

2011; Rogers et al. 2008; Ozier et al. 2006; Spyreas and Matthews 2006; Shotola et al. 

1992; Peet and Loucks 1977; Curtis and McIntosh 1951). The process of invasion by 

maple and other late-successional fire sensitive species into oak forests has been termed 

"Mesophication" (Nowacki and Abrams 2008; Schulte et al. 2007; Rooney et al. 2004b), 

and is also a type of succession, but in forests where succession had been held in check at 

early stages for centuries. Although this concept was originally applied to changes in pure 

oak forests in recent times, here we are broadening the concept to include increasing 

maple proportion within mixed maple-oak forests as well as ongoing (over centuries) and 

possibly accelerated (in recent decades), invasion of oak forests by maple. Mesophication 

has mostly occurred near the prairie-forest border, but also to a small extent in the interior 

of the forest biome in the Great Lakes Region (Hanberry et al. 2012; Nowacki and 

Abrams 2008). In contrast, succession within the interior of the forest biome throughout 

northern Wisconsin and Upper Michigan has mostly occurred as a result of recovery from 

land clearing, farming, logging and fires that resulted from European settlement.  

 In the 1940s and 1950s, J. T. Curtis and colleagues surveyed > 2000 sites in 

Wisconsin to assess plant community composition along different environmental 
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gradients (Waller et al. 2012). He predicted that human-caused environmental changes 

such as fire suppression would cause shade-tolerant species to replace fire-dependent oak 

savanna and woodland ecosystems after only one generation (Curtis 1959). Additionally, 

Heinselman (1954) used quantitative data to show that shade-tolerant sugar maple and 

balsam fir (Abies balsamea) species occupied the understory of many aspen-birch stands 

in the Upper Great Lakes region, most of which originated from land clearing and slash 

burning by European settlers during the late 19th and early 20th centuries, and suggested 

that many of these stands may be converting to different forest types by 1990.  

 Since the 1990s, several researchers have revisited many of Curtis' sites in order 

to document compositional changes over the past 50 years (Waller et al. 2012). Results 

from these studies reinforce predictions from Curtis (1959) and Heinselman (1954); they 

are unanimously revealing shifts in both the overstory and understory species 

composition (Mudrak et al. 2009; Kraszewski and Waller 2008; Rogers et al. 2008; 

Bushman 2005). It is clear that forests are converting to sugar maple or other shade-

tolerant species across mesic sites dominated by hardwoods, stands dominated by 

hemlock, and dry-mesic sites dominated by pines (Amatangelo et al. 2011). 

 In this paper, we estimated contemporary forest composition of sugar maple 

communities across the Upper Great Lakes region, which extends from Minnesota to 

Upper Michigan and is characterized by a southwest to northeast climatic gradient from 

the prairie-forest border in Minnesota to deep within the forest biome in Michigan's 

Upper Peninsula (McNab et al. 2007; Changnon et al. 2002; Cleland et al. 1997; McNab 

and Avers 1994). Rather than adopting an intensive site-based approach, we used existing 
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forest inventory data from the U.S. Department of Agriculture Forest Service, Forest 

Inventory and Analysis Program (U.S.D.A. 2008) to assess broadscale successional 

trends in these communities.  

 Our first step was to estimate the average abundance of the overstory species 

composition of sugar maple dominated forests in the Upper Great Lakes region and 

examine how sugar maple tree communities change from the prairie-forest border—

characterized by a combination of frequent droughts, dry seasons, frequent historical 

fires, and high evapotranspiration to the wetter and cooler climate of the deep forest of 

the Upper Peninsula of Michigan (Changnon et al. 2002). Our second step was to 

investigate the successional pathways of forest communities with a significant component 

of sugar maple. In our last step, we investigated the understory of sugar maple-oak 

dominated sites for the presence of shade-tolerant recruitment species as suggested by the 

literature. 

 We hypothesize that (1) hardwood forests form a series of distinct communities 

via association of sugar maple with other tree species in the overstory across the Upper 

Great Lakes region; (2) sugar maple dominates the understory and succession to sugar 

maple is occurring in all of the communities—therefore the overstory communities 

identified are not stable; and (3) mesophication in sugar maple-red oak communities is 

progressing towards greater dominance of sugar maple. 

 

Methods 

Study area 



 

8 
 

 The Upper Great Lakes region includes three main ecological provinces defined 

by dominant climatic regimes, potential native vegetation, and biomes: the prairie 

parkland, the eastern broadleaf forest, and the Laurentian mixed forest provinces (McNab 

et al. 2007; Cleland et al. 1997; McNab and Avers 1994) (Figure 1.1). 

 The prairie parkland occupies the western part of Minnesota and extends to the 

southern parts of Wisconsin and Michigan. Mean annual temperatures (1971-2000) vary 

from 2ºC in the north to 9ºC to the south. This province has a continental climate with 

cold winters, hot summers, and mean annual precipitation of 46 cm in the north to 84 cm 

in the south. Precipitation mainly occurs in the form of snow in the north but is almost 

entirely rain in the south. Mean evapotranspiration exceeds mean precipitation during the 

growing season (May through September), with water deficits of 3.8 cm along the 

western edge of the prairie parkland to 2.0 cm in southern Minnesota. Semi-arid loamy 

soils are well-to-moderately well-drained. Pre-settlement vegetation was dominated by 

tall grass prairie but today agriculture is the dominant land use.  

 The eastern broadleaf forest extends from northwestern Minnesota to southeastern 

Michigan. Mean annual temperatures vary from 4ºC in the northwest of the province to 

10ºC in Michigan. The overall climate is continental with warm to hot summers. 

Precipitation averages 65 to 93 cm and approximately equals evapotranspiration. Two-

thirds of it falls during the growing season which lasts about 125 days inland and up to 

180 days along Lake Michigan. Local reliefs (20 to 180 m) are apparent in Wisconsin as 

a result of past glaciation. Winter precipitation is mostly snow and averages 100 cm. Soil 

moisture regime is dominantly mesic with frequent growing season water deficits ranging 
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from 2.0 cm in Minnesota up to 1.2 cm in Wisconsin. Pre-settlement vegetation was 

dominated by maple-basswood forests or oak savannas at the prairie-forest border as a 

result of fire frequency variations (Grimm 1984) whereas oak-hickory forests dominate 

sandy sites and beech-maple forests grow on loamy soils in Michigan. Today, agriculture, 

urban and industrial development constitute the major land uses. The transition (ecotone) 

from eastern broadleaf forest to prairie parkland is sharp (Danz 2009; Grimm 1983) 

whereas the transition between eastern broadleaf forest and Laurentian mixed forest is 

gradual (Fisichelli et al. 2013a; Goldblum and Rigg 2002; Braun 1950).  

 The Laurentian mixed forest lies in the northern part of the Upper Great Lakes 

region and extends into Canada. Average annual temperatures range from 3ºC to 6ºC. 

Average annual precipitation varies between 61 and 115 cm, with fifty percent of 

precipitation falling during the growing season (May through September). Average 

annual snowfall varies from 100 to 165 cm, but can be up to 833 cm due to the Lake-

effect snow. The climate is classified as continental with lake effects influence along the 

Great Lakes. Winters (i.e. days below or at freezing temperature) are longer with 

considerable snow coverage and summers are short and warm compared to the prairie 

parkland and the eastern broadleaf provinces. To the contrary of the prairie parkland and 

the eastern broadleaf provinces, there is a moisture surplus rather than a deficit, and the 

mean growing season potential evapotranspiration minus precipitation reaches -11 cm in 

the northern part of the Laurentian mixed forest. Hilly landscapes with shallow soils 

occur along Lake Superior and result from past glaciations. A mosaic of conifer stands, 

northern hardwood stands, and mixed stands occupies the region, and vegetation consists 
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of forests that are a transition between boreal and broadleaf deciduous (Goldblum and 

Rigg 2002; Davis 1983; Braun 1950). Early successional species such as paper birch, 

bigtooth aspen, trembling aspen (Populus tremuloides), and red maple have increased in 

abundance compared to pre-European settlement times, while hemlock and white pine 

(Pinus strobus) abundance has reduced due to a combination of logging, post-logging 

fire, and white-tailed deer (Odocoileus virginianus) browsing (Rooney et al. 2000).The 

dominant land use is forestry and outdoor recreation. 

 

FIA data 

 The Forest Inventory and Analysis (FIA) Program of the U.S. Department of 

Agriculture Forest Service is a nationwide program that collects and publishes data from 

all ownership of forest land in the US since 1929 although annual inventories started in 

1999 (U.S.D.A. 2009). The FIA Program features a complete and systematic national 

sample design for all forest lands (i.e. at least 0.4 ha and 36.3 m wide with a minimum of 

10% stocked by forest trees) in the US (Bechtold and Patterson 2005). It is conducted in 

three phases, although data from the first two phases only were used in this study. In 

Phase 1, land area is stratified using remotely sensed imagery in the form of aerial 

photography and/or satellite imagery to reduce variance in the estimates. In Phase 2, the 

landscape is divided into contiguous 2428 ha hexagons containing one randomly located 

permanent ground plot each, for a total of ~125,000 forested plots nationwide. Sampling 

intensity varies between states, but because the FIA plot design is a combination of 

systematic arrangement and random sampling, varying sample intensities only affects the 



 

11 
 

precision of the estimates. Field crews sample approximately 20% of FIA plots annually 

in the eastern US where they collect variables (e.g. forest type, tree species, soil 

attributes) on each permanent ground plot with 100% measurement of a systematic panel 

of plots completed every five years in the eastern US (U.S.D.A. 2008). Each plot is 

designed to cover a 0.4 ha sample area. A plot consists of one central subplot and an 

equilateral triangle arrangement of three peripheral subplots spaced 36.6 m apart from the 

central subplot, at azimuths of 120, 240, and 360 degrees. Each subplot also includes a 

2.1 m fixed-radius microplot which is offset from the center of the subplot (3.7 m at an 

azimuth of 90 degrees). All trees with a diameter at breast height (dbh) of at least 12.7 cm 

are recorded on subplots. Seedlings (�  2.54 cm dbh and at least 30.5 cm in height for 

hardwood species) are inventoried in microplots.  

 We downloaded FIA raw data files for Minnesota, Wisconsin, and Michigan from 

the FIA database website (FIADB, http://apps.fs.fed.us/fiadb-downloads/datamart.html). 

This study is mostly based upon data collected between 2008 and 2012, which 

corresponds to a full cycle at the time of data upload (November 2013), although we also 

used data from the earliest available FIA cycle, 2000-2004, to compare changes in 

seedling abundance with the 2008-2012 data. To protect the confidentiality of the exact 

location of FIA plots, plot coordinates are spatially perturbed before being released to the 

public. The perturbed plot coordinates were adjusted to be within ± 1 mile of the true plot 

location which is of little consequence on our study given the regional scale presented in 

this work. We selected plots including at least one live sugar maple tree or at least one 

sugar maple seedling and aggregated them into three contiguous zones: Zone 1 (466 



 

12 
 

plots) is near the prairie biome and covers Minnesota and Wisconsin, although we 

excluded Northern Minnesota from our analyses because of small sample size; Zone 2 

(1978 plots) is in the forest biome and includes northern Wisconsin; Zone 3 (1419 plots) 

is deep into the forest biome, with the best climate for trees, and includes the Upper 

Peninsula of Michigan (Figure 1.1). 

 

Data analysis 

Species selection and data sets 

 Tree species were selected based on tree and seedling abundance in each zone. In 

the preliminary data analysis phase, we explored both absolute and relative density and 

opted for tree relative basal area and seedling relative density for further analyses. We 

choose tree species with an average relative basal area of 1% or more, and seedling 

species with an average relative density of at least 1% among plots in each zone (Table 

1.1). 

 We used three data sets for our analyses. The maple data set (2008-2012) was 

used to test the first and second hypotheses (i.e. identification of sugar maple tree 

communities and successional pathways, respectively). It includes plots with at least one 

sugar maple tree or one sugar maple seedling (3866 plots). We identified 218 red oak 

forest type plots (hereafter red oak only data set) from FIA (2008-2012), 110 of which 

were already included in the maple dataset. After adding the red oak forest type plots to 

the maple dataset, we obtained 3974 plots, which we defined as the maple-red oak data 

set. We used the maple-red oak and red oak only data sets to test the third hypothesis (i.e. 
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mesophication) and investigated changes in sugar maple seedling abundance by 

comparing the 2008-2012 data to the 2000-2004 data.  

 

Ordination 

 Sugar maple communities in each zone were identified in PC-ORD v. 5.10 

(McCune and Mefford 2006). Ordinations were based on relative basal area of trees and 

we used Bray-Curtis ordination with Sorensen distance measures and variance-regression 

endpoint selection method in order to minimize the influence of outliers. Bray-Curtis 

ordination not only remains a robust method compared to newer methods of ordination 

such as Nonmetric Multidimentional Scaling (NMS) but it is also an effective strategy for 

large data sets and data that disregards the assumption of linear relationships among 

species (McCune and Grace 2002; Beals 1984). We used the overlay method with a 

cutoff r2 value of 0.100 for our biplots to visually identify the other tree species that mix 

with sugar maple to form gradients in community composition. Sugar maple communities 

subsets were formed by selecting plots with large basal area for the species used for the 

overlay (i.e. > 75th percentile basal area in the main matrix; large symbols on biplots); 

for instance, in Zone 1, the sugar maple-basswood community includes plots above the 

75th percentile of basswood relative basal area; the sugar maple-bur oak-aspen 

community includes plots above the 75th percentile of the sum of bur oak and aspen 

relative basal area (JeriLynn E. Peck, personal communication). In order to investigate 

and depict successional trends of sugar maple tree communities, we generated 

successional vectors overlay (Philippi et al. 1998; McCune 1992) on each sugar maple 
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community subset by creating two sample units: 1) overstory sample unit including 

relative basal area of trees, and 2) understory sample unit including relative density of 

seedlings. Each sample unit consisted of the same plots classified in the same order, so 

that the overstory and understory locations for each plot were projected into the same 

ordination space. By connecting the data points from the overstory sample unit to the 

understory sample unit (McCune and Grace 2002), we were able to infer trajectories of 

sugar maple overstory communities (i.e.,visualize potential overstory compositional 

changes based on the assumption that the understory is the future of the overstory) 

(Sanders and Grochowski 2013; Woodall et al. 2013; Dey et al. 2012; Salk et al. 2011). 

Finally differences between overstory and understory communities were tested with 

multi-response permutation procedure (MRPP), a nonparametric method that tests for 

multivariate differences between groups (Peck 2010; McCune and Grace 2002). A 

Sorensen distance measure was used for the MRPP in order to be consistent with the 

distance measure used in the Bray-Curtis ordination. 

  

Results 

 The Bray-Curtis analysis revealed a continuum of sugar maple communities 

across the Upper Great Lakes region (Figure 1.2 and Table 1.2). In Zone 1, axis 1 

captured 15.57% of the total variation in the data set, while axes 2 and 3 captured 15.62% 

and 12% of the total variation, respectively. In Zone 2, axis 1 explained 24.97% of the 

total variation; axis 2 and 3 explained 17.10% and 13.75% of the total variation, 

respectively. In Zone 3, axis 1 accounted for 28.61% of the total variation, while axis 2 
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and 3 explained 17.89% and 17.73% to the total variation, respectively. In all three zones, 

high abundances of sugar maple appeared in the negative portion of axis 1 while other 

species abundances were in the positive portion of axis 1. Four sugar maple communities 

exist in Zone 1: sugar maple, sugar maple-red maple, sugar maple-bur oak-aspen, and 

sugar maple-basswood. Three sugar maple communities were identified in Zone 2: sugar 

maple-basswood, sugar maple-red oak-red maple, and sugar maple-quaking aspen. Four 

sugar maple communities occurred in Zone 3: sugar maple, sugar maple-quaking aspen, 

sugar maple-red maple-balsam fir, and sugar maple-hemlock-yellow birch-white cedar 

(Figure 1.2 and Table 1.2).  

 Successional vectors overlay indicated that the overstory composition was 

different from the understory composition and results were supported by significant 

MRPP tests (p-value < 0.0001). In all of the sugar maple communities, axes 1, 2, and 3 

combined accounted for 38.48% to 61.94% of the total variation, with axis 1 and 2 

explaining 18.78%-32.92% and 10.88%-20.7% of the total variation, respectively. In 

Zone 1, the successional vectors overlay showed that sugar maple transitioned towards 

sugar maple and white ash; sugar maple, ironwood, bitternut hickory, and white ash were 

found in the understory of sugar maple-red oak tree community in Zone 1; the understory 

of sugar maple-bur oak-aspen in Zone 1 included sugar maple, white ash, and ironwood, 

whereas sugar maple and white ash seedling dominated under the sugar maple-basswood 

community in Zone 1 (Fig. 1.3, Table 1.3). In Zone 2, regeneration of sugar maple, white 

ash, and ironwood was apparent under the sugar maple-basswood tree community. The 

successional vector overlay in the sugar maple-red oak-red maple tree community in 
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Zone 2 indicated a trajectory to sugar maple and red maple. Sugar maple and balsam fir 

seedlings occurred in the sugar maple-quaking aspen tree community in Zone 2 (Figure 

1.4, Table 1.3). Finally, sugar maple, red maple, and ironwood are regenerating in the 

sugar maple tree community in Zone 3 while sugar maple and balsam fir seedlings 

pathways were observed in all other sugar maple tree communities in Zone 3 (i.e. sugar 

maple-quaking aspen, sugar maple-red maple-balsam fir, sugar maple-hemlock-yellow 

birch-white cedar, Figure 1.5, Table 1.3).  

 The maple-red oak data set indicated that 70% of plots included sugar maple 

seedlings in 2000-2004 (Zone 1 = 54%, Zone 2 = 68%, Zone 3 = 84%) compared to 73% 

plots in 2008-2012 (Zone 1 = 61%, Zone 2 = 71%, Zone 3 = 84%). Among the plots that 

contained sugar maple seedlings, the sugar maple seedling relative density in 2000-2004 

was on average 45% (Zone 1 = 45%, Zone 2 = 42%, Zone 3 = 49%). This proportion was 

40% in 2008-2012 (Zone 1 = 39%, Zone 2 = 38%, Zone 3 = 43%) (Table 1.4. (a)). The 

proportion of plots with sugar maple seedlings present in 2000-2004 but not in 2008-

2012 was 13% (Zone 1 = 22%, Zone 2 = 14%, Zone 3 = 9%), while the proportion of 

plots with sugar maple seedlings present in 2008-2012 but not in 2000-2004 was 16% 

(Zone 1 = 28%, Zone 2 = 18%, Zone 3 = 9%).  

 The red oak only data set indicated that 39% of plots included sugar maple 

seedlings in 2000-2004 (Zone 1 = 22%, Zone 2 = 44%, Zone 3 = 69%) compared to 35% 

plots in 2008-2012 (Zone 1 = 22%, Zone 2 = 40%, Zone 3 = 46%). Among the plots that 

contained sugar maple seedlings, the sugar maple seedling relative density in 2000-2004 

was on average 34% (Zone 1 = 34%, Zone 2 = 35%, Zone 3 = 31%). This proportion was 
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36% in 2008-2012 (Zone 1 = 41%, Zone 2 = 35%, Zone 3 = 32%) (Table 1.4. (b)). The 

proportion of plots with sugar maple seedlings present in 2000-2004 but not in 2008-

2012 was 22% (Zone 1 = 29%, Zone 2 = 19%, Zone 3 = 33%), while the proportion of 

plots with sugar maple seedlings present in 2008-2012 but not in 2000-2004 was 14% 

(Zone 1 = 29%, Zone 2 = 12%, Zone 3 = 0%). 

 

Discussion 

 Our results support all three hypotheses given in the Introduction. First, sugar 

maple dominated forests form a continuum of sugar maple tree communities within and 

across zones of the Upper Great Lakes region (hypothesis 1), by associating with 

different tree species across the gradient from the prairie-forest border to the deep forest 

of Upper Michigan. Second, across the Upper Great Lakes region, sugar maple 

regeneration dominates in combination with white ash and ironwood (Zones 1 and 2), as 

well as red maple and balsam fir (Zones 2 and 3), indicating that the distinct overstory 

communities may not be stable and that sites are trending towards relative homogeneity 

(hypothesis 2).Third, results based on the red oak only data sets suggest a progression 

towards greater abundance of sugar maple seedlings (i.e. increase in average sugar maple 

seedling relative density) in 2008-2012 compared to 2000-2004, especially near the 

prairie forest border. While this increase is evident for the red oak only data set, the 

average sugar maple relative density for the sugar maple-red oak data set decreased in 

2008-2012 compared to 2000-2004, although the proportion of plots with sugar maple 

seedlings is greater in 2008-2012 than in 2000-2004. This may suggest that sugar maple-
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red oak communities are progressing towards greater dominance of sugar maple, which 

may be partly explained by mesophication (hypothesis 3).  

  

Hypothesis 1: Distinct sugar maple tree communities across the Upper Great Lakes 

region 

 Sugar maple is known to be a major component in many forest types of North 

America (Burns and Honkala 1990; Eyre 1980) and grows on a wide range of mesic soils 

(Horsley et al. 2002; Cogbill 2000). In the Upper Great Lakes region, the distribution of 

beech, hemlock and yellow birch becomes more and more limited from east to west while 

sugar maple encompasses most of the region, therefore adapting by forming communities 

with species that are present (Tirmenstein 1991). Co-dominant species across the area 

include red oak, bur oak, aspen and basswood in southern Minnesota and Wisconsin 

(Zone 1), basswood, red oak, red maple, and quaking aspen in northern Wisconsin and 

central Minnesota (Zone 2), and quaking aspen, red maple, balsam fir, hemlock, yellow 

birch, and white cedar in the Upper Peninsula of Michigan (Zone 3) (Table 1.2). We 

assert that the difference in species composition across the Great Lakes region is mainly 

associated with changes in environmental conditions where a drier climate with frequent 

droughts and historical fire events prevails at the prairie-forest border compared to a 

cooler and wetter environment in the deep forest of Michigan (Changnon et al. 2002). In 

the Upper Peninsula of Michigan, sugar maple dominates mesic northern forests with 

hemlock, yellow birch, and red maple as co-dominant species (Frelich 2002; Barnes 

1991; Curtis 1959; Braun 1950). Because this area is subject to heavy lake-effect snow 
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from Lake Superior, snowfall plays an important role in the abundance of sugar maple, 

hemlock, and beech by influencing soil moisture, nutrient availability, and fire history; 

for instance, at low annual snowfall, sugar maple and beech importance value are less 

than hemlock; at moderate snowfall, sugar maple increases while hemlock decreases; and 

at high annual snowfall, sugar maple is significantly more important (Henne et al. 2007). 

Although beech is also a common co-dominant species of sugar maple in the Upper 

Peninsula of Michigan our ordinations did not show a distinct beech-maple forest 

community. This might be caused by the absence of beech in the western Upper 

Peninsula where temperatures are colder and droughts are more frequent (Barnes 1991; 

Woods and Davis 1989). 

 

Hypothesis 2: Understory sugar maple dominance and overstory instability 

 Several factors contribute to the conversion of the sugar maple overstory 

communities identified in hypothesis 1 to distinct understory communities, where sugar 

maple seedlings co-dominate with white ash, ironwood, red maple, balsam fir, and some 

bitternut hickory. Our results are consistent with the successional trends identified by 

Kotar's forest habitat classification system. He identified that additionally to sugar maple 

seedlings, bitternut hickory, white ash, basswood, red maple, and shagbark seedlings 

were increasing in abundance in stands dominated by sugar maple in Zone 1, but that red 

and white oak, which were important in presettlement, are not regenerating today (Kotar 

and Burger 1996). In Zone 2, sugar maple and ironwood species were common in the 

understory (Kotar et al. 1988), and in Zone 3, additionally to sugar maple seedlings, red 
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maple, balsam fir, and some ironwood seedlings are commonly present (Burger and 

Kotar 2003). These successional trends may have resulted from a combination of 

succession and anthropogenic changes. Early successional species such as aspen are 

likely to be replaced by late successional and shade tolerant sugar maple (Tirmenstein 

1991) and balsam fir species (Uchytil 1991). Sugar maple and balsam fir have high 

tolerance for shade and also the potential to successfully outcompete yellow birch 

seedlings (Sullivan 1994), which also suffer from heavy deer browsing (White 2012). 

The disappearance of hemlock as a co-dominant species in the understory also may be 

explained by intense deer browsing. There is now strong evidence in the literature that 

high levels of deer browsing on hemlock populations have contributed to the success of 

sugar maple in the understory (Jenkins 1997; Doepker et al. 1995; Frelich and Lorimer 

1985; Marquis and Brenneman 1981; Stoeckeler et al. 1957). With lesser amounts of 

hemlock, sugar maple has a stronger potential to replace its most shade-tolerant 

competitor, hemlock (Brown and Curtis 1952). On the other hand, red maple, a generalist 

species, has become increasingly common in northern forests, mainly due to its low 

requirements for resources, reduced fire frequency, and human caused disturbances such 

as logging (Fei and Steiner 2007; Abrams 1998; Abrams and Nowacki 1992; Lorimer and 

Frelich 1984). Together, red maple and sugar maple have become the most abundant 

species in modern forest understories compared to the pre-settlement forest (Zhang et al. 

2000). As for the presence of ash and ironwood in the sugar maple-red oak understory 

community, we suspect that earthworms are favoring ash species and deer population 

increase is allowing ironwood to invade (Matonis et al. 2011). The distinct understory 
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communities resulting from a combination of successional processes and anthropogenic 

changes in sugar maple dominated forests indicate that overstory communities of the 

Great Lakes region are not stable and may undergo compositional changes.  

 

Hypothesis 3: Mesophication in sugar maple-red oak communities  

 The increase of the average sugar maple seedling relative density in the 

understory of red oak communities (based on the red oak only data set) may be explained 

by mesophication in Zone 1 while succession is most likely occurring in Zone 2. In Zone 

1, we suspect that mesophication is progressing towards greater dominance of sugar 

maple due to fire exclusion (Hanberry et al. 2012). Oak decline in abundance is now 

apparent in southeast and west-central region of Minnesota (Hanberry et al. 2012; Danz 

2009), as well as in southeast Wisconsin (Rhemtulla et al. 2009; Rogers et al. 2008). 

Previous studies have shown that fire is an important component to red oak regeneration 

as it regulates the proportion of red oak in sugar maple-red oak forests (Grimm 1983) and 

contributes to red oak establishment in Zones 1 and 2 (Bragg et al. 2004; Frelich 2002). 

Except for transitional dry mesic sites, red oak was an unimportant species in pre-

settlement forests, yet post-settlement logging, slash fire practices, and suppression of 

frequent grass fires in the Central Plains region and areas previously dominated by tall 

grass prairies created perfect conditions for its establishment (Nowacki et al. 1990). Once 

established, canopy closure combined with a decrease in fire frequency and intensity 

jeopardized oak species recruitment, and favored shade tolerant species (e.g. sugar maple, 

red maple) establishment in the understory (Hanberry et al. 2012; Nowacki and Abrams 
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2008; Lorimer 2003). In Zone 2 however, red oak was initially established after major 

wind catastrophes followed by fire (Curtis 1959) and increased in abundance as a 

consequence of logging and slash fires practices later followed by fire suppression and 

the absence of deer that prefer to browse on red oak seedlings (McEwan et al. 2011; 

Rhemtulla et al. 2009; Radeloff et al. 1999; White and Mladenoff 1994). While the land 

was cleared for agriculture, most sites were left to reforest naturally and they are now 

undergoing successsion to shade tolerant species like maple (Rhemtulla et al. 2009).  

 

Factors contributing to the success of sugar maple in the past few decades 

 In order to better understand the future of sugar maple dominated forests, it is 

important to address the factors explaining the success of sugar maple in the past several 

decades based on previous studies. They include single-tree selection management 

practices, the prevalence of disease and heavy deer browsing of competing tree species, 

mesophication of oak forests, and wetter climatic conditions. Single-tree selection has 

been used since the 1920s in managing northern hardwood forest of the Upper Great 

Lakes region to improve stand growth and stocking of tree species (Nyland 1998; Crow 

et al. 1981). By creating small gaps, single-tree selection in maple forests has proven to 

increase sugar maple abundance in the understory and disfavor the establishment and 

recruitment of other species that may require larger canopy gaps (e.g. yellow birch), 

therefore leading towards greater homogeneity in composition and reducing species 

diversity (Gronewold et al. 2010; Webster and Lorimer 2005). In southern Minnesota and 

Wisconsin, the oak and maple group has been observed with important amounts of 
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basswood (Curtis 1959). The maple-basswood association was recognized as the regional 

climax in the Big-Woods (Daubenmire 1936), and elm was reported to be one of the 

dominant tree species in the area, accounting for 27% of the bearing trees (Grimm 1984). 

In the late 1920s, Dutch elm disease reached the eastern United States (Gibbs 1978), 

irrupted in central Illinois in the mid-1950s (Neely et al. 1960), and in the late 1970s, it 

rapidly spread through Minnesota (Shrum and French 1977). The removal of elms by 

Dutch elm disease may have created favorable conditions for sugar maple population 

increase and establishment (Lin and Augspurger 2006), and might also partly explain the 

widespread occurrence of sugar maple-dominated stands.  

 In the late 1950s, Curtis (1959) observed that deer browsing was responsible for 

low densities of hemlock seedlings and saplings in hemlock stands and suggested that 

hemlock forests will eventually succeed to sugar maple forests. Several studies later 

reinforced Curtis' research by showing that hemlock, the preferred deer browse tree 

species, has decreased in density allowing un-preferred browsed tree species such as 

sugar maple, red maple and ironwood to successfully regenerate (White 2012; Salk et al. 

2011; Rooney and Waller 2003; Rooney et al. 2000; Auclair et al. 1996; Kittredge and 

Ashton 1995; Frelich and Lorimer 1985). In oak-dominated forests, deer browsing has 

also been shown to partly favor sugar maple and contribute to oak regeneration failure 

(Marquis et al. 1976), as acorns provide an important source of food for deer while the 

stems of young oaks constitute their winter provisions (Dickman and Lantagne 1997). 

 Mesophication of oak forests has also contributed to the successful establishment 

of sugar maple in oak forests and is attributed to the decrease of fire frequency in 
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Minnesota (Hanberry et al. 2012). We suspect that mesophication is widespread in Zone 

1 and occurring in a few parts of Zone 2. Before European settlement, fire was 

widespread and had an important impact on vegetation patterns and species assemblages 

(Abrams and Nowacki 1992). Frequent fires were critical in maintaining the open nature 

of oak savannas and open understories of oak forests by controlling light availability, 

creating microsites, and cleaning out the understory, thus preventing succession to fire-

sensitive, shade-tolerant species (Rebertus and Burns 1997; Tester 1989; Grimm 1984; 

Grimm 1983; Curtis 1959). After European settlement, fire suppression and land-use 

changes profoundly affected vegetation in ways that mesophytic species like sugar maple 

increased and replaced fire dependent xerophytic like oak, pine, and chestnut (Hanberry 

et al. 2012; Nowacki and Abrams 2008). Finally, climate records over the past 500 years 

indicate reduced drought frequency and severity as well as increase moisture availability 

across eastern North America in the last century that could have favored maple over oaks 

(McEwan et al. 2011).  

 

Implications for the future of sugar maple 

 While it is obvious that sugar maple is a successful species across the Great Lakes 

regions, we predict that the successional momentum towards sugar maple could slow or 

even reverse in the future due to the long term effects of deer browsing, earthworm 

invasion, and increased drought effects with a warming climate (Joyce et al. 2013; White 

2012; Mattison 2011). In the prairie-forest order region (zone 1) forests may enter a post-

mesophication phase. Given the scarcity of preferred browse species (hemlock and 
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yellow birch in Zones 2 and 3, red oak in Zones 1 and 2) after several decades of heavy 

deer browsing, species further down on the preference list, such as sugar maple, may 

become a source of food for deer and experience recruitment failure. Such a case has 

already been documented by monitoring of permanent mapped plots in Upper Michigan 

(Salk et al. 2011; Matonis et al. 2011). Earthworms, which are not native to the northern 

Great Lakes Region (James 1995), have become widespread due to use as recreational 

fishing baits (Gates 1982). A suite of invading earthworm species, including the 

nightcrawler (Lumbricus terrestris), leaf worm (Lumbricus rubellus), and angleworms 

(Aporrectodea spp), cause multiple changes to soil structure and ecosystem function 

(Frelich et al 2006). Reduction in duff thickness, compaction of the A horizon, and lower 

N and P availability when the worms invade all contribute to decline in growth and seed-

producing ability of mature sugar maple trees (Larson et al. 2010; Hale et al. 2006; 

Frelich et al. 2006). Exposed bare mineral soils created by earthworms and increasing 

total earthworm biomass in northern hardwood forests have caused sugar maple seedling 

density and total cover to decrease and have resulted in rapid loss of the understory plants 

and tree seedlings, in particular sugar maple seedlings (Fisichelli et al. 2013b; 

Holdsworth et al. 2007; Frelich et al. 2006; Hale et al. 2005b; Hale et al. 2005a). In the 

future, we expect regeneration failure of sugar maple to continue on earthworm invaded 

sites while red maple may prosper, since it germinates well on bare mineral soil and is 

not as negatively affected by nutrient loss and drier soils as sugar maple is (Mattison 

2011).  
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Forest ecosystems are also facing new challenges with the rapid increases in the 

global mean annual temperature and changes in disturbance regime (Joyce et al. 2013). 

Sugar maple is known for its sensitivity to drought (Horsley and Long 1999). In the Great 

Lakes region, climate scenarios predict a 3°C to 7°C increase in temperature in winter by 

the end of the century and 3°C to 11°C rise in summer (Kling et al. 2005). Precipitation is 

projected to rise in the winter and decrease in the summer, and the region may become 

drier overall because of future increased evaporation and transpiration that exceed 

surpluses of precipitation (Kling et al. 2005; Kling et al. 2003). Past drought episodes 

have contributed to sugar maple dieback, and with future drought scenarios, sugar maple 

dieback is expected to happen again by 2045-2085 (Auclair et al. 1996).  

We propose that many stands will enter a post-mesophication phase where sugar 

maple might not be able to survive the combination of warmer climate, drought, deer 

browsing, and earthworm invasion (Frelich and Reich 2010). Even though our results 

showed that sugar maple regeneration is successful in the understory of sugar maple 

communities across the Upper Great Lakes region, the question arises: is there already 

evidence for a post-mesophication phase caused by changes in climate over the last 

century in addition to browsing and earthworm invasion in some stands? Recent field-

based studies have demonstrated that combinations of these factors impede the growth of 

temperate mesic forest species, including sugar maple (Fisichelli et al. 2013b; Salk et al. 

2011). Sugar maple seedling relative abundance has declined in 2008-2012 compared to 

2000-2004 (Table 1.4 (a)). Morevover, approximately 39%, 29%, and 16% of our plots in 

Zone 1, Zone 2, and Zone 3, respectively showed no sugar maple seedling regeneration 
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for the maple-red oak data set. There were 33%, 27%, and 16% of plots in Zones 1, 2, 

and 3, respectively, without sugar maple seedling regeneration for the maple data set. 

This result is consistent with the field studies cited above, although at a much larger 

spatial extent, and with less detail as to cause of absence of sugar maple seedlings. The 

spatial pattern with a higher percentage of plots without sugar maple regeneration in 

Zones 1 and 2, than Zone 3, is also consistent with expectations for ongoing changes 

working against sugar maple, which should have lesser magnitude of negative impacts in 

the deep interior forest zone, where the climate is extremely favorable for sugar maple 

and potentially able to mitigate negative effects of environmental changes as described 

above. Therefore, we hypothesize that some sugar maple dominated sites are entering a 

post-mesophication phase and propose that future studies should investigate this 

hypothesis in more detail.   
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Table 1.1.  Summary data for selected species. Tree relative basal area (a) and seedling relative density (b) are calculated from 

plots including at least one sugar maple tree or one sugar maple seedling from the 2008-2012 FIA data. 
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Table 1.2.  Sugar maple tree communities across the Upper Great Lakes region. Tree 

communities were formed by selecting plots with large basal area for the species we used 

for the overlay (i.e. > 75th percentile basal area in the main matrix; large symbols on 

biplots); for instance, in Zone 1, the sugar maple-basswood community includes plots 

above the 75th percentile of basswood basal area.  
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Table 1.3.  Successional patterns of sugar maple tree communities across the Upper 

Great Lakes region. Table is based on successional vector overlay results (see Figures 1.3 

to 1.5). 
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Table 1.4.  Proportion of plots with sugar maple seedlings in 2000-2004 and 2008-

2012. The maple-red oak data set (3974 plots) includes plots with at least one sugar 

maple tree or one sugar maple seedling or red oak forest type FIA plots (a). The red oak 

only data set (218 plots) refers to plots classified as red oak forest type by FIA (b). 

Numbers in parentheses indicate the average relative density of sugar maple seedling 

among the plots that contained sugar maple seedlings.  
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Figure 1.1.  Map of the study area. Zones of interest are overlapping with ecological 

provinces (i.e. Prairie Parkland, Midwest Broadleaf Forest, and Laurentian Mixed Forest) 

(McNab et al. 2007). The Prairie-Forest Border (PFB) forms the transition zone between 

the tall grass prairies and the northern forests (Zone 1, 466 FIA plots), the forest interior 

extends beyond the PFB into northern Wisconsin (Zone 2, 1978 FIA plots), and the deep 

forest lies in Michigan’s Upper Peninsula (Zone 3, 1419 FIA plots). 
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Figure 1.2.  Ordination plots of sugar maple communities across the Upper Great 

Lakes region. The joint plots show the relationship of multiple responses to Axis 1 and 2. 

Upper left graph represents Zone 1, upper right graph represents Zone 2, and bottom 

graph represents Zone 3. Vectors are radiating from the centroid. The direction of each 

vector indicates its relative association with the two axes while the length of each vector 

is proportional to the magnitude of the association. 
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Figure 1.3.  Successional vector overlay plots of sugar maple communities in Zone 1. For clarity, the top graphs show the joint plot 

without the successional vectors and the bottom graphs show the joint plot with the successional vectors. Triangles (� �� ��$���&��
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Figure 1.4.  Successional vector overlay plots of sugar maple communities in Zone 2. For clarity, the top graphs show the joint plot 

without the successional vectors and the bottom graphs show the joint plot with the successional vectors. Triangles (� ) indicate 

overstory and open circles (� ) indicate understory. 
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Figure 1.5.  Successional vector overlay plots of sugar maple communities in Zone 3. For clarity, the top graphs show the joint plot 

without the successional vectors and the bottom graphs show the joint plot with the successional vectors. Triangles (� ) indicate 

overstory and open circles (� ) indicate understory. 
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Chapter 2 

 

 

Tree and seedling richness-productivity relationships in sugar maple 

(Acer saccharum) forest of the Upper Great Lakes region 

with Lee E. Frelich 
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 Hundreds of hypotheses have been proposed to explain the variation in species 

richness in ecology and site productivity has been recognized as being the most important 

processes regulating species richness. The species richness-productivity relationship has 

been studied for decades, yet, the form of this relationship and the possible mechanisms 

responsible for this pattern remain controversial. Five main distributions are proposed as 

an attempt to explain the species richness-productivity relationship: hump-shaped, 

positive monotonic, negative monotonic, U-shaped, or flat. The hump-shaped distribution 

is the most common pattern and refers to an increase in species richness at low levels of 

site productivity followed by a decrease at high levels of site productivity. Most species 

richness-productivity relationships studies have been conducted in ecosystems other than 

forests, although few studies have focused on this relationship in temperate deciduous 

forests. In an attempt to gain a better understanding of the overstory and understory 

species richness in relation to site productivity in temperate deciduous forests of the 

Upper Great Lakes region (Minnesota, Wisconsin, and Upper Peninsula of Michigan), we 

used data from Forest Inventory and Analysis plots (FIA) plots and a set of ordinary least 

squares (OLS) models on three data sets: a whole data set, an upper 90th quantile of 

species richness subset, and a random sample subset. First, we investigated the form of 

the tree and seedling richness-site productivity relationship in sugar maple dominated 

forests of the Upper Great Lakes region. Second, we added sugar maple relative basal 

area to our richness-site productivity analyses after noticing that sugar maple abundance 

approaches 100% on some plots in all zones and therefore dominates the tree layer. We 

tested if there was a threshold effect in sugar maple abundance that leads to a decrease of 
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other species. Results varied across zones and data sets, indicating that sample size might 

be influencing our results. Overall, a significant positive relationship between tree 

richness and site productivity was apparent as opposed to a flat seedling richness-site 

productivity relationship. The addition of sugar maple basal area to our models greatly 

improved our results. No threshold effect was apparent but we observed that sugar maple 

abundance had very strong negative neighborhood effect on species richness, which 

seemed to increase from the prairie-forest border towards Upper Michigan.  

 

Introduction 

 According to the species-area theory, larger areas tend to contain a larger number 

of species (Wilson and MacArthur 1967). Based upon this assumption, the species-

energy theory suggests a positive relationship between available energy - a general 

measure of site productivity due to factors such as climate, topography, or soil chemistry 

- and species richness (Wright 1983; Brown 1981). As an explanation for the species-

energy theory, the More Individuals Hypothesis states that "more productive sites can 

support higher total abundances and, since species richness is an increasing function of 

total abundance, so will it be of productivity" (Srivastava and Lawton 1998). Amongst 

the hundreds of hypotheses that have been proposed to explain the variation in species 

richness (Palmer 1994), productivity (i.e. the rate at which energy flows through an 

ecosystem; Rosenzweig and Abramsky 1993) is recognized as being one of the most 

important processes regulating species richness and a key factor influencing biodiversity 

and ecosystem functions (Field et al. 2009; Tilman et al. 1997; Grime 1979). The 
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relationship between species richness and site productivity has been studied since the 

mid-1960s (Waide et al. 1999; Pianka 1966; Leigh 1965) and research clearly shows that 

site productivity is a strong and consistent predictor of species richness (Currie et al. 

2004; Francis and Currie 2003; Hawkins et al. 2003).  

 Despite an increasing research effort investigating the species richness-site 

productivity relationship, the form of this relationship and the possible mechanisms 

responsible for this pattern remain controversial to the point that no general consensus on 

the topic has been reached (Adler et al. 2011; Waide et al. 1999; Abrams 1995). As a 

result, five main distributions are proposed as an attempt to explain the species richness-

site productivity relationship: hump-shaped, positive monotonic, negative monotonic, U-

shaped, or flat relationships (Mittelbach et al. 2001; Gross et al. 2000; Waide et al. 1999; 

Grace 1999). According to several studies, the hump-shaped distribution is the most 

common pattern attributed to the species richness-productivity relationship (see review 

by Mittelbach et al. 2001). This relationship has often been explained as a result of 

environmental stress and competitive exclusion, resulting in a unimodal distribution or 

"hump-shaped" relationship (Grime 1979). Adopted by many (Dodson et al. 2000; 

Tilman and Pacala 1993; Rosenzweig and Abramsky 1993), the humped model suggests 

that species richness decreases at low and high productivity levels and peaks at 

intermediate productivity level. At low productivity level, species richness is dependent 

upon limited resources and therefore responds to environmental stress; at intermediate 

productivity level, moderate levels of stress and competition allow species that could not 

survive towards low and high productivity levels to coexist; and at high productivity 
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level, species richness decreases with increased interspecific competition. While some 

authors characterized the hump-shaped model as being "ubiquitous" (Huston and 

Deangelis 1994) or "true" (Rosenzweig 1992), Abrams (1995) challenged the validity of 

the humped pattern by suggesting that other forms than the hump-shaped model exist. He 

argued that little is known about the mechanisms of competition in different communities 

and that at high productivity level, factors other than competition and exclusion explain 

reduced species richness. Other authors suggest that the form of the species richness-

productivity relationship is highly scale dependent (Gross et al. 2000; Waide et al. 1999; 

Rosenzweig and Abramsky 1993). Mittlebach et al. (2001) examined the species 

richness-productivity relationship in 171 published studies, and observed that, at 

geographical scales smaller than the continental to global, such as the regional and local 

scales (<4000 km), the dominant model was the humped model (41-45% of all cases), 

followed by the positive relationship model. Examples of other factors explaining the 

form of species richness-productivity relationship include how data are aggregated and 

patterns examined (Gross et al. 2000), or the role of species pool and evolutionary history 

(Partel et al. 2007; Zobel 1997).  

 A review of the scientific literature shows that although species richness-site 

productivity relationship studies have been conducted in wetlands (Gough et al. 1994; 

Moore and Keddy 1989), grassland ecosystems (Gross et al. 2000; Grace 1999; Zobel 

and Liira 1997), aquatic ecosystems (Dodson et al. 2000), and even animal populations 

(Waide et al. 1999), few studies have focused on the species richness-site productivity 

relationship in temperate deciduous forests (Axmanova et al. 2012; Schuster and 
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Diekmann 2005), in particular in North America (Oberle et al. 2009). Given the debate 

around the hump-shaped model (Mittelbach et al. 2001; Waide et al. 1999), our first 

objective was to describe the form of the species richness-site productivity relationship in 

the overstory (tree) and understory (seedling) of temperate deciduous forests of the Upper 

Great Lakes region (Minnesota, Wisconsin, and Upper Peninsula of Michigan), 

specifically, in sugar maple dominated forests. As part of our second objective, we 

included sugar maple abundance to our models after noticing that the tree layer 

approached 100% sugar maple basal area on some plots across the entire study region. 

Given that sugar maple has a strong positive neighborhood effects that promotes self 

replacement (Frelich 2002; Frelich et al. 1993), we were interested in testing whether 

species richness decreased with increases of sugar maple abundance and investigating 

whether there was a threshold effect in sugar maple abundance that leads to the decrease 

of other species.  

 We studied the form of the species richness-site productivity relationship of the 

overstory and understory of sugar maple dominated forests (objective 1), by proposing 

the null hypothesis that the species richness-site productivity relationship of the Upper 

Great Lakes region is flat. Our alternative hypotheses were that the richness-site 

productivity relationship is 1) hump-shaped, 2) positive monotonic, 3) negative 

monotonic, and 4) U-shaped. We investigated the existence of threshold effects of sugar 

maple abundance on species richness (objective 2), by testing the null hypothesis that no 

threshold effect exists (i.e. species richness decreases linearly with increase sugar maple 
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abundance) against that alternative that there is a threshold effect of sugar maple 

abundance (i.e. species richness display threshold responses to increase basal area).  

 

Methods 

Study area 

 The Upper Great Lakes region includes three main ecological provinces defined 

by dominant climatic regimes, potential native vegetation, and biomes: the prairie 

parkland, the eastern broadleaf forest, and the Laurentian mixed forest provinces (McNab 

et al. 2007; Cleland et al. 1997; McNab and Avers 1994) (Figure 2.1). 

 The prairie parkland occupies the western part of Minnesota and extends to the 

southern parts of Wisconsin and Michigan. Mean annual temperatures vary from 2ºC in 

the north to 9ºC to the south. This province has a continental climate with cold winters, 

hot summers, and mean annual precipitation of 46 cm in the north to 84 cm in the south. 

Precipitation mainly occurs in the form of snow in the north but falls mostly as rain in the 

south. Mean evapotranspiration exceeds mean precipitation during the growing season 

(May through September), with water deficits of 3.8 cm along the western edge of the 

prairie parkland to 2.0 cm in southern Minnesota. Semi-arid loamy soils are well-to-

moderately well-drained. Pre-settlement vegetation was dominated by tall grass prairie 

but today agriculture is the dominant land use. 

 The eastern broadleaf forest extends from northwestern Minnesota to southeastern 

Michigan. Mean annual temperatures vary from 4ºC in the northwest of the province to 

10ºC in Michigan. The overall climate is continental with warm to hot summers. 
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Precipitation averages 65 to 93 cm and approximately equals evapotranspiration. Two-

thirds of it falls during the growing season which lasts about 125 days up to 180 days 

along Lake Michigan. Local reliefs (20 to 180 m) are apparent in Wisconsin as a result of 

past glaciation. Winter precipitation is mostly snow and averages 100 cm. Soil moisture 

regime is dominantly mesic with frequent growing season water deficits ranging from 2.0 

cm in Minnesota up to 1.2 cm in Wisconsin. Pre-settlement vegetation was dominated by 

maple-basswood forests or oak savannas at the prairie-forest border as a result of fire 

frequency variations (Grimm 1984) whereas oak-hickory forests dominate sandy sites 

and beech-maple forests grow on loamy soils in Michigan. Today, agriculture, urban and 

industrial development constitute the major land uses. The transition (ecotone) from 

eastern broadleaf forest to prairie parkland is sharp (Danz 2009; Grimm 1983) whereas 

the transition between eastern broadleaf forest and Laurentian mixed forest is gradual 

(Fisichelli et al. 2013a; Goldblum and Rigg 2002; Braun 1950).  

 The Laurentian mixed forest lies in the northern part of the Upper Great Lakes 

region and extends into Canada. Average annual temperatures range from 3ºC to 6ºC. 

Average annual precipitation varies between 61 cm and 115 cm, with fifty percent of 

precipitation falling during the growing season (May through September). Annual 

snowfall varies from 100 cm to 165 cm, but can be up to 833 cm due to the Lake-effect 

snow. The climate is classified as continental with lake effects influence along the Great 

Lakes. Winters (i.e. days below or at freezing temperature) are longer with considerable 

snow coverage and summers are short and warm compared to the prairie parkland and the 

eastern broadleaf provinces. To the contrary of the prairie parkland and the eastern 
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broadleaf provinces, there is a moisture surplus rather than a deficit, and the mean 

growing season potential evapotranspiration minus precipitation reaches -11 cm in the 

northern part of the Laurentian mixed forest. Hilly landscapes with shallow soils occur 

along Lake Superior and result from past glaciations. A mosaic of conifer stands, 

northern hardwood stands, and mixed stands occupies the region, and vegetation consists 

of forests that are a transition between boreal and broadleaf deciduous (Goldblum and 

Rigg 2002; Davis 1983; Braun 1950). The current land cover is forest and the dominant 

land use is forestry and outdoor recreation. 

 

FIA data 

 The Forest Inventory and Analysis (FIA) Program of the U.S. Department of 

Agriculture Forest Service is a nationwide program that collects and publishes data from 

all ownership of forest land in the US since 1929 although annual inventories started in 

1999 (U.S.D.A. 2009). The FIA Program features a complete and systematic national 

sample design for all lands in the US (Bechtold and Patterson 2005). It monitors only 

forest lands (i.e. at least 0.4 ha and 36.3 m wide with a minimum of 10% stocked by 

forest trees) and is conducted in three phases, although we used data from the first two 

phases only. In Phase 1, land area is stratified using remotely sensed imagery in the form 

of aerial photography and/or satellite imagery to reduce variance in the estimates. In 

Phase 2, the landscape is divided into contiguous 2428 ha hexagons containing one 

randomly located permanent ground plot each, for a total of ~125,000 forested plots 

nationwide. Sampling intensity varies between states, but because the FIA plot design is a 
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combination of systematic arrangement and random sampling, varying sample intensities 

only affects the precision of the estimates. Field crews sample approximately 20% of FIA 

plots annually in the eastern US where they collect variables (e.g. forest type, tree 

species, soil attributes) on each permanent ground plot with 100% measurement of a 

systematic panel of plots completed every five years in the eastern US (U.S.D.A. 2008). 

Each plot is designed to cover a 0.4 ha sample area. A plot consists of one central subplot 

and an equilateral triangle arrangement of three peripheral subplots spaced 36.6 m apart 

from the central subplot, at azimuths of 120, 240, and 360 degrees. Each subplot also 

includes a 2.1 m fixed-radius microplot which is offset from the center of the subplot (3.7 

m at an azimuth of 90 degrees). All trees with a diameter at breast height (dbh) of at least 

12.7 cm are recorded on subplots. Saplings (2.54 to 12.45 cm dbh) and seedlings (�  2.54 

cm dbh and at least 30.5 cm in height for hardwood species) are inventoried in 

microplots.  

 We downloaded FIA raw data files for Minnesota, Wisconsin, and Michigan from 

the FIA database website (FIADB, http://apps.fs.fed.us/fiadb-downloads/datamart.html). 

Our study is based upon data collected between 2003 and 2007, which corresponds to a 

full cycle at the time of data upload (May 2009). To protect the confidentiality of the 

exact location of FIA plots, plot coordinates are spatially perturbed before being released 

to the public. The perturbed plot coordinates were adjusted to be within ± 1 mile of the 

true plot location which is of little consequence on our study given the regional scale 

presented in this work. We selected plots including at least one live sugar maple tree and 

aggregated them into contiguous zones: Zone 1 (378 plots) is near the prairie biome and 
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covers Minnesota and Wisconsin, although we excluded Northern Minnesota from our 

analyses because of small sample size; Zone 2 (1823 plots) is in the forest biome and 

includes northern Wisconsin; Zone 3 (1314 plots) is deep into the forest biome, with the 

best climate for trees, and includes the Upper Peninsula of Michigan (Figure 2.1). 

 Species richness was defined as the total number of species (i.e. tree or seedling) 

on each plot in each zone. Sugar maple basal area is expressed as the total basal area of 

sugar maple trees in square meter per hectare. We used SITECLCD from the FIA 

"Condition" table (COND) as our measure of site productivity. SITECLCD identifies the 

potential growth of a site by classifying forest land in terms of inherent capacity to grow 

crops of industrial wood. It is calculated in cubic feet per acre per year and is based on 

the culmination of mean annual increment of fully stocked natural stands (U.S.D.A. 

2008). SITECLCD is based on the site trees available for the plot, i.e. the height that 

dominant or co-dominant trees are expected to attain at a base reference age. Classes 

range from 1 (225+ cubic feet/acre/year) to 7 (0-19 cubic feet/acre/year). We took the 

midpoint of each class and re-organized the original classes in order of increasing site 

productivity. We then converted our final classes to cubic meters per hectare. They were: 

0.66; 2.10; 4.69; 7.14; 9.94; 13.61.  

 

Data analysis 

1. Exploratory data analyses 

 We started with basic exploratory data analyses to assess the means of tree and 

seedling richness in each zone and tested for significant differences. We used site 
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productivity as our independent variable and species richness (tree or seedling) as our 

dependent variable. ANOVAs were used to test for significant differences amongst zones 

(p-value �  0.05) and followed up with a Tukey's HSD to test all possible two-way 

comparisons and find out which zones, if any, were significantly different (Cook and 

Weisberg 1999). 

 

2. Species richness as a function of site productivity  

Whole data set 

 The form of the relationship between species richness and site productivity was 

examined by using ordinary least squares (OLS) regression models in our three zones in 

two steps: first, we fit a linear model to distinguish between positive monotonic, negative 

monotonic, or flat relationships; second, a quadratic term was added to the linear term 

only if the quadratic term was significant (i.e. p-value < 0.05) (Cook and Weisberg 1999).  

 

Upper quantile subset 

 The purpose of conducting multiple OLS regression models as explained above 

was to estimate the mean value of the distribution of the seedling and tree richness based 

on site productivity and sugar maple abundance. Since OLS only estimates the mean 

value of the response variable (here seedling or tree richness), it does not tell us about 

this relationship in the high species richness categories, in other words, in the high 

quantiles of seedling and tree richness. One way to account for this effect is to perform 

quantile regression analysis (Cade and Noon 2003). This technique was developed in the 
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late 1970s and consists of conducting regressions on various quantiles of the distribution 

(Koenker and Bassett 1978). The advantage of using quantile regression is that it ignores 

any assumptions about the distribution of the regression residuals and it is insensitive to 

outliers (Koenker 2005). Because it is a common phenomenon for most species to be 

absent from most plots in any sampling of the landscape (i.e. zero inflation problem), we 

reasoned that the upper quantile plots (i.e. those plots with the highest number of species) 

in each site productivity class may show species richness-site productivity relationships 

not apparent for all plots. Therefore, rather than applying a 90th quantile regression to the 

whole data set, we created a subset of the whole data set (i.e. "upper quantile subset") for 

each zone that contained plots above the 90th percentile of species richness at each site 

productivity level and examined the richness-site productivity relationship as explained in 

the previous paragraph.  

  

Random sample subset 

 The species richness-site productivity analyses were further extended to another 

subset of data to investigate the effects of small sample size in the low and high 

productivity categories. In each site productivity class, we drew 100 random samples 

(with replacement) of plots and recorded the highest species richness each time. Because 

of differences in total number of plots in each zone (Zone 1 = 378 plots; Zone 2 = 1823 

plots; Zone 3 = 1314 plots), the size of the random sample for each zone varied. In order 

to determine the size of the random sample in each zone, we selected the minimum 

number of plots (n) among all site productivity classes (for each zone) as a point of 
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reference for our random sample size; n was 81, 45, and 141 plots in Zone 1, Zone 2, and 

Zone 3, respectively. For instance, in Zone 1, we drew 100 random samples of 81 plots in 

each site productivity class and recorded the highest species richness at each drawing. We 

also used OLS regression analyses on this new data set of random sample (hereafter 

"random sample subset") and compared regression slopes among data sets (i.e. whole, 

upper quantile subset, and random sample subset) by means of an ANCOVA.  

 

3. Species richness as a function of site productivity and sugar maple abundance 

 The relationship between species richness, site productivity, and sugar maple 

abundance was examined by means of multiple OLS regression to the whole data set 

only. Tree or seedling richness were the response variables; site productivity and its 

quadratic term, sugar maple abundance, and a two way interaction between site 

productivity and sugar maple abundance were the predictors. We evaluated a set of 

candidate models from a simple model including site productivity and basal area to a full 

model including all predictors and two-way interaction. A null model (intercept-only) 

was incorporated to each set of candidate models to determine the importance of the 

independent variables. Models were compared using Akaike's Information Criteria (AIC), 

which rewards the goodness of fit and penalizes models with too many predictors (i.e. 

avoids overfitting) while offering a balance between fit improvement (i.e. increased 

likelihood) and parsimony (Burnham and Anderson 2002). The model with the lowest 

AIC value is considered as the best model.   



 

54 
 

 In all of our models, we transformed our data when appropriate and assessed the 

goodness of fit using the F-test lack of fit (i.e. p-value > 0.05 indicates that the model is 

adequate) along with a careful inspection of residual plots. Analyses were conducted in 

Arc (Cook and Weisberg 2004) and R (R Core Team 2013).  

 

Results 

1. Exploratory data analyses 

 Tree species richness in the Upper Great Lakes region was on average greater 

than seedling species richness (Table 2.1). Average tree richness decreased from the 

prairie-forest border to Upper Michigan (Zone 1 = 7.83; Zone 2 = 6.65; Zone 3 = 6.07) 

while average seedling richness was similar across the three zones (Zone 1 = 5.08; Zone 

2 = 5.47; Zone 3 = 5.25; Table 2.1). ANOVA and Tukey's HSD tests indicated significant 

tree richness differences among all zones (F = 92.83, p-value < 0.001) and significant 

differences in seedling richness between Zone 1 and Zone 2 (F = 4.545, p-value = 0.011). 

On average, site productivity levels decreased from Zone 1 to Zone 3 while average sugar 

maple basal area increased from Zone 1 to Zone 3 (Table 2.1).  

    

2. Species richness as a function of site productivity  

 The linear, quadratic, or multiple regression models highlighted below fit the data 

well after data transformation and inspection of the residuals and F-test for lack of fit, 

however, low R² indicated poor fits overall despite improving the explained variation in 

the significant quadratic models (Tables 2.2 to 2.4). Tree richness-site productivity linear 
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relationships from the whole data set were significant and slightly increasing in all zones 

(Table 2.2). When we added the quadratic term to each linear model, this relationship 

remained significant in Zones 2 and 3 with a slightly U-shaped pattern but was non-

significant in Zone 1 (Table 2.2, Figure 2.2). The relationship between seedling richness 

and site productivity was non-significant and flat across zones and also the quadratic term 

was not significant (Table 2.2).  

 In the upper quantile subset, the linear relationship between tree richness and site 

productivity was significant and increasing in Zone 1 but non-significant in the other two 

zones where it was flat (Table 2.3). The quadratic term was significant in Zone 2 only 

and showed a U-shaped pattern (Table 2.3, Figure 2.3). The seedling richness-site 

productivity relationships were non-significant and flat in the linear models across zones 

(Table 2.3), however, the quadratic model in Zone 1 was significant and hump-shaped 

(Figure 2.3). The quadratic terms were not significant in Zones 2 and 3 (Table 2.3). The 

explained variation for the models in the upper quantile subset were low. 

 The linear models from the random sample subset showed a significant and 

increasing tree richness-site productivity relationship in Zones 2 and 3, but a non-

significant and flat relationship in Zone 1 (Table 2.4). The quadratic term was significant 

in Zone 2 only, and the model showed a slight hump-shaped pattern (Figure 2.4). The 

seedling richness-site productivity linear models were all significant, although increasing 

in Zones 1 and 3 but decreasing in Zone 2. We found a significant U-shaped seedling 

richness-site productivity relationship in Zone 1 with the highest R² among all models 
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and data sets (R² = 0.388), and a slight hump in Zone 1 when we added the quadratic 

term (Table 2.4, Figure 2.4).  

 In summary, there was a flat tree richness-site productivity relationship in Zone 3 

in the upper quantile and the random sample subsets, and in Zone 1 in the random sample 

subset (Table 2.5). Results indicated a significant increasing tree richness-site 

productivity relationship in Zone 1 for the whole data set and the upper quantile subset, a 

significant U-shaped pattern in Zones 2 and 3 for the whole data set and in Zone 2 from 

the upper quantile subset (Table 2.5). Additionally, there was a slight hump in Zone 2 for 

the random sample subset. For the seedling richness, the richness-site productivity 

relationship was flat and non-significant across zones for the whole data set, and in Zones 

2 and 3 for the upper quantile subset (Table 2.5). Significant hump patterns were visible 

in Zone 1 (upper quantile subset) and Zone 2 (random sample subset). Finally, we noticed 

a significant U-shaped relationship in Zone 1 and a significant increasing trend in Zone 3, 

both from the random sample subset (Table 2.5). 

  

3. Species richness as a function of site productivity and sugar maple abundance 

 AIC results indicated that the top models for tree richness (Table 2.6) and 

seedling richness (Table 2.7) in each zone included site productivity and basal area. One 

intercept-only model qualified as a candidate model (i.e.  < 2) in Zone 1 (AIC = 

1059.53, Table 2.7). With the exception of the set of best seedling richness models in 

Zone 1 (Table 2.11), all other seedling and tree richness models (Tables 2.8-2.10 and 

Tables 2.12-2.13, respectively) were significant, although the significance of all 



 

57 
 

parameters was achieved only in the top tree richness model in Zone 1 (AIC = 1623.33, 

Table 2.8). Overall, sugar maple basal area was significant and negative in most tree and 

seedling richness models and site productivity, its quadratic term, and the interaction 

between site productivity and basal area were not significant (Tables 2.8-2.15).  

 Results from the top model for each zone (i.e. lowest AIC value) indicate that 

most tree and seedling richness models were significant (Tables 2.14 and 2.15, 

respectively), expect for the top seedling richness model in Zone 1, although the 

significance of this model was marginal (p-value = 0.07, Table 2.15). R² for the tree 

richness models (0.14, 0.25, and 0.34 for Zone 1, Zone, and Zone 3, respectively; Table 

2.14) were improved by adding sugar maple abundance into the equation as opposed to 

using site productivity alone, while R² remained low for seedling richness (0.009, 0.04, 

and 0.07 for Zone 1, Zone, and Zone 3, respectively; Table 2.15). Comparison of 

standardized parameters coefficients (SPE) indicated that sugar maple basal area was a 

more important predictor than site productivity in all zones (SPE, Tables 2.14 and 2.15). 

SPE also showed that sugar maple basal area had a significant negative impact on tree 

and seedling richness across zones, which increased from Zone 1 to Zone 3 (SPE, Tables 

2.14 and 2.15). The significance of site productivity was apparent only for tree richness 

in Zone 1, for which it had a positive effect (Table 2.14). We further observed significant 

and strong negative correlations between richness and sugar maple abundance (Figure 

2.5). More precisely, on sites with high sugar maple basal area (100%), tree richness was 

reduced to one species but seedling richness varied between 0 to 7 species, with a mean 

of 2 to 3 species (Table 2.16).  
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Discussion 

Shape of species richness-site productivity relationships 

 Our null hypothesis of a flat richness-site productivity relationship was fully 

supported for seedling richness in the whole data set, indicating that site productivity has 

no effect on seedling richness across the Upper Great Lakes region, most likely because 

seedlings respond differently to productive environments than adults do (Grman 2013; 

Stevens et al. 2004; Tilman and Pacala 1993). However, for the whole data set, there was 

support for significant slightly increasing species richness with site productivity for trees, 

either linear (Zone 1) or with a curved increase (significant quadratic term, but mostly 

upward leg of the quadratic relationship represented, Figures 2.2b and 2.2c).  

 Best fit regression curves for the upper 90th percentile data set were generally in 

agreement with the whole data set except for tree richness in Zone 3 and seedling 

richness in Zone 1. Only seedling richness in Zone 1 had the expected flat pattern for the 

whole data set and hump-shaped relationship for the 90th percentile (Table 2.5), based on 

inspection of the scatter plots in Figure 2.2. Furthermore, we anticipated similar results 

for shape of the relationship between the upper quantile and random subsets, but found 

agreement only for tree richness in Zone 3. Such disparities suggest that differences in 

sample sizes among site productivity classes might be influencing the results (Cade and 

Noon 2003; Mittelbach et al. 2001). The lowest and highest site productivity classes had 

far fewer plots than the middle classes, so that fewer plots were in the upper quantile for 

low and high classes, giving a misleading visual impression of the shape of the upper 
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quantile. Inconsistent results between the upper quantile and random sample subsets 

indicate little support for using any model other than the whole data set.  

 Choice of independent variable as a surrogate for site productivity (FIA uses the 

potential growth of industrial wood, in cubic feet/acre/year) can lead to variations in the 

shape of the species richness-site productivity relationship. According to Abrams (1988), 

the relationship between productivity and diversity may depend upon the meaning of 

productivity and the type of resources that influence growth. Waide et al. (1999) pointed 

out that, while theoretical studies use net primary productivity as the independent 

variable, empirical studies use components or surrogates of net primary productivity as 

theirs. Under different circumstances, productivity has been measured in different ways, 

and studies have used climatic variables (Oberle et al. 2009), biomass (Axmanova et al. 

2013), tree dbh and volume (Larpkern et al. 2011), or light availability (Reich et al. 2012) 

as proxy measures of site productivity. This difference in measure not only makes it 

challenging to depict consistency in the relationship between species richness and 

productivity, but it also makes it difficult to compare findings from several studies, 

thereby the importance of using direct measures of site productivity (e.g. soil nutrients 

and moisture) in an attempt to portray site productivity gradients (Adler et al. 2011). 

 In the significant models, the percentage of the variation explained by regression 

equations was low. The need for a high R², in our case, was of less concern because we 

were interested in investigating the shape of relationships between variables rather than 

making predictions of species richness for individual plots. Although R² statistics are 

used as a measure of goodness of fit, low or high R² have been shown to over- or under-
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represent the data when interpreted alone (for instance, it is possible to have a low R² for 

a model that fits the data, or a high R² for a model that does not), thus the importance of 

examining the regression diagnostic plots carefully in addition to inspecting statistical 

tests (Cook and Weisberg 1999; Rawlings et al. 1998). In this study, low R² indicated that 

other factors than site productivity influence species richness, which is consistent with 

findings from previous studies of species richness-site productivity relationships (Adler et 

al. 2011). The addition of sugar maple abundance in our models for instance improved 

the percentage of the variation explained by the model and provided valuable 

information. 

 Since we found that tree richness increases slightly in all three zones using the 

whole data set, we were interested in further evaluating whether changes in tree richness 

were biologically significant (Johnson and Omland 2004). Based on the regression 

models in Table 2.2, we calculated how mean species richness changes across the range 

of site productivity levels for each zone and found that in Zone 1, species richness 

increased by two species from low to high productivity sites (i.e. from 7 to 9 species). In 

Zone 2, tree richness across site productivity levels was constant (i.e. 7 species), and in 

Zone 3, tree richness increased from 6 species on low productivity sites to 7 species on 

high productivity sites. Given such little variation in the results, we conclude that this 

increase in tree richness across site productivity levels has only modest biological 

significance. 

  

Influence of site productivity and sugar maple basal area  
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 By adding sugar maple abundance to our models, we gained a better explanation 

of the variation in tree and seedling richness. The significance of sugar maple basal area 

when added to our models provided valuable information on the importance of overstory 

abundance to species richness. In general, previous authors have pointed out that site 

productivity is only one factor influencing species richness and that other mechanisms 

contributing to richness-site productivity relationship include disturbance (Dyer and 

Baird 1997; Oliver 1981; White 1979; Connell 1978), latitudinal gradients and habitat 

diversity (Rohde 1992), species tolerance for different sets of climatic conditions (i.e. the 

physiological tolerance hypothesis) (Currie et al. 2004), or evolutionary mechanisms 

(Evans et al. 2005). Specifically, in our study area, variation in species richness among 

our plots may result from other local processes that regulate species richness, such as 

soils (Gough et al. 1994; Goldberg 1985; Daubenmire 1936), predation (Rooney et al. 

2000; Doepker et al. 1995; Stoeckeler et al. 1957), invasive species (Holdsworth et al. 

2007; Rooney et al. 2004a). These findings, including ours, highlight the importance of 

considering other factors than site productivity when attempting to understand species 

richness patterns (Simova et al. 2013; Adler et al. 2011). 

 We did not find evidence for a threshold effect in our data—species richness 

showed a steady linear decline with increasing basal area (Figure 2.5). Overstory 

abundance has been shown to influence species richness in several forest ecosystems 

including European deciduous forests (Axmanova et al. 2012) or boreal forests (Reich et 

al. 2012). The success of understory species in particular depends upon several factors 

including neighborhood effects, a major component to the spatial and temporal dynamic 
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of forests (Frelich and Reich 1999). Sugar maple exerts strong neighborhood effects in 

the form of dense shade and heavy litterfall of moderately large leaves that can smother 

seedlings of some species like hemlock and/or prevent access to mineral soils required by 

some species such as hemlock, yellow birch and red maple (Ferrari 1999; Frelich et al. 

1993; Koroleff 1954). We found that, on sites with high sugar maple abundance (i.e. 

100% basal area), several seedling species occurred in the understory (Table 2.16), which 

is an indication that sugar maple cannot eliminate all microsites that would support other 

species of seedlings. Therefore, all of the basal area models predict about four species of 

seedlings even at 100% sugar maple basal area.  

 

 In conclusion, we found that the seedling richness-site productivity relationship 

was flat and that tree richness increased slightly with site productivity, marginally 

significant biologically. Surrogates for site productivity should be used with care and 

direct measures of site productivity are recommended. Sugar maple abundance had a 

strong negative effect on species richness and explains a greater proportion of the 

variation of species richness that site productivity, which highlights the importance of 

exploring other factors that may influence species richness. No threshold effect of sugar 

maple abundance on species richness was apparent. On 100% sugar maple basal area 

sites, tree richness was reduced to one while seedling richness varied between 0-7, 

indicating that sugar maple can never exclude all other species of seedling even on sites 

with 100% sugar maple basal area. 
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Table 2.1.  Descriptive statistics for the variables used in this study. All variables 

originate from the Forest Inventory and Analysis (FIA) National Program. 
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Table 2.2.  Ordinary Least Square (OLS) regression parameters for the linear and quadratic models of the species richness-

site productivity relationships (whole data set). R² refers to the coefficient of determination. The quadratic model was 

considered appropriate only if the quadratic term was significant. "n.s." denotes a non-significant relationship. Corresponding 

plots are shown in Figure 2.2.  
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Table 2.3.  Ordinary Least Square (OLS) regression parameters for the linear and quadratic models of the species richness-

site productivity relationships (upper quantile subset). R² refers to the coefficient of determination. The quadratic model was 

considered appropriate only if the quadratic term was significant. "n.s." denotes a non-significant relationship. Corresponding 

plots are shown in Figure 2.3.  
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Table 2.4.  Ordinary Least Square (OLS) regression parameters for the linear and quadratic models of the species richness-

site productivity relationships (random sample subset). R² refers to the coefficient of determination. The quadratic model was 

considered appropriate only if the quadratic term was significant. "n.s." denotes a non-significant relationship. Corresponding 

plots are shown in Figure 2.4.  
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Table 2.5.  Summary of the form of species richness-site productivity relationships 

across zones and among data sets. Full results are presented in Tables 2.2 to 2.4. The 

form of the species richness-site productivity relationship recorded in the table refers to 

best of the linear or the quadratic model. 
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Table 2.6.  AIC models of tree richness as a function of site productivity and sugar 

maple basal area in each zone. Models are ranked from the lowest to the highest AIC 

value in each zone. � i < 2 provide substantial support for the best model (Burnham and 

Anderson 2002). K is the number of parameters included in the model, AIC is the 

Akaike's Information Criterion value, � i is the difference between the AIC of the best 

fitting model and that of model i, and wi is the probability that a model i is the best 

among all candidate models. Model parameters: SP = Site productivity, SP² = Site 

productivity quadratic term, BA = Basal area. The symbol "x" between two parameters 

indicates a two way interaction. 
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Table 2.7.  AIC models of seedling richness as a function of site productivity and 

sugar maple basal area in each zone. Models are ranked from the lowest to the highest 

AIC value in each zone. � i < 2 provide substantial support for the best model (Burnham 

and Anderson 2002). K is the number of parameters included in the model, AIC is the 

Akaike's Information Criterion value, � i is the difference between the AIC of the best 

fitting model and that of model i, and wi is the probability that a model i is the best 

among all candidate models. Model parameters: SP = Site productivity, SP² = Site 

productivity quadratic term, BA = Basal area. The symbol "x" between two parameters 

indicates a two way interaction. 
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Table 2.8.  Ordinary Least Squares (OLS) regression for the best models (i.e. � i < 2) 

of tree richness as a function of site productivity and sugar maple basal area in Zone 1. 

Best models are ranked from the lowest to the highest AIC value (see Table 2.6). #1 

indicate the top best model and #3 the last model. 
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Table 2.9.  Ordinary Least Squares (OLS) regression for the best models (i.e. � i < 2) 

of tree richness as a function of site productivity and sugar maple basal area in Zone 2. 

Best models are ranked from the lowest to the highest AIC value (see Table 2.6). #1 

indicate the top best model and #4 the model. 
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Table 2.10.  Ordinary Least Squares (OLS) regression for the best models (i.e. � i < 2) 

of tree richness as a function of site productivity and sugar maple basal area in Zone 3. 

Best models are ranked from the lowest to the highest AIC value (see Table 2.6). #1 

indicate the top best model and #3 the last model. 
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Table 2.11.  Ordinary Least Squares (OLS) regression for the best models (i.e. � i < 2) 

of seedling richness as a function of site productivity and sugar maple basal area in Zone 

1. Best models are ranked from the lowest to the highest AIC value (see Table 2.7). #1 

indicate the top best model and #4 the last model. 
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Table 2.12.  Ordinary Least Squares (OLS) regression for the best models (i.e. � i < 2) 

of seedling richness as a function of site productivity and sugar maple basal area in Zone 

2. Best models are ranked from the lowest to the highest AIC value (see Table 2.7). #1 

indicate the top best model and #4 the last model. 
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Table 2.13.  Ordinary Least Squares (OLS) regression for the best models (i.e. � i < 2) 

of seedling richness as a function of site productivity and sugar maple basal area in Zone 

3. Best models are ranked from the lowest to the highest AIC value (see Table 2.7). #1 

indicate the top best model and #3 the last model. 
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Table 2.14.  Ordinary Least Squares (OLS) regression for the top models (i.e. lowest 

AIC value) of tree richness as a function of site productivity and sugar maple basal area 

in each zone. "SPE" refers to the standardized parameter estimates for the independent 

variables.  
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Table 2.15.   Ordinary Least Squares (OLS) regression for the top models (i.e. lowest 

AIC value) of seedling richness as a function of site productivity and sugar maple basal 

area in each zone. "SPE" refers to the standardized parameter estimates for the 

independent variables. 
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Table 2.16.  Number of tree and seedling species occurring on low (� 1%) and high 

(100%) sugar maple abundance sites.  
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Figure 2.1.  Map of the study area. Zones of interest are overlapping with ecological 

provinces (i.e. Prairie Parkland, Midwest Broadleaf Forest, and Laurentian Mixed Forest) 

(McNab et al. 2007). The Prairie-Forest Border (PFB) forms the transition zone between 

the tall grass prairies and the northern forests (Zone 1, 378 FIA plots), the forest interior 

extends beyond the PFB into northern Wisconsin (Zone 2, 1823 FIA plots), and the deep 

forest lies in Michigan’s Upper Peninsula (Zone 3, 1314 FIA plots). 
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Figure 2.2.  Scatter plots of the species richness-site productivity relationships for the 

whole data set. Tree richness in the upper plots ((a) through (c)) and seedling richness in 

the lower plots ((d) through (f)) are presented for Zone 1 (left), Zone 2 (middle), and 

Zone 3 (right). Species (tree or seedling) richness is the total number of species and site 

productivity is expressed in cubic meters per hectare per year. Significant trends are 

added when appropriate.  
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Figure 2.3.  Scatter plots of the species richness-site productivity relationships for the 

upper quantile subset. Tree richness in the upper plots ((a) through (c)) and seedling 

richness in the lower plots ((d) through (f)) are presented for Zone 1 (left), Zone 2 

(middle), and Zone 3 (right). Species (tree or seedling) richness is the total number of 

species and site productivity is expressed in cubic meters per hectare per year. Significant 

trends are added when appropriate.  
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Figure 2.4.  Scatter plots of the species richness-site productivity relationships for the 

random sample subset. Tree richness in the upper plots ((a) through (c)) and seedling 

richness in the lower plots ((d) through (f)) are presented for Zone 1 (left), Zone 2 

(middle), and Zone 3 (right). Species (tree or seedling) richness is the total number of 

species and site productivity is expressed in cubic meters per hectare per year. Significant 

trends are added when appropriate. 
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Figure 2.5.  Scatter plots and correlations between sugar maple basal area and species 

richness in each zone for the whole data set. Tree richness in the upper plots ((a) through 

(c)) and seedling richness in the lower plots ((d) through (f)) are presented for Zone 1 

(left), Zone 2 (middle), and Zone 3 (right). r = correlation coefficient.  
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Figure 2.6.  Standardized residual plots of species richness as a function of site 

productivity and sugar maple abundance in each zone. Tree richness (left) and seedling 

richness (right) are presented for Zone 1 (top), Zone 2 (middle), and Zone 3 (bottom). 

Plots are based on the top ordinary Least Square (OLS) regression models (i.e. lowest 

AIC; see Tables 2.14 and 2.15). 
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Chapter 3 

 

 

Ecological niche of sugar maple (Acer saccharum) seedlings from prairie-forest 

border to interior of forest biome 

with Lee E. Frelich 
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 The relationship between vegetation and environmental factors has been long 

been recognized as a major determinant of plant species distribution and abundances. 

Paleoecological records indicate that the spatial composition and distribution of species 

have shifted in response to past environmental changes although past changes were 

driven by natural forces. Recent anthropogenic changes such as the increase in 

temperature have the potential to negatively affect the ecological niche of many species 

across the landscape in particular the seedlings of tree species, which are known to be a 

good indicator of future overstory composition. Sugar maple (Acer saccharum), a 

common late successional species in the Great Lakes region, increases in abundance from 

the prairie-forest border to the Upper Peninsula of Michigan. The climatic gradient of the 

Upper Great Lakes region (Minnesota, Wisconsin, and Upper Michigan) provides an 

ideal framework to study sugar maple seedling-environment relationships and to better 

understand future implications of global environmental change on hardwood forests. In 

this paper, we investigated sugar maple seedling sensitivity to current forest structure and 

composition (sugar maple basal area and stand age), as well as site level environmental 

conditions (sand proportion, soil depth, slope, and TRASP - an index related to aspect). 

We did this for three zones (prairie-forest border, interior of the forest biome, and deep 

interior of the forest biome), using data from Forest Inventory and Analysis plots (FIA) 

plots and multiple regression with multi-model inference for set of top models 

determined by AIC. We hypothesized that sugar maple seedlings respond differently to 

environment variables across the region and have a broader environmental niche in the 

Upper Peninsula of Michigan than at the prairie-forest border. Results show that as 
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expected, basal area of sugar maple was generally positively related to sugar maple 

seedlings density, while the effects of % sand and soil depth varied across the three 

zones. TRASP, an index related to aspect had a strong negative influence on seedling 

abundance at the prairie-forest border and interior zones, but had no influence in the deep 

interior zone. The overall interpretation of the models and patterns across the climate 

gradient indicate that sugar maple seedling abundance is currently insensitive to 

environmental variables (i.e., has a very broad environmental niche) in Upper Michigan, 

with many stands currently growing on sites with relatively high percent sand content, 

shallow soils, and south slopes. The expected shift in future climate would make the 

climate of Upper Michigan like that of the prairie-forest border by late in the 21st 

Century, thereby reducing the probability of seedling establishment on many sites 

currently with high dominance of sugar maple uninhabitable.  

 

Introduction 

 One of the main concerns of ecology is to understand the processes responsible 

for species distribution and diversity. Countless studies have focused on the relationship 

between vegetation and environmental factors and they unanimously agree that 

environmental gradients are a major factor that structures plant communities and patterns 

of abundance across the landscape within species (Danz et al. 2011; Salemaa et al. 2008; 

Messaoud et al. 2007; Dov� iak et al. 2003; Janssens et al. 1998; Brooker and Callaghan 

1998; Grimm 1984). In the Great Lakes region, the distribution of major tree species (e.g. 

Acer saccharum, Acer rubrum, Quercus rubra, Tsuga canadensis) occur along a 
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southwest to northeast gradient portraying distinct environmental conditions (Goldblum 

and Rigg 2002; Walker et al. 2002; Zhang et al. 2000; Curtis 1959). Paleoecological 

records clearly show that the spatial composition and distribution of species has shifted 

many times in response to past environmental changes (Umbanhowar et al. 2006; Baker 

et al. 2002; Woods and Davis 1989). While these changes were driven by natural forces 

and occurred over periods of thousands of years (Davis 1989; Davis 1983), today's 

environmental changes have been accelerated at an unprecedented pace by anthropogenic 

factors since the Industrial Revolution (Cole et al. 1998; Stearns 1997).  

 Worldwide, the year of 2012 was among the 10 warmest years in the record since 

1850, with global atmospheric CO2 concentrations nearing 400 ppm, about 1.4 times 

greater than in the late 1700s (Blunden and Arnt 2013). Over the Great Lakes region, 

climate models predict a 2.2°C to 2.8°C 30-year average temperature increase from 1971-

2000 to 2041-2070, with an increase of 2.2°C to 3.3°C in the winter and 1.7°C to 2.5°C 

in spring (NOAA 2013). Northwestern Minnesota is predicted to experience the greatest 

temperature increase in the winter, while greatest increases in temperature in spring are 

simulated for Michigan and eastern Wisconsin in the 2041-2070 period. Thirty-year 

average precipitation changes are also expected to occur from 1971-2000 to 2041-2070, 

with largest simulated precipitation increases of 10-12% in northern Wisconsin and the 

Upper Peninsula of Michigan (NOAA 2013). In general, average precipitation is 

expected to rise in the winter but decrease in the summer, and the Upper Great Lakes 

region may become drier overall because of future increased evaporation and 

transpiration that exceed surpluses of precipitation (NOAA 2013; Kling et al. 2005; Kling 



 

92 
 

et al. 2003). Consequently, species habitats are predicted to shift to the north or northeast 

up to 480 km, while ecotonal zones such as the prairie-forest border may move to the 

northeast (Walker et al. 2002; Iverson et al. 1998; Iverson and Prasad 1998; Overpeck et 

al. 1991). In addition to climate change, several authors suggest that other environmental 

stress such as increasing white-tailed deer (Odocoileus virginianus) populations 

(Fisichelli et al. 2012; White 2012; Salk et al. 2011) and invasive European earthworms 

(Frelich et al. 2006; Hale et al. 2005b) will negatively affect ecological communities. The 

question arises then, how will forests respond and adapt to such rapid environmental 

changes? One way to investigate this response is to gain a better understanding of the 

relationship between species and their environment (Messaoud and Houle 2006).  

 Tree recruitment is critical for the regeneration and establishment of plant 

populations (Clark et al. 1999) and forest understory composition provides a good 

indication of potential future overstory composition (Sanders and Grochowski 2013; Dey 

et al. 2012; Salk et al. 2011; Kobe et al. 2002; Oliver and Larson 1996). Seedling growth 

and survival differ from one species to another in their environmental requirements 

(Wright and Westoby 1999; Ashton et al. 1998; Cornett et al. 1998; Ashton and Larson 

1996) and the successful establishment of seedlings depends partly on dispersion, 

germination and growth of seeds (Schupp 1995; Harper et al. 1970) while environmental 

variables have been recognized for decades as playing an important role in seedling 

establishment and range limits of species (MacArthur 1984).  

 Sugar maple (Acer saccharum) is a common late successional species in the Great 

Lakes region (Burns and Honkala 1990) and is widespread in dry mesic to mesic northern 
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temperate forests (Curtis 1959). Sugar maple forests provide habitat for many wildlife 

species while trees are valued for their products (e.g. timber and syrup) (Whitney and 

Upmeyer 2004). Sugar maple forms a gradient of communities within and across zones of 

the Upper Great Lakes region (Minnesota, Wisconsin, and Upper Michigan; see Chapter 

1) and increases in abundance from the prairie-forest border to the Upper Peninsula of 

Michigan where it reaches its greatest abundance on the richer loamy soils of the 

hemlock-northern hardwood forests (Albert 1995; Barrett et al. 1995). In an effort to 

understand future implications of global environmental change on sugar maple forests, 

we investigated sugar maple seedling-environment relationships across the Upper Great 

Lakes region. Previous studies have shown that attributes such as proportion of sand, soil 

depth, slope and aspect regulate the balance between mesic and dry forest species 

(Hanberry et al. 2013; Goldblum et al. 2010; Wyckoff and Bowers 2010; Umbanhowar 

2004; Barton and Gleeson 1996). For example, xerophytic tree species like pine or oak 

are more likely to occur on deep sandy or shallow soils, and warmer sites (i.e. south 

facing slopes) than mesic forest species, which include maple, ash, and beech (McNab 

2011). This sensitivity should change along a climate gradient and seedlings of a mesic 

forest species like sugar maple should be more sensitive to sand and aspect near the 

prairie-forest border than deep in the interior of the forest biome. Therefore, our goal was 

to determine sugar maple seedling sensitivity to current forest structure and composition 

(sugar maple basal area and stand age), as well as site level environmental conditions 

(sand proportion, soil depth, slope, and TRASP - an index related to aspect), including 

interaction effects. We proposed the null hypothesis that the environmental niche of sugar 
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maple seedlings is the same across the Upper Great Lakes region compared to the 

alternative that it is broader in the Upper Peninsula of Michigan; that is, sugar maple 

seedlings respond differently to environment variables across the Upper Great Lakes 

region and are less sensitive to environmental variables in the Upper Peninsula of 

Michigan where climatic conditions are more favorable to its establishment and growth, 

than in the prairie-forest border.  

 

Methods 

Study area 

 The Upper Great Lakes region includes three main ecological provinces defined 

by dominant climatic regimes, potential native vegetation, and biomes: the prairie 

parkland, the eastern broadleaf forest, and the Laurentian mixed forest provinces (McNab 

et al. 2007; Cleland et al. 1997; McNab and Avers 1994) (Figure 3.1). 

 The prairie parkland occupies the western part of Minnesota and extends to the 

southern parts of Wisconsin and Michigan. Mean annual temperatures vary from 2ºC in 

the north to 9ºC to the south. This province has a continental climate with cold winters, 

hot summers, and mean annual precipitation of 46 cm in the north to 84 cm in the south. 

Precipitation mainly occurs in the form of snow in the north but falls is almost entirely 

rain in the south. Mean evapotranspiration exceeds mean precipitation during the growing 

season (May through September), with water deficits of 2.0-3.8 cm along the western 

edge of the prairie parkland. Semi-arid loamy soils are well-to-moderately well-drained. 
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Pre-settlement vegetation was dominated by tall grass prairie but today agriculture is the 

dominant land use. 

 The eastern broadleaf forest extends from northwestern Minnesota to southeastern 

Michigan. Mean annual temperatures vary from 4ºC in the northwest of the province to 

10ºC in Michigan. The overall climate is continental with warm to hot summers. 

Precipitation averages 65 to 93 cm and approximately equals evapotranspiration. Two-

thirds of it falls during the growing season which lasts about 125 days up to 180 days 

along Lake Michigan. Local reliefs (20 to 180 m) are apparent in Wisconsin as a result of 

past glaciation. Winter precipitation is mostly snow and averages 100 cm. Soil moisture 

regime is dominantly mesic with lower growing season water deficits (1.2-2.0 cm) than 

the prairie parkland. Pre-settlement vegetation was dominated by maple-basswood forests 

or oak savannas at the prairie-forest border as a result of fire frequency variations 

(Grimm 1984) whereas oak-hickory forests dominate sandy sites and beech-maple forests 

grow on loamy soils in Michigan. Today, agriculture, urban and industrial development 

constitute the major land uses. The transition (ecotone) from eastern broadleaf forest to 

prairie parkland is sharp (Danz 2009; Grimm 1983) whereas the transition between 

eastern broadleaf forest and Laurentian mixed forest is gradual (Fisichelli et al. 2013a; 

Goldblum and Rigg 2002; Braun 1950).  

 The Laurentian mixed forest lies in the northern part of the Upper Great Lakes 

region and extends into Canada. Average annual temperatures range from 3ºC to 6ºC 

while mean annual precipitation varies between 61 and 115 cm. Fifty percent of 

precipitation falls during the growing season (May through September). Annual snowfall 
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varies from 100 to 165 cm, but can be up to 833 cm due to the Lake-effect snow. The 

climate is classified as continental with lake effects influence along the Great Lakes. 

Winters (i.e. days below or at freezing temperature) are longer with considerable snow 

coverage and summers are short and cool compared to the prairie parkland and the 

eastern broadleaf provinces. To the contrary of the prairie parkland and the eastern 

broadleaf provinces, there is a moisture surplus rather than a deficit, and the mean 

growing season potential evapotranspiration minus precipitation reaches -11 cm in the 

northern part of the Laurentian mixed forest. Hilly landscapes with shallow soils occur 

along Lake Superior and result from past glaciations. A mosaic of conifer stands, 

northern hardwood stands, and mixed stands occupies the region, and vegetation consists 

of forests that are a transition between boreal and broadleaf deciduous (Goldblum and 

Rigg 2002; Davis 1983; Braun 1950). The current land cover is forest and the dominant 

land use is forestry and outdoor recreation. 

 

FIA data 

 The Forest Inventory and Analysis (FIA) Program of the U.S. Department of 

Agriculture Forest Service is a nationwide program that collects and publishes data from 

all ownership of forest land in the US since 1929 although annual inventories started in 

1999 (U.S.D.A. 2009). The FIA Program features a complete and systematic national 

sample design for all lands in the US (Bechtold and Patterson 2005). It monitors only 

forest lands (i.e. at least 0.4 ha and 36.3 m wide with a minimum of 10% stocked by 

forest trees) and is conducted in three phases, although we used data from the first two 
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phases only. In Phase 1, land area is stratified using remotely sensed imagery in the form 

of aerial photography and/or satellite imagery to reduce variance in the estimates. In 

Phase 2, the landscape is divided into contiguous 2428 ha hexagons containing one 

randomly located permanent ground plot each, for a total of ~125,000 forested plots 

nationwide. Sampling intensity varies between states, but because the FIA plot design is a 

combination of systematic arrangement and random sampling, varying sample intensities 

only affects the precision of the estimates. Field crews sample approximately 20% of FIA 

plots annually in the eastern US where they collect variables (e.g. forest type, tree 

species, soil attributes) on each permanent ground plot with 100% measurement of a 

systematic panel of plots completed every five years in the eastern US (U.S.D.A. 2008). 

Each plot is designed to cover a 0.4 ha sample area. A plot consists of one central subplot 

and an equilateral triangle arrangement of three peripheral subplots spaced 36.6 m apart 

from the central subplot, at azimuths of 120, 240, and 360 degrees. Each subplot also 

includes a 2.1 m fixed-radius microplot which is offset from the center of the subplot (3.7 

m at an azimuth of 90 degrees). All trees with a diameter at breast height (dbh) of at least 

12.7 cm are recorded on subplots. Saplings (2.54 to 12.45 cm dbh) and seedlings (�  2.54 

cm dbh and at least 30.5 cm in height for hardwood species) are inventoried in 

microplots.  

 We downloaded FIA raw data files for Minnesota, Wisconsin, and Michigan from 

the FIA database website (FIADB, http://apps.fs.fed.us/fiadb-downloads/datamart.html). 

Our study is based upon data collected between 2003 and 2007, which corresponds to a 

full cycle at the time of data upload (May 2009). To protect the confidentiality of the 
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exact location of FIA plots, plot coordinates are spatially perturbed before being released 

to the public. The perturbed plot coordinates were adjusted to be within ± 1 mile of the 

true plot location which is of little consequence on our study given the regional scale 

presented in this work. We selected plots including at least one live sugar maple tree and 

aggregated them into contiguous zones: Zone 1 (378 plots) is near the prairie biome and 

covers Minnesota and Wisconsin, although we excluded Northern Minnesota from our 

analyses because of small sample size; Zone 2 (1823 plots) is in the forest biome and 

includes northern Wisconsin; Zone 3 (1314 plots) is deep into the forest biome, with the 

best climate for trees, and includes the Upper Peninsula of Michigan (Figure 3.1).  

 We selected our response variable (sugar maple seedling density) and four of our 

six predictors (sugar maple basal area, stand age, slope, and aspect) from the FIA 

database (U.S.D.A. 2008). Sugar maple seedling density is expressed as the number of 

seedlings per hectare and sugar maple basal area as the total basal area of sugar maple 

trees in square meters per hectare. FIA records stand age in the field, and this variable is 

assigned to the nearest year. Slope refers to the angle of slope, in percent, of the plot. 

Aspect is defined as the direction of the slope to the nearest degree, with North being 

recorded as 360. Since aspect is a circular variable, it was difficult to distinguish values 

near zero from 360 values since they essentially represent to same direction, therefore, 

we converted aspect into the following index:  

TRASP =  



 

99 
 

TRASP varies between 0 and 1 and assigns 0 to NNE aspects (typically the coolest and 

wettest orientation) and 1 to SSW aspects (typically the hotter and driest slopes) (Roberts 

and Cooper 1989).  

 

SSURGO data 

 We extracted our soil depth and percent sand variables (predictors) from the Soil 

Survey Geographic (SSURGO) database. SSURGO is a geographic database representing 

soil maps and is based on field methods that compile county soil surveys (U.S.D.A. 

1995). Surveyors observe soil attributes along delineation boundaries before determining 

map unit composition by field traverses and transects. Each county uses slightly different 

criteria for their soil surveys and spatial discontinuities cause differences across state and 

county lines, nonetheless, SSURGO provides the most detailed level of soil physical and 

chemical data in digital form (U.S.D.A. 1995). SSURGO data is mapped as separate 

polygons (i.e. map units) that gather soil information at a scale ranging from 1:12,000 to 

1:63,360, with most details collected at the former scale. SSURGO data sets consist of a 

combination of map and tabular data, although few areas in central and northern 

Minnesota were either missing the tabular data or tabular and spatial information at the 

time of download (September 2009). We used the Soil Data Viewer (U.S.D.A. 2007) to 

obtain soil polygons for Minnesota, Wisconsin, and Michigan. We then performed a 

shapefile join between SSURGO and exact FIA plot locations in ArcGIS 9.3 (ESRI 2008) 

to extract SSURGO soil attributes for each FIA plot. Sand is defined as particles between 
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0.05 mm and 2 mm in diameter and is expressed as a percentage. Depth is recorded in 

centimeters up to 200 cm deep. Beyond 200 cm, the value of Depth is set to 201 cm. 

 

Data analysis 

 Sugar maple seedlings per hectare was our response variable. A set of six 

environmental variables (sugar maple basal area, sand proportion, stand age, slope, depth 

of soil, and TRASP) and nine two-way interactions (basal area by sand, basal area by 

stand age, basal area by depth, basal area by TRASP, sand by depth, sand by TRASP, 

depth by TRASP, slope by TRASP, and slope by depth) were the predictors. Correlation 

coefficients (r) among predictors were weak and varied between -0.15 and 0.29. 

ANOVAs were used to test for significant differences of variables amongst zones (p-

value �  0.05) and followed up with a Tukey's HSD to test all possible two-way 

comparisons and find out which zones, if any, were significantly different (Cook and 

Weisberg 1999). 

 We used the Akaike's Information Criterion (AIC) method to determine the best 

subset of models in each zone (Burnham and Anderson 2002). We are presenting a multi-

model approach to model selection to determine which parameters are important to sugar 

maple seedlings in the Upper Great Lakes region rather than identifying a single best 

model. In traditional model selection methods such as forward selection, hypothesis 

testing (i.e. significant or not significant) is used to determine the next variable that is 

added. Once the significance level (i.e. p-value) for adding a variable is greater than the 

one specified by the researcher, the selection process stops. Hence, results may vary 



 

101 
 

according to the order in which models are computed (e.g. forward vs backward). AIC 

rewards the goodness of fit and penalizes models with too many predictors (i.e. avoids 

overfitting) while offering a balance between fit improvement (i.e. increased likelihood) 

and parsimony (Burnham and Anderson 2002). Prior to calculating AIC values, we 

corrected non linearity and non-homogenous variance in each zone by transformation of 

the response and the predictors using a combination of Box-Cox and Box-Tidwell 

transformation (Ryan 1997). Analyses included series of regressions models from a 

simple model including one variable to more complex models including the six predictors 

and nine two-way interactions. A null model (i.e. intercept-only) was incorporated to 

each set of candidate models to determine the importance of the independent variables. 

We computed AIC values according to the following:  

AIC = -2*ln(likelihood) + 2*K 

where ln is the natural logarithm, ln(likelihood) is the numerical value of the log-

likelihood at its maximum point, and K is the number of parameters in the model. 

Regression models were compared by calculating AIC differences (� i):  

 =  - min AIC 

where � i is the difference between the AIC of the best fitting model and that of model i, 

 is the AIC for the model i, and min AIC is the minimum AIC value of all models. 

As a rule of thumb, � i < 2 provides substantial support for model i (Burnham and 

Anderson 2002). Finally, we calculated Akaike weights of evidence for each model to 

help us select the best set of models (i.e.  < 2) as follows:  

 =  
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where  are the Akaike weights and the denominator is the sum of the relative 

likelihood for all candidate models.  varies between 0 and 1 and indicate the 

probability that a model i is the best among all candidate models. All models with  < 2 

were fitted for significance and assessed for goodness of fit using the F-test lack of fit 

(i.e. p-value > 0.05 indicates that the model is adequate) and careful visual inspection of 

the residual plots.  

 We conducted all of our analyses in R (R Core Team 2013) and Arc (Cook and 

Weisberg 2004). 

 

Results 

 On average, sugar maple seedling density increased from Zone 1 to Zone 3 (i.e. 

from the prairie-forest border to the Upper Peninsula of Michigan), with seedling density 

being 2.4 times greater in Zone 3 than it is in Zone 1 (Table 3.1). Similarly, in Zone 3, 

sugar maple basal area was about 1.5 times greater in Zone 3 than in Zone 1. Percent of 

sand was on average higher in Zones 2 and 3 (48.78% and 59.24%, respectively) than in 

Zone 1 (38.35%). Average stand age varied little across the region with averages of 70 

years in Zones 1 and 2 and 68 years in Zone 3. Despite this small variation in average 

stand age, Zone 3 hosts some older stands (204 years old maximum) than Zone 1 and 2 

do (124 and 189 years old maximum, respectively). The mean value of depth indicates 

that soils are deeper in Zone 2 (167 cm) while averaging 150 cm in Zone 1 and 129 cm in 

Zone 3. Since SSURGO assigns a systematic value of 201 cm for soils beyond 200 cm 

deep, calculating soil depth averages might be biased. Thus, it is worth noticing that the 
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minimum value for depth decreases from Zone 1 (38 cm) to Zone 3 (19 cm). Percent of 

slope was almost three times greater in Zone 1 than it was in Zones 2 and 3 with average 

slope values of 20.45% in Zone 1 and about 7% in Zones 2 and 3. Average TRASP index 

was 0.32, 0.27, and 0.24 for Zone 1, Zone 2, and Zone 3, respectively. ANOVA and 

Tukey's HSD tests indicated that all variables, except for stand age, were statistically 

different amongst zones (p-value �  0.001). 

 All models in the best sets (i.e.  < 2, Tables 3.2 to 3.4) were statistically 

significant (p-value �  0.05) across zones and F-test lack of fit indicated that these models 

fit the data well. In Zone 1 (Table 3.2), TRASP was included in all five best models and 

sand occurred in the top four models. Sand and TRASP interactions were important 

parameters in two out of the five best models and the last three best models included 

basal area. Depth and the interaction of basal area by depth appeared in the last best 

model only. In Zone 2 (Table 3.3), basal area, stand age, and TRASP were included in all 

seven best models. Sand was included in five of the best models and so was the 

interaction between sand and TRASP. Interactions between basal area and TRASP and 

basal area and stand age were included in three and two out of seven models while the 

basal area and sand interaction occurred only in one model. In Zone 3 (Table 3.4), all 

eight best models included basal area and sand; depth was included in seven of the eight 

models. Stand age only occurred in the eighth best model, as did the basal area by stand 

age interaction. The most common interactions were basal area by sand (six out of eight 

models), basal area by depth (five out of eight models), and sand by depth (three out of 
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eight models). Slope was not included in any of our best models, neither was the 

intercept-only model. 

 F-test statistic for the OLS regression for the best models in each zone were all 

significant (Tables 3.5 through 3.7) and plots of residuals for the top model ( = 0) in 

each zone indicated that the models fit the data well (Figure 3.2). However, the 

significance of all parameters was achieved in only one model in each zone: in Zone 1, 

this model included sand (t = 2.045, p-value = 0.042) and TRASP (t = -2.491, p-value = 

0.014) (model #2, Table 5); in Zone 2, it included basal area (t = 8.173, p-value < 0.001), 

stand age (t = 4.672, p-value < 0.001), and TRASP (t = -2.240, p-value = 0.025) (model 

#3, Table 6); and in Zone 3, it included basal area (t = 7.471, p-value < 0.001), sand (t = 

2.493, p-value = 0.013), and their interaction (t = -2.371, p-value = 0.018) (model #3, 

Table 3.7). 

 The effects of environmental variables and two way interactions on sugar maple 

seedling abundance varied across zones (Table 3.8). Basal area had a positive effect on 

sugar maple seedling abundance in all models where it was included except for model #5 

in Zone 1 (Table 3.5). Sand had a slight positive effect in the models where it was 

included in Zones 1 and all but one model in Zone 3 (Tables 3.4 and 3.7); sand was 

negative in models in Zone 2 (Table 3.6). Stand age has very little effect but was positive 

in all models in Zone 2 with the exception of #7 (Table 3.6); it was also slightly positive 

in Zone 3 where it appeared in the last model only (Table 3.7). Soil depth was negative in 

all models in which it was included (#5 in Zone 1, Table 5; all models except #3 in Zone 

3, Table 3.7). TRASP appeared in all models in Zones 1 and 2 and had mostly a negative 
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effect except in #4 of Zone 1 and #6 of Zone 2 (Tables 3.5 and 3.6, respectively). TRASP 

was absent from all top models in Zone 3 (Table 3.7). The interaction between sand and 

TRASP was negative in Zone 1 but positive in Zone 2 and the interaction between basal 

area and TRASP in Zone 2 was negative. Interactions of basal area with stand age and 

sand were positive in Zone 2 but negative in Zone 3. The basal area and depth interaction 

was positive in Zone 1 and 3; so was the sand and depth interaction in Zone 3.  

 

Discussion 

Current conditions 

 Our results confirm that sugar maple tree basal area and seedling density are 

lower at the prairie-forest border and increase towards the Upper Peninsula of Michigan. 

This is consistent with previous studies showing that sugar maple abundance increases 

from the prairie-forest border to the Upper Peninsula of Michigan (Albert 1995; Barrett et 

al. 1995). The strong and positive effect of sugar maple basal area on sugar maple 

seedling abundance may be attributed to strong self-positive neighborhood effects of 

sugar maple, where local overstory abundance at the plot scale creates ideal conditions 

for its own reproduction, by creating summer shade and deep leaf litter (Frelich 2002; 

Frelich et al. 1993). This effect seems weaker at the prairie-forests border as indicated by 

the occurrence of sugar maple basal area in all of our best models in Zones 2 and 3 but 

only in the last three models in Zone 1. Basal area positive effect is reinforced with stand 

age and sand in Zone 2, but those effects counteract sugar maple seedling abundance in 

Zone 3, indicating that other important environmental factors - possibly soil nutrients, 
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temperature, precipitation, or herbivory - may be influencing the understory of sugar 

maple forest (St Clair et al. 2008).  

Aspect is known to indirectly control vegetation through soil moisture and solar 

insolation (McAndrews 1966). For instance, given similar soils, north-facing sites have 

the capacity of storing more water during dry spells than south-facing sites, which in turn 

are much drier because they receive greater insolation, and therefore, are more 

susceptible to higher levels of evapotranspiration than north-facing slopes (Geroy et al. 

2011). TRASP, an index related to aspect, followed the expected pattern across the three 

zones, with strong negative parameter estimates near the prairie-forest border in Zone 1, 

and the forest interior of Zone 2, but was excluded from the set of best models in the deep 

interior forests of Zone 3. Thus, aspect became insignificant in its influence on seedling 

density as the summer climate became cooler with lower water deficits.  

At first glance, percent sand appeared to have ambiguous effects on sugar maple 

seedling density, with positive parameters in the best models for Zones 1 and 3 and 

negative for Zone 2. Average percent sand was about 11% lower in Zone 1 (38.35%) than 

in Zone 2 (49.78%) and about 21% lower than in Zone 3 (59.24%). Thus, sugar maple 

stands selected to be included in the study grow on progressively sandier soils as the 

summer climate becomes cooler across the climate gradient from edge of prairie to the 

deep interior of the forest biome. Although sand had a positive effect on sugar maple 

seedling abundance in Zone 1, in addition to the low percent sand there, it negatively 

interacted with TRASP, indicating that sugar maple seedlings may not be supported on 

warmer sites with sandy soils at the prairie-forest border where a drier climate prevails 
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compared to the Upper Peninsula of Michigan (Fisichelli et al. 2013a; Danz 2009; 

Umbanhowar 2004; Pastor and Post 1988). The negative effect of sand on sugar maple 

seedling abundance in Zone 2 may be attributed to a higher average proportion of sand in 

this zone compared to Zone 1, which could amplify sugar maple sensitivity to drought 

(Horsley and Long 1999) due to the low water holding capacity properties of sand 

(Petersen et al. 1968). The positive sand by TRASP interaction in Zone 2 might reflect 

cooler and wetter conditions in Zone 2 compared to Zone 1 that favors sugar maple 

seedlings. In other words, even though the proportion of sand is higher in Zone 2 than in 

Zone 1, the difference in climate may favor sugar maple seedling abundance and partially 

mitigate the negative effects of TRASP. In Zone 3, we found that sand had a positive 

effect on sugar maple seedling abundance but found no effect of TRASP. This was an 

expected result for the deep interior of the forest biome, where relatively cool and moist 

climate allow sugar maple seedlings to do well on south facing slopes and sandy soils 

compared to warmer regions to the south and west. Therefore, if the climate in Upper 

Michigan becomes similar to Zones 1 and 2 as projected for global warming scenarios 

(NOAA 2013; Kling et al. 2005; Sousounis and Grover 2002), negative impacts are likely 

to occur rapidly in Upper Michigan where the proportion of sand is the highest.  

Only one of the top five models for Zone 1 included soil depth. This was 

unexpected given the relatively droughty climate at the prairie-forest border, and the 

hypothesized need for the greater water holding capacity of deep soils (Geroy et al. 2011; 

Changnon et al. 2002). Instead, a deeper minimum soil depth occurred among maple 

stands in Zone 1 and the previously mentioned negative influence of TRASP on seedling 
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abundance likely overrode the impact of soil depth in the other 4 top models. Soil depth 

was not a significant factor in any top model for Zone 2—an expected result given the 

lack of bedrock near the surface in that zone. In Zone 3, it is difficult to explain why soil 

depth came out as a negative factor in seven of eight top models. This negative effect 

may be attributed to widespread occurrence of maple stands on shallow soils due to 

hardpans throughout the area and rocky areas near Lakes Superior and Michigan. Also, 

deep soils may favor a mixture of pines, oaks, hemlock and other species that compete 

with sugar maple. Despite the ambiguous result for soil depth, over all, it is clear that in 

Zone 3, the climate is so favorable to sugar maple, that soil depth, sandiness, and high 

TRASP do not limit the species like they can in Zones 1 and 2 (Whitney 1987; Curtis 

1959). Also, the zone is not quite far enough north for TRASP to have a positive effect, 

in which case sugar maple seedlings would be more abundant on south-facing aspects.  

  

Implications for a warmer climate 

 It was clear from our results that the niche of sugar maple seedlings varies across 

the Upper Great Lakes region. Current environmental conditions are more favorable to 

sugar maple seedlings growing in the Upper Peninsula of Michigan than at the prairie-

forest border, where seedlings are more sensitive to TRASP, and where sugar maple 

stands have a higher minimum soil depth and lower mean percent sand on sites where 

they occur. According to future projections for a warmer climate (Blunden and Arnt 

2013), climatic envelopes for species ranges and biomes are expected to shift northward 

(Prasad et al. 2007; Iverson et al. 2004) with a migration rate between 100 and 500 km 
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per century (Woodall et al. 2009; Carmel and Flather 2006; Neilson et al. 2005; Walker 

et al. 2002). Woodall et al (2009) proposed that southern species will fill northern species 

niches as they migrate north. This may imply regeneration failure of sugar maple at the 

prairie-forest border, prairie replacing forests and thus, “savannification” of the forest 

(Frelich and Reich 2010). At the Upper Peninsula of Michigan, where regeneration is 

currently very successful, future climatic conditions might become similar to what we 

know at the prairie-forest border today (Kling et al. 2005). Under such conditions, we 

predict that seedling sensitivity to environmental conditions in Upper Michigan will 

increase, resulting in a decline in seedling regeneration and a change in its ecological 

niche. By 2100, importance values of sugar maple abundance in Upper Michigan are 

projected to decrease from 20 today to 4-10 depending on the climate scenario (Prasad et 

al. 2007). The results of this study are consistent with that projection. Our data indicates 

that at the Upper Peninsula of Michigan, 8% of plots currently occur on shallow soils (< 

50 cm) with 4% of plots on soils less than 38 cm (i.e. the minimum soil depth among the 

378 plots for Zone 1), 9% of plots occur on south-southwest facing slopes, i.e. 158-247 

degrees of aspect (Whitney 1991), and 31% of plots on sandy soils (> 75%). Such sites 

may not support abundant sugar maple in the future if the environmental niche for 

successful regeneration narrows as the climate of Zone 3 becomes similar to that of Zone 

1. In addition to the predicted increase in average temperature (Blunden and Arnt 2013), 

other factors such as European earthworm invasions and increasing deer populations will 

inhibit sugar maple seedling regeneration in the future (Frelich and Reich 2010). Deer 

populations are patchy across the landscape due to differences in fragmentation and wolf 
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pack territories, and earthworm invasion effects are also patchy because of slow spread of 

nightcrawlers from many introductions points. Therefore, a patchy mosaic of these 

effects will occur on top of patchy effects due to environmental factors such as percent 

sand, soil depth and aspect, leading to substantial heterogeneity in reduction of the 

regeneration niche for sugar maple across the landscape (Callan et al. 2013; Mattison 

2011; Hale et al. 2006; Rooney and Waller 2003). The complex nature of this 

heterogeneity in regeneration success is likely to obscure any coherent signal related to 

climate change.  
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Table 3.1.  Variable characteristics of the study area. Depth and sand variables were 

extracted from the FIA database; all others variables originated from the SSURGO 

database. TRASP is an index related to aspect and varies between 0 (NNE aspect, cooler 

sites) and 1 (SSW aspect, warmer sites). ANOVA and Tukey's HSD tests indicated that 

all variables, except for stand age, were statistically different amongst zones (p-value �  

0.001). 
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Table 3.2.  Best AIC (i.e. � i < 2) models of sugar maple seedling density in Zone 1. K 

is the number of parameters included in the model, AIC is the Akaike's Information 

Criterion value, � i is the difference between the AIC of the best fitting model and that of 

model i, and wi is the probability that a model i is the best among all candidate models. 

Model parameters: B = Basal area, A = Stand age, S = Sand proportion, D = Depth of 

soil, T = TRASP (index related to aspect). The symbol "x" between two parameters 

indicates two way interactions. 
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Table 3.3.  Best AIC (i.e. � i < 2) models of sugar maple seedling density in Zone 2. K 

is the number of parameters included in the model, AIC is the Akaike's Information 

Criterion value, � i is the difference between the AIC of the best fitting model and that of 

model i, and wi is the probability that a model i is the best among all candidate models. 

Model parameters: B = Basal area, A = Stand age, S = Sand proportion, D = Depth of 

soil, T = TRASP (index related to aspect). The symbol "x" between two parameters 

indicates two way interactions. 
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Table 3.4.  Best AIC (i.e. � i < 2) models of sugar maple seedling density in Zone 3. K 

is the number of parameters included in the model, AIC is the Akaike's Information 

Criterion value, � i is the difference between the AIC of the best fitting model and that of 

model i, and wi is the probability that a model i is the best among all candidate models. 

Model parameters: B = Basal area, A = Stand age, S = Sand proportion, D = Depth of 

soil, T = TRASP (index related to aspect). The symbol "x" between two parameters 

indicates two way interactions. 
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Table 3.5.  Ordinary Least Squares (OLS) regression for the best models (i.e. � i < 2) 

of sugar maple seedling-environmental relationships in Zone 1. Environmental variables 

include current forest structure and composition (sugar maple basal area and stand age), 

and site level environmental conditions (sand proportion, soil depth, slope, and aspect 

index). #1 indicate the top best model and #5 the last of the best models (see also Table 

3.2). 
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Table 3.6.  Ordinary Least Squares (OLS) regression for the best models (i.e. � i < 2) 

of sugar maple seedling-environmental relationships in Zone 2. Environmental variables 

include current forest structure and composition (sugar maple basal area and stand age), 

and site level environmental conditions (sand proportion, soil depth, slope, and aspect 

index). #1 indicate the top best model and #7 the last of the best models (see also Table 

3.3). 
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Table 3.7.  Ordinary Least Squares (OLS) regression for the best models (i.e. � i < 2) 

of sugar maple seedling-environmental relationships in Zone 3. Environmental variables 

include current forest structure and composition (sugar maple basal area and stand age), 

and site level environmental conditions (sand proportion, soil depth, slope, and aspect 

index). #1 indicate the top best model and #8 the last of the best models (see also Table 

3.4). 
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Table 3.8.  Summary of the effects of environmental variables on sugar maple 

seedling abundance across the Upper Great Lakes region. "+" indicates a positive effect, 

"�" a negative effect in the main effect (a) or two-way interaction (b). The symbol "x" 

between two environmental variables is a two way interaction. Only one model in each 

zone included parameters that were all significant (p-value �  0.05), and "*" indicates 

these significant parameters. For instance, the model for which all parameters were 

significant in Zone 1 included sand and TRASP. A light grey shaded box means that the 

corresponding variable had one opposite effect among the set of best models, for 

instance, basal area in Zone 1 had a positive effect in all best models but one, where it 

had a negative effect. An open box means that the effect occurs only in one of the best 

models and thus may be considered as a neutral effect in the context of multi-model 

inference, for example, depth in Zone 1 was included in only one of five models. 
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Figure 3.1.  Map of the study area. Zones of interest are overlapping with ecological 

provinces (i.e. Prairie Parkland, Midwest Broadleaf Forest, and Laurentian Mixed Forest) 

(McNab et al. 2007). The Prairie-Forest Border (PFB) forms the transition zone between 

the tall grass prairies and the northern forests (Zone 1, 378 FIA plots), the forest interior 

extends beyond the PFB into northern Wisconsin (Zone 2, 1823 FIA plots), and the deep 

forest lies in Michigan’s Upper Peninsula (Zone 3, 1314 FIA plots). 
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Figure 3.2.  Standardized residual plots of sugar maple seedling-environmental 

relationships in each zone. Plots are based on the top ordinary Least Square (OLS) 

regression models (i.e. lowest AIC; see Tables 3.2 to 3.4). 
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Conclusions 

 This PhD dissertation showed that sugar maple communities with significant 

admixtures of other tree species in the Upper Great Lakes region are currently not stable, 

and that mesophication and succession are occurring across the region. Site productivity 

had a significant and positive effect on tree richness in the region but the relationship 

between seedling richness and productivity was flat. Sugar maple basal area had a very 

strong negative neighborhood effect on species richness but no apparent threshold effect 

was observed. The abundance of sugar maple seedlings is currently insensitive to 

environmental variables (i.e. has a very broad environmental niche) in Upper Michigan as 

opposed to the prairie-forest border, suggesting that, the expected shift in future climate 

would make the climate of Upper Michigan like that of the prairie-forest border by late 

21st century, thereby reducing the probability of seedling establishment on many sites 

currently with high dominance of sugar maple. This would alter the current successional 

trends towards future sugar maple dominance found for the communities identified on 

many sites in the interior forests and deep interior forest zones. Moreover, heavy deer 

browsing and invasion of European earthworms are predicted to narrow the niche of 

sugar maple and drastically change the composition of sugar maple forests in the future. 

However, the forest is likely to be resilient in that other species will be able to replace 

sugar maple if its abundance declines because (1) sugar maple forms communities with a 

number of other tree species across the climate gradient of the Upper Great Lakes region, 

(2) species richness analyses showed that several other tree species are usually present, 

and (3) several species of seedlings are present even when sugar maple constitutes 100% 
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of the mature tree basal area. The ecological and economical importance of sugar maple 

across the region is such that future research should continue to follow sugar maple 

seedling success in varied environments to improve predictions for dynamics of northern 

hardwood forests in the context of global environmental change.  
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Appendix A: Supplementary information for Chapter 3 

 

Table S3.1. List of complete AIC models of sugar maple seedling density in Zone 1. 

First model is the best model (i.e. � i = 0). K is the number of parameters included in the 

model, AIC is the Akaike's Information Criterion value, � i is the difference between the 

AIC of the best fitting model and that of model i, and wi is the probability that a model i 

is the best among all candidate models. Model parameters: B = Basal area, A = Stand 

age, S = Sand proportion, D = Depth of soil, T = TRASP (index related to aspect), O = 

Slope. The symbol "x" between two parameters indicates two way interactions. 
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Table S3.2. List of complete AIC models of sugar maple seedling density in Zone 2. 

First model is the best model (i.e. � i = 0). K is the number of parameters included in the 

model, AIC is the Akaike's Information Criterion value, � i is the difference between the 

AIC of the best fitting model and that of model i, and wi is the probability that a model i 

is the best among all candidate models. Model parameters: B = Basal area, A = Stand 

age, S = Sand proportion, D = Depth of soil, T = TRASP (index related to aspect), O = 

Slope. The symbol "x" between two parameters indicates two way interactions. 
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Table S3.3. List of complete AIC models of sugar maple seedling density in Zone 3. 

First model is the best model (i.e. � i = 0). K is the number of parameters included in the 

model, AIC is the Akaike's Information Criterion value, � i is the difference between the 

AIC of the best fitting model and that of model i, and wi is the probability that a model i 

is the best among all candidate models. Model parameters: B = Basal area, A = Stand 

age, S = Sand proportion, D = Depth of soil, T = TRASP (index related to aspect), O = 

Slope. The symbol "x" between two parameters indicates two way interactions. 
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