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1. lIntroduction

The study of invariant sets is of fundamental importance in the geometric
theory of dynamical systems. Since, in general, these sets can have a wild
topological structure, it is of interest to identify situations where they have
the particulariy simple structure of differentiable manifolds. Especially
important in this context are those manifolds that persist under small pertur-
bations, a situation that ieads naturally to the study of hyperbolic invariant
manifolds.

There is an extensive literature on hyperbolic invariant manifolds for
Ordinary Differential Equations, c.f. [1-3,6,8,9,13,14]. In the context of
infinite dimensional dynamical systems, the study of hyperbolic invariant mani-
folds was pursued for certain Parabolic Partial Differential Equations [7] and
for particular cases of Functional Differential Equations [10,11,12].

The studiés of Kurzweil [10,11] on hyperbolic invariant manifolds for
Functional Differential Equations (FDE) rely on establishing fixed points for
maps which correspond to discrete dynamical systems obtained by discretization
of the semiflow induced by the equations. The approach in this paper is, in
contrast, based directly on the semiflow and uses techniques of exponential
dichotomies for obtaining bounded solutions, following the work of Hale, c.f.

L3], for hyperbolic invariant manifolds of Ordinary Differential Equations



(UDE),_ It is believed that this approach is simpler than methods based on
discretfzation.

The paber begins by establishing the concept of exponential dichotomies in
the context of skew-product semiflows in Banach vector bundles, and the concept
of hyperbolicity using the notion of spectrum of an invariant manifold, developed
by Sacker and Sell for flows [15-19]1. Here, the numerous discussions with
George Sell, while this work was in progress, played an important role, in par-
ticular in connection to work of him in collaboration with Sacker [18]. A
short reference is then made to FDEs on manifolds, based on the work of Oliva,
c.f. [5], refering the reduction of the general situation to the case of FDEs on
euclidean space R, These are basically the contents of Sections 2,3 and 4.

The main difficulty in establishing the persistence and properties of
hyperbolic manifolds for FDEs is related to the impossibility of extending back-
wards in time all the solutions. It is useful to linearize the equation around
the original invariant manifold and to consider the corresponding tangential,
unstable and stable manifolds, which are themselves invariant under the
1inearized semiflow. As it turns out, one only needs to extend the solutions
backwards in time along the tangential and unstablé directions. That involves
no difficulties because both the tangential and unstable manifolds are finite-
dimensional and, therefore, the semiflow for the linearized equation can be
extended on them to a flow of an ODE. This leaves out only the evolution on thne
stable manifold to be considered as an FDE, but we do not need to extend the
solutions backwards there. These ideas are pursued in Section 5 by the introduc-
tion of a moving system of coordinates centered at solutions of the unperturbed
equation lying on the original invariant manifold. The perturbed equation
in these coordinates is given by a family of systems of ‘two perturbed ODEs
describing the evolution of the tangential and unstabie variables, and an FDE

for the stable variable. These systems are written as perturbations of the




linear variational equation around the given hyperbolic manifold, using the
variation of constants formula introduced by Hale for FDEs, c.f. [4]. The ana-
lysis is actually based on the existence of exponential dichotomies for the
lTinear variational equation which split the solutions with initial conditions in
the tangential, unstabie, or stable spaces.

In Section 6, we study the persistence and the smoothness of integral mani-
folds for FDEs of the form obtained by application of the system of coordinates
around the original invariant manifold, and we also study the structure of the
semiflow around the integral manifolds, under general assumptions of global
Tipschitzian nonlinearities with sufficiently small lipschitz constants. The
persistence of the integral manifolds is established using techniques of expo-
nential dichotomies for the determination of bounded solutions, following an
approach introduced by Hale, c.f. [3], and also applied by Sell [19] in the con-
text of ODEs. The smoothness properties of the integral manifolds are
established by a modification of the method developed by Fenichel [2] also in
the context of 0ODEs.

Finally, the results obtained for systems in coordinate form are applied,
in Section 7, to prove the persistence and sﬁoothness of hyperbolic iavariant
manifolds for FDEs, and to study the local geometric structure of the orbits
around them. Using "cut off" functions around the original invariant manifold,
in a similar way as it is usually done for center manifold theory, one can get a
system that agrees with the original system inside a neighborhood of the
invariant manifold, and whose nonlinear terms satisfy the global lipschitz con-
ditions assumed in Section 6. Thus, finding an invariant manifold for the per-
turbed equation, in such a neighborhood of the original manifold, amounts to
finding an invariant manifold for the auxiliar system which is obtained through
the application of the "cut off" functions mentioned above. The results

obtained for systems in coordinate form are only good to get patches of the



invariant manifolds which occur under perturbations. These pieces have to be
patched up in order to obtain the perturbed manifold, but this can be easily
done using the uniqueness properties established in Section 6 for the integral
manifolds of systems in coordinate form.

The system of coordinates which is introduced in this paper, around the
original hyperbolic invariant manifold, is redundant, in the sense that each
point close to the manifold can be represented by infinitely many combinations
of the coordinates. In fact, the system of coordinates is centered at points of
the invariant manifold, which therefore account for some of the coordinates
used, and also involves coordinates along the tangential, unstable and stable
spaces of the linearized equation around the manifold. The redundancy comes
from the fact that the coordinates giving the point on the manifold where the
coordinate frame is centered and the tangential coordinates eventuaily play
against each other when describing neighborhoods of a particular point on the
manifold. This situation is not different from many other cases where moving
systems of coordinates have been used with the intent of simplifying the analy-
sis, as for instance in certain situations describing the movement of bodies in
the context of Newtonian mechanics. It is, of course, true that a nonredundant
system of coordinates could be introduced leaving out the tangential components.
However, the use of the redundant coordinates described above simplifies the
analysis for two reasons: i) it allows the separation of the dynamics of the
Tinearized equations around the original manifold from the dynamics on the mani-
fold itself, in particular the tangent bundle is invariant under the linearized
equation, and ii) it avoids the introduction of abstract equations to describe
the evolution of the different coordinates, because, in this way, they can be

given by FDEs in euclidean space.



Some of the ideas introduced in this paper are new and useful even in the
case of OUEs. In particular, the use of the redundant system of coordinates
described above, although most useful in the case of FDEs, is also natural in
the context of ODEs since it simplifies the description of the linearized
equation arocund the original invariant manifold and considerably simplifies the

analysis.

2. Spectrum of a linear skew-product semiflow

Let W be a topological space. A flow on W is a continuous mapping
m: R X W > W such that w(0,w) =w and n(t,m(s,w)) = n(t + s,w) for ali
weW and t,s € R, A semiflow on W 1is a continuous mapping
w: [0,%) x W > W satisfying the preceding conditions for t,s » 0,

Let X be a smooth Banach manifold without boundary and let E be a
Banach vector bundle over X with fiber projection p: B> X, i.e., E s a
vector bundle over X with each fiber E(x) = p'l(x), X € X, being a Banach
space. Points in E can be represented by ordered pairs (xs2) with x & X,
and 2z a vector in the fiber E(x). A semiflow 7 on E is said to be a

skew-product semiflow on E if there is a flow ¢ on X such that the fiber

- projection p commutes with 7 and ¢, i.e., ™ can be represented as
m(t.x,z) = (¢{t,x),¥{t,x,2)), t >0

and  ¥(t,x,z} 1is in the fiber E(4¢(t,x)). Such a skew-product semiflow m is a

linear skew-product semiflow if the mapping z * ¥(t,x)z = ¥{t,x,z) is a linear
mapping from the fiber E(x) to the fiber E(¢(t,x)). One defines analogously

skew-product flow and linear skew-product flow. When T is a semiflow on E,




m(t,x,2), w(t,x,z) and ¥(t,x) are only defined for t > 0. However, they can
be extended for t < 0 at those points (x,z) through which there is a back-

wards continuation defined for all t < 0. Let us define the set B by

B = {(x,z) € E: there is exactly one continuous function
(uyv): (-=,0] » E such that u(0) = x, v(0) = z and
m(tou(s),v(s)) = (u(t + s),v(t +s)) for all s <0

and all t ¢ [0,-s]}.
The set
S = (x,z) € Er |9(t,x,z)| * 0 as t * +=}
is called the stable set of X under %, and the set

U= {(x,z) € B: |p(t,x,z)| * 0 as t > -,

for the continuation of #(t,x,z} for t < O

is called the unstable set of X under 7, Aset I CE is said to be posi-

tively invariant under w if w(t,x,z}) €1 for all t »0 and (x,z) € I, and

I is said to be invariant under # if 1< B and the preceding condition
holds for all t e R, for the continuation of m(t,Xx,z). The sets S and U
are both positively invariant under m, and the.sets B, SN B8 and U are all
invariant under @, It is easy to see that these sets are vector subbundles of
E.

The linear skew-product semiflow # = (¢,y) on E is said to admit an

exponential dichotomy on X if there exist linear projections P{(x) defined on

E(x) and depending continuously on x € X, and there exist constants Kyae > 0

such that



(i) N(P) = {(x,z) e E: P(x)z = Qi < 8,
(11) [ #(t,x)P(x)| < ke ™™, £ >0, x & X
{111) [¥(t,x)LI - P(x)]} < Ke+at, t < 0, for the continuation

of ¥(t,x)z for t <0 with (x,z) € B,

We note that condition (iii) makes sense because (i) implies that the range of
the mapping (x,z} > (x,[I - P(x)]z) 1is contained in B. Whenever 7 admits
an exponential dichotomy on X we have U = N{P) = {(x,z) € E: P{x)z = 0} and
S = R{P) = {(x,z) e E: z =‘P(x)z‘ for some z' € E(x)}. Then, the stable and
unstable sets are complementary subbundles of E.

Given a linear skew-product semiflow # = {(¢,v¥}) on a vector bundle E,

and a real number A, we define a mapping T, by

T (tyx,z) = (o(t,x),e  u(t,x,2)).

It is easily seen that T, 1s also a linear skew-product semiflow on E and
that the invariant sets under ™ and under m, agree for all A € R. We also

define

-Af
e

A
¥ (t,x)z = v(t,x,z) = e t‘i‘(t,x)z.

The stable and the unstable sets of X under T, are denoted by S, and U,
respectively. Clearly, if u < A then Suc: S, and uu':DUA_ The set of all
A e R for which m, admits an exponential dichotomy on X 1is called the

resolvent set of 7 on E and is denoted by p{E,m). The complement of the

resolvent set on R s called the spectrum of ® on E and is denoted by
u(E,w).

A skew-product semiflow ™ = (¢,¥) on the vector bundle E 1is said to be

uniformly completely continuous if for each x € X there is a neighborhood Vo

of x in X and a real number re # 0 such that, for all t » res the mapping

{y,z) » n(t,y,z) maps bounded subsets of Ey = i{y,z) e E: y € Vx} into rela-
X



tively compact subsets of E,
The following theorem contains the properties of the spectrum &{E,m)

which are used in this paper.

Theorem 2.1

Let m = (¢,y) be a uniformly completely continuous linear skew-product
semifiow on a Banach vector bundle E defined over a compact, connected, smooth
Banach manifold X. Then the spectrum (E,m} 1is a closed set of real numbers
which is bounded above, and, consegquently, it is a union of closed intervals,

the spectral intervals.

Associated with each spectral interval there is a spectral subbundle V of

E, which satisfies the following properties:

1) If w,A e p(E,®) and (u,A) N 2(E,n) = [a,b], then the spectral subbundle
V associated with [a;b] has finite dimension, satisfies V = U, N Sy
and is invariant under T,

2y If A e p(E,m) and (-%,A) N L{(E,m) = (-=,b], then the spectral subbundle
V associated with (-=,b] satisfies V =S, and is positively invariant

under m,

Moreover, if A € p(E,m), then the number of spectral intervals included in

{A,+=) is finite,

Proof

Let A € p(E,m). Then m, admits an exponential dichotomy on X. There
exist a linear projection P,{(x) on E(x) and constants K,a > 0 such that

N(PA)C B, and



Yt X)Py(x) | < ke O, t >0, xeX

406 x)0L - P00 ]| < ke™, £ <0, x e x

where the last inequality holds for some backwards extension of Yo(tyx)e If w

satisfies |A - u| < 8 = /2, then

-8t
[V (E.x)P, ()| < Ke

()T - P00 < ke*PE Lt <0, x e X

Therefore, with Pu =Py, 7, admits an exponential dichotomy on X. It follows
that u e p(E,m), U, = U, and S, = 35, for all w such that |X - u| < a/2,
This implies that p(E,n) and {u e R: Uy = Uy, S, = S5, forany A e p(E,m),
are open sets. Thus Z(E,w) 1is a closed set.

The fact that u(E,w) dis bounded above results from the compactness of X
and the semigroup property of 7. In fact, let k = supi|¥(t,x)|: x € X and
G <t < 1), Since ¥ 1is continuous and the supremum is taken over a compact

set, the constant k s finite. Fix t 2 0 and let m be the largest integer

smaller or equal to t. Then, with X: = ¢(1,x), we have

¥t,x) = ¥(t - My X )¥(Lxp 1) -o0 ¥(1,x)
and, consequently
e(e,x) | < K™D <kt = ket ¢ o5 0,

where a = log k. Therefore, T, admits an exponential dichotomy on X for
A >0, with @« =X -a and P,(x) equail to the identity on E{(x). This proves
that (a,+=) < o(E,7) and 2(E,n)C (-=,a].

Since &(E,w) 15 a closed set of real numbers which is bounded above, it

is a countable union of compact intervals with, possibly an interval of the form
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(-=,b]. Let {Ai} be a decreasing sequence of points in p{(E,%) which
separate the closed intervals that make up Z(E,7), i.e., the intersection of

the interval (Ai,ki_l) with Z(E,m) 1is precisely one spectral interval
[dj,bi]. With each one of the spectral intervals we can associate the spectral
bundie Vi = Uxirﬂ SAf_ « In order to prove the properties 1) and 2) we need
to show that V; 1is independent of the sequence {Aj}, provided this sequence
satisfies the properties indicated. More precisely, we need to show that for
H,A e p(E,®) with u < X we have Uu = Uy, and S5 =5, if and only if
(us,A) C p(E,m). Assume that Uu #Uy or S5, #5, and define

G = suplo e p(E,m): Uy = U, S, = S,4. Because the set {u e R: U, = U,

5u = SA}, for any A € p{E,7), is an open set, and because U; depends monoto-
nically on o, we get a contradiction. This shows that Uu = U, and Su = 5y,
To prove the converse, let u,A € p(E,m) and assume that U,=U, and § =

SA. Then T, and w, admit exponential dichotomies on X, with projecions

Pu’ P, and constants Kp’KA and “ys%y, respectively. Let K = max{Ku,KA}

and o = min{au,ax}. For either o =u or o = A, we have

¥ (t,x)P(x)] < ke™™ , t >0, x¢&X

[¥o(tax)[I - Py(x)]} < k™™, t <0, xex,

]

Since U, = U, and S, = S,, we have P, =P,

" P. Consequently

e'dtlw(t,x)P(x)| < Ke~t s t 20, xeX

e %t ¥(t,x)[I - P(x)]] < ket™ |, t <0, xex,

for o equal to either u or A. This implies that these inequalities must
also hold for all o e [u,A], proving that each one of the Ty for o e [u Al
admits an exponential dichotomy, and, therefore, [u,A] Cb(E,m).

The invariance properties of the spectral subbundies follow from the
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positive invariance of the SA and the invariance of the U, and Sy nB, for
every A e p(E,m),

It remains to prove that the spectral bundles associated with compact
spectral intervals have finite dimension. For this we use the complete con-
tinuity of tne semiflow. The semifiow =, is uniformly completely continuous
for each A & p(E,m). Thus, for each x € X there is a neighborhood Ve of x
in X and a real number re » 0 such that, for t 2 r.» the mapping
(x,z) > n(t,x,z) wmaps bounded subsets of E, = {(y,z) e E:y e V.4 into rela-
tively compact subsets of E. Since X 1is c:mpact, we can extract a finite
subcovering in of X and define r = max{rxi}. Then, for all x e X, t * r,
the mapping z * Y,(t,x)z maps bounded subsets of E{x) into relatively com-
pact subsets of E(¢{t,x)). Since A e p(E,m), m, admits an exponential dicho-
tomy on X with projection P and constants K,a > 0. Then U,(x) = N(P(x))
is a closed linear subspace of E{x). Let us denote S = {z ¢ Uy(x): jz| < 1k,
For each z € 5, the mapping Y¥,(t,x)z has one backwards extension defined for

all t < 0 and such that
\Yl(t,x)zl< Ke+Olt . t <0,

For each z € 5, define the set S' = tz' € E(¢(-r,z)): z' = ¥ (-r,x)z  with

z € Sk, For each z' €3S' we have [z'| <Ke™™ and, consequently, the set §'
is bounded. Therefore, the mapping z' -+ t,(ry9(-r,x))z' maps S' into a com-
pact subset of E(x). Since S 1is the image of S' under this map, it follows
that S 1is a compact subset of the Banach space UA(x). The only Banach spaces
which have the closed unit ball compact, are the finite dimensional spaces.,
Consequently, dim U,(x) < = Clearly, Vi(x) = Uy (x) 1 S, (x) is also

i i-1
finite dimensional and, because X 1is connected, the dimensions of all fibers

Vi(x} are the same.
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Finally, if A e o(E,7), then dim U, is finite and the preceding proper-
ties of UA, 5,, with the monotone dependence of S, on A, imply that the
union of the spectral subbundles associated with spectral intervals contained in
the interval (A,+=) 1is equal to U, and, consequently, the number of such

spectral intervals is finite. Q.E.D.

The evoilution on the spectral subbundles associated with compact spectral

intervals can be given by Ordinary Differential Equations (ODE).

Proposition 2.2

Let ® be a skew-product semiflow on a Banach vector bundle E defined
over a connected, smooth Banach manifold X. If V is a finite-dimensional
subbundle of E which is invariant under 7, then the restriction of 7 to V
can be extended to a flow on Y.

Moreover, if the mapping t > w(t,x,z) 1is differentiable at t = 0, for
every (x,z) e V, and its derivative at t = 0 1is locally lipschitzian in

(x,z) € V, then the flow of m on V can be given by an ODE.

Proof.,

Since V is invariant under 7, through every point of V there is one
backwards continuation of =, Consequently, 7(t,x,z) is well-defined and
belongs to V, for all t e R, (x,z) € V. It is clear from the definition of
backwards continuation that = s a flow on V.

If the mapping t > w(t,x,z) is differentiable at t = 0 with the deriva-
tive being locally lipschitzian in (x,z) € V, then we can define a vector field
on V by assigning to each point (x,z) € V the derivative 'dﬁ(t,x,z)/atlt - 0
Initial value problems for the ODE defined by this vector fielid have unique

solutions and define a flow which coincides with T Q.E.D.



-13-

3. Hyperbolic invariant manifolds

Let X be a smooth Banach manifold without boundary and let ¢ be a con-
tinuously differentiable semiflow on X. Let Y be a smooth, compact, con-
nected submanifoid of X and assume that Y is positively invariant under the
semifiow ¢. Denote by E the subset of the tangent bundle TX defined by

E= U TyX and suppose that there exists a subbundle N of E which is
yeY
complementary to the tangent bundle T = TY. Then E, T and N are vector

bundles over Y. Since ¢ 1is continuously differentiable, we can define
Y(t,y,2) = ¥(t,y)z = D,0(t,e(t,y))z, t >0
for all y €Y and z e E(y), and

T(tyy,z) = {e(t,y), v(t,y,z)) s t 2 0.

Then @ 1is a linear skew-product semifiow on E. It is called the linearized

skew-product semiflow around Y induced by the semiflow ¢. The vector bundle

T is positively invariant under the semiflow ™ = {(¢,v). The semiflow

induces, by restriction, a semiflow on T which is denoted by HT and is

called the tangential flow induced by 7 on T

'ﬁT(t,y,Z) = (¢(t,y),wT(t,y.2)), t >0

defined for (y,z) € T. Analogously, m induces a semiflow N on N. In

fact, if P(y) denote projections on E(y)} which depend continuously on vy

and are such that T(y) = null space of P(y) and N(y) = range space of P{y),

we can set for (y,z) ¢ N

MN(t,y.z) = (0(t,y),P(6(t,y))0(t,y,2)), t > 0.
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Since T s a positively invariant set for =, the mapping N s a linear

skew-product semiflow on N. It is called the normal flow induced by % on N.
T

Let z(E,w), L(T,HT) and Z(N,ﬂN) denote the spectra of the semiflows n, w
and al on the vector bundies E, T and N, respectively. We say that Y is

a k-hyperbolic invariant manifold under ¢ 9if there exists an « > 0 such that

Z(T’HT) < {-%,0) and E(N’“N) N (-ka,ka) = p.  An hyperbolic invariant manifold

under ¢ s simply & l-hyperbolic invariant manifold.

Theorem 3.1

Let X be a smooth Banach manifold without boundary and let ¢ be a con-
tinuously differentiable semifiow on X. If YC X 1is a connected k-hyperbolic
invariant manifold under ¢ and 7™ = {¢,¥) 1is the linearized skew-product
semifiow around Y induced by the semiflow ¢, then the tangent bundle of Y,

T = TY, the unstable set U and the stable set S of Y under © decompose
the tangent bundle of X as a Whitney sum TX =T + U + S, and the restrictions
of ® to U, of n to T andof ¢ to Y can be extended to flows on U, T
and Y, respectively. Furthermore, if Y = (¢,wu), nl - (¢,¢T) denote the
skew-product flows on U, T obtained by extension of the restrictions of T to
U, T, respectively, andg if S = (¢,WS) denotes the restriction of 7 to S,

then there exist K,u > 0 such that

W (t,x,z)] < keK®Ejz] , t <0, (x,z) e U
[ (txz) | < ke Kz, £ 20, (x,z) €S (3.1)

W (t,x,z)| < ke®Itl|z|, teRr, (x,z)¢T.
Proof

We can write
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T(t,y,2) = (e(t.y), v(t,y,P(y)z)) + (#(t,y), ¥(t,y,[1 - P(y)1z)).

Consequently, if w(t,y,z) = ¥{t,y)z, wT(t,y,z) = ?T(t,y)z and

WN(t,y,Z) = VN(t,y)z we have
th)z=‘WPW)z+ ﬂfl~l%yﬂz.

Since Z(N,ﬂN)(\ Z(T,HT) = f, it follows directly from the definitions of

spectrum and dichotomy that
E(E,7) = L(N,7) U (T,

[f we denote Vg = U NSy, V, = U and V_ =S, it follows from Theorem 2.1
that VO and V+ are unions of a finite number of compact spectral subbundles
ana V_ is a countable union of spectral subbundies such that TX = V4 + V_+ V_,
as a Whitney sum. Since Z(T,WT) C (-a,a), we have Vg = T, and it is also
clear that V=S and v, = U Thus, T and U are finite-dimensional, and
Proposition 2.2 implies that the restrictions of 7 to T and U can be
extended to flows on T and U, respectively. It is clear that
L(U,ﬂU)C: (koy+), L(T,ﬁT)CZ (-u,0), ﬁ(S,ﬂS)c:.(—w,*ka), and, therefore, the
inequalities (3.1) are valid.

The dimensions of Y and TY = T are the same. Consequently, Y 1is a
finite dimensional manifold invariant under ¢, It follows that the restriction

of ¢ to Y can be extended to a flow on Y. - Q.E.D.

4, Functional differential equations on manifolds

Let M bDe a separable smooth finite dimensional connected manifold without
boundary, and let TM be the tangent bundle of M, that is, TM is the unicn of

the tangent spaces TyM = TM{y) of points y € M, with PM: M +» M denoting
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the projection that maps each TM(y) onto the base point y. If [ denoctes
the closed interval [ = [-r,0] for r > 0, CO(I,M) denotes the set of con-
tinuous functions from I to M and e: CO(I,M) + M dis the evaluation map

p(9) = ¢(0), then a retarded functional differential equation (RFDE) on M is

continuous function F: CO(I,M) + TM such that py © F = v,

The tangent bundle TM can be jdentified with M x RM where m = dim M,
Then, for any RFDE F, there exists a function f: CU(I,M) > RM™ such that
F{(¢) can be identified with (&(0),f(&)}), for all & ¢ CO(I,M). The RFDE (F)
is frequently represented as (x(t),;(t)) = F(xt) = (x(t),f(xt)) or, simply,
;(t) = f(Xt), where, given a function x of a real variable and with values in
the manifold M, we denote xt(a) = x(t + 9), 8 € 1, whenever the right-hand
side is defined.

Given a locally lipschitzian RFDE (F) on M, its maximal solution x(t)
satisfying the initial condition & at t = t0 {(which necessarily exists and

is unique) is sometimes denoted by x(t;to,é,F) and Xt is denoted

xt(to,é,F). The solution map or semiflow of F 1is then defined by

p(tyt) = xt(O,c,F). The arguments &, F are dropped when confusion may not

arise, and t, is dropped when it is equal to zero. If F s bounded and has

a

bounded continuous derivative, then the solution map is a smoothing operator, in

the sense that if it is uniformly bounded for t in compact sets of [0,®),

then for t » r, the function ¢(t,*): CO(I,M) > CO(I,M) maps bounded sets into

relatively compact sets.

We denote by BCk the set of bounded continuous functions from CO(I,M)
into TM which have bounded continuous derivatives up to order k * 1. The
RFDEs on M we consider in the sequel will always be taken from Bck  for
k » 1. Each such RFDE (F) induces, by linearization, another RFDE (L) on the

tangent bundle TM, which is called the linear variational equation. Being an

RFDE on TM, the linear variational equation is a map L: CO(I,TM) * TZM. The
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double tangent bundie TZM can be identified with M x R™ x R™ x Rm, and, there-
fore, if the given RFDE (F) on M 1is represented as ;(t) = f(xt), as done before,
then the linear variational equation of F can be represented, in an analogous
fashion, as (x(t),y{t)x(t),y(t)) = Lix,,y,) = (x(E),y(£),F(x,),DF(x,)y,) or,
simply, as a system of the two equations ;(t) = f(xt) and ;(t) = Df (x. )y,
where Df denotes the derivative of f. The solution maps ¢ of F and A
of the linear variational equation L are then related by A(t,*) = De(t,*).

It is clear from the preceding discussion that we can, without loss of
generality, restrict the study of the persistence of hyperbolic invariant mani-

folds, under small perturbations of RFDEs on a manifold M, to the particular

case where the manifold is euclidean, j.e., M = Rq, for some integer q.

5. System of coordinates around hyperbolic invariant manifolds for FDEs

For a fixed real number r > 0, let € = C{[-r,0]; RY) denote the Banach
space of continuous functions from the interval [-r,0] to R4, taken with the

uniform norm. Given a Banach space B and positive integers k, p, the set

BCX(B;RP) = {f: B > RP, f 1is continuously differentiable and has

bounded derivatives up to order kI

taken with the usual addition and multiplication by scalars and the uniform Ck'

-norm, is a Banach space. By uniform Ck-norm we mean

Itfitk = sup{|[)'if(g)|: i = 1,04.,k and € € Bl

We are interested in discussing functional differential equations (FDE)

defined by functions f & BCk(C;R”) with k # 1, as

u(t) = flu,), (5.1)
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where Uy denotes the segment of the function u defined over the interval
[t-r,t], 1.e., u. (9) =u(t +9) for b de [-r,0]. The solutions of (5.1) define
a semiflow (t,s) > ut(i) on C, with uy = & The mapping ug{*): €+ C s

ck for all t 2 0 and is completely continuous for t 2 r,

K_manifold which is k-hyperbolic

Let MC C be a compact, connected, C
under the semiflow defined by the solutions of {5.1). The vector bundle
E= U T can be identified with M x C, since C dis infinite dimensional
and ﬁEMis a finite dimensional manifold.

We will also consider the linear variational equation around M

v(t) = Df(u, (w))v, (5.2)

for each « € M. The linearized semiflow around M which is induced by {5.1)

is the linear skew-product semifiow defined, for (w,£) € E, by
T(t,6,€) = (uy (@), (w,6)), t >0,

where vt(m,é) e C denotes points in the orbit of (5.2) which passes through
the point ¢ at t = 0.

Because M is a k-hyperbolic manifold under (5.1), the vector bundle TM
is invariant under the skew-product semiflow m, and TM has a complementary
subbundle N of E, j.e., E=TM + N, Let U, S denote, respectively, the
unstable and stable subbundles of N. The fibers T, = TM, U, and S, can be
identified with linear subspaces of C, and one can write C = T, + U, + S,
Because M is connected, the dimensions of these fibers are independent of
w € M, and because M {s hyperbolic and the semiflow 7 is completely con-
tinuous for t * r, it follows that both Tm and U, are finite dimensional,

with dimensions that we denote dT = dim T, and dU = dim U, . We can choose

bases for T, and U, consisting of vectors of unit length which depend on w
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in'a CX fashion. These bases are arranged as columns of q x dT matrices

. u . _ .
WL and q x dU matrices ¢ .. To each point (w,t) e E, we can associate coor-
dy

T U .S
€m + &, t &

T e

dinates y € R w o

, « £ C by the relations ¢

, S T u U S . .

ég € Ugs &, € Syps gl = e Xs &y = @y and ¢ = & . These relations associate a
dT dU

unique quadruple (w,x,y,5) e M xR = xR ° x C to each point (w,&) € E, This

where &

0

system of coordinates (w,x,y,¢) around the hyperbolic invariant manifold M

1s redundant., In fact, the same point in a neighborhood of M can be repre-
sented in several ways in these coordinates, according to which point w e M is
taken as origin of the coordinate system. In spite of this redundancy, the use
of these coordinates facilitates the study of the persistence of hyperbolic
invariant manifoldsunder perturbations.

Given an FDE
Wt) = flw) + g(w,), (5.3)

where g € BCk, and defining v(t) = w(t) - u(t), we can write it as a pertur-

bation of the linear variational equation (5.2) in the form
v(t) = DE(ug(@))vy + Glug(w),vy), (5.4)
with w € M, by defining
G(¢,v) = f(o + ¢) - DF(o)v - (o) + g(o + ¥).
Equation (5.4) defines a skew-product semifiow on E by
T(t,w,8) = (ug(w),v, (v,8)),

where v, (w,8) denotes points on the orbit of (5.4) which satisfies the initial

condition v, = &, The variation of constants formula for (5.4) can be written

(see [4]) as
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G t

Ve = To{tys)v, +

t G Tultss)XpG(ug (w),vg)as, t > o, (5.5)

where T (t,o} denotes the solution operator of the linear variational equation
(5.2) and Xp(9) s defined to be the identity Iq at ¢ = 0 and to be zero
for © e [-r,0] (notice that the columns of Xy do not belong to C, but the
formula still makes sense if interpreted as suggested by Hale in [4]).

As M is an hyperbolic compact manifold under the semiflow defined by
equation (5.1), which is completely continuous for t 2 r, it follows that (5.1)
defines an ODE on M. The points vi (@), which must satisfy equation (5.5), can
be represented in the system of coordinates introduced above as
(ut(w),x(t),y(t),zt), where x(t), y(t), Z, satisfy the variation of constants

formulas obtained by projecting both sides of (5.5) along the "coordinate

directions". More precisely, we have the following result,
Theorem 5,1

let f e BCk(C,Rq), k 21, and assume M<C C is a compact connected Ck"
-manifold which is k-hyperbolic under the semiflow defined by the solutions of

equation
u(t) = flu,). (5.6)

Then there exists a system of local coordinates around M, (w,x,¥,¢) €

M x RdT x RdU x G, where dy = dim M and dy s the dimension of the unstable
bundie associated with the linear variational equation (5.2), such that, for each
w e M, there exist two matrix-valued functions Yl(t,o) and ?g(t,c) which are
continuously differentiable in t,0 € R, a linear subspace L of ¢ with
codimension dr + dy, @ linear operator Ti(t,c) acting on L which is con-

tinuously differentiable in t » 9 a q xq matrix-valued function
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Xob’w’T defined on [-r,0] which is continuous on T, and functions n,u,s

d Y K 4
defined from M x R x { x BC"(C,R) into, respectively, R ', R ,RY

k

d
x R
which are bounded and, for each fixed w € M, are of class BC in the remaining

variables, such that

T U S
(1) Y, (t,t) = IdT, ¥ o(t,t) = IdU, T (t,t) = I, forall teR,

(i1) there exist K,a,aq > 0 with o) kay such that

~ogft] g .
e j¥,(t,T)l >0 as |t| * = for all T €eR

[P t,0)) < ket <

T (ts1)e] < ke ™E o], £ o1, e Sug(w)?

where S denotes tne stable bundle associated with the Tinear variational

equation of (5.6) around M,

(1) T <1, wem, TeR,

(iv) the functions n,u,s and their partial derivatives relative to Xx,y,¢
d d
T U

vanish at the points (©,0,0,0,0) e M x R | x R O x L x 8CX(C;RY), and

gach one of them assumes related values at all points {w,X,y,%) which

represent the same point of C,
{(v) for each g ¢ BCk(C;Rq), the perturbed equation
w(t) = f(wt) + g(wt) (5.7)

is, in the new coordinates and for t > o, equivalent to the system

T to7
x(v) = ¥ (t,e)x{o) +J ¥ (t,tIn(uo(w),x(T),y(1),2,,9)dT
U towu
y(t) = ¥ (t,o)y(o) + ! Yolt,Tufup(w),x(1),y(1),24,9)dT (5.8)

S t s S,w,T
z, = T(tso)z  + é Tw(t,'r)xD s{u (w),x(0),y(7),z,,9)dT.
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Proof

We need to project both sides of the variation of constants formula (5.5)
in the tangential, unstable and stable directions along the points up (w) & M,
as indicated in the discussion preceding the theorem. Forgetting, for the
moment, the differentiability properties of the functions involved, and
recalling that T ana U are invariant under the skew-product semi-flow asso-
ciated with the linear variational equation, we see that the introduction of
bases for the finite dimensional fibers Tut(u) and Uut(w) and the represen-
tation of the projected equations in terms of these bases lead to the first two
equations in system (5.8).

The linear spaces S have codimension dr +d; in C and can be one-

Ue (@)
to-one mapped onto a fixed subspace L of C of the same codimension.

Projecting (5.5} onto S and representing this projection in the subspace L,

we obtain an equation of the form of the last equation in system (5.8). The

S,w,T . ) .
term Tw(t,'r)x0 ¢ needs some explanation. First, we notice that Tu(THr, 13Xy

is a matrix with columns in C because of the smoothing action of T (tyT).
In fact, though XO(H) is a matrix valued function defined for ¢ ¢ [-r,0] and
discontinuous at © = 0, the solutions of the FDE with initial conditions equal
to each one of the columns of Xy are continuous for t » 0 and, consequently,
after t = r units of time all the segment of the solution from t - r to t
is continuous, showing that the columns of T, (T+r,T)do, indeed, belong to C.

This matrix can be projected onto T

and U to give components

Uryp(w) Uy (@)

T U . .
T {(t+r,1)X d [T {(t+r,T)X , spectively. Since T (T+r,7
LT, (t+r, 1) O]ur+r(w) and [T ( ) 0]“T+p(w) resp Y of )

is & homeomorphism from TuT(m) to T and from UuT(w) to U

Uy (®) Uppp(0)?

because T and U are invariant under the semiflow, it follows that there

T,w,T U,w,t

exist unique matrix-valued functions X0 and XO’ whose columns belong

u

to T nd U , respectively, and are such that
(w) ¥ Py (u)e rESPE Y ©
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T,w,T T
T (rer, )Xy ™" = [Ty (Ter, T)X
w(T r,T) 0 L w( r,T) OJUT+F(M)
U,w,t U
Tw(r+r,1)xo = [Tw(T+r,T)X0]uT+ (w)
r
. S,w,T T,w,T U,w, T .
Now, we can define Xj = Xy - Xp - Xg , and it becomes c¢lear that the
last equation in system (5.8) is correct, provided Ti(t,T)Xg’w’T is understood
in the same sense as T (t,7)Xy was (notice the Xg’w’T does not belong to L,

as XO does not belong to C; for an explanation of this notation refer to
[41).

Properties (i) and (iii) are easy to verify, property (ii) is a consequence
of the hyperbolicity of M through Theorem 3.1, and property (iv) results from
the positive invariance of T, U, L under the skew-product semiflow associated
with the linear variational equation around M and the invariance of M under
equation (5.6).

It remains to establish the smoothness properties of the functions n,u,s.
For this we need to show that the normal bundle N, the projections associated

with the decomposition C = Tut(w) + Uu (w) + Sut(w)’ the vectors forming the

t
bases for T and Uu () and the one-to-one mapping from Sut(m) onto L

can all be chosen to be C%-smooth in t. The possibility of choosing a Ck'
-smooth normal bundie N can be proved by a slight modification of the proof
given by Whitney [20] for the case when the manifold M is modeled in a finite
dimensional euclidean space. In fact, a "natural™ choice of the normal bundle
would only be Ck'1 smooth, but the procedure introduced by Whitney in the cited

paper can be used to smoothen it to be of class Ck. It follows that the pro-

jections associated with the decomposition C = Tut(w) + Uut(w) + Lut(w) are of

class Ck in t, provided U and S are Ck in t. These are
Uy (W)

Uy (w)
defined in terms of the null space and the range, respectively, of the linear
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projections P(Ut(w)), defined on Nut(w)’ which are associated with the dicho-
tomy of the linearized skew-product semi-flow around M induced by the given
equation. Although these projections are, at the outset, only required to
depend continuously on the points in the manifold M, they are in fact of class
Ck in t Dbecause their null spaces are related, forwards and backwards in
time, by a semiflow of class Ck. More precisely, the null space of P(w) is
mapped onto the null space of P(ut(m)) by the map & + Vt(w,g) given by the
solutions of equation (5.2)., Since this map is of class ¢k in t, due to the

general results on smoothness of solutions of FDEs (see [4]), and N is a ck

vector bundle, it follows that Plug(w)) s ¢k in t. The possibility of

choosing the one-to-one mapping from Su (w) onto L to bhe Ck-smooth in t
t

is a direct consequence of the cK-smoothness of P(ut(w)). In order to get the

Ck-smoothness in t for the bases taken for T and U , we only need
u, (w) uy ()

to choose them to be mapped one to each other by the flows on these bundles,

since these flows are of class Ck in t. 0.E.D,

6. Functional differential equations in coordinate form

Under certain general conditions discussed in the preceding section, the
linearization of a given FDE around an hyperbolic compact manifold M, and the
introduction of local coordinates around the manifold lead to a family of

systems parametrized by w &€ M and of the form

x(£) = N(t)x(t) + n(t,x(t),y(t),z ,4) (6.1)
t
y(t) = ¥(t,o)y(o) + ) ¥(t,m)u(T,x(1),y(1),2 ,A)dt (6.2}
[#)
t
Z, = T(t,o)z, + J T(t,T)XB’TS(T,X(T),y(T),zT.f\)dT, (6.3)

N

d
where A 1s a parameter in a Banach space 4, x(t) e R ", y(t) eR ", z_ e L, L
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is a linear subspace of € = C{[-r,0];RY) of codimension (dy + dy)s dysdysa

)
are nonnegative integers with d, > 1, XB’T is a q * g matrix-valued function
defined on [-r,0) and continuous in T with its columns belonging to L and
satisfying |X%’T| <1 for all Tt eR, N(t) and ¥(t,T) are matrix-valued
functions defined for t, T e R, T(t,T) are linear operators acting on L for

t # 17, and the following hypotheses are satisfied:

(H1) Tne function N of t is bounded and continuous for all t £ R,
(HZ) the functions n,u,s of (t,x,y,¢,A) are bounded, continuously dif-

ferentiable in x,t,& and their partial derivatives relative to
X,¥,% as well as the functions n,u,x themselves are all bounded by
some B{u,e) > 0 over the region t e R, |x|,|y|,fc] < u < Mgs
|A| € & < €y» With the function B{(u,e) being nondecreasing in &
and €, and approaching zero as u,e + 0,

(H3) The matrix-valued function Y¥(t,t)} is continuously differentiable in
t,T € R, satisfies Y¥(t,7)¥(t,0) = ¥(t,o) for all t,r,0 € R and
¥(t,t) 1is the identity matrix for all t € R. The linear operators
T(t,T) defined on L are continuously differentiable in t,T such
that t 2 71, satisfy T(t,T)T(t,0) = T{t,o) for all t > v 2 o, and
T(t,t) 1is the identity operator on L for all t € R.

(H4) There exist K # 1 and « > @y > 0, such that

|¥(t, )| = Ke“(t'T) , t ST

IT(t,1)e] < ke *(E=T) g , t2 T, 0L,

and, the principal matrix solution @(t,T) of x = N{t)x satisfies

ag|t-T|
je(t,T)| < Ke , for all t,T eR
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In this section we consider a more restricted situation which will be used
later on to establish the general result on the persistence of hyperbolic mani-

folds. More precisely, the hypothesis (Hz) is replaced by

(Hé) The functions n,u,s of (t,x,y,¢,A) are bounded and continuous,
vanish at all points where x,y,: are simuitaneously zero, and are
globally lipschitzian in the coordinates X,¥si, in the sense that

there exists a D > 0 such that
]n(t’x’y!c!A) - n(e:Y,y,ZQA)I < D(]X -;l + |y "-yl + |l; —_G-l)

for all t eR, x,x € R ", y,y € R s 6, €L, A e a, and similarly

for u and s.

In the proofs of the results of this section on the persistence of hyper-
bolic invariant manifolds for system (6.1)-(6.3) with |A| small, we use the
following property of solutions (x(t),y(t),zt), t € R, which have y(t) and

zt bounded.
Lemma 6.1

Assume the hypotneses (Hl)'(H4) hold. Then (x(t),y(t),zt),t e R, is a
solution of the system {6.1)-(6.3) with y(t) and Z. bounded if and only if

for some 7Y belonging to the interval (ao,a) the function

w(t,x(0)) = e'Y|t|(x(t),y(t),Z t e R (6.4)

¢

d
agrees, when x(0} =b R N, with a fixed point of the transformation T

d d d
defined on the set of bounded continuous functions w:R x R N, R N & R U« L

by



Tw(t,b) = (e~Ytlege,0yp + e~ YIt1] e(e,tn(r,e" [t lw(z,b),4)aT,
0
t
e Yt (e, mu(r,e’ It ha(r,0), 4)dr, (6.5)
+m
t
e VIl T, 1" s(r,e It lu(e,b), A)ar).

[+ -]

If (H,) 1is replaced by (Hy) the same holds.

Proof.

If (x(t),y(t),zt) is a solution of (6.1)-(6.3) which is defined for all

t € R and has y(t) bounded, it follows from hypothesis (H,) that for o 2t
t a(t-0)
ly(t) - ) ¥t tulnx(t)y(1),z ,A)dTt| = [¥(t,o)y(o)| < Ke ly (o) |
g

and, letting ¢ * +*, we get
t
y(t) =] ¥(t,nul{t,x(1),y(1),z_,)dr, (6.6)
+CD
where the improper integral converges because u 1is bounded and Y satisfies

the exponential estimates in assumption (H;). Analogously, if

(x(t)oy(t)sz,), t e R, is a solution of (6.1)-(6.3) with 2z, bounded, then

T(t, )Xy s(T,x(T),y(€),24, 0 . (6.7)

o

1w ot

Conversely, if (x(t),y(t),zt), t € R, is a given continuous function
satisfying equation (6.1) and (6.6)~(6.7) then it is a solution of the system
(6.1)-(6.3), with y(t) and z; bounded, because of hypotheses (Hl) and (H4).

The variation of constants formula for equation (6.1) gives

t
x(t) = ¢(t,0)x(0) + é o{t, T)n(T x(1),¥(Tiz ,A)dT, (6.8)
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From hypothesis (H2) or (Hé) there exists B > 0 which bounds n, and from
hypothesis (H4) we get

agft ]

gt t ay|t-T|
° e O lat| < (Ix(0)] + S gke 0T,
0

|
[x(t)] < Ke [x(0)| +B [} K
0
Consequently (6.1) is equivalent to (6.8) and e"Y[t||x(t)|, t € R, is bounded.

This finishes the proof of the statement. Q.E.D.

Theorem 6,2

If the hypotheses (Hl),(Hé),(H3),(H4) are satisfied and the constants

¢3,%,K of hypothesis (Hy) and D of hypothesis (Hy) satisfy the inequality

1 2 1
K(K + DL e # oy * iy 1 € (6.9)

for some v in the interval (@g,%), then there exist continuous functions hys
d d

h, defined on R xR Noxoa and with values in R v and L, respectively,

which are bounded and such that the function x * (hy(t,x,A),ho(tux,2)) s

Vipschitzian with Lipschitz constant (K + 1) and with h,(t,0,0) = 0,h,(t,0,0) = 0

d
for all t e R, x € R N, A € A, such that the set

dN d

Mz\z {(t!xsysg)ERxR XRU

XLty = hi(t,x,2), ¢ = hy(t,x,r)}

is an integral manifold for system (6.1)-(6.3), in the sense that if
(tgax{ty),y(tg)sz, ) € M, then the solution of (6.1)-(6.3) with this initial
0 0 0 tO A

data stays in MA for all time.

Furthermore, My is the maximal integral manifold for system (6.1)-(6.3)
: dy d;
contained in R x R © x V, for any bounded neighborhood of zere VC R ° x L,
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Proof.

The preceding lemma indicates that finding integral manifolds MA for

d
(6.1)-(6.3), which belong to R xR N'x v for some neighborhood of zero

d
VTR U« L, amounts to finding fixed points of the mapping T 1in the lemma.
These fixed points are studied, in the present proof, by an application of the

contraction mapping principle to a specific set of continuous functions

w: RxR ™R ™ xR"Y xL taken with a metric generated by a suitable family

of pseudonorms.

Let us denote by W the set of bounded continuous functions

dy d
N R

d
w: R xR NS R R x L which satisfy

d
W(t,b) - w(t,F)| < (K + 1){b -B| for all b,FeR N, ¢ ¢nr,

where K 2 1 1is the constant in the hypothesis (H4). The set W 1is a complete

metric space with the topology generated by the family of pseudonorms
twi = supliw(t,b)|: t e R, |b] < nl, n=1,2,.... (6.10)

it is clear that, for each w € W, Tw 1is a continuous function from R x R
d d
into R N« R U x L. Using the hypotheses (Hé) and (H4) we get

aglt alt - |
0 e 0

| t
|TW(t,b)| < [e-—Y|t|E K‘bl + e-Yltl j K DeY|Tde +
0

= Q T T t
+ e it ) Ke (t-Tpe¥IT] gr + =Yl J Ke"a(t'T)DeYirldT] sup  |w(t,b)
t - teR

Consequentiy, as Y & (og,a) we obtain

1 2 1
|Tw(t,b)| < Kijb| + DK[ = uo+ st 3

] sup |w(T,b)

f TER
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this shows that Tw s bounded for each w € W. In a similar way, and using

inequality (6.9), one obtains

ITW(t,b)-Tw(t,B)| < K|b-B| + DK[ . -1 s 2, i

< (K + 1)|p - BY.

On the other hand, if w,w € W, we have

— 1 2 1
- <
Tw(t,b) - Tw(t,b)| < DK [ —— & " aoy TEEy

which implies that

iTw - fﬁﬂn <DK [ - _lao + = g =+ ; i - T lw _'ﬁﬁn,
Since condition (6.9) is satisfied then T dis a uniform contraction from W
into itself, in the given family of pseudonorms. The contraction mapping prin-
ciple implies that there exists a unique fixed point of T 1in the set W and
that this fixed point depends continuously on A,
Let w* = Tw® be the fixed point of T in W and define the functions hy

and h, by

(bshy{t,b,A), hy(t,b,A)) = w*(t,b).

d
It is clear that hl, ho are defined for t € R, b € R N, A e A, that they are

continuous bounded functions which are lipschitzian in the variable b with

lipschitz constant (K + 1) and that they vanish at the points (t,0,0).

suppose  (x{t),y(t),z.), t e R, is any solution of (6.1)-(6.3) with y(t)

and Zy bounded, and denote b = x(0). Lemma 6,1 implies that

w(t} = E'Y|t|(X(t),y(t),Zt) is a fixed point of the map T, defined on the set
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B(R) of the continuous bounded functions w: R * RdN x RdU x L by the same
formula (6.5) as in the definition of T, but replacing w(t,b) by w(t). The
argument used above for T also shows that T, maps B(R) into itself and is
a contraction in the supremum norm on B(R). Therefore Tb has a unique fixed
point in B(R) which must satisfy w(tg = w'(t,b). It fo]lozs that M, s

N

U

the maximal integral manifold in R xR 7 x ¥, for any VC R ~ x L which is a

bounded neighborhood of zero. Q.E.D.

Remark: The functions h;, h, of the previous theorem do not depend on the
particular value of v ¢ (uo,a), provided it satisfies inequality (6.9). In
fact, if a5 < ¥y <Yy, <o and the function wy(t,x(0)) is bounded and given
as in {6.4) with v = Y1» then the function w2(t,x(0)) also given as in (6.4)
but with Yy = Y, s also bounded. The uniqueness of the fixed point of the

mapping T implies that Wi = Woo

The structure of the solutions around M, 1is preserved under small pertur-

bations, as is illustrated by the following result.

Theorem 6.3

Assume the same hypotheses as for Theorem 6.2. Then the manifold My s
d d
N u

the intersection of two manifolds S,, Uy< R xR xR ™ x L which are posi-

tive integral manifolds for (6.1)-(6.3), and are such that solutions with inji-
tial data in S, approach M, as t > += and solutions with initial data in
U, are globally defined and approach My as t * -2 Moreover 5,, U, are
homeomorphic to R x L, R x Rdu, respectively, and have the form

dy

S, = {{t,x,¥,8) e R xR " xR~ xL:iy=nh(t,x,5,A)},

and
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dy dyy U :
UA‘_' {(t,x,y,i;) ERXR XR XL: C=h (tsxsys)\)}!

where the functions (x,c) » hs(t,x,t,h) and  (x,y) + hU(t,x,y are lipschitzian
homeomorphisms from, respectively, RdN x L to SA and RdN x RCIU to U,, with
Tipschitz constant (K+1) and satisfy hs(t,x,c,O) = O,hu(t,x,y,O) =0, In

addition, there exist &, > 0 such that, if (x(t),y(t),zt) is a solution of

(6.1)-(6.3) with initial condition in S, , then
Hx(Ehy(e)sz)| < o([x(0)| + |zg])e ®F,  t >0

and, if (x(t)y{t)sz,) is a solution of (6.1)-(6.3) with initial condition

in U, then
Hx(£)oy ()2 )| < c(x(0)] + |y(0)])et , t <o,

where & € (ag,Y),

Proof.

If (x(t)y(t),z,) dis an arbitrary solution of (6.1)-(6.3) whicn is
defined for all t 2 0 and has y(t) bounded for t > 0, we find, as in the
proof of Lemma 6.1, that

t

y(t) =] ¥(t,t)u(t,x(1),y(1),2,A)dr,
40

Consequently, based on the discussion in Lemma 6.1 and Theorem 6.2, we expect

that Tooking for the set S, will amount to finding fixed points of the trans-

formation TS defined on the set of bounded continuous functions
d d d
Wi RF xRV L s RN g U |, by
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t
TSw(t,b,c) = (e”Te(t,0)b + e” ¥t | e(t,t)n(7,e" w(T,b,2),)ar,
D

t
e " v (t,m)u(t,e w(T,b,2),A)dT, (6.11)
+oo
t S, T

e T(t,0)e + e ) T(t,7) Xy s(r,e”w(T,b,6),4)dT),
0

where Y € ( uo,u).
5 the set of bounded continuous function

dy 9y
x L +R " xRY xL which satisfy

We denote by W
d
w: R xR U

|wit,b,c) - w(t,B,2)} < (K + 1)(|b -Bf + |¢ -T7})

N, ¢,z €L, t e R+, where K 2 1 1is the constant in the

|
for ail b,b e R
hypothesis (H4). The set WS s a complete metric space with the topology

generated by the family of pseudonorms

"wun = Sup{iW(t’b’(,‘)I: t £ R+, |bl < n, lgl < n}, n = 1,2,.-. .
Similarly to what was done in the proof of Theorem 6.2 for the mapping T on

W, it can be shown that TS is a uniform contraction on N5 and, therefore,

there exists a unique fixed point of TS in WS and it depends continuously

on A,

If we let wS = TSWS be the fixed point of 75 on W

S

S and define the

function n by

(b,h>(t,b,¢,A),€) = wo(t,b,¢),

it is clear that the set 3,, defined as in the statement of the theorem, is a

positive integral manifold for system (6.1)-(6.3) and it is homeomorphic to

RdN x L.
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Next, we will show that iws(t,b,g)] +*0 as t > +2, Let

u = lim sup lws(t,b,ﬂ)j. Because of inequality (6.9), we can choose ¢ > 1 so

t >+
that

1 1 1 :
KD[ o o + T + TR ] ¢ < 1.

If u > 0, then there is a o > 0 so that |ws(t,b,c)| S upe for t # o. Then,

using formula (6.11) and the estimates available for its terms, we get for

t 2 0
-(Y-ay)t
W (t,b,0) | = (T33(t,0,¢)| < ke O || + ke (#*VE g 4
~(Y-ay)(t-0)  -(T+a)(t-o) :
+ KO[ & + & T,b,8)| +
R yra 4P W(Th. o)

1 1 1
S,
+ KD[ Y=g + T + o u

Letting t + +=, we get

1 1 1 :
¥ < KD[ S T + e + T Jou < u

which is a contradiction. Hence u = 0. This proves that |ws(t,b,c)] >0 as
t > +e,
Now we derive the exponential rate of decay of wS as t * +=, let
v(t,b,¢) = Sgglws(fsb,e)l. Since |wS(T,b,c)| +0 as T * +=, for every
T

t 0 there is a o >t such that

v(T,b,8) = v(o,0,8) = [w(0,b,8)] , t <7t <o

On the other hand, estimates using formula (6.11) give
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~(Y-ug)t vt t o (Teug) (teT)
|w5(t,b,a)| < Ke 0 |b| + Ke l¢] + ) Ke 0 D[wS(T,b,G)idT
0
e (.S t y4a) (£-T)p S
v ke OF9E=-Tlg W Sce boe)jar + ) ke o {w>(1,b,¢) |dr.
t 0
Consequently,
~(1-ag)t t -(1-ag)(t-7)
v(t,0,¢) = v(o,b,8) Ske O |b| + ke (Y| 4 ) ke © DV (T,b,5)
0
o) (Y- }{o-1 -
+ | Ke (1-%0) )DV(T,b,C)dT + | Ke(u'Y)(t'T)DV(T,b,C)dT
t t
t o}
+ ] Ke'(Y+“)(t'T)Dv(T,b,C)dT + | Ke"(Y+u)(°'T)Dv(1,b,Q)dT

0 t
and, therefore,

-(Y-uy)t t o =(Y-a5)(t-T)

v(t,b,c) ke O ({bf+ jc|]) +J ke O Dv(t,b,c)dT +
0

1 1 1
+ KD( —— o to=— tv+% Jv(t,b,¢).

Due to inequality {6.9), we can write

Sm90)ty(e,b,0) < 1 - KD( _1a0 L 2 i SV EN

+ j De v(T,b,¢)dT].

Applying Gronwall inequality we obtain
[v{t,b,6)| S C(ib] + |g])e™t,

where

C = K/[1 - KD( & ¢ Lt and B =Y - - 0D



-36-

From inequality (6.9), noting that K » 1, it is easy to verify that C,B are

positive. It follows that there exist C,B > 0 such that
H(x(E)ay(£)azg) | S C(Ix(0)] + [zg)e(YBIE, ¢ 50 (6.12)

for every solution (x(t),y(t),zt) of {6.1)-(6.3) which has initial data on
SA.

In a similar way, we obtain the manifold U,. Now, we look for fixed
points of the mapping defined on the set of bounded continuous functions

dy  dy o dy

dy
WiRT xR 7 xR >R" xRYxL by

t
TUw(t,b,c) = (e ™ ¢(t,0)b + e Yt | o(t, t)n(1,6¥ W(1,b,c),A)dr,
0

t
e "t oy(t,0)c e P J w(e,m)u(r,e (T, b,c),A)drT,
0

e 1t T(t,T)XS’T s{t,6' W(T,b,c),A)dT).

o

Similarly, we obtain for some constants C,B > 0
[ (£)ay ()2 )| = C([x(0)] + |y(0)]) e OVB)E, ¢ <o (6.13)

for every solution (x(t),y(t),zt) of system (6.1)-(6.3) which has initial data
on UA,
It is clear, from the above construction and the proofs of Lemma 6.1 and
Theorem 6.2, that M, = S, Uy and the trajectory of any solution
(x(t),y(t),zt) for which éq|t| bﬂt),y(t),zt)] is bounded for t & R lies
necessarily on M,. Consequently, the inequalities (6.12) and (6.13) imply the

exponential estimates in the statement of the theorem. Q.E.D.

The following result establishes the smoothness properties of My s S, and

A.
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Theorem 6.4

If the hypotheses (Hy),(H;),(H3),(H,y) are satisfied, the functions n,u,s

are continuously differentiable with bounded derivatives up to order k # 1,
relative to x,¥,¢, and the constants ao,a,K of hypothesis (H4), and D of

hypothesis (H,) satisfy the inequalities
a >k oy (6.14)
and

DK(K+1)[Y_IGO+Yfa+Yiu]<1, (6.15)

for some Y 1in the interval (kuo,a), then the function

X * (hl(t,x,k),hz(t,x,k)), defined as in Theorem 6.2, is of class Ck, and the
same is true for the functions (x,¢) * hs(t,x,g,A) and (x,y) * hU(t,x,y,A)

of Theorem 6.3.

Proof

We recall from the proof of Theorem 6.2 that h,, hy were defined in terms

cf the fixed point of the transformation T in the set W. Consequently, if w

denotes this fixed point, in order to prove that hl(t,x,A), ho(t,x,A) are Ck

functions of x, we only need to show that the function b > w(t,b) 1is of class
ck. This will be done by induction.

Let us assume the hypothesis of the theorem is satisfied for k = 1, If
the derivative dw(t,b)/db exists, it must satisfy the equation obtained by

formally differentiating w = Tw relative to b. In particular, %w/db must be
d
a fixed point of the mapping F defined for functions taking R x R \ to
dN dN dU

linear transformations of R into R x R x L
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t - .
T I G (R L R R L R O LI Ve vy
0]

t .
eI w(e, ) 38 (eI Thie,0), 00071 y(x,b)ar,  (6.16)
+BD

t .
T O e O L R WS L Ry

We remark that the improper integrals converge because of hypothesis (H4), the
boundedness of the partial derivatives of wu,s and the assumption « > @ge Let

Z denote the set of all functions continuously differentiable in the second
d
argument and defined from R x R N

d dy  d
N VxR x L which satisfy |v(t,b)| <K + 1, for all t ¢ R,

to the set of all linear transformations of
R into R
dy
beR" If v el then
=(Y-ap) |t euolt-fl

[Fv(t,b)| < Ke pe Y7l (K + 1)dt| +

t

ve VIt [
0

(6.17)

+o t
wenITh e®t=T) pa¥ltl ri1yde 4+ emYIT J ke =T pea? 1Tl ki1yar
£ e

K + DK{K+1}[ 7 1 + 2 +

1
-4y a- Y a+y 1<K+ 1L

Therefore, F maps the set Z into itself. Let us consider the sequence {Vi}

d d

of functions, taking R x R N into the linear transformations of R N
dy  dy

R™ xR ™ xL which is defined recursively by

into

vy =0 and Vipl = F(vf) R iz 1,

Since F maps Z into itself, we have {Vi}C: Z, The set 7 with the metric

inherited from the usual uniform norm is a complete metric space. Similarly to

inequality (6.17), we get

= 1 2 1
Wi - vyl o= iFvy - Fvs 40 < DKL T=a; to v Yo 3 v, - vi_1he  (6.18)
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It follows from the inequality (6.9) that ivii is a Cauchy sequence in Z

and, consequently, converges to some v € Z as i * = C(Clearly v 1is a fixed

point of F.
Now, we can prove that v 1is, indeed, the derivative 9w/db. Fix t € R,
d
b R N and let o be a function defined for small values of € > 0 by
o(€) = sup lw(t,b+h) - w(t,b) - v(t,b)h| (6.19)
teR i
]htﬂ:

In order to prove that dJw/dob exists and is equal to v we need to show that
o(e} >0 as € >0, From formulas (6.5) and (6.16), using the first order
Taylor expansion and hypotheses (Hé) and (H4) in a similar way as for inequali-

ties (6.17) and (6.18), we get

[w(t,b+h) - w(t,b) - v(t,b)hj < DK [ - ! T u? * 1

0

sup [|w(T,b+h) - w(T,b) - v(T,b)h| + o(jw(T,b+h) - w(T,b}|)].
TER

Recalling from Theorem 6.2 that w(t,b) 1is lipschitzian in b with lipschitz

constant equal to (K + 1), we get

a(:—:)<DK[Y_1GO+G?Y+Q}-Y]<J(€)+o(e)

as € * 0. Applying inequality (6.9) we get o(e) = o(€), proving that w{t,b)
is differentiable in b and the derivative 9dw(t,b)/dob is the continuous func-
tion v defined above. The preceding reasoning shows that the function
b * w(t,b) 1is continuously differentiable and, consequently, also
b > {(h;(t,b,4), ho(t,b,A)) s,

Now, let us assume that b * w(t,b) 1is of class ¢d for a certain j 21

and the hypothesis of the theorem is satisfied for k = j + 1. Let v = awd/apd
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Differentiating j times both sides of equation w = Tw, we get

t .
viesn) = (7Y e 0y (e o TIT yganya) @171y (e b)ar,
0

t :
e-Ylt| im ¥(t,1) %% (T,eY|T|w(T,b),A)eY|T|V(T,b)dT ,  (6.20)

t .
e IEH ) TS TS (e Flu(ep), e YTy (x,0)a7) +

<o

+ (terms not involving v).

The terms not involving v contain derivatives of n,u,s relative to w up to
order Jj, derivatives of w up to order J = 1 and exponential factors of the
iv|T|

form e for i =1,2,...,3. The improper integrals in these terms con-

verge because of hypothesis (H4), the boundedness of all the partial derivatives
of n,u,s up to order j, and the assumption o > kao. We can let T be the
mapping transforming v to the function T(v) of {t,b) according to the

right-hand side of (6.20) and define recursively the sequence {Vi} by
vi =0 and Vipl = T(vi) for i 2 1.

As in the first part of the proof we have that {vii is a Cauchy sequence and,
consequently, it converges to a fixed point of T which must be v o= ajw/'dbj.
Clearly, the functions vi(t,b) are differentiable in b, and dvs,1/b s
given by the right-hand side of (6.20) with v replaced by 'avf/ab. Proceeding

as for inequality (6.18), we get

; ‘ oy, dy,
. dv_i+1 dy. \' V‘l-l

i 1 2 1 L I
—35 'TE"‘DK[Y-aO+u-Y+u+YJ b "5

From inequality (6.9), we get that {Bvi/ab} is a Cauchy sequence. Arguing as
in the first part of the proof, where the first derivative was handled, we can
show that dv/db = Bwj+1/8bj+1 exists and is equal to the limit of {Bvi/ab}

as i * <, This completes the induction.

U S

The smoothness of h" and h> can be handled in a similar way. Q.E.D.
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7. Functional differential equations with hyperbolic invariant manifolds

As before, consider r > 0 and let C = C([-r,O];Rq) denote the Banach
space of continuous functions from the interval [-r,0] into RY, where g is
a positive integer and C 1is taken with the uniform norm. Let us consider an

FDE
u(t) = fu,), (7.1)

where f € BCk(C,R") with k # 1, and suppose that M < C s a compact, con-
nected, Ck-manifold which is k-hyperbolic under the semiflow defined by the
solutions of (7.1). It is known from Section 5 that the equation can be
linearized around the manifold M and a system of coordinates can be introduced
around M so that the equation becomes of the form discussed in Section 6. The
aim of the present section is to show how the results on the persistence and
smoothness of integral manifolds for systems in coordinate form, as presented in
the previous section, can be applied to equation (7.1} yielding the persistence

of an hyperbolic invariant manifold close to M, under small perturbations of

equation (7.1).

Theorem 7.1

Let f e BCk(C,Rq), k # 1, and assume that MOC: C 1is a compact, con-
nected, Ck-manifold which is k-hyperbolic under the semiflow defined by the

solutions of the equation
u(t) = flup). (7.2)

If ge BCk(C,Rq) and Mgy = supi|g(¢)|,lg'(e)l: ¢ € C} is sufficiently

small, then there exists a Ck-manifo1d MgCZ C which is invariant under the
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perturbed equation
a(t) = flug) + glug)e (7.3)

There exists a neighborhood 0 < C of MO such that, for Hgﬂl sufficiently
small, the manifold Mg is the maximal invariant set for (7.3) which is con-
tained in 0. The manifold Mg depends continuously in g, in the sense that
Mg can be made arbitrarily close to MO in the Hausdorff metric by choosing
Ugi, sufficiently close to zero. Furthermore, there exist cKomanifolds Ug,
Sg with Ug N 0 negatively invariant and Sg N 0 positively invariant under

(7.3) such that M_ = sgﬂ Ugﬂ 0 and

9

lug(e,9)| <Clele®t , t >0, for ¢ (s4 0 0)
lug(9.9) <ClojeSt  , t <0, for e (U, 0\ 0)

for some constants C, > 0,

Proof

Firstly, we introduce a system of coordinates around MO as indicated in
Section 5. For each fixed w e Mgs the system in coordinate form (5.8) can be
written as an equation {6.1)-(6.3), where we take for 4 the Banach space of
bounded continuously differentiable functions from C into RY which have
bounded first derivative, taken with the uniform Cl-norm and take A =g, As a
consequence of Theorem 5.1, the hypotheses (Hl) to (H4) of Section 6 are all
satisfied with « > kao. The only hypothesis which is necessary for applicabi-
lity of the results in Section 6 and is not necessarily fulfilled is that con-
tained in (Hé), namely that the functions n,u,s of (t,x,y,6,A) are globally
lipschitzian in x,y,%, and the requirement that they admit a lipschitz const-

ant D satisfying inequality (6.9). Consequently these functions have to be
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"cut-off" and replaced by functions n,u,s which agree with n,u,s for |[x],
lyl, |¢| sufficiently small and are globally lipschitzian in x,y,¢ with a
lipschitz constant satisfying inequality (6.9).

Let 4q,@,K be as in Theorem 5.1 and let D > 0 be chosen to satisfy ine-
quality (6.9)., Assume 0O < u < Hgs 0 < & < €5 and B(u,e) s as in hypothesis

(HZ) of Section 6. Let us consider a ¢® function v: RT = [0,1] such that

{1} if o/[u‘(2 + r)] < 174
v(p) € (0,1) if 1/4 < p/[u(2 + r)] < 1
{0} if 1< p/[u(2 + r)]

2 w
and 0 <« -v'(p) <2/[0w(2+r)] for o 20, anda C function o: RT + [0,1]

such that

{1} if p s gf2
o(p) € (0,1) if ef2 < p K€
{0} if E & .
We define the function n: R xR " x R ¥ x L x {A & ntiah < 50} so that it
satisfies
- ) 2 : 0 Z
N{t,x,y,6,2) = o{e)v(ix|" + [y|" +j [e(t)| dT)n(t,x,y,6,2)
-r

for t &R, [x|, |y|, {¢| = u, 0AF < &, vanishing outside this region, and
define u, s in a similar way. Then, over the region t € R,

|x]5]¥]sic] € w/2, Al < /2, we have N =n, U = U, § = 8. It remains to show

that n,u,s are globally lipschitzian in X,y,¢ with lipschitz constant D.

d .
N

d
Let t €R, ¥Al <& and V = {(x,y,c) e R VxR x Liix|,|yl,[s] < uf .

If  (X,¥,¢),(X,¥,¢) € V, then
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— ) —_ — 2 2 9 2
In(tixs¥,6,4) = n(t,x,Y,6,A) | < [v([x]™ + |y|” +J |e(t)| dr) -
-r

< , 0 Z
SRS S R n(E iy, 6a0) |+
-r

0

— —_— — 2 ——— —
X YT (ST TAT) (XY s 6 A) = n(E,X,Y,C,A) | S
-r
S f a2+ r)(|x -X| ¥ Jy -F| + |€ - T[)B(n,e)3u +
w2 +r)

FBOE)([x - X[ + |y -] + ¢ -Tf) =

= 13B(u,e)(|x - x| + |y -¥| + {c -7

).

If (x,y,¢) €V and (X,y,¢) £V then there exists a point (x*,y*,¢<*) tlying
in the intersection of the boundary of V and the straignt line joining the

points (x,y,¢) and (X,y,2). Thus n(t,X,y,c,Ar) = n(t,x*,y*,c*,A) = 0 and

[T(t,%,¥56,4) = (6, X,¥,8,A) | = [n(t,x.y,5,A) - mlt,x*,y*,o*,2)] <

S 13B{u,e)(|x - x| + |y -y + [z -7

)e

If (x,¥,¢) £V and (X,y.¢) £V, then N(t,x,¥,¢,A) = n{t,x,y,¢,4) = 0. It
follows that n is globally lipschitzian in x,y,¢ with lipschitz constant D,
provided u and € are taken so small that 13B(p,e) < D.

The preceding reasoning also applies to U,s. Consequently, the functions
n,u,s satisfy the hypothesis (Hz') of Section 6 with a global lipschitz
constant D which satisfies inequality (6.9). We are now in a situation where

the theorems of Section 6 can be applied to the system in coordinate form, with

n,u,s replaced by n,u,s. It remains to see what these theorems imply for the
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system (/.3) in the phase space C. For this we need to take into account the

redundancy built in the system of coordinates introduced around the manifold MO'
Each point of C lying close to M; is represented, in the system of

coordinates around MO which was introduced in Section 5, by a set of points

(wyX,¥, %) which contains exactly one element with the second coordinate equal

to Zero. Because the integral manifold introduced in Theaorem 6.2,

d d

N R

U

My = Ht,ox,y,6) € R xR Ly = hy(t,x,4), ¢ = ho(t,x,A)},

is, for the system in coordinate form, the maximal integral manifold contained
in sets with the y,¢-coordinates bounded, and because the functions n,u,s and
n,u,s agree for x,y,¢ sufficiently small, it follows that there exists a
neighbornood of zero Y R x R N x RV x L such that M, NV s the maximal
integral manifold contained in V. Therefore M, AV represents in coordinate
form & patch of a submanifold Mg of € which is invariant under equation
(7.3). We recall that the system (7.3) is represented in coordinate form by a
family of systems of the form (6.1)-(6.3), one for each w &€ M which is taken

as initial condition for the solution of u(t) = f(ut) used as center of the

moving coordinate system. Based on this and on the redundancy built in the
system of coordinates used, we can consider a function H defined from

My x ig ¢ BCk(C;Rn): igh < €} into C so that H(w,g) 1is the point of C
represented in coordinate form by (w,O,hf(0,0,g), hg(0,0,g)) where n, = hT,
h2 = hg are the functions considered above for My, for the particular system
in coordinate form which corresponds to take the moving coordinate system cen-

tered on the solution of u(t) = f(ut), ug = w. Then Mg = {H{w,g): w de Myt s
and its properties stated in the theorem follow directly from the theorems of
Section 6 about the properties of the functions hl’ h2, if we recall the redun-
dancy built in the system of coordinates, namely that changes of h?(0,0,g),

hg(0,0,g) with « can be identified with changes of hl(O,x,g), hZ(O,x,g)



-46-

with o fixed and x changing.

The manifolds Ug and Sg can be treated in a similar way. Q.E.D.

Remark

The persistence of hyperbolic invariant manifolds for FDEs was studied
above for the case of retarded FDEs on euclidean space RY., As indicated in
Section 4, the same result for retarded FDEs con a smooth, finite dimensional,

separable and connected manifold follows from the result in euclidean space.
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