
Applying Knowledge from KDD to Recommender Systems

Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 EECS Building

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 99-013

Applying Knowledge from KDD to Recommender Systems

Badrul Sarwar, Joseph Konstan, Al Borchers, and John Riedl

April 18, 1999

1

Applying Knowledge from KDD to Recommender Systems

Badrul M. Sarwar, Joseph A. Konstan, Al Borchers, John T. Riedl

Department of Computer Science and Engineering

University of Minnesota, Minneapolis

+1 612 625-4002
{sarwar,konstan,borchers,riedl}@cs.umn.edu

Abstract

We investigate a new class of software for knowledge discovery in databases (KDD), called
recommender systems. Recommender systems apply KDD-li ke techniques to the problem of making
product recommendations during a li ve customer interaction. These systems are achieving widespread
success in E-Commerce today. We extend previously studied KDD models to incorporate customer
interaction so these models can be used to describe both traditional KDD and recommender systems.
Recommender systems face three key challenges: producing high qualit y recommendations, performing
many recommendations per second for milli ons of customers and products, and achieving high coverage
in the face of data sparsity. One successful recommender system technology is collaborative filtering,
which works by matching customer preferences to other customers in making recommendations.
Collaborative filtering has been shown to produce high quality recommendations, but the performance
degrades with the number of customers and products. New recommender system technologies are needed
that can quickly produce high qualit y recommendations, even for very large-scale problems. For
example, traditional KDD techniques might be applied in the context of our model to address these
challenges. We have explored one technology called Singular Value Decomposition (SVD) to reduce the
dimensionalit y of recommender system problems. We report an experiment where we use SVD on a
recommender system database, and use the relationship between customers in the reduced factor space to
generate predictions for products. We observe significant improvement in prediction qualit y as well as
better online performance and improved coverage. Our experience suggests that SVD has the potential to
meet many of the challenges of recommender systems.

Introduction

Knowledge discovery in databases (KDD).
The goal in the research community has been exactly
that: discover knowledge in the enormous databases
collected by every modern corporation (Fayyad et al.
1996). The knowledge discovered has most often
been concept learning or clustering (Zytkow 1997).
Though the research techniques are often subtle, their
application in business has two unsubtle goals. They
are to save money by discovering the potential for
eff iciencies, or to make more money by discovering
ways to sell more products to customers. For
instance, companies are using KDD to discover
which products sell well at which times of year, so
they can manage their retail store inventory more
eff iciently, potentiall y saving milli ons of dollars a
year (Brachman et al. 1996). Other companies are
using KDD to discover which customers will be most
interested in a special offer, reducing the costs of
direct mail or outbound telephone campaigns by

hundreds of thousands of dollars a year
(Bhattacharyya 1998, Ling et al. 1998). These
applications typicall y involve using KDD to discover
a new model, and having an analyst apply the model
to the application.

KDD has been successfull y applied to many
aspects of business data processing, including
inventory management, product planning,
manufacturing, and recommending products to
customers. In most of these domains the benefit of
KDD is to save money by improving eff iciencies.
For instance, in using KDD for product planning, the
models can be used to focus development effort on
products that are more likely to be purchased by
consumers. Improving the focus of product
development reduces the expenses of creating
eventuall y unprofitable products, and shortens the
costly product development cycle. However, the
most direct benefit of KDD to businesses is
increasing sales of existing products by matching
customers to the products they will be most li kely to
purchase. Since our focus in this paper is on

2

recommender systems that have evolved on the Web
primaril y in support of E-Commerce, we will focus
on this type of KDD system.

KDD systems that are used to match
products to customers we will call KDD marketing
systems. Figure 1 shows the flow of information in a
typical KDD marketing system, derived from a
general KDD flow diagram (Fayyad et al., 1996). In
the KDD system, data is brought together from
multiple corporate databases into a warehouse. In the
warehouse the data is analyzed using data mining
tools, creating models for human analysis. Human
analysts view and manipulate the models on
workstations, creating knowledge in the form of
understanding of the data by the humans, and refined
models in the system. The new knowledge and
refined models are used to modify the behavior of
existing marketing systems, or to implement new
marketing systems. Those marketing systems that
are involved in directly interacting with customers we
call touchpoint systems.

Recommender systems have evolved in the
extremely interactive environment of the Web. They
apply KDD techniques to the problem of helping
customers find which products they would li ke to

purchase at E-Commerce sites. For instance, a
recommender system on Amazon.com
(www.amazon.com) suggests books to customers
based on other books the customers have told
Amazon they like. Another recommender system on

CDnow (www.cdnow.com) helps customers choose
CDs to purchase as gifts, based on other CDs the
recipient has

liked in the past. The Web presents new opportunities
for KDD, but challenges KDD systems to perform
interactively. While a customer is at the E-
Commerce site, the recommender system must learn
from the customer’s behavior, develop a model of
that behavior, and apply that model to recommend
products to the customer. Collaborative filtering is
the most successful recommender system technology
to date, and is used in many of the most successful
recommender systems on the Web, including those at
Amazon.com and CDnow.com.

The earliest implementations of
collaborative filtering, in systems such as Tapestry
(Goldberg et al., 1992), relied on the opinions of
people from a close-knit community, such as an
off ice workgroup. However, collaborative filtering
for large communities cannot depend on each person
knowing the others. Several systems use statistical
techniques to provide personal recommendations of
documents by finding a group of other users, known
as neighbors that have a history of agreeing with the
target user. Usuall y, neighborhoods are formed by
applying proximity measures such as the Pearson
correlation between the opinions of the users. These
techniques are called nearest-neighbor techniques.
Figure 2 depicts the neighborhood formation using a

nearest-neighbor technique in a very simple two
dimensional space of users. Notice that each user’s
neighborhood is those other users who are most
similar to him, as identified by the proximity
measure. Neighborhoods need not be symmetric.
Each user has the best neighborhood for him. Once a
neighborhood of users is found, particular products
can be evaluated by forming a weighted composite of
the neighbors’ opinions of that document.

IInterpretation/
Evaluation

Analyst

Customer

Touch-point
Software

 Programming

Customer
IInteraction

Traditional KDD model

Proposed
Extension

Data

Target
Data Transforme

ddata
Pattern
s

Knowledge

Interpretation/
Evaluation

Data MiningTransform-
ation

Pre-
processing

Selection

Pre-
processed
Data

Figure 1: Our extension to the traditional KDD model.

3

These statistical approaches, known as
automated collaborative filtering, typicall y rely upon
ratings as numerical expressions of user preference.
Several ratings-based automated collaborative
filtering systems have been developed. The
GroupLens Research system (Resnick et al. 1994)
provides an pseudonymous collaborative filtering
solution for Usenet news and movies. Ringo
(Shardanand et al. 1995) and Video Recommender
(Hill et al. 1995) are email and web systems that
generate recommendations on music and movies

respectively. Here we present the schematic diagram
of the architecture of the GroupLens Research
collaborative filtering engine in figure 3. The user
interacts with a Web interface. The Web server
software communicates with the recommender
system to choose products to suggest to the user. The
recommender system, in this case a collaborative

filtering system, uses its database of ratings of
products to form neighborhoods and make
recommendations. The Web server software displays
the recommended products to the user.

In traditional KDD systems the interface
between the KDD system and the customer
touchpoint is mediated by an analyst. The algorithms
used in KDD develop as their output high-level data
structures, such as Bayesian networks, classifier
functions, rules bases, or data clusters (Heckerman,
1996; Cheeseman, 1990; Agarwal et al., 1993;
Fayyad et al., 1996). Typically the model is

expensive to build, but rapid to execute, so it is
recomputed only after suff icient changes have
occurred in the database. (Ongoing work is
developing incremental KDD algorithms, but these
are currently rare in practice.) The model, once
produced, is high-level, powerful, and abstract, so its

Figure 2. Neighborhood formation. Each neighborhood is created for a single customer.

Recommender
System Engine

Customer

Dynamic
HTML
generator

 WWW
 Server

 Recomm-
 endations

Response

Request

 Correlation
 Database

Ratings
Database

Ratings
Ratings

Recomm-
endations

Figure 3. GroupLens Research architecture

4

interface to the touchpoint software is mediated by a
human.

Recommender systems use very different
interfaces, typicall y clustered into an API that can be
used directly by the touchpoint software. The most
common API calls are:

1. Recommend. Given a customer,
recommend a list of products that
customer will be interested in.

2. Predict. Given a customer, and a list
of potential products, predict which
of those products the customer will
be interested in. The input li st of
products is the difference between
recommend and predict. The list
might have been produced as the
result of a customer search, for
instance.

3. Rate. Express an opinion of a
customer about a product.

4. Find neighbors. Return a list of the
nearest neighbors of a customer, for
community applications, such as
chat groups.

Recommender system APIs are simpler,
concrete, and eff icient, so they can be directly
implemented in the touchpoint software.

The largest Web sites operate at a scale that
stresses the direct implementation of collaborative
filtering. Model-based techniques, such as those
developed by KDD researchers, have the potential to
contribute to recommender systems that can operate
at the scale of these sites. However, these techniques
must be adapted to the real-time needs of the Web,
and they must be tested in realistic problems derived
from Web access patterns. We are currently running
MovieLens Web site, a recommender system
research Web site. This site provides an excellent
test-bed for recommender system algorithms, since
we have a large repository of historical usage data,
and a large community of continuing users. We are
using MovieLens to test new recommender system
algorithms and user interfaces. The present paper
describes our experimental results in applying a
model-based technique, Latent Semantic Indexing
(LSI), that uses a dimensionalit y reduction technique,
Singular Value Decomposition (SVD), to our
recommender system.

Relationship of Recommender
Systems to other KDD Systems

There are several types of KDD systems that
seem at first sight to have very similar goals to
recommender systems, but that are actuall y quite
different in practice. This section briefly discusses
these systems, and explains their relationship to
recommender systems.

Online Analytic Processing (OLAP) systems
enable the analyst to look at the database in different
cross-sections while the database is online. OLAP is
most often applied to systems that enable rapid
analysis of multidimensional databases. These
systems do not automaticall y build models, but assist
analysts in exploring possible models (Uthurusamy
1996).

Online KDD systems refer to KDD systems
that enable the analyst to interactively participate in
the creation of the model. For instance, one such
system develops association rules in conjunction with
the analyst (Aggarwal, Su, and Yue 1998). These
systems have online interaction with the analyst, but
the analyst still must take the resulting model and
separately integrate it with the touchpoint software.

Interactive mining has been used to refer to
using “human inspection and guidance at
intermediate stages” of the data mining process
(Zytkow 1991). These systems are closely related to
online KDD systems, but do not require that the
inspection and guidance be interactive.

Contributions
The contributions of this paper are:

1. A model for KDD that includes both
traditional KDD and emerging
recommender systems.

2. An explanation of how model-based
technologies, such as those used in
KDD can fit into recommender
systems.

3. The details of how one model-based
technology, LSI/SVD, was applied
in a recommender systems.

4. The results of our experiments with
LSI/SVD on our MovieLens test-
bed.

Other than the introduction and conclusion,
the body of the paper is laid out in two sections:

5

1. How we apply LSI/SVD to
Recommender Systems.

2. Our experimental test-bed, design,
and results.

Applying SVD for Collaborative
Filtering in Recommender Systems

Background
Most recommender systems based on

collaborative filtering have used the weighted
average of nearest neighbors method, using Pearson
correlation as a measure of proximity (Shardanand et
al. 1995, Resnick et al. 1994). These systems have
been successful in several domains, but the algorithm
is not well suited to large, sparse ratings databases
(Bill sus et al. 1998) Pearson neighbor algorithms
require computation that grows with both the number
of customers and the number of products.
Furthermore, by relying upon exact matches, the
algorithms may sacrifice recommender system
coverage and accuracy. In particular, since the
correlation coeff icient is only defined between
customers who have rated at least two products in
common, many pairs of customers have no
correlation at all . In practice, many commercial
recommender systems are used to evaluate large
product sets (e.g., Amazon.com recommends books
and CDnow recommends music albums). In these
systems, even active customers may have rated well
under 1% of the products (1% of 2 milli on books is
20,000 books--a large set on which to have an
opinion). Accordingly, Pearson nearest neighbor
algorithms may be unable to make many product
recommendations for a particular user. This problem
is known as reduced coverage, and is due to sparse
ratings of neighbors. Furthermore, the accuracy of
recommendations may be poor because fairly littl e
ratings data can be included. An example of a missed
opportunity for qualit y is the loss of neighbor
transiti vity. If customers Pete and Sue correlate
highly, and Sue also correlates highly with Paul, it is
not necessaril y true that Pete and Paul will correlate.
They may have too few ratings in common or may
even show a negative correlation due to a small
number of unusual ratings in common.

The weakness of Pearson nearest neighbor
for large, sparse databases led us to explore
alternative recommender system algorithms. Our
first approach attempted to bridge the sparsity by
incorporating semi-intelli gent filtering agents into the
system (Sarwar et al. 1998). These agents evaluated

and rated each product, using syntactic features. By
providing a dense ratings set, they helped alleviate
coverage problems. Qualit y also improved as we
programmed agents to look for features that matched
some customer tastes. The filtering agent solution,
however, did not address the fundamental problem of
poor relationships among li ke-minded but sparse-
rating customers.

This paper reflects our second effort to
address sparsity problems. We recognized that the
KDD research community had extensive experience
learning from sparse databases. After reviewing
several KDD techniques, we decided to try applying
Latent Semantic Indexing (LSI) to reduce the
dimensionalit y of our customer-product ratings
matrix.

LSI is a dimensionalit y reduction technique
that has been widely used in information retrieval
(IR) to solve the problems of synonymy and polysemy
(Deerwester et al. 1990). Given a term-document-
frequency matrix, LSI is used to construct two
matrices of reduced dimensionalit y. In essence, these
matrices represent latent attributes of terms, as
reflected by their occurrence in documents, and of
documents, as reflected by the terms that occur
within them. IR researchers often use reduction to
dimension 2 or 3 to allow the space to be explored
graphicall y. In the new 2 or 3 dimension space
related terms and documents appear closer together.

LSI maps nicely into the collaborative
filtering recommender algorithm challenge. We are
trying to capture the relationships among pairs of
customers based on ratings of products. By reducing
the dimensionalit y of the product space, we can
increase density and thereby find more ratings.
Intuitively, this is analogous to "discovering" that a
wide set of products are treated similarly by
customers (e.g., customers tend to like or disli ke
100% recycled off ice supplies); by recognizing this
similarity, we can find agreement among customers
who may have no single product in common (e.g.,
one may have rated recycled letter-sized pads and
another may have rated recycled memo pads).

LSI, which uses singular value
decomposition as its underlying matrix factorization
algorithm, seemed particularly promising. Berry et
al. (1995) point out that the reduced orthogonal
dimensions resulting from SVD are less noisy than
the original data and capture the latent associations
between the terms and documents. Earlier work
(Bill sus et al. 1998) took advantage of this semantic
property to reduce the dimensionalit y of feature
space. The reduced feature space was used to train a
neural network to generate predictions. We decided

6

to build a LSI-based personal recommender
algorithm that uses SVD to reduce dimensionalit y
and then computes the inner product of the reduced
matrices to generate predictions. The rest of this
section presents the construction of an SVD-based
recommender algorithm; the following section
describes our experimental setup, evaluation metrics,
and results.

Singular Value Decomposition (SVD)
It is a well -known matrix factorization

technique that factors an m × n matrix R into three
matrices as the following:

Where, U and V are two orthogonal matrices
of sizes m × r and n × r respectively; r is the rank of
the matrix R. S is a diagonal matrix of size r × r
having all singular values of matrix R as its diagonal
entries. All the entries of matrix S are positive and
stored in decreasing order of their magnitude. The
matrices obtained by performing SVD are
particularly useful for our application because of the
following property:

SVD provides the best lower rank
approximations of the original matrix R, in terms of
Euclidean norm. More specificall y, it is possible to
reduce the r × r matrix S to have only k largest
diagonal values to obtain a matrix Sk, k < r. If the
matrices U and V are reduced accordingly, then the
reconstructed matrix Rk = Uk.Sk.Vk′ is the closest
rank-k matrix to R. In other words, Rk minimizes the
norm ||R- Rk|| over all rank-k matrices.

The optimal choice of the value k is critical
to high-qualit y prediction generation. We are
interested in a value of k that is large enough to
capture all the important structures in the matrix yet
small enough to avoid overfitting errors.
Unfortunately, finding an exact value of such k is still
an open problem. We experimentall y find a good
value of k by trying several different values.

Computing Recommendation Scores
from a Customer-Product Ratings
Matrix.

SVD cannot be used to factor a sparse
matrix. Accordingly, without adding additional
information, we must fill our customer-product
ratings matrix. We tried two different approaches to
fill -in the missing values: using the average ratings
for a customer and using the average ratings for a
product. We found the product average produce a the

better result. We also considered two normalization
techniques: conversion of ratings to z-scores and
subtraction of customer average from each rating.
We found the latter approach to provide better
results. Filli ng and normalization are not used in the
published Pearson/nearest neighbor algorithms, so we
did not use them in our comparison system.

Given an implementation of SVD and a
fill ed, normalized matrix, we factor the fill ed,
normalized matrix; Then, the remaining step is the
generation of a recommendation based on the
factored matrices. Based on the LSI algorithm
described in (Deerwester et al. 1990), we:

• reduce the matrix S to dimension k

• compute the square-root of the
reduced matrix Sk, to obtain Sk

1/2

• compute two resultant matrices:
UkSk

1/2 and Sk
1/2Vk′

These resultant matrices can now be used to
compute the recommendation score for any customer
c and product p. Recall that the dimension of UkSk

1/2

is m × k and the dimension of Sk
1/2Vk′ is k × n. To

compute the recommendation score, we compute the
dot product of the cth row of UkSk

1/2 and the pth

column of Sk
1/2Vk′ .

Experiments

Experimental Platform
We used data from our MovieLens

recommender system to evaluate the effectiveness of
our LSI-based recommendation algorithm.
MovieLens (www.movielens.umn.edu) is a web-
based research recommender system that debuted in
Fall 1997. Each week hundreds of users visit
MovieLens to rate and receive recommendations for
movies. The site now has over 8000 users who have
expressed opinions on 2500 different movies.1

We randomly selected enough users to
obtain 100,000 ratings from the database (we only
considered users that had rated twenty or more
movies). We divided the ratings into an 80,000-
rating training set and a 20,000-rating test set. The

1 In addition to MovieLens’ users, the system includes over
two milli on ratings from more than 45,000 EachMovie
users. The EachMovie data is based on a static collection
made available for research by Digital Equipment
Corporation’s Systems Research Center.

VSUR ′⋅⋅=
1)

7

training data was converted into a user-movie matrix
R that had 943 rows (i.e., 943 users) and 1682
columns (i.e., 1682 movies that were rated by at least
one of the users). Each entry r i,j represented the
rating (from 1 to 5) of the i th user on the j th movie.

We also entered the 80,000 training ratings
into DBLens, a collaborative filtering
recommendation engine that employs the Pearson
nearest neighbor algorithm. DBLens is a flexible
recommendation engine that implements
collaborative filtering algorithms in a commercial
SQL database. We configured DBLens to use the
best published Pearson nearest neighbor algorithm
and configured it to deliver the highest qualit y
without concern for performance (i.e., it considered
every possible neighbor to form optimal
neighborhoods).

For each of the 20,000 ratings in the test
data set, we requested a recommendation score from
DBLens and computed a recommendation score from
the matrices UkSk

1/2 and Sk
1/2Vk′ .

Evaluation Metrics
Recommender systems research has used

three types of measures for evaluating the success of
a recommender system.

Coverage metrics evaluate the number of
products for which the system could provide
recommendations. Overall coverage is computed as
the percentage of customer-product pairs for which a
recommendation can be made. In controlled dataset
experiments, a commonly used coverage metric is the
percentage of test-set ratings for which a
recommendation could be made.

Statistical accuracy metrics evaluate the
accuracy of a system by comparing the numerical
recommendation scores against the actual customer
ratings for the customer-product pairs in the test
dataset. Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE) and Correlation between
ratings and predictions are widely used metrics. Our
experience has shown that these metrics typicall y
track each other closely. We therefore report MAE
because it is most commonly used and easiest to
interpret directly.

Decision support accuracy metrics evaluate
how effective a prediction engine is at helping a user
select high-qualit y products from the set of all
products. These metrics assume the recommendation
process as a binary operation—either products are
recommended (good) or not (bad). With this
observation, whether a product has a

recommendation score of 1.5 or 2.5 on a five-point
scale is irrelevant if the customer only chooses to
consider recommendations of 4 or higher. The most
commonly used decision support accuracy metrics
are reversal rate, weighted errors and ROC
sensiti vity. Reversal rate is the frequency with which
the system makes recommendations that are
extremely wrong, e.g., off by 3 points or more on a
five-point scale. Weighted error measures give extra
weight to large errors that occur when the customer
has a strong opinion about a product. For example,
these may double the weight of errors when the
customer actuall y considers the product to be a top (5
out of 5) or bottom (1 out of 5) product. ROC
sensiti vity is a measure of the diagnostic power of a
filtering system. Operationally, it is the area under
the receiver operating characteristic (ROC) curve—a
curve that plots the sensiti vity and specificity of the
test (Le et al. 1995). Sensitivity is the probabilit y of
a randomly selected good product being accepted by
the filter. Specificity is the probabilit y of a randomly
selected bad product being rejected by the filter. The
ROC curve plots sensiti vity (from 0 to 1) and 1 –
specificity (from 0 to 1), obtaining a set of points by
varying the recommendation score threshold above
which the product is accepted. The area under the
curve increases as the filter is able to retain more
good products while accepting fewer bad ones. ROC
sensiti vity ranges from 0 to 1 where 1 is perfect. A
random filter is expected to accept half of the good
products and half of the bad ones and hence provides
an ROC sensitivity of 0.5.

We used ROC sensiti vity as our decision
support accuracy measure. To use ROC sensitivity as
a metric, we must determine which movies are
“good” and which are “bad.” A movie rating of 4 or 5
is deemed to be a good movie for that user (signal); a
rating of 1, 2, or 3 is deemed to be a bad movie for
that user (noise). The ROC sensiti vity measure
therefore is an indication of how effectively the
system can steer people towards movies that they will
rate highly.

Experimental Steps
Each entry in our data matrix R represents a

rating on a 1-5 scale, except that in cases where the
user i didn’ t rate movie j the entry ri,j is null . We then
performed the following experimental steps.

• Compute the average ratings for each user; we
perform this step by computing the row-average
r i of non-null matrix entries.

8

• Compute the average ratings for each movie; we
perform this step by computing the column-
average cj of non-null matrix entries.

• Fill the null entries in the matrix by replacing
each null entry with the column average for the
corresponding column.

• Normalize all entries in the matrix by replacing
each entry ri,j with (r i,j - r i). Note that the saved
user average considers only actual ratings, not
fill ed ratings, so the row means may not be zero.

• MATLAB was used to compute the SVD of the
fill ed and normalized matrix R, producing the
three component matrices of equation (1). We
call them U, S and V’ accordingly. S is the
matrix that contains the singular values of matrix
R sorted in decreasing order.

• Perform the dimensionalit y reduction step by
retaining only k largest singular values and
replacing the rest of the diagonal entries (i.e.,
from k+1 to r) with 0.

• We computed the square root of the reduced
matrix and computed the matrices UkSk

1/2 and
Sk

1/2V’k as mentioned above.

• Multiply the matrices UkSk
1/2 and Sk

1/2V’k
producing a 943 x 1682 matrix. Since the inner
product of a row from UkSk

1/2 and a column from
Sk

1/2Vk gives us a recommendation score, this
resultant matrix P holds the recommendation
score for each user-movie pair i,j in Pij. De-
normalize the matrix entries by adding the user
average back into each recommendation score.

• Load the 80,000 training set ratings into DBLens
and request recommendation scores on each of
the 20,000 test set ratings.

• Compare the original customer ratings with the
obtained recommendation scores from the SVD
system. Compute MAE and ROC-sensiti vity of
the results. Compute MAE and ROC values for
the DBLens recommendation scores and
compare the two sets of results.

• Any improvement in results was checked for
statistical significance. We used the SPSS

statistical package to perform a Wilcoxon test to
assess the significance on MAE results using a
95% confidence level. Statistical significance
assessment for ROC sensiti vity was also done at
the 95% confidence level. Since we computed
the area under the ROC curve as our metric, we
compared two such results by finding the values
of control point (Le et al. 1995) on the ROC
curve and then using the data to generate the
significance test.

We repeated the entire process for k =
2,3,5,10,15,18,20,50 and 100, and for two sets of
data.

Results and Discussion
Table 1 shows our experimental results for

two different data sets. The data sets were obtained
from the same sample of 100,000 data, by randomly
selecting two different trial and test data sets. The
rows of the table represent a test result for a
particular number of dimensions, k, for these two
data sets. The last row (italicized entries) shows the
results from our DBLens experiments on the same
sets of data. The asterisks “ *” in the table indicate

 Data set 1 Data set 2
Dimension, k ROC sensitivity MAE ROC sensitivity MAE
2 0.76754 0.74875 0.76418 0.76028
5 0.77456 0.73957 0.77725 * 0.75178 *
10 0.77573 * 0.73821 * 0.77816 * 0.75035 *
15 0.77647 * 0.73801 * 0.77835 * 0.75001 *
18 0.77669 * 0.73747 * 0.77892 * 0.74923 *
19 0.77657 * 0.73793 * 0.77898 * 0.74902 *
20 0.77660 * 0.73788 * 0.77895 * 0.74919 *
50 0.77410 0.74069 0.77458 * 0.75422 *
100 0.76562 0.75066 0.77071 * 0.75995 *
DBLens
Results

0.77413 0.74041 0.75739 0.77897

Table 1: Experiment results, expressed as ROC sensitivity and MAE. (* = statistically significant)

9

which results were statistically significantly different
from the DBLens results. We observe that the
qualit y of prediction increases when the reduced
SVD feature space contains more dimensions as
evident by the increase of ROC sensiti vity and
decrease of MAE values with increasing k for k = 2,
5, 10, 15 and 18. This increasing trend of qualit y with
k suggests that the higher the number of dimensions,
the better is SVD in capturing underlying
relationships. However, when k > 18, we observe a
decrease in qualit y as measured by both ROC and
MAE.

Figure 4 charts the change in MAE and
ROC for increasing values of k.. In case of data set
1, we see that the ROC value is highest for k=18. In
case of data set 2, the same occurs at k=19. We
interpret the decrease in quality when k is increased
beyond its optimal level to reflect overfitting the
model to unimportant and noisy data.

We then compared the results from our SVD
algorithm against DBLens. Table 1 shows that SVD
outperformed the Pearson nearest neighbor algorithm
whenever the value of k was anywhere close to
optimal. We find this encouraging, since it suggests
that the value of the SVD implementation is not
dependent on finding a perfectly optimal value of k.

Overall the results are encouraging for the
use of SVD in collaborative filtering recommender
systems. The SVD algorithms fit well with the
collaborative filtering data, and they result in good
qualit y recommendations.

Conclusions

Singular Value Decomposition (SVD) is
effective in providing high qualit y recommendations
for recommender systems. The SVD approach we
studied is a straightforward application of SVD to
reduce the dimension of the ratings matrix from a
collaborative filtering system. This technique
produces higher qualit y recommendations than the
best published collaborative filtering algorithms.
Furthermore, once the SVD has been computed, the
resulting model provides fast online performance,
requiring just a few simple arithmetic operations for
each recommendation. Computing the SVD is
expensive. If the same qualit y can be achieved with
incremental SVD algorithms, even the model
computation could be done online. There are many
other ways in which SVD could be applied to
recommender systems problems, including using
SVD for neighborhood selection, or using SVD to
create low-dimensional visualizations of the ratings

space. These remain as future work.

This project shows that KDD and
recommender systems are closely related, as we
hypothesized in the introduction. The two systems
originated to serve different business purposes. KDD
originated to enable business analysts to search for
meaning in large corporate databases. Recommender
systems evolved to enable Web sites to respond
interactively to customers with recommendations of
products to purchase. However, the resulting
technologies are similar. It is li kely that we can
continue to learn from each other.

ROC and MAE plots for Data set 1

0.71
0.72
0.73
0.74
0.75
0.76
0.77
0.78

2 5 10 15 18 19 20 50 10
0

DBLe
ns

Dimension, k

R
O

C
 s

en
si

ti
vi

ty
/M

A
E

ROC

MAE

DBLens
ROC

DBLens
MAE

ROC and MAE plots for Data set 2

0.73
0.74
0.75
0.76
0.77
0.78
0.79

2 5 10 15 18 19 20 50 10
0

DBLe
ns

Dimension, k

R
O

C
 s

en
si

ti
vi

ty
/M

A
E

ROC

MAE

DBLens
ROC

DBLens
MAE

Figure 4. Experimental results by number of dimensions

10

References

[1] Agarwal, R., Imielinski, T., and Swami, A.
1993. “Mining Association Rules between sets
of Items in Large Databases. In Proceedings of
ACM SIGMOD conference on Management of
Data, pp. 207-216.

[2] Aggarwal, C. C., Sun, Z., and Yu, P. S. 1998.
“Online Generation of Profile Association
Rules.” In Proceedings of the Fourth
International Conference on Knowledge
Discovery and Data Mining, pp. 129-133.

[3] Berry, M. W., Dumais, S. T., and O’Brian, G.
W. 1995. “Using Linear Algebra for Intelli gent
Information Retrieval” . SIAM Review, 37(4),
pp. 573-595.

[4] Bill sus, D., and Pazzani, M. J. 1998. “Learning
Collaborative Information Filters” . In
Proceedings of Recommender Systems
Workshop. Tech. Report WS-98-08, AAA I
Press,

[5] Bhattacharyya, S. 1998. “Direct Marketing
Response Models using Genetic Algorithms.” In
Proceedings of the Fourth International
Conference on Knowledge Discovery and Data
Mining, pp. 144-148.

[6] Brachman, R., J., Khabaza, T., Kloesgen, W.,
Piatetsky-Shapiro, G., and Simoudis, E. 1996.
“Mining Business Databases.” Communications
of the ACM, 39(11), pp. 42-48, November.

[7] Cheeseman, P. 1990. "On Finding the Most
Probably Model." In Computational Models of
Scientific Discovery and Theory Formation, ed.
Shrager, J. and Langley, P. San Francisco:
Morgan Kaufmann.

[8] Deerwester, S., Dumais, S. T., Furnas, G. W.,
Landauer, T. K., and Harshman, R. 1990.
“ Indexing by Latent Semantic Analysis” .
Journal of the American Society for Information
Science, 41(6), pp. 391-407.

[9] Fayyad, U. M., Piatetsky-Shapiro, G., Smyth,
P., and Uthurusamy, R., Eds. 1996. “Advances in
Knowledge Discovery and Data Mining” . AAAI
press/MIT press.

[10] Goldberg, D., Nichols, D., Oki, B. M., and
Terry, D. 1992. “Using Collaborative Filtering to
Weave an Information Tapestry” .
Communications of the ACM. December.

[11] Heckerman, D. 1996. “Bayesian Networks for
Knowledge Discovery.” In Advances in

Knowledge Discovery and Data Mining. Fayyad,
U. M., Piatetsky-Shapiro, G., Smyth, P., and
Uthurusamy, R., Eds. AAAI press/MIT press.

[12] Hill , W., Stead, L., Rosenstein, M., and Furnas,
G. 1995. “Recommending and Evaluating
Choices in a Virtual Community of Use. In
Proceedings of CHI ’95.

[13] Le, C. T., and Lindgren, B. R. 1995.
“Construction and Comparison of Two Receiver
Operating Characteristics Curves Derived from
the Same Samples” . Biom. J. 37(7), pp. 869-877.

[14] Ling, C. X., and Li C. 1998. “Data Mining for
Direct Marketing: Problems and Solutions.” In
Proceedings of the Fourth International
Conference on Knowledge Discovery and Data
Mining, pp. 73-79.

[15] Piatetsky-Shapiro, G., and Frawley, W. J., Eds.
1991. “Knowledge Discovery in Databases” .
AAAI press/MIT press.

[16] Resnick, P., Iacovou, N., Suchak, M.,
Bergstrom, P., and Riedl, J. 1994. “GroupLens:
An Open Architecture for Collaborative Filtering
of Netnews. In Proceedings of CSCW ’94,
Chapel Hill , NC.

[17] Sarwar, B., M., Konstan, J. A., Borchers, A.,
Herlocker, J., Mill er, B., and Riedl, J. 1998.
“Using Filtering Agents to Improve Prediction
Qualit y in the GroupLens Research
Collaborative Filtering System.” In Proceedings
of CSCW ’98, Seattle, WA.

[18] Shardanand, U., and Maes, P. 1995. “Social
Information Filtering: Algorithms for
Automating ‘Word of Mouth’ .” In Proceedings
of CHI ’95. Denver, CO.

[19] Uthurusamy, R. 1996. “From Data Mining to
Knowledge Discovery: Current Challenges and
Future Directions.” In Advances in Knowledge
Discovery and Data Mining. Fayyad, U. M.,
Piatetsky-Shapiro, G., Smyth, P., and
Uthurusamy, R., Eds. AAAI press/MIT press.

[20] Zytkow, J., and Baker, J. 1991. “ Interactive
Mining of Regularities in Databases.” In
Knowledge Discovery in Databases. Piatetsky-
Shapiro, G., and Frawley, W. J. Eds. AAA I
Press/MIT Press.

[21] Zytkow, J. M. 1997. “Knowledge = Concepts:
A Harmful Equation.” In Proceedings of the
Third International Conference on Knowledge
Discovery and Data Mining.

