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Abstract. A collection of methods is presented to adapt a pre-existing time-
stepping code to perform various bifurcation-theoretic tasks. It is shown that the im-
plicit linear step of a time-stepping code can serve as a highly effective preconditioner for
solving linear systems involving the full Jacobian via conjugate gradient iteration. The
methods presented for steady-state solving, continuation, direct calculation of bifurca-
tion points (all via Newton’s method), and linear stability analysis (via the inverse power
method) rely on this preconditioning. Another set of methods can have as their basis
any time-stepping method. These perform various types of stability analyses: linear
stability analysis via the exponential power method, Floquet stability analysis of a limit
cycle, and nonlinear stability analysis for determining the character of a bifurcation. All
of the methods presented require minimal changes to the time-stepping code.
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1. Introduction. The goal of the dynamical systems approach to
time-evolution equations is a full conceptual picture resting on such ba-
sic building blocks as steady states, limit cycles, and bifurcations. For
partial differential equations, constructing such a picture is a formidable
challenge, whether the approach is analytic or numerical. From a numerical
perspective, the spatial discretization of fields results in a high-dimensional
phase space. The vectors representing phase-space points are then so large
that the matrix operations required by standard dynamical systems algo-
rithms are prohibitively expensive. (See [21] for a survey and references.)
In addition, the basic interface for communication with dynamical systems
software is generally the right-hand-side of the evolution equation. For par-
tial differential equations, this function may not be immediately available
due to constraints such as incompressibility and boundary conditions.

Instead, the basic numerical tool for studying partial differential equa-
tions such as the Navier-Stokes or reaction-diffusion equations has usually
been temporal integration, or time-stepping. Since time-stepping codes can
represent a considerable investment — on the order of a few years for devel-
opment and verification — it is desirable to be able adapt a time-stepping
code to carry out bifurcation analysis.

Any timestepping scheme can already be, and often is, used for bi-
furcation analysis without further modification. Integration can proceed
until a stable steady state is reached, or a control parameter gradually in-
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creased until a transition takes place, indicating a bifurcation. However,
these techniques rely on waiting out slow exponential decay, or on arduous
binary searches, and make highly inefficient use of both machine and hu-
man resources. Other tasks cannot be carried out using time-integration
at all: time-stepping will never converge to an unstable steady state nor
to an eigenvector. Rapid algorithms have been developed for obtaining
steady states, bifurcation points, and eigenvectors directly, rather than as
by-products of time-integration. Qur goal is to adapt time-stepping codes
to perform these algorithms efficiently.

We consider the Navier-Stokes equation in the following symbolic form:

(1.1a) U =—(U-V)U—-VP + %VzU

(1.1b) =—(I-VV V) U -V)U + %VZU
(1.1c) :H(U-V)U—k]l—%VzU

(1.1d) =NU)+ LU

In equation (1.1b), we have set the pressure P to the solution of a Poisson
equation whose right-hand-side is the divergence of the nonlinear inertial
term. The boundary conditions for this Poisson equation are chosen and
imposed in various ways, depending on the particular physical problem
and numerical method; these features are summarized by the projection
operator II of (1.1c). R represents the Reynolds number. Equation (1.1d)
serves to define N as the nonlinear operator corresponding to the combined
inertial and pressure terms, and L as the linear operator corresponding to
viscous diffusion. Formulation (1.1) can be generalized to include addi-
tional fields, such as temperature, by including the corresponding balance
equations, although we continue to refer to U as the velocity.

The velocity field U, and hence the operators L and N, are spatially
discretized according to the numerical method chosen. We denote the size
of U by M. M is the number of spatial gridpoints (z,y, z) multiplied by the
number of fields (U, Uy, U, temperature, etc. ) and so can be quite large,
on the order of 1000-50000. We shall use U to denote both the continuous
fields appearing in the partial-differential equations, e.g. (1.1d), and also a
single vector of length M of discretized values.

It is a fortunate feature of the Navier-Stokes equations and of many
reaction-diffusion equations that the fastest timescales in the system arise
from the linear operator L. Hence it is L which poses the severest constraint
on numerical timestepping. Stability restrictions on the timestep arising
from the linear operator are overcome by treating the linear term implicitly,
leaving the nonlinear term to be integrated by an easier, explicit method.
The simplest implicit/explicit scheme is first-order Euler timestepping:

U(t+ At) = U(t) + AL[N(U(2)) + LU(t + At)]
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(1.2) = (I — AtL)"Y(I + AtN)U(¢)

We will assume that a computer program for time stepping by this
method is available for the equations or applications of interest. (It is
generally easy to transform a higher-order timestepping scheme, such as
Adams-Bashforth, to a first-order Euler scheme.) In equation (1.2), the
operator (I — AtL)~! is not computed as a matrix inverse; most spatial
discretization methods include tricks for acting with (I — AtL)~! econom-
ically. It is precisely these tricks which we wish to exploit.

Most bifurcation-theoretic tasks are specified in terms of the Jacobian
Ny + L of N + L, i.e. for the discretized system the matrix of partial
derivatives O(NU + LU);/0U; where 1 < i,j < M. Although Ny + L is
defined formally as an M x M matrix, we emphasize that we never intend
for it to be constructed explicitly; our methods are all matriz-free. Instead,
we require only the action of Ny + L on a vector u. In the case of the
Navier-Stokes equations, the action of the operator Ny + L on a vector u is
obtained from (1.1) by replacing (U - V)U by (U - V)u + (v - V)U. Similar
replacements lead to the linearization of other nonlinear terms such as
the advection of temperature U - VT'. It is straightforward to adapt the
timestepping algorithm (1.2) to carry out timestepping of the linearized
system, i.e.

(1.3) u(t + At) = (I — AtL) "1 (I + AtNy)u(t)
2. Steady-state solving. Steady states are solutions to:
(2.1) NU)+LU =0

Equations of type (2.1) are solved by Newton’s method. One Newton step
for (2.1) is:

(2.2) (Ny+Lu = (N+L)U
U+——U-u

U is the current estimate for the steady state, and u is a decrement whose
subtraction from U would yield an exact solution if (2.1) were linear.

Although Ny + L may be full (depending on the choice of spatial
discretization method) in the sense that most of its elements are non-zero,
it should be considered as sparse in the sense that acting with Ny + L on
a vector u requires far fewer than the M?2 operations required to multiply
by an arbitrary M x M matrix. No matter what spatial discretization is
used, Ny + L will have some kind of regular structure.

If Ny + L is too large to be stored (M? words), it certainly can-
not be inverted or factored directly (operation count O(M?)). Conjugate
gradient iteration, or one of its variants for matrices which are not sym-
metric positive definite, is the method of choice for solving sparse linear
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systems [18]. (We will use the name conjugate gradient iteration to mean
any of these variants.) Conjugate gradient algorithms can be written in
matrix-free implementations, where only the action of the matrix on a
vector is required, rather than the individual matrix elements. However,
(Ny + L) is poorly conditioned meaning, roughly, that it has a large range
of eigenvalues. Hence, iterative solution via conjugate-gradient type meth-
ods converges slowly. A poorly conditioned linear system will require O (M)
matrix-vector multiplications to converge, or may not even converge at all.

The remedy for this slow convergence is preconditioning, i.e. multipli-
cation of both sides of (2.2) by a matrix which is an approximate inverse of
Ny + L. Recall from section 1 that L is responsible for the large range of
timescales in the temporal evolution (1.1). For the same reason, L is the
primary cause of the poor conditioning of Ny + L. However, the implicit
timestepping of (1.2) used to alleviate this difficulty in time integration
also provides a ready preconditioner for the steady state problem.

We multiply both sides of (2.2) by the operator (I — AtL)~!At and
perform some formal algebraic manipulations:

(I — AtL) ™Y (Ny + L)u = (I — AtL)"*At(N(U) + LU)
(I — AtL) I + AtNy — (I — AtL)]u =
(I — AtL) MI + AtN(U) — (I — AtL)|U
[(I — AtL) (I + AtNy) — Iu =
(2.3) [(I - AtL)™Y(I + AtN(U)) - IIU

The key point is that the right-hand-side of (2.3) is the action of the time-
stepping operator (1.2) minus the identity, i.e. the difference between con-
secutive timesteps, and thus easily constructed using the existing timestep-
ping code. More importantly, the left-hand-side of (2.3) is the action of the
linearized time-stepping operator (1.3) minus the identity, i.e. the difference
between two consecutive linearized timesteps.

Note that, unlike the time-stepping scheme (1.2), whose validity in
approximating the solution to the differential equation (1.1d) is limited
to At < 1, the derivation of (2.3) does not depend at all on the size of
At. The replacement of (2.2) by (2.3) is legitimate for all A¢, no matter
how large. The criterion to be used in choosing the value of At in (2.3)
is exclusively that of efficiency: how fast does conjugate gradient iteration
on (2.3) converge? Empirically, for the problems we have investigated, we
have found that the fastest convergence is achieved for a At which is 10-
1000 times the At used for timestepping. Heuristically, we reason that,
since L is the source of the most widely spaced eigenvalues of Ny + L,
we seek a preconditioner that resembles L~!. Because (I — AtL)~! is the
time-stepping operator for Stokes flow (where there is no nonlinear term),
we call this technique Stokes preconditioning.

We have used the BCGS (Bi-Conjugate Gradient Squared) algorithm
implemented in the NSPCG (Non-Symmetric Preconditioned Conjugate
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Gradient) software package [18] For cases which we have studied, the solu-
tion of (2.3) has taken on the order of 30-60 iterations, far fewer than our
M of 5000-10000. Three to five Newton steps usually suffice to converge to
a steady state. Otherwise, a better initial guess, i.e. closer to a previously
computed steady state, is usually necessary.

This method has been used to calculate steady states in spherical
Couette flow [15] and in a wide variety of convective flows: buoyancy-
driven [2, 9, 22, 23, 24, 25] and capillary-driven [7, 9], in rectangular [7, 25]
and axisymmetric [2, 9, 22, 23, 24] geometries, with vertical [2, 7, 22, 23, 24]
and horizontal [9, 25] gradients, in a magnetic field [22], and in a binary
fluid [7, 25].

3. Continuation. The most common steady bifurcations are saddle-
nodes, also called turning points. At a saddle-node bifurcation, the solution
vector U ceases to be a function of the control parameter R. However, there
remains a single smooth curve of solutions (U, R). Near a saddle-point bi-
furcation, (U, R) is a function of U,,,, where U, is some typical component
of U and U is the vector consisting of all components of U except U,y;
see, e.g., [13, 21]. Techniques which calculate steady states along a branch,
recognizing and adapting to saddle-node bifurcations, are called continu-
ation techniques. These techniques include strategies for extrapolating to
predict the new steady state, for choosing the stepsize in R or in U,,, for
backtracking along a branch when Newton iteration does not succeed, and
for determining when a bifurcation is imminent. For discussions of these
important issues, see, e.g. , [21].

The method described in section 2 for finding steady states can be
adapted to continuation. We rewrite our schematic equations (1.1) so that
R multiplies the nonlinear term. The system to be solved for (U, R) is:

(3.1a) 0=RN{U)+ LU
" _ | U,, near a saddle-node

(3.1b) 0=p(U,R) — p* where p(U,R) = { R otherwise
In practice, we diagnose an imminent saddle-node bifurcation by detecting
that some component U, (when appropriately weighted) begins to change
more quickly along the branch than R. This component U, is then fixed.
Specifying a solution to (3.1a) by appending an equation of type (3.1b) is
called local [21] or natural [13] parametrization. The projection p(U, R) in
(3.1b) serves to distinguish whether it is U,, or R that is to be fixed. For
the Navier-Stokes equations, the usual control parameter R is the Reynolds
number. For convection, R is the Rayleigh number. The prescribed value
p* depends on which of U,,, or R is fixed.

Substituting (U —u, R—r) for (U, R) in (3.1a), and expanding to first
order we obtain the linear system to be solved for the decrements (u,r),
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either:

[ RNy +L N(U) | 'u'_'RN(U)+LU'
(3.2a) | ...0... T ||l r] | R —p*
or near a saddle-node:

[ RNy +L NU) ][ u] _ [ RN(U)+ LU ]
(3.2b) B 0 J[r] | Un-p

In (3.2a) and (3.2b), the vector of decrements (u,r) and the right-
hand-side are (M + 1)-dimensional. In adapting a time-stepping code to
perform continuation, it is desirable that vectors remain M-dimensional,
in order to facilitate communication between subroutines performing tasks
like Newton and conjugate gradient iteration and those performing fluid-
mechanical computations such as N(U) or (I — AtL)~!.

In fact, although it is notationally convenient to write (3.2a) and (3.2b)
as (M +1) x (M + 1) systems, because the last equation involves only one
unknown, each of the systems is easily reduced to an M x M system. R or
U,, may immediately be set to its prescribed value p* (this would would be
true after one Newton iteration, since the last equation is linear) and r or
Um set to zero. Equation (3.2a) is then merely a restatement of equation
(2.2), while equation (3.2b) reduces to

(3.3) (RNy + L)a + N(U)r = RN(U) + LU

where 4 = u except that 4,, = 0. Thus (3.3) is an equation for the M
unknowns (@, r).

We wish to use the same data structures for conjugate gradient itera-
tion as for fluid-mechanical computations. We therefore store the control
parameter decrement r in the location, u.,, of the velocity decrement which
is fixed at zero. In the subroutine which computes the left-hand-side in
(3.3), we precede the matrix-vector multiplication by unpacking the data:

(3.4a) U; < ug, for i #m
(3.4b) U < 0
(3.4¢) T Uy,

i.e. (@,r) + u. When the conjugate gradient iteration converges, the solu-
tion vector must again be unpacked via (3.4) to update U and R.

The system (3.3) can be preconditioned in the same way as system
(2.2). By multiplying both sides of (3.3) by (I — AtL)"1At

(I — AtL) " *At[(RNy + L)a + N(U)r] =
(I — AtL)"*At(RN(U) + LU)



BIFURCATION ANALYSIS FOR TIMESTEPPERS 7

we obtain

[(1 = AtL)™ (I + AH(RNy + N(U)r) — I)a =
(3.5) [(T — AtL) *(I + AtRN) — I|U

The right-hand-side of (3.5) is again the difference between consecutive
timesteps. The left-hand-side is the difference between consecutive lin-
earized timesteps, with the additional replacement RNyu — RNyu +
N(U)r. The system (3.5) with a large At is again rapidly solved by conju-
gate gradient iteration, e.g. by BCGS.

4. Bifurcation points. We now wish to calculate bifurcation points
directly using the techniques described in sections 1-3 above. A steady
state U undergoing a steady bifurcation at control parameter value R in
the direction determined by H satisfies the following system:

(4.1a) 0=RN(U)+ LU
(4.1b) 0=RNyH +LH
(4.1¢) 0=p(H)—p*=H, -1

Equation (4.1c) represents one choice of normalization for the eigenvector,
and serves to exclude H = 0.

Writing these equations for the decremented vector (U —u, H—h, R—7)
and expanding to linear order we get:

RNy + L 0 NU)T T u RN(U) + LU
(4.2) RNy RNy+L NyH || h|=| RNyH+LH
0... 1.0 r Hpn—1

In writing (4.2), we have expanded (4.1b) for our quadratic nonlinearity
N(U) as follows:

Ny—w(H —h) =1[ (U —-wu)-V)(H—h)+ ((H—h) - V)U —u)]
=M[ (U-V)H — (u-V)H — (U -V)h
+ (H-V)U - (H-V)u—(h-V)U + O(u, h)?]
=  NyH — Nyu — Nyh + O(u, h)?
so that

(R—r)Ny_o(H —h) + L(H —h) =
RNyH + LH — RNyu — RNyh — Lh — Ny Hr + O(u, h,r)?

It may be that a continuous known branch of solutions U exists for
all R. This situation is widespread, at least in the literature, since the
study of the stability of and bifurcations from a known branch of solu-
tions is amenable to analysis. Examples of such branches of solutions are
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the motionless conductive state in convection, azimuthal Couette flow in
Taylor-Couette flow, and plane Couette and Poiseuille flows. Rather than
saddle-nodes, the steady bifurcations that occur are transcritical and, if
the system has a symmetry of some kind, pitchforks.

Elimination of (4.1a) by using a known solution U greatly reduces
(4.2). The linear system to be solved for (h,r) at each Newton step becomes

(4.3)

RNy+L NyH][h]_ [ RNyH+LH
1., 0 r| = Hp—1

Henry [7] observed that system (4.3) is almost identical to (3.2b) and can
be preconditioned and solved in the same way.

This method has been used to calculate bifurcation points in various
two-dimensional convective flows [7, 9, 22, 25].

5. Linear stability analysis. We now consider the problem of deter-
mining the linear stability of steady states. The stability of U is governed
by the eigenvalues A of the Jacobian A = Ny + L:

(5.1) (Nu 4+ L)u = u

This follows from the fact that infinitesimal perturbations from a steady
state U evolve according to the linear stability equations:

(5.2) 0w = (Ny + L),

(we suppress the dependence on R). Knowing whether any eigenvalue
has a positive real part is sufficient to determine the stability of U. In
addition, it is also useful to know how many eigenvalues are positive, if
others are negative but close to zero, and the structure of the corresponding
eigenvectors. In other words, we wish to know several leading eigenpairs —
the eigenvalues of maximal real part and corresponding eigenvectors.

Our matrices are considered to be sufficiently large that diagonaliza-
tion, i.e. calculating all of the eigenvectors and eigenvalues via the QR
algorithm (operation count O(M?)), is not an option. Indeed, the vast
majority of the eigenvalues are superfluous for our needs.

The basic technique for iterative calculation of selected eigenvalues
is the power method. In its simplest form, one acts repeatedly with a
matrix A on an arbitrary initial vector ug. The sequence of vectors u, =
A"™ug approaches the dominant eigenvector, i.e. that whose corresponding
eigenvalue is largest in magnitude, and the sequence of Rayleigh quotients
hyn = uX Au, /ulu, converges to that eigenvalue.

The power method algorithm must be modified in two respects for
our purposes. First, we seek more than one eigenpair. Since several, pos-
sibly complex, eigenvalues may be competing, we generally want to com-
pute 2-4 eigenpairs accurately. The 2-4 eigenpairs desired are calculated
more accurately if we also calculate, to lower accuracy, an equal number
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of unneeded eigenpairs; these serve as an error-absorbing buffer. Thus, we
typically compute 4-8 eigenpairs. The calculation of several eigenpairs is
accomplished by the Arnoldi method, or the block power or orthogonal sub-
space iteration methods, which are all closely related generalizations of the
power method [1, 19] We form a sequence ug, Aug, - . . AKX "1ug, whose span
defines the Krylov space. K is the number of eigenpairs sought, i.e. about
8. These vectors are orthonormalized to form a basis v1,vs,...vk for the
Krylov space. We define the M x K matrix V (i, k) = v(¢) and the K x K
Hessenberg matrix H = VT AV. (H is a K-dimensional generalization of
the Rayleigh quotient.) When H is diagonalized, its eigenvalues approx-
imate K of the eigenvalues of A, and its eigenvectors, multiplied by V,
approximate K of the eigenvectors of A. Care should be taken not to split
a complex conjugate pair; if this situation occurs, it is easily remedied by
incrementing K by 1.

The second modification required to adapt the power method for lin-
ear stability analysis is to change the region of the complex plane in which
eigenvalues are sought. The dominant eigenvalues are of no interest to us:
in the Navier-Stokes equations and in most reaction-diffusion equations,
it is the negative eigenvalues corresponding to the most quickly damped
modes that have the largest magnitude. This property of the Jacobian, in-
herited from L, has already been encountered in our discussions of timestep-
ping (where fast timescales necessitate implicit timestepping) and steady-
state solving (where poor conditioning requires preconditioning). We are
instead interested in the leading eigenvalues, i.e. those of largest real part.
We consider two options.

5.1. Exponential power method. The solution to the linearized
evolution equation (5.2) is

(5.3) u(t + At) = ALy (1)

The leading eigenvalues of any matrix A are the dominant ones of exp(AtA)
for any positive At. For At < 1, the linearized time-stepping scheme

(5.4) u(t + At) = (I — AtL) (I + AtNy)u(t)

that is already available provides an approximation to (5.3). The power
or Arnoldi method can be carried out on exp(AtA) by integrating the lin-
earized equations via (5.4). Each linearized timestep serves as one iteration
of the power method.

The drawback of this comes from the requirement that At < 1 in order
for (5.4) to approximate (5.3). (Other timestepping schemes can be used
that are more accurate than the first-order Euler scheme of (5.4), but this
has a minimal effect on the maximum At allowed.) Let Ay > A2 > ... be
the leading eigenvalues of A (all real, for simplicity), so that exp(AtA;) >
exp(AtAz) ... are the dominant eigenvalues of exp(AtA). Suppose we seek
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to calculate A\; via the simple power method on exp(AtA). It is easily
shown that one multiplication reduces the component in u,, corresponding
to A2 by a factor of exp(A#(A2 — \1)). For At <« 1, this factor is close
to one, and convergence thus very slow. Similar reasoning applies to the
block power or Arnoldi methods.

However, the exponential power method is easily implemented and
very reliable. Complex eigenpairs can be found as easily as real ones. The
exponential power method has been successfully used to compute leading
eigenpairs in many problems of hydrodynamic stability [2, 5, 6, 7, 9, 10,
11, 15, 16, 17, 20, 22, 23, 25].

5.2. Inverse power method. In the most straightforward case, we
seek the eigenvalue(s) nearest zero. The method of choice is then the inverse
power method, which calls for acting repeatedly with A~! instead of with
A. The simple convergence analysis above then shows that the error at
each step is reduced by a factor of A1 /A2. Near bifurcations, where \; & 0,
the convergence is thus extremely rapid. However, we need a way to act
with A~ L.

In section 2, we showed that the linear system involving Ny + L aris-
ing from Newton’s method could be rapidly solved by conjugate gradient
iteration if preconditioned with (I — AtL)~!At, The following calculations
show that the same preconditioning can be used to carry out the inverse
power iteration un 1 = A" u,:

Uni1 = (Ny + L) tu,
(Nu + L)upt1 = up
(I — AtL) 'At(Ny + L)uni1 = (I — AtL) *Atu,
(I — AtL)™'[(I + AtNy) — (I — AtL)] upy1 = (I — AtL) ' Atu,
(5.5) (I — AtL)™"(I + AtNy) — I upyr = (I — AtL) *Atu,

We see that, just as in equation (2.3), the left-hand-side of (5.5) re-
quires taking only the difference of consecutive linearized timesteps (5.4).
The right-hand-side consists of taking one linear (not linearized) timestep,
multiplied by At. System (5.5), like (2.3) is well-conditioned in many cases
of interest, and thus is solved rapidly by the same conjugate gradient vari-
ants, such as BCGS and GMRES. Equation (5.5) can be incorporated into
the Arnoldi or block power methods to compute the eigenpair more accu-
rately and to calculate several eigenpairs whose eigenvalues are closest to
Zero.

The calculation of complex leading eigenpairs by the inverse power
method is more complicated. The eigenvalues sought are no longer nec-
essarily those closest to zero. Shifting must be used to bring the leading
eigenvalues close to zero: instead of solving Au, 1 = u,, one solves

(5.6) (A= X" Dupyy =up
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where A(™ is the current estimate of one member of the complex conjugate
pair of leading eigenvalues. Although shifting is in principle accomplished
merely by substituting Ny — A" I for Ny in (5.4), several difficulties arise:
Initial estimates of A('n may be difficult to obtain. Different shifts are
required for eigenvalues with different imaginary parts. Finally, for complex
shifts either complex arithmetic must be used or equivalently a real problem
of twice the size must be solved.

This method has been used to compute real leading eigenvalues in
spherical Couette flow [4] and complex leading eigenvalues in natural con-
vection [8].

6. Floquet stability analysis. Often one is interested in the stabil-
ity of periodic orbits rather than of steady states. The exponential power
method described in section 5.1 can be applied to this case with little mod-
ification. Consider a T-periodic solution U(t mod T') of equation (1.1).
Through its dependence on U, the operator Ny appearing in the linear-
stability equations (5.2) is now also time periodic and the stability of a
periodic solution cannot be determined from the eigenvalues of the con-
stant Jacobian matrix. Rather, stability is determined by the eigenvalues
of the monodromy operator (matrix) B defined formally by:

to+T
(6.1) B =exp </ dt' (Ny(t') + L)) :
to

The operator B takes an infinitesimal perturbation u of U at an initial
time ¢y and evolves it forward under the linear flow to give the perturbation
at time to + 7. Heuristically (6.1) can be understood as stating that the
stability or instability of a periodic orbit is a consequence of the way linear
growth and decay combine around the entire orbit. Hence it is necessary
to follow a perturbation once around the orbit to assess overall growth or
decay. In practice, the action of B is approximated by integrating (5.2)
over T /At timesteps.

The eigenvalues p of B are known as Floquet multipliers and are in-
dependent of tg. The corresponding eigenmodes do depend on ty. For an
initial condition u(to) to (5.2) which is an eigenmode of B, the solution to
(5.2) is of the form

(6.2) u(t) = a(t mod T)e

where A = log(p/T) is called a Floquet exponent and @(t mod T') is called
a Floquet mode.

The dominant Floquet multipliers (leading Floquet exponents) are
those of interest for stability and bifurcation analysis. These can be com-
puted by applying the power method to the matrix B. In fact one can view
B as a generalization of the operator exp(At(Ny + L)) of (5.3), considered
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in the exponential power method for steady states. The generalization to
Floquet analysis leads to the following new considerations:

The first issue for implementation is that acting with B on a vector
u means integrating the linear stability equations over one period and this
means knowing the base solution U at a large number of time points (the
integration time steps). Because the solutions are periodic it is natural to
represent U (t) as a Fourier series and keep only enough modes to represent
U(t) to some desired accuracy. Then U can be found at any time by
interpolation. In studies of cylinder wake flow [3, 12] it was found that
16 Fourier modes (corresponding to 32 time points over one period) were
sufficient to represent U(t) at arbitrary times to within the accuracy of the
simulation that produced U.

The second issue is that, if the period T is long, the first few dominant
eigenvalues of B may differ greatly from one another. It should always
be possible to calculate the dominant eigenvalue by the exponential power
method, but smaller multipliers may be difficult or impossible to obtain if
multiplication by B makes the corresponding components orders of mag-
nitude smaller than the dominant ones. The method will break down alto-
gether if the periodic orbit approachs a homoclinic or heteroclinic situation
in which the period T goes to infinity. (See [14] for ways to handle such
situations.)

This method has been used to calculate the three-dimensional insta-
bility of limit cycles in two-dimensional open flows, in particular cylindrical
wake flow [3, 12] and perturbed plane Poiseuille flow [20].

7. Nonlinear stability analysis. In addition to computing bifurca-
tion points, we want to distinguish between those which are subcritical and
those that are supercritical. The distinction arises in pitchfork and Hopf
bifurcations and it can be explained most simply in terms of the normal
form for a pitchfork bifurcation written as:

(7.1) dia =o(R - R.)a + aa®

where a is the amplitude of the bifurcating solution, R, is the bifurcation
point, o is a positive constant of proportionality relating changes in R
to changes in the leading eigenvalue at the bifurcation, and «, called the
Landau coefficient, determines the nonlinear characture of the bifurcation:
a < 0 describes a supercritical bifurcation and o > 0 describes a subcritical
bifurcation. One can view the difference between these two cases either
in terms of the direction of the bifurcating branches or in terms of the
nonlinear flow along the center manifold at the bifurcation. Viewed the
second way, the distinction is between a nonlinear flow at R = R, that is
stable (supercritical case) and a flow at R = R, that is unstable (subcritical
case).

We can exploit the difference in the dynamics along the center mani-
fold to distinguish the two cases through a relatively simple computation.
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We evolve the nonlinear equations (1.1) starting near the bifurcation point
(near refers both to parameter space and to phase space) and ascertain
whether the nonlinear term is stabilizing or destabilizing. In practice we
find that setting R slightly above R, is the best approach (in part because
R, is not known exactly). We compute the steady (slightly unstable) solu-
tion U at this R. (In the case of a symmetry-breaking pitchfork bifurcation,
this can be accomplished by time-stepping the equations restricted to the
symmetric subspace.) We then compute its leading eigenvector u by the
exponential power method. We then start a nonlinear simulation using the
initial condition U + eu for some small e. Initially the simulation shows
linear growth consistent with a small positive eigenvalue: o(R — R;) > 0.
When the dynamics deviates from linear growth, it is simple to estimate
a from the time series and to thereby determine whether the bifurcation
is subcritical or supercritical. Note that the dynamics in the two cases is
very different. In the subcritical case, the nonlinear growth is faster than
the linear growth, whereas in the supercritical case it is the other way
around. Therefore the sign of a, which is the essential bit, can be found
very reliably.

This method has been used to demonstrate the subcriticality of pitch-
fork bifurcations in cylindrical wake flow [3, 12], in perturbed plane Couette
flow [5], and in double-diffusive natural convection [25].
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