Practical Magnetism VII: Avoiding common misconceptions in magnetic fabric interpretation

Andrea Biedermann
University of Bern
andrea.biedermann@geo.unibe.ch

Dario Bilardello
Institute for Rock Magnetism
dario@umn.edu

Brief history – empirical relationships.
Magnetic fabrics, and anisotropy of magnetic susceptibility (AMS) in particular, have long been considered a powerful and time-efficient means of investigating petrofabrics, particularly in the absence of a macroscopic fabric that can be investigated with the naked eye (Borradaile & Henry, 1997; Borradaile & Jackson, 2010; Tarling & Hrouda, 1993). Correlations between magnetic and optical analyses show that in many cases the fabrics obtained with either technique are coaxial, yielding the same orientation of foliation and/or lineation (Balsley & Buddington, 1960). However, this is not always the case, warranting the need to better understand the magnetic anisotropy carriers and the physics that govern these fabrics (Biedermann et al., 2018). Secondly, correlations between magnetic anisotropy degree and strain have been observed in some areas (Kligfield et al., 1977), but these relationships are largely affected by mineralogy (Borradaile, 1987; Housen & van der Pluijm, 1990). This again highlights the importance of understanding how different minerals contribute to the overall magnetic fabric. This article aims at demystifying common misconceptions surrounding magnetic fabrics, which can lead to erroneous interpretations, and suggesting strategies for successful magnetic anisotropy studies.

Sources of magnetic anisotropy.
There are three fundamentally different types of magnetic anisotropy in rocks, depending on the constituent minerals and their occurrence within the bulk rock. The observed magnetic fabric is often a superposition of several contributions.

Magnetocrystalline anisotropy occurs in minerals that have their easy and hard magnetization directions controlled by the crystal lattice. It is the dominant source of anisotropy for paramagnetic and diamagnetic minerals, and low-magnetization, but high-coercivity, (parasitic)
Investigation of strongly negative field-dependence of susceptibility in the subsurface of northeastern Oklahoma

Matt Hamilton
University of Oklahoma
matt.hamilton@ou.edu

Field-dependence (a.k.a. amplitude-dependence) of magnetic susceptibility (χ_{HD}) has found use in the characterization of magnetic mineralogy due to the fact that pyrrhotite, hematite, and titanomagnetite may undergo Rayleigh hysteresis even in the low AC fields commonly used for measurements, leading to increased susceptibility at higher applied fields (e.g., Jackson et al., 1998; Hrouda et al., 2006). However, some geological materials instead exhibit a significant negative variation of susceptibility with increasing fields (Hrouda et al., 2006; Chlupáčová et al., 2010), the origin of which remains unexplained and largely uninvestigated.

During a preliminary study of the basement-cover unconformity from the Amoco SHADS 4 drill core in northeastern Oklahoma (Hamilton et al., 2018), negative χ_{HD} behavior was found in the lower clastic sediments and the uppermost weathered and/or altered igneous rocks (composed of trachyte), with some of the sandstones losing more than 10% of their susceptibility over the range of measuring fields (5-700 A/m). It also became apparent that the same rocks have an elevated frequency-dependence of susceptibility (χ_{FD}), a parameter usually associated with ultra-fine-grained magnetic minerals transitioning from superparamagnetic (SP) to stable single-domain behavior (e.g., Worm, 1998). The magnitudes of these parameters show a reasonable correlation (Fig. 1) and are associated with a decrease in bulk susceptibility in the trachyte. The values of χ_{HD} were more negative than any I could find in the literature, and the relationship to χ_{FD} did not seem to have been noted at all. In addition to the SHADS 4, seven other cores were sampled across the area for a study on alteration of the igneous basement (Hamilton et al., 2021). Susceptibility measurements from these other cores identified samples with significant negative field-dependence in all of them. The relationship between χ_{FD} and negative χ_{HD} varies between locations but is broadly similar to that from the SHADS 4 unconformity, and negative χ_{HD} is never found without significant frequency-dependence. In the igneous rocks (comprised of granite and rhyolite), this behavior is most prominent within the uppermost few meters below the unconformity and may also be found around altered fractures in deeper sections of the cores. In sediments, it is present to varying degrees in clastic units immediately overlying basement but is absent in carbonates.

It was clear that this was a problem worth chasing, but I was out of my depth. I reached out to Martin Chadima at AGICO, who was quite interested, and at his

Figure 1. (Left, top) General location of study area. (Left, middle) Representative plots of susceptibility vs. field for samples near the basement unconformity of the Amoco SHADS 4, normalized to the value at 100 A/m. (Left, bottom) Correlation of field-dependence and frequency-dependence of susceptibility for samples from the depth profile. (Right) Depth profile of magnetic susceptibility (200 A/m, 976 Hz), its frequency-dependence and field-dependence across the basement unconformity.
suggestion we also contacted Mike Jackson at the IRM. Mike’s theoretical analysis indicated that Langevin behavior of SP magnetite results in negative χ_{HD}, but can only account for a fraction of a percent at the relevant field strengths. Mike made some initial measurements on some samples, and at his invitation I first came to the IRM on an informal visit in November 2019 to collect some additional last-minute data for our AGU presentation (Hamilton et al., 2019). To follow up on those initial data, I returned to the IRM as a visiting fellow in July of 2021 (the first one in-person since the shutdown, they tell me). There were some significant changes from my previous visit – most notably Mike Jackson’s retirement and Maxwell Brown’s assumption of his post, but also some hardware changes. The new LakeShore VSM (still in its packaging during my first visit) was online, and the “Old Blue” MPMS had been deactivated and replaced with a new MPMS 3.

Due to theoretical constraints, we had suspected that some mineral phase must be approaching saturation at

Figure 2. (A-D) Slope-corrected high-field hysteresis loops for specimens from the SHADS 4, Texaco Kohpay 16, and Sinclair Jones 46 cores. Lower-right insets compare loops before and after nonlinear slope-correction (Jackson & Sølheid, 2010). (E) Low-field (≤ 10 mT) hysteresis loops for a Jones 46 sample, showing shallowing with increasing field. Individual loops shown on the right, and curvature is visible by $H = 1$ mT (~800 A/m).
very low fields, which is the only sensible physical explanation for this phenomenon that we’re aware of. Hysteresis measurements using the VSMs yielded normal to slightly constricted loops with low coercivities for most specimens (e.g., Fig. 2A,B) though some, most notably those from the Sinclair Jones 46 core, have significantly constricted loops with an unusual “pinched-loaf” shape (Fig. 2C,D). Hysteresis measurements with low peak fields also yield shallower slopes (i.e., lower susceptibility values), and by 1 mT many show a curvature which indicates the presence of a phase approaching saturation (Fig. 2E).

During my first visit, we also measured thermal variation of susceptibility using the high-temperature kappabridge and the MPMS systems (“Old Blue” and “Big Red”), as well as remanence curves (e.g., Fig. 3A) using the MPMS. We found little consistency in the remanence curves – most (but not all) specimens exhibited Verwey transitions which ranged from strong to almost invisible, some (but not all) showed the Morin transition of hematite in low-T demagnetization (LTD) of room-T SIRM, and some (but not all) had mildly “hump”-shaped LTD-SIRM cooling curves which are considered an indicator of maghemite (Özdemir and Dunlop, 2010).

Verwey transitions were vanishingly small to absent in low-temperature susceptibility measurements (with the exception of one location). Nearly all specimens instead have very high susceptibility at low T which decreases until reaching a local minimum between 60-100 K, then rises rather smoothly with temperature and reaches a peak near room temperature. Elevated χFD is present across nearly the entire temperature range. Usually, the temperature of the susceptibility peak does not appear to vary with frequency despite the significant χFD.

High-T kappabridge measurements consistently showed significant loss of susceptibility by 100 °C (Fig. 3B), with inspection of $\partial\chi/\partial T$ indicating the strongest slope near 80-85 °C. This change is mostly to completely reversible if peak temperatures do not exceed 200 °C and is completely lost in specimens which exceed 500 °C; these specimens also lose their negative χ_{HD} behavior and often lose most or all of their χ_{FD} as well. The same feature was also seen by pushing “Big Red” to temperatures of 400 K (Fig. 3C), and the prominent frequency-dependence of these specimens is partially to almost completely lost in this same temperature range.

The arrival of the MPMS3 was a fortuitous development for this project. The apparent relationship of negative χ_{HD} with an apparent Curie temperature ~85 °C was an obvious target for study – we suspected that it would diminish or disappear in that range, but setting up a suitable experiment was not a simple endeavor. Mike and I previously attempted to measure χ_{HD} vs. temperature using “Big Red”, but the resulting dataset was not useful due to the limited AC field range (H_{max} = 3 Oe, ≈ 240 A/m), and the Kappabridge furnace system could not hold a steady temperature long enough for a χ_{HD} mea-

Figure 3. Representative measurement sequences from subspecimens of sample SJ46-10D (Jones 46 core). (A) Low-temperature remanence curves with Morin and very weak Verwey transitions. (B) High-temperature susceptibility with significant loss by 100 °C. (C) χ_{FD} data from 20-400 K showing pronounced frequency-dependence which disappears at the same transition. (D) Field-dependence vs. temperature at 2 frequencies. Negative field-dependence also vanishes in this same temperature range.
measurement sequence. The MPMS 3 is capable of reaching AC fields of 10 Oe (795.8 A/m) and like Big Red it can measure up to 400 K, making it an ideal candidate for a direct experiment. While it was listed as “Coming Soon!” on the website, Maxwell Brown told me that it was up and running during the IRM conference in June. When he passed the word that in-person visits were opening earlier than expected, I immediately asked for the earliest available time. The \(\chi_{\text{HD}} \) vs. T experiment was the first priority.

My first day, Peat and Dario helped work out and set up a measurement sequence using 1 Oe field increments up to 10 Oe at 50, 158, and 500 Hz (we found out the instrument cannot use its full field range at high frequency) from 10 to 400 K. The control software estimated it would take ~15 hours, so we set it going and looked forward to pulling off the data in the morning. Mike Jackson even came by to check on it the next morning, only for us to discover the sequence was barely a third of the way complete! Peat explained that changing measurement fields takes extra time that the software estimate does not account for (he knew this originally, but we had no idea just how much extra time it would be). We paused and revised the sequence, removing the middle frequency and half the field steps. The measurements finally completed late that afternoon, and I was able to organize the data and calculate \(\chi_{\text{HD}} \) (using linear regression from 1 to 9 Oe, which is very similar to the field range used by the MFK kappabridges) that evening. The results were a bit noisy but very promising – negative \(\chi_{\text{HD}} \) rapidly weakened and disappeared between 360 and 385 K (Fig. 3D). The next morning, I had an email from Martin Chadima – he had been working on a new measurement protocol using AGICO hardware, and his initial tests yielded the same result.

We did run into some noise issues, but after some troubleshooting we were able to obtain more data sets with clean trends which yielded very similar results. Beyond the \(\chi_{\text{HD}} \) vs. T experiments, I also continued to gather \(\chi(f,T) \) and low-T remanence data using Big Red, thermomagnetic curves from the kappabridge, and hysteresis measurements with the VSMs. I consider this visit as very successful – the new data clearly connects negative \(\chi_{\text{HD}} \) to a frequency-dependent phase with a Curie temperature near 85 °C, and the relationship with fluid alteration suggests that it may have potential as an indicator of specific chemical conditions. Plans for further measurements are in development. In the meantime, there is a lot of work to do with the data so far.

Acknowledgements
I am very grateful to Dario Bilardello and Peter (Peat) Solheid for their assistance, advice and patience during this visit (and to Mike Jackson as well during my first trip). “Above and beyond” is not an adequate description. I am also grateful to Maxwell Brown for enabling me to make this trip at the earliest possible time, and my advisor (Dr. R.D. Elmore) for encouraging and supporting this work.

References
Want to get better at interpreting anisotropy of physical properties in rocks?

The workshop ‘Predicting Anisotropic Physical Properties From Mineralogy and Texture’ on Sunday, 12 December 2021, 8am – 12pm CST will help you to
- understand crystal physical properties and other sources of anisotropy
- use texture and microstructures as a basis to predict anisotropies
- learn how to upscale laboratory measurements to field observations
- develop numerical models to reliably interpret measured anisotropies

We are looking forward to seeing you, on-site or online!

Andrea Biedermann, University of Bern, Switzerland
Bjarne Almqvist, Uppsala University, Sweden
Sarah Brownlee, Wayne State University, USA

Sign up with your AGU Fall Meeting registration
Current Articles

A list of current research articles dealing with various topics in the physics and chemistry of magnetism is a regular feature of the IRM Quarterly. Articles published in familiar geology and geophysics journals are included; special emphasis is given to current articles from physics, chemistry, and materials-science journals. Most are taken from ISI Web of Knowledge, after which they are subjected to Procrustean culling for this newsletter. An extensive reference list of articles (primarily about rock magnetism, the physics and chemistry of magnetism, and some paleomagnetism) is continually updated at the IRM. This list, with more than 10,000 references, is available free of charge. Your contributions both to the list and to the Current Articles section of the IRM Quarterly are always welcome.

Archaeomagnetism

Environmental Magnetism

Johnson, J. E., S. C. Phillips, W. C. Clyde, L. Giosan, and M.

Koltringer, C., T. Stevens, B. Bradak, B. Almqvist, R. Kurbanov, I. Snowball, and S. Yarovsky (2021), Enviromagnetic study of Late Quaternary environmental evolution in Lower Volga loess sequences, Russia, Quaternary Research, 103, 49-73, doi:10.1017/qua.2020.73.

Namier, N., et al. (2021), Mineral magnetic properties of loess-paleosol couples of northern Serbia over the last 1.0 Ma, Quaternary Research, 103, 35-48, doi:10.1017/qua.2021.41.

Extraterrestrial and Planetary Magnetism

Fundamental Rock Magnetism and direct Applications

Geomagnetism, Paleointensity and Records of the Geomagnetic Field

Bonilla-Alba, R., et al. (2021), Rapid Intensity Decrease Duri-

Magnetic Fabrics and Anisotropy

Other

Paleomagnetism

Gong, Z., et al. (2021), Reorienting the West African craton in Paleoproterozoic- Mesoproterozoic supercontinent Nuna, Geology, 49(10), 1171-1176, doi:10.1130/g48855.1.

Zhou, P. Y. H., C. L. Deng, Y. Chen, and R. N. Mitchell (2021), Early Neoproterozoic (870-820 Ma) amalgamation of the Tarim craton (northwestern China) and the final assembly of Rodinia, Geology, 49(11), 1277-1282, doi:10.1130/g48837.1.

Stratigraphy

He, C. C., Y. Q. Zhang, S. K. Li, K. Wang, and J. Q. Ji (2021), Magnetostratigraphic study of a Late Cretaceous-Paleogene succession in the eastern Xining basin, NE Tibet: Con-

Figure 1: Number of enviromagnetic papers listed in IRM Quarterly from #1(Vol.1.1, Spring 1991) to #121(Vol.31.2, Summer 2021). The vertical dashed line indicates the date of my earlier note.
ferromagnetic minerals such as hematite. If these minerals show a crystallographic-preferred orientation (CPO), they will contribute to the magnetic fabric of the rock (Biedermann, 2018; Finke, 1909; König, 1887; Stenger, 1888; Tyndall, 1851).

Shape anisotropy, as the name implies, is controlled by grain shape and related distribution of surface charges, which control the grain’s self-demagnetizing field. Therefore, the easy magnetization direction is along the longest axis of the grain (Osborn, 1945; Stoner, 1945). Shape anisotropy occurs in non-isometric grains with strong magnetization and is the dominant source of anisotropy in magnetite. Magnetite grains with a shape-preferred orientation (SPO) contribute to magnetic fabrics in rocks.

Distribution anisotropy results from magnetostatic interactions of strongly magnetic minerals with a non-uniform distribution within a rock, e.g., a preferential concentration along specific planes arising from compositional banding. The crystals themselves may or may not be particularly anisotropic or preferentially aligned, but their interactions give rise to strong anisotropy along the specific planes/distributions (Cañón-Tapia, 1996, 2001; Hargraves et al., 1991; Rochette et al., 1999).

It is important to note that strongly anisotropic minerals (e.g., uniaxial magnetite crystals) that are randomly oriented and spatially uniformly distributed in a rock will give rise to an isotropic fabric, whereas weakly anisotropic, but strongly aligned (e.g., olivine) or non-uniformly distributed minerals (e.g., equant magnetite grains), will result in strongly anisotropic fabrics (Figure 1). Therefore, in addition to the specific crystal properties or grain shape that set an upper limit to the bulk anisotropy, mineral alignment and distribution are also important, resulting in a gamut of possibilities when interpreting magnetic fabrics.

Too often these possibilities are overlooked or oversimplified, leading to the potentially equivocal interpretations that this article aims at demystifying, so without much ado we will proceed to describe the different magnetic techniques available to characterize the anisotropies of specific mineral classes, the relation between bulk measurements and the anisotropy carriers, and how to best-interpret data within confidence.

Minerals/grain populations targeted by different anisotropy methods

Low-Field AMS (LF-AMS) is calculated based on the angular dependence of the initial susceptibility, acquired over typical fields of ~200-300 A/m, and frequencies of ~1 kHz. At these very low fields, all the minerals present in a sample are activated but far from saturated, so that their remanent magnetizations are not affected and the method is entirely non-destructive. LF-AMS is thus a superposition of various components, which does not allow separating the different contributions to the fabric.

Therefore, what minerals dominate LF-AMS? There is no one single answer to this question, not even when considering individual rock-types. The carriers of LF-AMS depend on the minerals present, their preferred orientation and spatial distribution. It is often assumed that magnetite tends to dominate LF-AMS: however, while magnetite present in small amounts does tend to dominate the sample’s bulk properties, its contribution to the anisotropy is less straightforward. For example, if magnetite is isometric and (spatially) randomly distributed, it will not contribute to anisotropy. Magnetite anisotropy is also grain-size dependent: Stable single domain (SSD) magnetite grains, which are very important in paleomagnetism, are magnetically saturated by definition and therefore carry no susceptibility parallel to their easy axes, resulting in low bulk susceptibility and inverse magnetic fabrics if preferentially aligned (e.g., Potter & Stephenson, 1988). On the contrary, multidomain (MD) magnetite grains, while generally avoided for paleomagnetic studies, tend to have higher susceptibility and contribute substantially to LF-AMS if non-randomly aligned and/or distributed. The paramagnetic and diamagnetic mineral fractions also contribute to, and may even dominate, the LF-AMS, depending on their single crystal properties and alignment. Likewise, while not carrying particularly important low-field susceptibility, aligned particles of weakly ferromagnetic hematite may be an important carrier of LF-AMS in virtue of their strong magnetocrystalline anisotropy. Note, however, that particle magnetostatic interactions are considered to be negligible for hematite.

Low-temperature (LT) LF-AMS is sometimes used to enhance the paramagnetic contribution to LF-AMS (Issachar et al., 2016, 2018; Parés & van der Pluijm, 2002). While diamagnetic susceptibility and its anisotropy is largely temperature-independent, paramagnetic susceptibility has an inverse relationship with temperature, following the Curie-Weiss law $M = C (B/T)$. Likewise, many natural ferromagnetic minerals undergo mineralogical transitions between RT and LT (77 K) measurements. Below the Morin transition, T_M, ~260 K, hematite’s easy axis of magnetization rotates from within the basal plane to perpendicular to it, with sublattice spins becoming perfectly antiparallel and the only (weak) remanence arising from defects in the crystal structure (e.g., Bowles et al., 2010). Magnetite crystals undergo a structural change at the Verwey transition, T_V, where the crystal symmetry changes from cubic ($T > T_V$) to monoclinic ($T < T_V$), resulting in a loss of remanent magnetization when cooling through T_V (e.g., Jackson et al., 2011) and a drop in χ below T_V.

Therefore, LT-LF-AMS enhances the contribution of the paramagnetic phases while limiting that of the ferromagnets, though without entirely eliminating it. It is noteworthy that the contribution of SP grains, if present and depending on their blocking temperature, is enhanced at LT. Moreover, separation of the diamagnetic and paramagnetic contributions using LT-LF-AMS, while it has been proposed (Elhanati et al., 2021), is not
straightforward and results are not entirely unequivocal.

High Field AMS (HF-AMS) is calculated from stronger magnetizing fields, typically past the saturation of magnetite, in order to capture the paramagnetic high field M/B slope or susceptibility. The technique is typically employed for magnetite-bearing rocks since harder magnetic minerals such as hematite may not saturate in commonly available magnetic fields (typically in a torque-meter or vibrating sample magnetometer, VSM), in the range of ~1T and therefore complicate fabric separation.

Because paramagnetic moment increases linearly with field amplitude at commonly available laboratory high fields, HF-AMS is used to separate para/diamagnetic and ferromagnetic contributions. If HF-AMS is measured at both RT and LT, paramagnetic and diamagnetic components can be separated as well, however, this separation is limited by the comparable magnitudes of diamagnetic susceptibility and instrumental noise (Schmidt et al., 2007). Additionally, paramagnetic and ferromagnetic fabrics can be separated by LT-HF-AMS, e.g., using a torque-meter at liquid nitrogen temperatures, which is especially useful when the paramagnetic contribution is small at RT.

The fabric components isolated with the techniques detailed above will describe the anisotropy of all paramagnetic, all diamagnetic, and all ferromagnetic minerals, depending on which phases from each of the three magnetic classes are present. The contributions of the three classes can be separated from one another with reasonable confidence, however, complete removal of the ferromagnetic contribution may be difficult to ascertain when using HF's and/or LT's, especially when hematite or SP grains are present. Furthermore, it is important to note that even within each magnetic class, these contributions may again be superpositions. For example, the fabrics of amphibole and pyroxene, both paramagnetic, will both be captured by the same technique and be indistinguishable. Likewise, the ferromagnetic component characterized by HF-AMS captures all ferromagnetic minerals, including those that are not typically important remanence carriers, e.g., MD grains.

Remanence anisotropy can be measured by several methods that are based on the different kinds of laboratory magnetic remanences. All methods aim at characterizing the anisotropy of the remanence-carrying ferromagnetic minerals in the grain size/coercivity/blocking temperature range of interest and are therefore the most useful to isolate the specific anisotropy that is relevant to correct paleodirections and -intensities. Anisotropy of thermal remanence (ATRM) and anisotropy of anhysteretic remanence (AARM) magnetizations both use low DC fields that are comparable to the Earth’s field (~0.05 mT) in conjunction with a randomizing force (temperature or alternating field, AF) to impart a remanence in a given temperature or coercivity window. Anisotropy of isothermal remanent magnetization (AIRM) uses variable pulsed or DC fields (mT to T) to impart stronger, typically saturating remanences. Thermal methods can
characterize the magnetic fabric of all remanence carriers but are prone to sample thermochemical alteration due to the repeated exposure to elevated temperatures. Anhysteretic remanence methods are mainly successful for low-coercivity minerals, where it is possible to target several sub-populations of grains using “low” AF field windows (≤ 200 mT), while higher-coercivity grains cannot be characterized due to most current instrument limitations. Isothermal methods can be used to determine magnetic fabrics of high-coercivity components, but because magnetization is not linear with field for the high fields used, approximations have to be made when processing the data with linear anisotropy theory.

Comparison between LF-AMS, HF-AMS and remanence anisotropy: Because the different magnetic anisotropy measurements target different mineral groups within a rock, a combination of methods can be used to better understand each group’s contribution to the overall fabric (Figure 2). However, one needs to take particular care of the specific minerals and grain size populations that may be present, which will be preferentially targeted by the different techniques. For example, it is often reported that fabric coaxiality between LF-AMS and remanence anisotropy (e.g., AARM) is indicative of the same magnetite grains carrying the LF-AMS, however, this assumption is not always strictly valid and one must exercise caution.

Remanence anisotropy primarily targets SSD magnetite, which, owing to its higher M_{rs}/M_s ratio will particularly dominate the remanence over a range of applied field intensities/ targeted coercivities if both MD and SSD grains are present. On the other hand, LF-AMS is more sensitive to MD magnetite than SSD grains, and also includes the paramagnetic contribution to the anisotropy. Therefore, excluding the complications arising from inverse fabrics for preferentially aligned SSD grains, coaxiality between LF-AMS and AARM may either indicate that both fabrics are indeed carried by the same mineral in the same grain size distribution (e.g., only MD magnetite are present), or that different mineral grain sizes (fine and MD magnetite) are responsible for the same fabrics, or that the magnetite, in whichever of the two cases above, and paramagnetic fabrics have the same orientations. Conversely, the different orientation of LF-AMS and AARM may indicate that the paramagnetic and ferromagnetic minerals carry different fabrics, or it could reflect fine/SSD and MD magnetite populations with distinct anisotropies.

The two fabrics measured, whether co-axial or not, can therefore have very distinct origins. For these and other reasons it is particularly important to fully investigate the origin of magnetic fabrics.

Bulk susceptibility vs anisotropy carriers
When measuring LF-AMS, interpretations on its origin are often based on bulk magnetic properties such as mean susceptibility (K_{mean}), hysteresis or high- and low-temperature susceptibility curves. These, however, may not directly correlate with the AMS carrier minerals. Figure 3 from Pares (2015), for example, provides a useful “rule-of-thumb” tool to evaluate the contribution of different magnetic minerals to the bulk susceptibility in silicate-bearing rocks, clearly showing that even small concentrations of magnetite, for example, tend to dominate the bulk properties.

However, the fact that magnetite dominates K_{mean} does not always inform about the anisotropy carriers. Figures 1 and 4 show examples of rocks whose bulk properties are dominated by magnetite, but only in some of these does magnetite contribute to the anisotropy. Specifically, magnetite that does not have an SPO (randomly oriented grains) will not contribute to the anisotropy (Figure 1, top and Figure 4, left-hand side), yet the presence of magnetite, particularly MD, will result in high K_{mean} values, potentially leading to misinterpretation. In this case, the origin of LF-AMS must lie in another mineralogy and/or grain size, and we caution against making such assumptions.

Even without experimental fabric separation, it is possible in some cases to conclude that magnetite contributes to or dominates LF-AMS. The anisotropy displayed by minerals with magnetocrystalline anisotropy cannot be larger than that of the respective single crystals. Thus, if none of the other “matrix” minerals possess large enough combined values of K_{mean} and degree of anisotropy, P, then it is likely that magnetite contributes to the anisotropy. Neither P nor K_{mean} alone, however, will be sufficient to unequivocally interpret the AMS-carriers. Further, a more adequate parameter to use is the mean deviatoric susceptibility, K', which directly indicates the contribution of a given mineral to the rock’s anisotropy (Jelinek, 1984):

$$K' = \sqrt{\frac{(K_1 - K_{\text{mean}})^2 + (K_2 - K_{\text{mean}})^2 + (K_3 - K_{\text{mean}})^2}{3}}$$

Choice of parameters and data visualization will be cov-
Compared between magnetic and macroscopic fabrics have often resulted in classifications of "anomalous," "oblique" and "tilted" fabrics presented in the literature. Those terms were used to describe observations that did not fit the expectation of coaxial fabrics, i.e., the easy magnetization direction along the macroscopic lineation, and hard magnetization axis normal to the foliation. Through the development of anisotropy methods and modeling we have gained a greater understanding of why macroscopic and magnetic fabrics are not always parallel. Detailed characterization of single crystal magnetic properties and the ability to predict magnetic fabrics for given mineral alignments, in combination with knowledge of macroscopic mineralogical foliation and lineation, help characterize the mineral preferred orientation with more accuracy.

In amphibolites, for example, whether the maximum susceptibility is parallel or ~orthogonal to the macroscopic lineation, informs whether the amphiboles have a c-fiber texture (coaxial fabrics), or if their texture is a combination of a-fiber and point distribution (perpendicularly lineations) (Biedermann et al., 2018). Therefore, additional information can be gained from a comparison between magnetic and macroscopic fabrics and/or crystal properties, allowing to determine that fabrics labeled "anomalous" in fact have a solid foundation residing in specific crystallographic properties.

Qualitative terms to describe magnetic fabric attitude, such as "oblique" or "tilted," however, are fully permissible in the absence of a specific mechanism explaining such fabrics, yet it should be understood that they may not necessarily be caused by flow/deformation conditions.

Scenarios to help interpret data

Bulk susceptibility and rock magnetic analyses can determine which minerals are present in a rock, but do not specifically inform about anisotropy carriers. The main point here is that even if magnetite dominates the bulk properties, it may or may not contribute to the anisotropy, depending on whether it has an SPO or distribution anisotropy (See Figures 1 and 4). To obtain more information on anisotropy carriers, it is therefore recommended to:

- Use HF (and/or LT) methods to separate the paramagnetic and ferromagnetic contributions to the fabric, or at least enhance the paramagnetic contribution.
- Compare the combination of K_{mean} and P, or more easily the mean deviatoric susceptibility K', observed in the rock with the single crystal properties of the constituent minerals (i.e., the maximum of these properties each mineral could contribute to the anisotropy). If no other mineral can produce a large enough K', then magnetite is a likely carrier of AMS.
- Bear in mind that a comparison of LF-AMS with AARM (or other remanence anisotropy) orientation is not sufficient, as these methods target different minerals and/or grain coercivity/size populations:
 1. Coaxiality of LF-AMS and AARM cannot be interpreted unambiguously, since a number of scenarios can lead to coaxial fabrics, e.g.:
 - Different carriers give rise to the same fabric orientation (e.g., they were aligned in the same strain field).
 - Both anisotropies are controlled by the same ferromagnetic carrier; however, “same ferromagnetic carriers” may reflect different properties with susceptibility preferentially controlled by MD magnetite, while remanence is dominated by SSD magnetite.
 2. Non-coaxiality of LF-AMS and AARM can also lead to multiple interpretations, e.g.:
 - LF-AMS is dominated by paramagnetic minerals, while AARM is dominated by ferromagnetic minerals.
 - Both could be controlled by magnetite, but in different grain size populations (MD vs...
SSD, respectively) with different orientation.

- Presence of preferentially aligned SSD grains carrying inverse LF-AMS fabrics necessarily complicates interpretations further.
- Modelling of expected anisotropies for different minerals and simplified CPOs, SPOs or distributions can help understanding each mineral’s contribution to the anisotropy, and the interplay of multiple anisotropy components.

Because there are many established techniques to characterize magnetic fabrics, each targeting different mineral groups in the same rock, it is important to carefully choose a suitable method for the aim of each specific study. For example, for correcting paleomagnetic data, remanence anisotropy is more appropriate compared to LF-AMS as it measures the same quantity (i.e., typically magnetization in Am^2/kg), and targets the remanence carriers. On the other hand, if the alignment of the bulk rock-forming minerals is of interest, the diamagnetic or paramagnetic component isolated, e.g., from HF-AMS, will be the most adequate.

We hope that the overview provided in this article will aid choosing a suitable technique for each study and avoid common misinterpretations.

References
The Institute for Rock Magnetism is dedicated to providing state-of-the-art facilities and technical expertise free of charge to any interested researcher who applies and is accepted as a Visiting Fellow. Short proposals are accepted semi-annually in spring and fall for work to be done in a 10-day period during the following half year. Shorter, less formal visits are arranged on an individual basis through the Facilities Manager.

The IRM staff consists of Subir Banerjee, Emeritus Professor/Founding Director; Bruce Moskowitz, Professor/Director; Joshua Feinberg, Associate Professor/Associate Director; Maxwell Brown, Facility Manager; Peat Sølheid, Senior Staff Scientist; Dario Bilardello, Associate Research Professor.

Funding for the IRM is provided by the National Science Foundation, the W. M. Keck Foundation, and the University of Minnesota.

The IRM Quarterly is published four times a year by the staff of the IRM. If you or someone you know would like to be on our mailing list, if you have something you would like to contribute (e.g., titles plus abstracts of papers in press), or if you have any suggestions to improve the newsletter, please notify the editor:

Dario Bilardello
Institute for Rock Magnetism
University of Minnesota
150 John T Tate Hall
116 Church Street SE
Minneapolis, MN 55455-0128
phone: (612) 624-5049
e-mail: dario@umn.edu
www.irm.umn.edu

The U of M is committed to the policy that all people shall have equal access to its programs, facilities, and employment without regard to race, religion, color, sex, national origin, handicap, age, veteran status, or sexual orientation.