
MSOM 
P95 

<J~311 r 
74-s 

Reports from the Research Laboratories 

of the 

Department of Psychiatry 

University of Minnesota -

Detecting Latent Clinical Taxa, VII: 

Maximum Likelihood Solution and Empirical and 

Artificial Data Trials of the Multi-indicator 

Multi-taxonomic Class Normal Theory 

by 

ROBERT R. GOLDEN, SHIRLEY H. TYAN, and 

PAUL E. MEEHL 

Researeh Report PR-74-5 October 1974 



Reports from the Research Laboratories 

of the 

Department of Psychiatry 

University of Minnesota 

Detecting Latent Cl inlcal Taxa, VI I: 

Maximum Likel !hood Solution and Empirical and 

Artificial Data Trials of the Multi-indicator 
1 

Multi-taxonomic Class Normal Theory 

by 

Robert R. Golden, Shirley H. Tyan, and 

Paul E. Meehl 

Research Report PR-74-5 October 1974 

1This research was supported in part by grants from the Psychiatry 

Research Fund and the National Institute of Mental Health, Grant 

Number MH 24224. 



TABLE OF CONTENTS 

I. IntroductIon .•... .................................. I I I I I I I I I I I I I I 1 

II. The Maximum Llkel lhood Solution .••... . ................... . I I I I I I I 4 

Ill. Artificial and Empirical Data Trials •••..•....•.••••..•.....••.•• 5 

IV. Use of Probability Paper for Initial Guesses .................... 11 

V. Multi-indicator Generalizations ....•..........••.•..•••......••. 12 

VI. The Independence Assumption .••...•••••.•.•..•••••••••••••.••.•.. 19 

VII. The Normal tty Assumption •....•.•....••••.•.•••••.•.•....•.•••.•. 20 

V Ill. Development of lndicators ••••..•..•••••••....•••.•••••••.•...•.. 25 

IX. Classification of lndivlduals ....••••••••.....•.•.••...•••...••. 32 

X. Consistency Tests ..•.....•.•........••........ , •................ 34 



1. Introduction 

In a previous research report in the present series, the 

minimum chi-square single indicator normal theory's parameter 

estimation accuracy and taxon detection power in an empirical 

tria I were both sufficient to encourage further study of the the­

ory (Golden and Meehl, 1973a). It was also shown by ~nalytlcal 

development In that report that the indicator latent distribu-

tions within the taxon and the non-taxon class on keys are quasi­

normal, which is the sole assumption upon which most of the nor-

mal taxometric theory rests, If they are sums of dichotomous items 

which are pairwise slightly correlated within the taxon and the 

non-taxon class. The only shortcoming of the minimum chi-square 

calculation method (see Meehl et ~., 1969) is that it is very time 

consuming and expensive even on a high-speed computer. The maximum 

I lkel lhood solution by Hasselblad (1966), besides providing for much 

quicker calculation, Is not restricted to one taxon plus the non­

taxon class, Is amenable to a multi-indicator generalization as 

shown in this report, and uses estimators that are known to have 

optimal properties. In the present report it is shown that results 

of several artificial and empirical data trials of the generalized 

maximum I ikel lhood method are sufficiently encouraging to warrant 

further study of the method. 

The present taxometric theory, as others in previous reports 

Is Intended for the detection of 'real' emoirical classes. When 

alI the members of such an empirical class are considered to have 

the same etiology, such as the presence of a mutated gene, a germ 
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or a neural defect, whereas alI non-members are considered not to 

have this etiology, then fhe class wl I I be cal led a 'taxon' and the 

complement of the class wl I I be cal led the 'non-taxon class' or the 

'extra-taxon class'. Previously developed theories In this series 

have allowed for only a single taxon and a single non-taxon class, 

the major reason being that work on the present methodological prob-

lem resulted from Interest in testing a substantive theory concern-

lng schlzotypes and non-schizotypes (Meehl, 1962; 1965; 1973b). Gen-

era I ly however, a taxonomy wi I I consist of more than one taxon and, 

possibly, more than one non-taxa class. The present theory allows 

for this possibl I lty under the assumption that the indicator distri-

button is quasi-normal within each taxon and within each non-taxa 

class as In the example in the figure below. It should be noted that 

by 'non-taxon A class' we would be referrin~ to the union of classes 

8 and C but by 'non-taxa c I ass' we refer to 8. The point is that· in 

the present report It is continually necessary to refer to two kinds 

of empirical classes, In general, the taxon and the non-taxa class, 

and for this purpose we wi I I use the term 'taxonomic class'. In the 

example below each of A, Band C is a taxonomic class, whereas the 

union of any of them pairwise or higher order is not (by definition) • 

/ 

' 

/ ---

I 

i 

. .. ~·..-....., 1non-taxa c I ass 8 
I ' 

I \ 

\ 
I, 

Indicator Score 
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The theory allows for several different taxonomic class order­

Ings. For example, consldor the posslbl I ltles when there arc three 

taxonomic classes. If one were using the amount of blood sugar as 

an Indicator then a diabetes taxon m~ght be detected on the high end 

and a hypoglycemia taxon on the low end, the middle taxonomic class 

being normals. In psychopathology this taxon, non-taxa class, taxon 

pattern would potentially be likely when measures of bi-polar per­

sonal lty traits are used, such as extroversion-Introversion, where 

each direction of extreme deviation Is indicative of psychopathology. 

The case of two contiguous taxa might turn out to be i I lustrat­

ed by the normal-neurotic-psychotic example where a number of differ­

ent psychopathology measures possibly could be used. 

Whl le It Is intended that the term 'taxonomic class' is to re­

fer to a real rather than fictional entity, the fact that it has 

proved difficult to demonstrate the existence of such taxonomic 

class~s In psychopathology is i I lustrated by our need to resort to 

hypothesized examples above. Because of this difficult state of af­

fairs, It is useful to remember that taxometric theory can only be 

required to detect the existence of a taxonomy and not necessarily to 

establish its essential nature. In the first stage of detecting 

existence, the theory can produce erroneous results of two kinds. 

First, the theory may not be powerful enough to detect a truly exist­

ant underlying taxonomy. Second, and probably more important, the 

theory can produce spurious detections. The I ikel ihood of this kind 

of error can be decreased substantially by using wei 1-tested con­

sistency tests (Meehl, 1965; 1973a; Golden and Meehl, 1973b) which 

check the adequacy of the degree-of-fit of the theory. Several 
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consistency tests are developed In section X. 

I I. The Maximum Likelihood Solution 

An outl lne of the calculations of the method is given below; 

the interested reader is referred to the original arflcle by Hassel-

blad (1966) as further analytical development is provided there. 

Suppose that there are n taxonomic classes denoted by the sub-

script j with distributions on an indicator x and the taxonomic class 
n 

means, variances, and base-rates denoted by~., o. and p. ( r p. = 1). 
J J J j=1 J 

Let x be divided Into N intervals denoted by the subscript such that 

the Interval width Is smal I compared too .. Then let q,. be the den-
J IJ 

slty of the jth taxon In the ith interval and let this be approximated 

by 

l2i C1. 

exp{-(x. - ~.)2/2o.2}; 
I J J 

J 

also, 'let Q. be the compound density for the lth interval or 
I 

n 
E q I J. pJ .• 

j=1 

The only values that are known are the compound sample distri-

bution Interval frequencies f., i = 1, 2, 3, ••• , N. Hasselblad 
I 

shows that the maximum I ike I ihood estimates of the unknown latent 

parameters can be found by the steepest descent iterative procedure 

which results in the following equations: 

N N 
l-IJ, = E <f 1/Q.)q .. x./( E (f./Q

1
>q .. ), 

I= I I I J I I= 1 I I J 

N 
E 

i =1 

N 
(f./Q.)(x- ... )2/( E 

I I ,.J 
i= 1 

(f./Q.)a .. ); and 
I I 'I J 
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N N 
pJ. = E ( f I q .. P ./0. >I ( E f. > • 

i=1 IJ J I i=1 I 

The iterative procedure begins with Initial guesses of~., o. 
. J J 

and pj. It Is not shown how accurate the initial guesses must be 

or if, Indeed, convergence to the true values wi I I necessarily obtain. 

Scarborough (1962) shows that the method converges whenever the fol-

lowing condition is met: Let the true value of a root x satisfy the 

equation x = ~(x,y,z, .•• ); then if I~ I < 1 in a neighborhood of x 

which contains the successive approximations of x, then the approxi-

mations converge to the true value of x. 

I I I. Artificial and Empirical Data Trials 

The calculation scheme was applied to a variety of artificial 

and real data samples. First, three MMPI keys developed to dis-

criminate between the sexes were each analyzed by the method. The 

results are given in Table 1. The method gave very accurate oara-

meter estimates on the second and third keys after just 100 itera-

tions, at which point the estimates demonstrated strong convergence. 

However, for the first key, the base-rate estimate is markedly in 

error, especially after the process had been continued unti I con-

vergence was apparent. It is difficult to explain this singular error 

as other methods have estimated the base-rate equally wei I for the 

three keys. The exact significance of the larger number of iterations 

required for apparent convergence is not known but the result is i 1-

lustratlve of a general finding that if several hundred iterations are 

required for convergence then the results should not be trusted and 

wll I fal I further consistency tests. The chi-square goodness-of-fit 



First Key ( N = 11 05) r, ~1 ol p2 ~2 (12 x2* 

initial guess .500 6.00 3.00 .500 13.00 3.00 

No. of iterations 
50 .417 9.45 2.50 .582 14.40 2. 16 14.89 

100 .449 9.66 2.58 .551 14.51 2. 12 14.58 
200 .483 9.88 2.67 .516 14.64 2.07 14.37 
300 .499 9.98 2.71 .501 14.69 2.05 14.33 

true sample value • 389 9.57 2.55 • 611 14. 1 0 2.56 

error • 110 • 41 • 16 -.110 .59 -.51 

Second Key (N = 1105) 

initial guess .432 7.36 2.37 .568 11 • 97 2.26 

No. of iterations 1 

10 .428 7.33 2.36 .572 11.95 2.27 13o34 
0'1 
1 

50 
0 411 7o24 2.32 o589 11.89 2.29 13o28 

100 o368 6.98 2.23 .632 11 • 72 2.35 13. 18 

true sample value o389 7.31 2.42 0 611 11.68 2.47 

error -.021 -.33 -. 19 .021 .04 -. 12 

Third Key (N = 1105) 

initial guess o500 6.00 3o00 o500 13.00 3.00 

No. of iterations 
10 o418 8.64 2.54 .582 13.02 2o42 15.25 
50 .418 8.59 2.48 .582 13.06 2.38 14.92 

100 .416 8.58 2.48 .584 13.06 2.38 14.92 
200 .409 8.54 2.46 .591 13.03 2o40 14 0 91 

true sample value o389 8.60 2o57 • 611 12.84 2.53 

error o020 -.06 -0 11 -.020 . 19 -. 13 
*x 2 =26.30 

· 05 Table 1. Examples of empirical data trials of the maximum-! ikel ihood single-Indicator 
method using MMPJ keys to identify the sexes. 
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values (by comparing the estimated and the observed compound sample 

frequency distributions) are similar In magnitude and do not approach 

significance for the three keys. It is seen then that non-significant 

x2 values do not guarantee accurate parameter estimates. The Initial 

guesses were obtained by a method which makes use of probabi I ity pa­

per and which wi I I be discussed below (Harding, 1949). 

Artificial data were generated by means of a normal random num­

ber generator (seep. 3ff of Golden and Meehl, l973b for the method). 

Intervals were formed simply by rounding each generated number to its 

greatest Integer part; parameter values and sample sizes were such that 

this method produced an acceptable interval coarseness. A perusal 

of Table 2 shows that the method produced accurate parameter estimates 

with 100 Iterations when the mean separations are as smal I as one 

within taxonomic class sigma-unit and base-rates as disproportionate 

as .1 and .9. While none of the chi-square values approach signifi­

cance, the goodness-of-fit of the theory is evidence mainly by the 

acceptable accuracy of the parameter estimates. 

The results of the method when the initial estimates are poor is 

II lustrated by an example given in Table 3. It can be seen that ini­

tial guesses can be off quite a bit without apparently affecting the 

accuracy after a large enough number of iterations. However, several 

hundred Iterations were required for convergen~e to be apparent even 

though accuracy was sufficient after 100 iterations. Several extrapo­

lation methods have been tried to increase the speed of convergence 

but without much success. At oresent 100 to 200 iterations appear to 

be sufficient for adequate estiMation accuracy when initial guesses 

are not grossly in error, even though a much larger number is required 



Examole 1 
pl ).11 a, p2 ).12 a2 x2* 

initial guess .500 7.42 2.64 .500 13.50 1. 91 
estimate after 100 iterations .402 7.76 2.02 .598 14.02 2.39 16.9 
true value .429 8.05 2.06 .571 14.22 2. 18 
error -.027 -.29 -.04 .027 -.20 • 21 
Examole 2 (N = 1000) 
-~--
initial guess .500 7.42 2.56 .500 15.00 2.31 
estimate after 100 iterations .344 8.70 1.92 .656 12.73 2. 16 9.64 
true value .402 8.85 2.06 .598 13.09 2.08 
error -.058 -.15 -. 14 .058 -.36 .08 
Example 3 (N = 1000) 
initial guess .350 8.00 2.23 .650 13.00 2.26 
estimate after 100 iterations .327 8.56 2.29 .673 14. 11 2.29 18.68 
true value .310 8.05 2.06 .690 14.22 2. 18 
error .017 • 51 .23 -.017 -. 11 . 11 
Examole 4 (N = 1500) I 

0) 

initial guess .200 7.00 1. 73 .800 14.00 2.00 
I 

estimate after 100 iterations .256 7.67 2.06 .744 11 • 78 1.85 18.8 
true value .300 8.00 2.00 .700 12.00 1. 73 
error -.044 -.33 .06 .044 -.22 • 12 
ExamQie 5 ( N = 1000) 
initial guess .500 8.01 2.66 .500 13.42 1. 73 
estimate after 100 iterations .219 8.23 2.38 .781 14.34 2. 13 15.74 
true value .208 8.05 2.06 .792 14.22 2. 18 
error • 011 • 18 .32 -.011 • 12 .05 

Exa~J0~ (N = 1000) 
initial guess .106 1 0. 11 1.89 .894 11 . 1 5 2. 16 
estimate after 100 iterations . 110 10.44 2.01 .889 11. 11 2. 16 9.2 
true value .100 9.48 1.86 .900 11 . 1 3 2.02 
error • 010 .96 . 15 -. 011 -.02 • 14 

Examp~ <N = 1000) 
initial guess .500 7.42 2.65 .500 13.50 1.91 
estimate after 100 iterations • 128 8.54 2.12 .872 14.31 2. 17 12.22 
true value • 117 8.05 2.06 .883 14.22 2.18 
error • 011 .49 .06 -.011 .09 .01 

*x 2 o"""26.30 
• :::> 

Table 2. Examples of artificial data trials of the maximum-! lkel ihood single-indicator method. 



pl ~, a, p2 ~2 0'2 x2* 

initial guess .450 4.575 1. 17 .550 9.350 1.32 

Number of iterations 
50 • 104 9.618 1. 72 .896 11 • 205 2. 14 8.93 

100 • 106 10. 113 1.89 .894 11 • 1 50 2.16 9.08 

150 • 110 10.444 2.06 .890 11.114 2. 16 9.21 

200 • 11 5 10.871 2.12 .885 11 • 063 2. 16 9.29 

250 • 115 10.964 2. 15 .885 11 • 051 2. 16 9.29 

300 • 116 11 • 007 2.16 .884 11.045 2. 16 9.29 
I 

350 • 116 11 .027 2. 16 .884 11 • 045 2. 16 9.29 \0 
I 

400 • 116 11 • 027 2.16 .884 11 • 045 2. 16 9.29 

450 .116 11 • 038 2. 16 .884 11 • 041 2. 16 9.29 

500 • 116 11 • 039 2. 16 .884 11 • 04 1 2. 16 9.29 

550 .116 11 • 041 2. 16 .884 11 • 04 1 2. 16 9.29 

600 • 116 11 .041 2. 16 .884 11.041 2. 16 9.29 

650 • 116 11.041 2.16 .884 11 • 041 2. 16 9.29 

true sample value .100 9.020 1.90 .900 11 .253 2.04 

error .016 2.021 .26 -.016 -.212 • 12 

*x2_
05 

= 26.30 

Table 3. Example of artificial data trial of the maximum-1 ikel ihood single Indicator method 
when Initial guesses were poor (N = 1000). 
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for convergence to be easily discernible. 

It Is clear that Intervals must be such that the frequencies 

for each are large enough to avoid excessive sampling error. One 

procedure Is to combine pairs of contiguous intervals unti I (a) the 

Interval frequencies are apparently large enough to avoid excessive 

sampl lng error and (b) the compound frequency curve Is always mono-

tonlcal ly Increasing or decreasing on each side of the local maxima 

and minima, the number of each being less than or equal to the post-

ulated number of taxonomic classes. However, It has been found that 

for compound samples of a few hundred in size, taxonomic class mean 

separations of two within-taxonomic class sigma units and equal base-

rates which are about optimal conditions in psychopathology measure-

ment, the base-rate estimate can be in error by as much as .10, for 

example. The required interval frequency size and a safe method of 

interval construction should be determined more carefully by Monte 

Carlo study. 

The maximum I ike I I hood method has several advantages over the 

minimum chi-square method, m~inly general izabi I ity and much fewer, 

although stl I I numerous, calculations. Both methods apparently can 

produce multiple solutions but the existence of several solutions is 

more east ly discovered with the minimum chi-square method. Whether 

this Is an advantage or not depends on whether or not the different 

solutions correspond to real but different taxonomies. Suffice it 

to say that In the present work there is no evidence to indicate 

that possible existence of several taxonomies underlying a properly 

selected set of Indicators is a matter of real concern althouah of - , 
course, this may not always be the case. In this connection, it 
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should be noted that when the solution is unique then It has been 

analytically shown that both maximum I ikel ihood and minimum chi­

square methods produce the same result for large enough samples 

<Cramer, 1946). 

IV. Use of Probabi I ity Paper for Initial Guesses 

The Initial guesses of the parameters can be obtained by a 

procedure described by Harding (1949). The method makes use of 

probabi I ity paper and the assumption that the taxonomic class fre­

quency distributions are normal. Generally, when the compound fre­

quency distribution is polymodal and the sample size very large, the 

method is sufficiently accurate by itself. Since the procedure is 

based on the same assumption of normality within taxonomic classes 

It lends itself wei I to the problem of making initial guesses for 

the maximum I lkel ihood method. 

Two dozen cummulative density functions resulting from composites 

of various numbers of artificial normal frequency distributions, for 

which the compound sample sizes were 1000, were analyzed without know­

ledge of the true component parameters by using the probabi I ity pa­

per method. The following general conclusions were formed: 

a) when the separation between component means is about two 

Intra-component sigma units then the parameters can be 

estimated with at least 90% accuracy, 

b) two components are distin~uishable from one component when 

the separation in the means is above one intra-component 

sigma unit, 

c) when the estimates are such that the estimated mean 
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separqtlon Is less than two Intra-component sigma units 

the results are not to be trusted, and 

d) apparently, the estimates are always accurate enough to 

serve as Initial guesses for the maximum I ikel ihood 

method. 

These conclusions are known to be true only when the within component 

population distributions are perfectly normal. In practice, distri­

butions are not perfectly normal, of course; therefore, it remains 

to be determined If the probabi I ity paper method is sufficient for 

the unknown robustness of the maximum I ikel ihood method with respect 

to the normal lty assumption. Pending such a study it would appear 

safe to use the method with the following stipulations: 

a) the method is not more accurate than Is indicated above 

for Ideal conditions and 

b) the method might be mainly useful in suggesting alternative 

latent situations which can be subjected to testing by the 

normal theory. 

V. Multi-Indicator Generalizations 

When several Indicators are analyzed singly they can produce dis­

crepant estimates of the base-rates (some oral I being erroneous) 

such as the three male-female keys did. Possibly the only way to 

rectify such a situation when singly analyzing Indicators is to 

Increase the sample size. Since more than one indicator is usually 

aval fable, it follows that one Is behooved to consider a sumultaneous 

multi-i.ndicator approach as oresumably this lessens the sample size 

requirement. The maximum I ikel ihood iterative scheme can oasi ly be 

adapted to the multi-indicator situation by simultaneously estimating 
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the parameters of each Indicator just as is done If analyzed singly 

except changing the estimate of the common base-rate parameter to be 

the average of the estimates produced by the previous iteration. 

Analytical proof that such a method should correctly converge 

Is not provided but an empirical trial of the method is encouraging 

In this respect. The three male-female keys used previously were 

analyzed and the results are given in Table 4. The results of sin­

gle Indicator analyses were used as initial guesses and convergence 

was apparent after 50 iterations. The results are remarkable in 

that alI the parameter estimates are extremely accurate. Further 

encouragement is gained from the fact that the Intra-taxa correla­

tions between the indicators were each between .3 and .5; thus the 

method might not require a strong within taxonomic class independence 

condition to be met. 

Also, the method was tried with an artificial data sample in 

which the three Indicators were distributed multivariate normally 

within taxonomic class, alI within-taxonomic class correlations being 

equal to .5. The resulting parameter estimates, given in Table 5, 

were also quite accurate. 

It Is intuitively clear that a multi-indicator method should 

be more accurate of the two approaches especially if alI indicators 

are of about equal validity and are weakly correlated within taxono­

mic class. Also, it is true that some (most?) taxonomies require 

the use of more than one indicator for a complete specification. 

For such a taxonomy, using fewer than a complete set of indicators 

would lead to an incorrect result. On the other hand, it also is 

true that sometimes only a single candidate indicator is avai fable. 



First Key 
p1 lJ, a, p2 lJ2 0'2 x2* 

initial guess .499 9.98 2.71 .501 14.68 2.05 

estimate after 50 iterations .431 9.55 2.54 .569 14.45 2. 15 14.7 

true value .389 9.57 2.55 . 61 1 14. 10 2.56 

error .042 -.02 -.01 -.042 .35 -.41 

Second Key 

initial guess .368 6.98 2.23 .632 11 • 72 2.35 

estimate after 50 iterations • 431 7.34 2.36 .569 11 • 96 2.26 13.4 

true value .389 7.31 2.42 . 61 1 11 • 68 2.47 

error .042 .03 -.07 -.042 .28 -.21 I -~ 
I 

Third Key 

initial ~uess .410 8.54 2.46 .590 13.03 2.39 

estimate after 50 iterations .431 8.66 2.51 .569 13. 11 2.37 14.9 

true value .389 8.60 2.57 . 611 12.84 2.53 

error .042 .06 .06 -.042 .27 -. 16 

*x 2 _05 = 26.30 

Table 4. An empirical trial of the first multi-indicator generalization of the maximum-
I !kef ihood solutions using the three MMPI keys to identify the sexes (N = 1105). 



First Key 
pl lll al p2 ll2 (12 x2* 

Initial guess .31 9.90 2. 15 .69 15.00 2.07 

estimate after 200 Iterations .28 9.68 1.83 .72 14.89 2.03 6.3 

true sample value .30 10.04 2. 12 .70 14.93 2.05 

error -.02 -.36 -.29 .02 -.04 -.02 

Second Key 

initial guess • 31 12. 12 3.27 .69 17.97 3.08 

estimate after 200 iterations .28 15.09 3.98 • 72 17.30 3.39 17.9 

true sample value .30 13.77 3.27 .70 17.94 3.08 
I .... 

error -.02 1.32 • 71 .02 -.64 • 31 \.11 
I 

Third Key 

initial guess • 31 11.55 1.52 .69 20.53 1.54 

estimate after 200 iterations .28 12.54 1.60 .72 16.86 1.61 6.2 

true sample value .30 12.60 1.53 .70 16.94 1.52 

error -.02 -.06 .07 .02 -.08 .09 

*x2 = 20.8; x2 = 11.6 
.01 .05 

Table 5. An artificial trial of the first multi-indicator generalization of the maximum 
likelihood solution using the three MMPI keys to identify the sexes (N = 1000). 
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Also, It Is possible that some taxonomies are optimally detected 

when a certain single Indicator Is used alone, that Indicator 

being the only one with the required taxon-specific variance. 

In this situation, the use of further indicators, even though each 

being adequately discriminative, may merely cause what Loevinger 

(1957) cal led "psychometric drift". One way this could happen Is 

by violation of within taxa independence assumptions which are 

used In the solution below. In summary then, the comparison of 

the single and the multiple Indicator methods wl I I not just be 

a mathematical matter but also an empirical one. 

The multi-Indicator generalization of the maximum-! lkel ihood 

development by Hassel bald can east ly proceed under the assumption 

of Intra-taxonomic class Indicator Independence. Let xi k be the score 

of the lth Individual on the kth indicator and x. be the vector of 
I 

the lth Individual scores on the p Indicators (xil' xi
2

, • • • I X. ). 
lp 

Also, let ~<x 1 > denote the compound density and ~.(x.) denote the 
J I 

jth taxonomic class density where j = 1, 2, 3, •.• , mat the point 

x
1
• Thus 

m 
~<x.> = 1: p.cp.<x.> 

I j=l J J I 

where p. Is the base-rate of the jth taxonomic class. The I ikel ihood 
J 

function Is given by 

L = 
N 
II 

i =1 
~ <x. >, 

I 

and the maximum I ikel ihood estimates of the latent parameters pj, ~Jk 

and ojk' where k denotes the kth indicator, are obtained by solving 

the following set of 2mp + m - 1 simultaneous eauatlons: 
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a log L 0 = ap. 
J 

J = 1, 2, 3, •.. , m- 1 

olog L = 0 
dlJ J k 

J = 1, 2, 3, ••• , m ( 1 ) 

a log L = 0 
aojk 

k = 1, 2, 3, ••• , p 

The following two assumptions make It possl~le to easl ly obtain 

solutions of (1): 

(a) alI· Indicators are independent within each taxonomic 

class; I.e., 

(b) the interval density Is equal to the normal curve or-

dlnate at the Interval midpoint; i.e., 

{ 
(xi k - lJ j k) 

2 Jl 
exp -t 2 · 

0 jk 

We now have 

N 
log L = E log{<P<x.>} 

I= 1 I 

N m 
= I: log{ I: p.4>.Cx. >}, 

I= 1 j=1 J J I 

and It follows that 

elog L 
ap. = ~ f{4>J.cx 1>- 41 cx 1 >}/~ p.<P.Cx.>] = o, (j = 

1=1 l' m l j=1 J J 1 
1 , 2, ••• , m-1 ) ( 2) 

J 

= ~ fpJ.<PJ.cx 1> 
1=1 l P ·4>. ex.>} = J J I 

0, and (3) 
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m 
- ~ p ~ <x- ) and q - ~J.<x- 1 > then (3) and (4) can be - ~. ·'+'·I 'j-'t' 

J= 1 J J I 

l1 Jk = 

N 
1: P .q

1 
.x. lo

1 i=1 J J II<{' 

~p.ql./o. 
i=1 J i~ I 

and 

N . 

I: p . q I . ( x. k - lJ • k) 2 /Q I 
1=1 J J I J /' 

~ p.q .. /QI 
1=1 J I/~ 

Writing (2) as 

and multiplying 

I: ...:..w. = I: _..!!1 N [q .. } N {ql } 
1=1 Ql 1=1 o, 
by p., we have 

J 

N {q .. } N tl J 'I I m 
p I: --:....L. = p I: -
Ji=1 o, Ji=1 Ql 

Summing (2a) over j, we get 

I: I: I I I m N {p.q. ·J 
j=1 1=1 o, 

and since the left side of (2b) Is N, It follows from (2a> that 

N {qi.} 
PJ.I: ~ = p.N 

I= 1 i J 

or N p.ql j 
I: .I I 

I= 1 o, 
p. = 

J 
N 

(5) 

. (6) 

(2a) 

(2b) 

(7) 
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Thus equations (5), (6) and (7) can then be solved in an iterative 

fashion just as was done In the single Indicator method. It has 

been found that the estimate of (5) must be substituted Into (6) 

within the Iteration and I ikewise that of (6) (and (5)) into <7> 

for the Iterative process to converge correctly. 

This completes the derivation of the multi-indicator general i­

zatlon of the maximum I ike I ihood solution. Unfortunately a com­

puter program for the method has not been completed and there are 

no trial results to report at this time. 

VI. The Independence Assumption 

The most Important co~parison of two multi-indicator general i­

zatlons would appear to be that of the relative robustness with re­

spect to Indicator Independence within taxonomic classes. Even 

though the first method is not derived from explicitly stated as­

sumptions as the second method is, and It is not known if the re­

quired assumptions for the first method do, in fact, include an 

Independence assumption, a few Monte Carlo results indicate that 

the parameter estimates lose accuracy as within taxonomic class 

dependency is greatly increased. Indicator independence within 

taxonomic class Is an Idealization that is not always easily approx­

Imated In practice. In the area of psychopathology measurement, not 

only do the most powerful taxometric Indicators frequently correlate 

within taxonomic class because of shared valid variance but also 

because of shared error variance due to common sources of error of 

measurement. 
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While the (unknown) formal independence requirements of the 

first generalization could be either stronger or weaker than those 

of the second, most importantly, it is not known which method is 

more robust with respect to eithe~ (a) indicator Independence with­

In taxonomic class or (b) within taxonomic class normality. That 

Is, it Is not so much the strength of the assumptions but more the 

robustness with respect to the assumptions that Is the matter of 

ultimate concern. Apparently, only a Monte Carlo investigation 

wi I I allow for such comparison of the methods. 

VI I. The Normality Assumption 

The assumption of intra-taxonomic class normality has several 

consequences which are important in such matters as construction 

of Indicators from Items and the Identification of a taxonomy. 

Since the present taxonomic work uses unweighted sums of M~PI 

Items, the present analysis is in terms of indicators which are 

sums of Bernoul I I variables. The reasonableness or unreasonable­

ness of the normality assumption can be more easily determined with 

aid from the result that the sum of (many) independent Bernoul I i 

random variables is distributed asymptotically normal, the approx­

Imation being better the larger the number of such variables (see 

p. 24 of Golden and Meehl, 1974a). It should be pointed out that 

it Is not necessary that the Bernoul I i variable parameters alI be 

the same; the demonstration referred to above shows that the vari­

ables can have any set of parameter values. Monte Carlo study 

should show that in practice, for short enough keys, the approxima­

tion Is dependent on the dispersion of the Item means, being better 
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when the dispersion Is smal I. It should I lkewlse be shown that 

for reasonably long keys, say about 25 Items or more, the distri­

butions are approximately normal If the correlations between each 

pair of Items are close to zero. Whl le pairwise item independence 

Is a sufficient condition It has not been shown that it Is a neces­

sary one. It would appear that for a long enough key It is only 

necessary that the average of the absolute values of the correla­

tions be near zero. These matters are terribly complex to handle 

analytically but a Monte Carlo study wi I I be simple and straight­

forward and wi I I provide a sufficiently oreclse and general result. 

Since the method requires that Indicators be constructed from 

items that are approximately independent within taxonomic class, 

the Indicators have nearly zero homogeneity within taxonomic class. 

Thus, whatever degree of the homogeneity of the key does exist for 

the compound group is causerlmainly, If not solely, by the compound 

group being a mixture of the taxonomic classes. Conversely, when 

a compound frequency distribution is determined to be the resultant 

of two or more overlapping normal frequency distributions then it 

Is impl led that the items of the key should be on the average in­

dependent within the corresponding taxonomic classes. This last 

result leads naturally to consistency tests which are discussed 

below. Most importantly here though, it follows that keys that 

are considered to be even moderately homogeneous measures of a 

single dimension within the taxonomic class are most I ikely not 

suited for use with the present method; the reason being, of course, 

that homogeneity imp I ies non-normality of the intra-taxonomic class 

distributions. 
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For the first multi-indicator method, In which, In view of some 

Monte Carlo trials, strict Independence between Indicators Is not 

required, It Is Interesting to note that while Items within the key 

must be on the average Independent within taxonomic class, Items 

from the different keys presumably can be rather highly dependent 

within taxonomic class. Thus, in constructing keys from a large set 

of discriminative Items what is necessary Is to somehow sort the items 

Into groups such that the average absolute correlation within each 

group is near zero within taxonomic class; the keys are then formed 

from these groups paying no attention to cross-key correlation. Ap­

parently two Items from two different groups can be correlated mod­

erately high on the average; possibly, the keys could even have the 

properties of paral lei tests. Curiously, the Item independence re­

quirement for the maximum covariance method is diametrically opposite 

of this. The major assumption of the maximum covariance method is 

roughly that the indicators be independent within taxonomic class. 

The covariance of two keys Is zero if alI the items of one key are 

Independent of alI those of the other key. This result follows 

from the fact that the covariance of sums of items Is a I inear func­

tion of alI the item cross-key covariances (McNemar, p. 206). Although 

pairs of Items from different keys must be weakly correlated on the 

average, Items within a key can be highly correlated; that is, keys 

can be homogeneous within taxonomic class. 

Thus, for example, if scales 7 and 8 of the MMPI are two of a 

set of candidate indicators of a purported taxonomy, then the normal 

theory is most I ikely more appropriate than the maximum covariance 

theory since the keys are re~arded to be very heterogeneous and yet 
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are highly correlated for most populations. On the other hand, 

If keys are known to have high internal consistency for compound 

samples, being developed by such methods as factor analysts, then 

the maximum covariance method is more· appropriate. Whl le such 

~priori considerations are sometimes useful they are not sufficient 

for determining If one theory or another is adequate In a particu-

lar Instance. It is the ultimate responsibi I ity of the consistency 

tests, which are discussed below, to determine this. Suffice it 

to say here that if the assumptions of a theory are such that the 

real situation deviates more from the Ideal condition than can be 

tolerated for accurate enough estimation of the parameters (the method 

is not robust enough), then a good consistency test wi I I detect this 

disparity and indicate that the theory should be rejected. 

The normal lty assumption imp I ies that the compound distribution 

must have certain properties. The resultant of two sufficiently dis­

tinct but overlapping normal distributions differs from the normal 

one in being either skewed or platykurtic or bimodal. Thus the com­

pound frequency distribution should be initially checked for the 

presence of one or more of these characteristics as the disjunction 

serves as a necessary requirement for the normal theory. Sampling 

Irregularities make this step sometimes appear difficult; suffice it 

to say that when this happens It probably indicates that the sample 

sJze Is too smal I for the normal method although accurate Monte Carlo 

guidance Is yet to be obtained. 

In view of the result mentioned above, the compound frequency dis­

tribution is non-normal because the compound item correlations or co­

variances are not zero. Analysis of the compound covariances leads to 
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another taxonomic theory closely related to the normal theory. 

Letting the subscripts I and r denote the left and right taxonomic 

classes respectively, then the compound covariance between two 

Items x, y Is given by 

where 

0 xy = Po + Qoxy + PO~p 6p 
xyr I x y 

o Is the covariance within the left taxonomic· class, 
xyl 

o Is the covariance within the right taxonomic class, 
xyr 

P Is the base-rate of the right taxonomic class and 

Ap and ~p are the differences In the item plus-rates for 
X y 

the two taxonomic classes for items x and y (see p. 51 

of Meeh I , 1965) • 

Assume as before, = 0 = o. 
xyr 

Thus for n items and two taxa, 

there are 2n + 1 unknowns (the taxonomic class Item rtus-rates and 

the base-rate) and there are (~) = n(n-1) 
2 

covariance mixture equa-

tlons such as above. Thus if the system of equations 

o . . = PO < P . - p . I > < P . -
I J I r I Jr = 1, 2, 3, ... , n;<iij> 

pi = p(pir-

has an unique solution (it is overdetermined when n ~ 3) then it can 

be concluded that the Items satisfy the latent conditions required by 

the normal theory (it is interesting that this Is so even though the 

method does not make any reference to normal distributions) and analy-

sis of the key compound freauency distribution by the maximum I ikel i-

hood method should yield consistent results. Unfortunately, methods 

for solving (8), such as one by Brown (1967~ have been found to be 

(8) 
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highly sensitive to sampling error and severely lack robustness with 

respect to assumption of zero within taxonomic class covariance 

VI I I. Development of Indicators 

When Indicators are sums of items then consideration must be 

given to selecting Items that are independent within taxonomic class­

es; however, there are no establ lshed methods for doing this. One 

posslbi I ity Is provided by consistency hurdles theory, an independent 

taxonomic detection theory discussed In another report in this series 

(Golden, et £l., 1974c). Suffice it to say here that the method se­

lects Items which should be sufficiently independent within taxonomic 

class as the method is based on the same requirement. If used in this 

manner the two methods would serve as checks on each other. 

A method that has been found not to work wei I is to construct 

keys by factor analysis of the compound sample, forming a key from 

items that load highly on the same factor. A few such studies with 

the MMPI Items indicate that factors tend to result from items that 

are not only discriminative of the taxonomic classes but are also 

correlated within the taxonomic classes. This result would evidently 

be obtained If the factor structures within the taxonomic classes 

were similar to that for the compound group. 

One item selection theory that follows from the same assumption 

of Independence proceeds as follows. Suppose there exists a large 

pool of Items, some taxometrical ly discriminative, some not, and we 

do not know which Is which, and we wish to choose a subset of items, 

each discriminative and each pair satisfying the independence require­

ment. Let l,j,k denote three items. Then if the three items are 
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mutual Jy Independent within taxonomic classes It Is easily shown 

that for the compound group 

d~f 
a 1 .a 1 k (PQ~p.6p.)CPQ6p.6pk) 

Fl 
.I = I I I = PQC6p. 2 ) 
ajk PQllp lPk · 

I 

' where 6p. Is the difference In taxonomic class Item means; or a con-
I 

stant for all J and k. For each I, all (j,k) pairs that give approx-

imately the same estimate of F. are determined. Again for each I, 
I 

the largest subset, call itS., of those (j,k) pairs Is determined 
I 

such that every pair of Items In S. gives approximately the same 
I 

value for F1• Such a subset wi I I be formed for every item i, and if 

It Is large enough It can be further considered as a set of items 

for a key. If there are sets of mutua II y ouas i- independent-within-

taxonomic class items in the original pool then they should turn up 

as s1 subsets. It Is clear however, that an s1 subset does not neces­

sarl ly consist of Items which are quasi-independent within taxonomic 

classes. 

The sample value of F., denoted by F., wi I I contain error due 
I I 

to sampl lng error In the three covariances; hence, it wi I I not be 

exactly equal to PQ6p. 2 • A second reason that F. wi I I not exactly 
I I 

equaly PQ6p 1
2 Is that the three items wi I I not be perfectly pairwise 

Independent within taxonomic classes. Thus these two sources of error 

when taken into account give a range for acceptable values of F .• In 
I 

order to obtain an estimate of this range, consider each triplet of 

o's as I lkewise containing these two kinds of error; namely, sampling 

error, a .. and dependence error, B. . • S i nee 
IJ IJ 

~ i 1 j k = 

o . . a. k 
I I I 

oik 
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and letting 6 denote a smal I deviation of F from PQ6pi 2 we have 

aik a.. a 1 iaik 
• ojk (nij + sij) + 0~~ (nik + sik)- ojk2 (njk + sjk) 

If we restrict the within taxonomic class sample covariance to be 

I ess than o, then each B Is equa I to Po + Qo = o. In order to assess 

the n's we must know the sampling variance for the covariance of two 

Bernoul I I variables. 

The derivation for sampling covariance proceeds as follows. Let 

I and j be two subscripts which refer to two Bernoul I i random variables. 

The sample covariance between the two variables is given by 

= 

r.Cx.k-x.)(x.k-x.) 
k I I J J 

n-1 

n 

I: x.kx'k 
k= 1 I J 

n-1 

n 
- --1 x.x. 

n- 1 J 

the variance of s
1
j is given hy 

E { s . . - E ( s .. ) } 2 = E ( s .. 2 ) - { E C s .. ) } 2 . 
I J I J I J I J 

The first term can be developed as follows: 

2 = E[-1-"' n ---j 2 

E(slj ) n-1 ~.. xikxjk- n-1 xixj 
. k 

2n n - 2 E(x.x.r. x.
1
kxJ.k) + ---1 E(x. x.2) 

(n- 1)2 1 Jk n- 1 J 

If we let ECx
1

) = p., E(x.) = p. and E(x.x.) = p .. , we have 
I J J I J I j 

E<s . .2> = 
IJ (n-~'f 1

- 1 
np. . + n ( n-1 ) p .. ! 

- IJ ~~ 

_2_n_l- .!_ p .. + 
(n-1) n IJ 

n-1 2 n-1 n-1 (n-1)(n-2) 
-- p .. +--- o .. o.+ -- p .. p.+ p.p.p. · n IJ n · IJ 1 n IJ J n 1 J IJ 
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[ _!l_J 2 
ln ( n - 1 ) ( n-2 ) ( n-3 ) 2 2 + 4 n ( n - 1 ) ( n-2 ) 

+ n-1 n P I p j n pi P / i j 

n(n-l)(n-2) 2 2n(n-1) 2 2n(n-1) 
+ n P; Pj + n4 Pij + n4 P;P;j 

+ n(n-1)(n-2) 
p.p.2 + 

2n<n-1) + n(n-1) 
+ ~-p. J n4 n4 PI .p. n4 P;Pj I J J J n IJ 

Ln-~ >2 

- r-

+ 2 J 2 
+ 1 ]+ 2 l_n __ 2 = p .. ( n-1 ) 2 n(n-1)2 Pij n-1 n-1 n ( n-1 ) IJ 

[ 

l 
2 2 : + --+ i+ P;jPi n-1 n(n-1) j P P 

r __ 2 + 2 -
1 ij j L n-1 n(n-1)j 

l 
4(n-2): (n-2)(n-3) p,2p.2 

+ n(n-1) _j + n(n-1) 1 J 

2 n-2 : 2 ; n-2 I 1 [ 
;- -, 

+ p I p j n ( n .:JT_I + p i p j L n ( n - 1 ) J - n ( n -lT p i p j ' 

The second term is written In terms of the same parameters as follows: 

{ECs 1j>}
2 = Cpij- pipj> 2 = P;/-2oipjpij + Pi

2
P/· 

After further simpl icication we have 

r -, 

1

2(3n-4): n-2 2 
+ppp +----pp 

i j i j __ n ( ri - 1 ) I n ( n - 1 ) i j 

+ 
n-2 2 1 _ f_(2n-3) 

n(n-1) pi p j + ---- p p n ( n-1 ) n<n-1) i j 
2 2 p. p .• 

I J 
Letting o .. = plj - P;Pj or p .. = o .. + D.p., we have for the samp I i ng I J IJ IJ . I J 

variance of the covariance o .. between two Bernoul I i variables, with 
IJ 

parameters P; and pj, for samples of size n, the expression 

+ [ 1 J- 2 {2<2n-3) -~~ 
PiP j n ( n-1) - Pi P j L n ( n-1 ) J • 
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The Monte Carlo method was used to check the formula at a few values 

of the parameters and the results agreed very wei I with those of the 

In Table 6 the standard deviation of sij is given i~ terms 

of various values of n, p., p. and o ..• 
I J I J 

formula. 

Returning to the expression for~~. we are now able to estimate 
I 

upper and lower bounds. To obtain an upper bound we assume that 8 .. 
IJ 

= 13 = 0 > 0, and since the probab Ill ty that a .. and aik deviate lk IJ 

positively and ajk deviates negatively by a sigma unit or more is 

less than .05 and the sigmas of the a's are less than .01 for n ~ 500, 

we have 

o.k6'k +a .. a.k + o .. o.k 
~F I I i k < I I ~·~ k ~ I I I ( • 0 1 + 0 ) = 8 i I j k 

nearly alI the time. 

In similar fashion, a lower bound can be shown to be the nega-

tive of the -upper bound. Thus for each i, pairs of items are selected 

so that the p;, irs of F. I . k + E3. I . k i nterva Is intersect. 
I J - I J 

The method was tried in an example usln9 10 items, 5 of which 

discriminated strongly between the sexes ( ~D. > .30) and 5 which did 
I 

not (-.10 < ~p. < .10). Two of the discriminative items were strongly 
I 

correlated within the sexes while alI other eight pairs of discrimina-

tive items were not. The method suceessful ly picked the four most 

discriminative and weakly correlated items. After n computer orogram 

Is comp I eted the method w i I I be studied by more extensive emp i rica I 

and artificial data trials and in conjunction with the maximum I ikel i-

hood taxometric method. Although the method wi I I not neccssari ly 

produce independent item sets, (that is, if there are no such sets, the 

method may produce a spurious set), it should detect such sets of items 



N 

100 0.00 

100 0.05 

100 0.10 

100 0. 15 

500 0.00 

500 0.05 

500 0.10 

500 0.15 

1000 0.00 

p 

.2 

.4 

.6 

.8 

.2 

.4 

.6 

.8 

.2 

.4 

.6 

.8 

.2 

.4 

.6 

.8 
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.2 

.0161 

.0197 

.0197 

.0161 

.0204 

.0206 

.0174 
--* 

.0228 

.0202 

.0240 

.0072 

.4 

.0241 

.0241 

.0197 

.0240 

.0232 

.0174 

.0229 

. 0211 

.0205 

.0170 

.0088 .0107 

p. 
I 

.6 

.0241 

.0197 

.0240 

.0206 

.0229 

.0202 

.0205 

.0088 .0107 .0107 

.8 

.0161 

.0204 

.0228 

.0240 

.2 

.4 

.6 

.8 

.2 

.4 

.6 

.8 

. 007...;::2;....._.;...' 0:....:0:....:8...;;..8 __ ._0_08_8 __ . 0072 

.0091 

.2 

.4 
,6 
.8 
.2 
.4 
.6 
.8 

.0092 

.0078 

.0102 

.0090 

.0107 

.2 .0051 

.0107 

.0103 

.0078 

.0102 

.0094 

.0091 

.4 .0062 .0076 

.6 .0062 .0076 

.0107 

.0092 

.0102 

.0090 

.0091 

.0091 

.0102 

.0107 

------------~~----------~·.8~---------~·~0~0~5~1 __ .0062 
1000 0.05 .2 .0064 

.0076 

.0062 .0051 

1000 0.10 

1000 0.15 

.4 .0065 

.6 .0055 

.8 

.2 

.4 

.6 

.8 

.2 

.4 

.6 

.8 

.0072 

.. 0064 

.0076 

.0076 

.0073 

.0055 

.0072 

.0066 

.0064 

.0054 

.0076 

.0065 

.0072 

.0064 

.0064 

.0064 

.0072 

.0076 

Table 6. Values of the sampling standard deviation of thP. covariance of two Bernoul I i 
variables as a function of samole size (N), covariance (a .. ), and the two 
variable parameters, p. and p.. IJ 

I J 
*Note: The formula Is evaluated only when the following conditions are met: (i) p .. ~ 0 

) 1 and (v) 1- 11 ' (il) n 1.-p.<p.(1-p.)p.(1-p.), (iii) o.>p .. , o.~p .. , (iv -p.>p.-p.. PJ·>p. p.,. 
~· J I - I I J J . I - I j J I J I - J I J - I I J 
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(for large enough samples) if, ~fact, they do exist. 

As the above method is cumbersome, although encouragin9, it is of 

Interest to describe a simple method that·fai led as It leads to another 

Important fact. In selecting items for keys It is necessary that an 

Item meet two conditions. First, items must dl~criminate sufficiently 

between the taxonomic classes and second, an item must not be correla-

ted with the other selected items within the taxonomic class. Thus, 

the total manifest covariance between items x and y for the compound 

sample must be such that while the first two terms of the covariance 

mixture equation are relatively smal I, the third is relatively large. 

a = Po + Qa + PQ~x~y. xy xys xyn 

If we sum the covariances of an item with each of the other items then 

we would expect this sum to be large to the extent the item is discrim-

!native If we assume that the within taxonomic class covariances to be 

about the same size no matter the degree of discrimination. Unfortu-

nately, a trial of this procedure with the items of the male-female 

example was not very encouraging. Some insight into why this happened 

is gained by plugging typical numerical values into the covariance mix-

ture equation. The within sex covariances are observed to be between 

.05 and .10 typically. While the contribution to the total covariance 

from the within sex covariance is .05 to .10, the contribution from the 

third term Is typically not more than (.5)(.5)(.3)(.3) = .025 which is 

not only considerably less but only twice the sampling standard devia-

tion of the covariance terms for large samole sizes. It is not difficult 

to imagine that the rank order of the item covariance sums is mainly 

inf1uenced by th~ sampling fluctuation of the within taxonomic class 

terms. 
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The Important tact, I I lustrated by this example, Is that even 

tor a pair of very discriminative items, a major portio~ of the total 

covariatlon comes from within the taxonomic classes and a minor por-

tlon from the separation of taxonomic classes. That Is, alI pairs of 

Items In the male-female keys are of this nature, and there is no 

reason to believe MMPI items for other taxonomies should behave dif-

ferently In this regard. 

IX. Classification of Individuals 

The primary purpose of the present taxometrlc theories is for 

taxonomy detection and description and not necessarily classification 

of Individuals. Normally, however, it wi I I be of Interest to compare 

the taxonomic classes on a number of other variables, not used as de-

fining indicators, for purposes such as taxonomic class identification, 

substantive theory testing and the I ike and, In order to do this, classi-

flcation of individuals may be necessary. Since the normality assump-
' 

tlon has already been used and so justified by passage of the consls-

tency tests, yet to be discussed, it is natural to use the estimated 

multlnormal indicator density functions for each taxonomic class for 

the classification procedure also. It Is noted that at thii point it 

is necessary to make the additional assumption that the intra-taxonomic 

class indicator correlations are near zero. Using the estimated base-

rates, Bayes' Rule can be used to obtain the posterior probabi I ities 

that an individual, with a given set of scores, belongs to each of the 

taxonomic classes. Presumably, he would be assigned to the most I ikely 

taxonomic class as this scheme can be shown to minimize tho number of 

misclassifications when the prior probabi I ities are equal. 
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Classification of Individuals also gives rise to an iterative 

bootstrapslng general lzatlon of the method. Letting the two taxo-

nomic classes be denoted by subscripts I and r, the proportion of 

those correctly classified In taxon r, P , anrl those for taxon 
r 

I, P
1

, can be determined by a method given by Golden and Meehl (p.31, 

1973a). Writing the covariance mixture equation for each of the two 

classification groups we have 

o =Po + o1cr + P10 1t<.xt<.y, and 
xy c I I xy I xy r 

oxy = P o + Q cr + P 0 t<.x~y cr r xy
1 

r xyr r·r 

(cl: classified as left) 

(cr: classified as right) 

where 

(9) 

o and o are the manifest covarlances for Individuals classi-
xy1 xy r 

fled in groups I and rand 

~x and Ay are the estimated differences in the taxonomic class means. 

Thus (9) can be solved simultaneously for the two unknowns cr 
xyl 

and o . 
xyr 

Now, with estimates of the intra-taxonomic class covariances, previously 

assumed to be zero, we are presumably in a position to improve the 

estimates of the multi-indicator density functions and, hence, improve 

the classification accuracy. The procedure can be applied repeatedly 

in an Iterative fashion, possibly producing estimates that converqe to 

approximately the true values. Again, Monte Carlo study is indicated. 

It should be noted that the method does produce underestimates of 

the Intra-taxonomic class covariances. This is because the taxonomic 

classes are not the latent groups considered in (9); the latent groups 
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which we referred to are the taxonomic class members which are class!-

fled correctly. 

Another method of estimation of the covariances results from the 

fact that the conditional covariance between two output indicators 

x and y (conditioned on the input variable w) Is not a function of the 

input variable value when the indicators are multiva~late normal with-

In taxonomic classes. Anderson (1958) showed that 

C1 C1 xw yw 
C1 

w 

Permutation of the subscripts gives 

C1 a 
C1 = C1 

X':f. W':f. and 
xwly xw C1 y 

a C1 

a = C1 
X':f. XW 

ywlx yw a 
X 

Thus, we have three equations in three unknowns (cr , a , a ) . The xy wy xw 

conditional covariances can be estimated by choosing a range of values 

on the input var I ab I e that has near I y a I lr members from the same taxo-

nomic class. Possibly the system of equations can be solved numerically 

by the method developed by Brown (1967) as existence of an explicit 

solution Is not evident. 

X. Consistency Tests 

It is very important to have adequate consistency tests for any 

taxometric or psychometric theory. For a discussion of the consis-

tency tests and the development of certain examples see ~eehl (1973a) 

and Golden and ~eehl (1973~). Briefly, the purpose of the consistency 

test Is to ascertain if the assumptions of the theory are adequate 
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approximations of the truth in that the taxon detection is not spuri­

ous and the parameter estimates are accurate enough for a given sub­

stantive problem. 

A very significant result occurred In the context of the pre-

1 lminary study In the detection of schizotypes which i I lustrates 

the crucial role of consistency tests. Thirty items were selected 

which discriminated by .30 or more In the difference in item plus-

rates between Individuals already determined to be very I ikely schizo­

types versus those determined to be very I ikely non-schizotypes. How­

ever, when these Items were made into a single key the normal method 

estimates of the base-rate and the other latent parameters, was to­

tally off the mark from numerous other consistent results. The x2 

goodness-of-fit value was near the expected value and the general 

appearance of the fit of the theoreticql to the observed compound 

frequency distribution was very good. The average correlation within 

the taxonomic classes turned out to be .5 and subsequent ~onte Carlo 

trials showed that this is far too high for the method to work adequate­

ly. Thus, what is needed among the final set of consistency tests is 

one which determines if the average within taxonomic class item inter­

correlation is sufficiently smal I. 

The most obvious consistency test might be thoughtto consist of 

comparing the estimated comoound distribution with the observed one. 

While the chi-square quantity measures such a discrepancy we do ~ot 

wish to determine if this value exceeds a critical value used for sta­

tistical significance but rather if it exceeds a value which is re­

quired for accurate parameter estimation and non-sourious detection. 

Clearly it is not sufficient for the present purposes to determine if 



-36-

the chi-square value is significant or not at say, to .05 level. The 

fal lure of the method with the first male-female key i I lustrates the 

need for consistency tests more sensitive than this. On the other 

hand, other artificial and real data trials have shown that a highly 

significant value can result even though parameter estimates are quite 

accurate. More Importantly, though, a low value, say near the expect­

ed value, can easl ly be obtained even though parameter estimates are 

totally off the mark as was the case in the two cited examples above. 

Experimentation with the method of calculation, such as variation of 

the Interval frequency size, has not led to any improvement in the 

usefulness of the chi-souare value as a consistency test. A chi­

square goodness-of-fit value for the compound distribution near the 

expected value or below can~ be considered as faintly encouraging, 

but certainly not by any means sufficient for confirming the existance 

of a taxonomy; on the other hand, while a highly significant value be­

hooves one to look for further discorroboration of the theory, it does 

not necessarl ly refute either the existence of a taxonomy or the ac­

curacy of the estimates. In short, the chi-square value aopears to 

help very I ittle in determining if the assumptions are close enough to 

the truth. 

A number of consistency tests were developed by Meehl (1965, 1968, 

1973a) a few of which have been studied and modified sl iqhtly by the 

Monte Carlo method and thereby shown to work surprisingly wei I for the 

maximum covariance theory (Golden and Meehl, 1973b). Some further 

consistency tests are developed below. 

A. The case of a sinqiP. indicator 

When only a single indicator is avai !able the possibi I ities for 
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consistency testing are I imlted but there are a few simply derived 

tests which Immediately suggest themselves. First, the base-rate 

weighted taxonomic class means~· should be approximately equal to 
J 

the compound mean ~ where 

ll = r p.u .• 
j J J 

When ll Is determined by the above equation then estimation errors in 

pj and u., denoted by ~p. and 6u., cause an error 6u. 
J J J 

The exact dif-

ferentlal of ll Is given by 

dll = rcu.dp. + p.du.> 
j J J J J 

from which It follows that 

6u ~ EC0.6p. + ~.6~.). 
j J J J J 

Maximum at towable values for estimation errors 6p. and 6u. along with 
J J 

the estimates 0. and~· can then be used to estimate the maximum ai-
J J 

towable discrepancy between the grand mean when calculated as a func-

tlon of estimates of the latent taxa means and base-rates and when cal-

culated directly as a sample mean. Preliminary trials of this con-

slstency test indicate that when it is failed the estimates are grossly 

In error; however, when the test is passed there is I ittle assurance 

that the estimates are accurate enough. For example, taking the first 

male-female key (Table 1) it would be reasonable to require that 

I6P I s;: . 1 , m 

I ~P f I 5 . 1 , 

Ifill I = s - 5 = 2.71 and m m m 

Thus the maximum value of ~ll must be less than (.1)(9.98) + (, 10)(14.69) 

+ (.499)(2.71) + (.501)(2.05) = 4.84. The grand mean when calculated 
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from the latent parameter estimates (pf~f + pm~m) is (.501 )(14.69) 

+ (.499)(9.98) = 12.34 and this differs by only .01 from the compound 

sample moan of 12.33; thus the consistency test In this Instance Is 

east ly passed even though the estimate of pf Is in error by .110 which 

according to the chosen error I imits is not quite acceptable. The 

test Is passed in al 1 the other examples as it should be. It appears 

that further Monte Carlo study wi I I confirm that the test should be 

used only as a preliminary one for early detection of gross errors. 

An analogous test to the above one results from expressing the 

compound variance (rather than the mean) in terms of the taxonomic 

class means, base-rates, and variances. The derivation of the formula 

for any number of taxonomic classes consists simply of repeated ap-

pl icatlon of the variance mixture equation for two taxonomic classes. 

There is always a I imit on the degree to which taxonomic class 

distributions can overlap and sti I I allow for accurate taxonomic de­

tection. It appears that for the present method the taxonomic class 

means must be 'separated by at least one to one and one-half intra­

taxonomic class sigma units (Cohen (1966) suggests that a two sigma 

separation is necessary) and that the base-rates for a dichotomous 

taxonomy must not be more disproportionate than .1 and .9. Parameter 

estimates not meeting these conditions are quite possibly very erro­

neous and cannot be trusted without further corroboration. 

If the Indicator is a key consisting of the sum of dichotomous 

Items then the possibi I ity for consistency testing is greatly increased. 

First, the condition derived in the item selection procedure above 

In which triplets of covariances are considered should be satisfied by 

alI the items of the key or such a selected subset of the original 
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Items should produce a result consistent with the original key. 

Second, each Item can be used in the output role and the many re­

lations between output and input variables developed by Meehl (1965, 

1968) can be checked to see if they are approximately satisfied. 

Third, the method given above to estimate the Intra-taxonomic class 

covariance by repeatedly solving a set of two simultaneous covariance 

mixture equations can be applied to each item pair. Monte Carlo 

study wi I I show that the average and the variance of these covariance 

estimates cannot exceed certain I imits without causing intolerable 

error; possibly such I imits can be chosen so that the converse is also 

true. 

B. The case of multiple indicators 

When there are several indicators, the possibl I ities for consis­

tency testing are greatly improved by the addition of several tests to 

those above. A number of such tests are developed by Meehl (1968) 

and a few more are given below. 

For some taxonomies it should be true that when the method is 

applied to the indicators taken singly, the separate base-rate esti­

mates should be in adequate agreement with each other and with the 

single estimate of the multi-indicator method. Such a consistency 

test does assume that the taxonomies detected for each indicator 

taken singly are the same as one detected when they are taken jointly. 

Presumably, this assum?tion is sometimes known to be true and some­

times known not to be at alI true; of course, in the latter case the 

test cannot be used. 

A prel imin~ry trial in the detection of the schizotype taxon with 

MMPI keys indicates that it wi I I be possible to develop three hetero-
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geneous keys for use with the normal method, each having taxonomic 

class mean differences of nearly two intra-taxonomic class sigma units. 

For such a typical situation there exists a large portion of the three 

dimensional indicator hyperspace where nearly alI of the individuals 

belong to the taxon. To demonstrate this let x, y, and z be the 

three indicators and assume that they are distributed trivariate nor-

mal ly within the taxon and within the non-taxon class just as the nor-

mal theory requires. The taxon density function, for example, is 

given by 

<Ps<x,y,z) = :Y2 ---r:7; 
(211') IDI 

exp 1- X.:) 
\ 2 

where 

1 -1 I r r x; xy xz:j 
x2 = (x,y,z) r r I y yx yz' 

I 
r r 1 I z zx zy I 

-> 

and D is the determinant of the correlation matrix. Consider the 

proportion of the members of the taxon with scores such that x > d, 

y > d and z > d for some cut d. This octant proportion R can be cal-

culated from the following equation if the correlation matrix is 

known and d is specified in intra-taxonomic class sigma units from 

t re taxon mean: 

R = I: I: I: ¢(x,y,z)dxdydz. 

The trio le integral can be evaluated numerically such as by the Gaussian 

method. If d is zero (each indicator is cut at the taxon mean) then R 

varies from . 125 when the within taxon correlations are zero to .266 

when these correlations are each .90; generally R is roughly a monotonic 

function of the average of the three correlations. Likewise, It can be 
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shown that the same quantity for the non-taxon class Is less than .006. 

Thus, for the positive octant of the hyperspace formed by cuts at the 

taxon means It Is expected that a proportion of the compound sample 

not be less than .125P + .006(1 - P) and not more than .266P + .006(1 - P) 

where P Is the taxon base-rate which has been estimated by the normal 

method. By comparing these I imits of the octant proportion with the 

observad value we have a consistency test. In the male-female three 

key example the I imits are .125(.61) + .006(.39) = .077 + .002 = .079 

and .266(.61) + .006(.39) = .162 + .002 = .164 and these surround the 

observed value of .141. Suffice it to say that numerous other closely 

related consistency tests using different hyperspace regions are sug-

gested by such an approach. 

The three Indicator system for a dichotomous taxonomy can be checked 

by another procedure which begins by dichotomizing each of the indica-

tors at, say, the estimated hitmax cuts. Using the score 1 for scores 

above hitmax cut and 0 for below or equal, we let o p and p de-. xr' yr zr 

note the right taxonomic class means and Dxl, pyl and p
21 

the left taxo-

nomic class means. Then under the condition of independence within 

the taxonomic class, we have the system of seven eauations 

pxy = Po xrPyr + Opxlpyl 

Pxz = PpxrPzr + QpxiDzl 

Pyz = Ppyrpzr + QpyiPzl 

Pxyz = Ppxrpyrpzr + OD xlpyiPzl 
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where the left-side parameters are directly observable and there are 

seven unknowns on the right side. Evidently the equations are not 

eas II y so I ved for an exp II cit so I uti on but a numer I ca I iteratIve method 

by Brown (1967) can be used. The method requires Initial estimates for 

the unknowns and these can be obtained from the normal method parameter 

estimates. The consistency tests consist of comparing these initial 

estimates with the final estimates. Initial guesses further off than .10 

from the true value appear always to give incorrect results but such 

results appear to be detectable since they have always been impossible 

values (negative and greater than unity probabl I ities) in trials so far. 

It remains to be determined if the method is robust enough with respect 

to the independence assumption and sampling errors in the compound pro-

portions but preliminary trials are not encouraging. Passage of the 

tests would appear to provide strong corroboration of the normal theory. 

However as the tests were not passed for the three male-female keys, 

the method for solving the equations appears to lack sufficient robust-

ness. 

Another consistency test results from the fact that the sum of two 

or more normally distributed variables Is also normally distributed. 

First, the base-rate estimates should be the same. If there are three 

Indicators, then there are seven different sets that can be analyzed 

singly. Second, the mean and variance of the sum within a taxonomic 

class are given by 

0'2 = 1:0' i 2+ 2 l: 0' .. 
if.j IJ 

where the u. and the a. are the within taxonomic class means and sigmas 
I I 

of the individual keys and the o .. are the within taxonomic covariances 
IJ 
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for pairs of Individual keys. When there are only two Indicators 

summed then the single within taxonomic class covariance between 

the two keys can be calculated from the second equation. In view of 

this Interesting result, it is noted that the Idea of summing keys 

can be used either primarily to estimate the within taxonomic class 

covariance matrices or as a set of consistency tests, possibly both. 

Another consistency test evolves from the fact that in the typi-

cal taxonomic situation the separation between the latent means is one 

to two within taxonomic class sigma units. With three such indicators 

the probabl I ity of taxonomic class membership determined, say, by Bayes' 

Rule is most often very high or very low. If the probabi I ity of taxon 

membership Is regarded as a random variable then the freauency distri-

bution of this variable Is strongly U-shaped. Prel lminary Monte Carlo 

results indicate that this function Is more nearly flat when the taxo-

nomic detection is a spurious one. 

When Items are randomly assigned to, say, three keys then we can 

expect that the estimates of the latent means and variances should be 

fairly close from one key to the next. It is difficult to derive ana-

lytical ly useful results concerning just how close the pAr3meter esti-

mates should be. It is noted that items can be assigned randomly to 

keys any number of times. 

When constructing keys by randomly assigning taxonomic31 ly discrim-

inative items to the keys, there results an interesting relationship 

between the average correlation between items of a sin9le key x within 

a taxonomic class, r , the averaqe correlation between items of key wx -

x with those of key y within the same taxonomic class, rt and the 
xy 

correlation between two keys within the same taxonomic class, r 
xy 
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McNemar (1963) showed that the three average correlations are always 

related by the formula 

nmrbx 

r xy = -,;::n=+=n=( n=-=1=):;r;::::· ~~m~+=m=(=n=-=1=):;;r= 
wx wy 

where n and m are the number of items In keys x and y respectively. 

If Items are randomly assigned to the two keys it Is reasonable to 

assume that 

pllfles to 

r ,;, 
bxy r wx 

. 
r wy 

r xy 
. 

. r. When n = m, the formula then sim-

nr 

+ (n-1 )r 

This relationship between r and r shows what the maximum value xy 

of r may be In order that r is sufficiently smal I with respect to 
xy 

the (unknown) robustness of the method with respect to deoendence 

between x and y within taxonomic classes. In Figure 1, r is plotted - xy 

as a function of the key length n for different values of rand oeru-

sal of the graphs reveals several interesting results. Since r xy 

cannot be greater than .5 for the maximum covariance theory <Golden 

and Meehl, 1973b) it Is seen that It Is necessary that r < .1 always 

and it Is necessary that n ~ 20 for r = .05. Also, a few artificial 

data trials have shown that the first multi-Indicator normal method 

wl I I notal low r to be as hiqh as .2, possibly not much over .1 for 

n = 20, an optimal length for discrimination with MMPI keys. Finally 

It would appear keys should be about as short as possible which is 

15 to 20 items usually as shorter keys begin to strongly violate the 

normality assumption. 

Monte Carlo study is required to obtain precise information on 

the acceptable areas of (n,r) values. With such results, a nice 

consistency test wi I I consist of estimating r by one of the proce­
xy 
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Figure 1. The Pearson correlation between two keys as a function of the common 

keylength for different values of the common average interitem cor­

relation within key, r. 
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durcs glv0n above, then dctermin ing r from 

r 
xy 

n-(n-1 )r 
xy 

and then checking to see if thi5 value is low enough for the taxo-

metric method being used. However, as indicated above, such consis-

tency tests should be difficult to pass when using MMPI items as such 

a method of key construction .,.Ji II be I ikely to yield rand r values xy 

which are far too large. 

The final consistency test to be given here consists of comparing 

two ways of estimating the hitmax cut between two taxonomic classes. 

UnlIke the numerous other approximative hitmax-cut estimation methods 

developed in previous reports (Meehl, 1965, 19GB) the present method 

requires the indicator within taxonomic class distributions to be 

quasi-normally distributed. Just as in the former methods, it is as-

sumed that the output indicator y and input indicator x are independent 

within taxonomic class. There is no restriction on the within taxo-

nomic class distributions of the output indicator so an item or a key 

not meeting the normality assumption could be used for example. If 

one considers the manifest outout mean as a function of the input in-

terval, denoted by y(x), then it 1·.i II be shown that y(x) usually has 

a point of infiPction very near or at the hitmax-cut. 

The number of right-taxonomic class members in interval x is ap-

proximately 

f (X) •· 
r 

N 
r ---e 

lho 
r 

-(x-~J.)~ 
r/ 2o 2 

r ; 
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I i kew i se, 

-(x-lJ )2/ 
I /2o 2 

e ' I 
/b al 

At the hitmax-cut h, f
1
(h) = f (h) or 

r 

-(h-ll >21 
N I I /2a 2 
-e I 

N -(h-ll >1 
r r I 2a 2 

=- e r· 
al 0 

r 

Taking the natural logarithm of each side and rearranging terms, we 

have 

or 

( h-j.J ) 2 
r 

~7-
r 

2a 2 
I 

= 

(o 2 - o 2)h2 + (2lJIOr2 - 2ll a 2)h + ll 2a 2 - ll 2o 2 
I r r I r I I r 

Nrol 
2o o 2 In = 0. 

r I N o 
I r 

Since the above cauation is a quadratic function in h, it can be solved 

by the quadratic formula to give h explicitly in terms of the six other 

latent para~etors. 

The der~vation of the second method 'or determining h consists of 

2-
't' ~x)l wr 1 1 ng ?-

dx~ x = h 
in terms of the sa~e latent para~8tcrs. Let 

the manifest output mean for inout interval x be written as 

Y - p y + (1 - D )y x - x r · x I or y = (y - y )p - y x r I · x I 

where p is the prooortion of the individuals in interval x who are X . 

members of tne right taxonomic class, and yr and y
1 

a-e i~e two taxo­

nomic class means. It follo·.vs that 



dy 
X 

dx 

Since p 
X 

and 

:: 

= ( y 
r 

- dpx 
y )~ 

1 dx 
and 

f 
rx =----

f I + f 
, we have 

x rx 

dp 
X 

dx 

f dfrx f dflx 
lx --- rx--dx dx = ----~~----~~ 
(fix+ frx) 2 

(fIx + f rx) 3 

In order to simp I ify the above expression, we write 

df 
X 

dx 
= -(~-?~ f = A f and ~ = l_x-~~02 f 

0 X X X dX 0 
1 

X 

d2 f 
The numer·ator for x can now be written as 

dx2 

= B f • 
X X 

( 8 r f I f r- t3 I f I f r )( f I + f r ) + 2 ( A I f I + A r f r ) ( A I f I f r - A r f r f I ) 

which simp! ifies to 

which can be rewritten as 

where 

At h1'imax h, t
1 

= fr = f " h , ~1e ,, ~. ve 

Yr 
) fh 3cc 1+Cr) 

i3f 3 
h 

= 
<v, - vr><c, + Cr) 

8 
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we have 

= 

which Is precisely zero only when or= o 1• Generally, with estimates 

of or and e1 available one can use a numerical differentiation method 

2-
to determine where dd~2 

(yl - yr) 
Is closest to--~--~-

4 
and this 

should be adequately close to the previous hitmax-cut estimate. 

The same n:ethod can be ape I ied using j.Jst the first derivative 

but it would appear that the ~econd derivative can be more easily 

evaluated near hitmax by a numerical method as it is close to zero 

at hI tmax when variances are near I y eaua I. In either method the ac-

curacy of the hitmax estimate wi I I be I lmited by that of the numerical 

differentiation method when applied to samcle data and this is only 

determinable by Monte Carlo stl'dy. 
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