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. Introduction

In a previous research report in the present series, the
minimum chi-square single indicator norma! theory's parameter
estimation accuracy and taxon detectlon power in an empirical
trial were both sufficient fo encourage further study of the the-
ory (Golden and Meehl, 1973a). It was also shown by analytical
development in that report that the indicator latent distribu-
tions within the taxon and the non-taxon class on keys are quasi-
normal, which is the sole assumption upon which most of the nor-
mal taxometric theory rests, if they are sums of dichotomous items
which are pairwise slightly corretated within the taxon and the
non-taxon class. The only shorfcoming of the minimum chi-square
calculation method (see Meehl et al., 1969) is that it is very time
consuming and expensive even on a high-speed computer. The maximum
ITkel Thood solution by Hasselblad (1966), besides providing for much
quicker calculation, Is not restricted to one taxon plus the non-
taxon class, Is amenable to a multi-indicator generalization as
shown in this report, and uses estimators that are known to have
optimal properties. In the present report it is shown that results
of several artificial and empirical data trials of the generalized
maximum |ikellhood method are sufficiently encouraging to warrant
further study of the method.

The present taxometric theory, as others in previous reports
Is Intended for the detection of 'real' empirical classes., When
al!l the members of such an empirical class are considered to have

the same etiology, such as the presence of a mutated gene, a germ



or a neural defect, whereas all non-members are considered not fo
have this etiology, then the class will be called a 'taxon' and the
complement of the class will be called the 'non-taxon class' or the
'extra-taxon class'. Previously developed theories In this series
have allowed for only a single taxon and a single non-taxon class,
the major reason being that work on the present methodological prob-
tem resulted from interest in testing a substantive theory concern-
ing schizotypes and non-schizotypes (Meeh!l, 1962; 1965; 1973b). Gen-
erally however, a taxonomy will consist of more *hah one taxon and,
possibly, more than one non-taxa class. The present theory allows
for this possibility under the assumption that the indicator distri-
bution is quasi~-normal within each taxon and within each non-taxa
class as in the example in the figure below. It sﬁould be noted that
by 'non-taxon A class' we would be referring to the union of classes
B and C but by 'non-taxa class' we refer to B. The point is that: in
the present report it is continually necessary to refer to two kinds
of empirical classes, in general, the taxon and the non-taxa class,
and for this purpose we wiil use the term 'taxonomic class'. !n the
example below each of A, B and C is a taxonomic class, whereas the
union of any of them pairwise or higher order is not (by definition).

,x’“\\/non-faxa class B

taxon A }
> I» N .“3
3 / . \
§. / \\ ! - ,taxon C
- / / \, //‘ ™~
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The theory allows for several different taxonomic class order-
Ings. For example, conslider the possibilities when there arc three
taxonomic classes. |f one were using the amount of biocod sugar as
an Indicator then a dlabetes taxon might be detected on the high end
and a hypoglycemia taxon on the low end, the middle Téxonomic class
being normals. In psychopathology this taxon, non-taxa class, taxon
pattern would potentially be likely when measures of bi-polar per-
sonal ity traits are used, such as extroversion-introversion, where
each direction of extreme deviation Is indicative of psychopathology.

The case of two contiguous taxa might turn out to be illustrat-
ed by the normal-neurotic-psychotic example where a number of differ-
ent psychopathology measures possibly could be used.

While It Is intended that the term 'taxonomic class' is to re-
fer to a real rather than fictional entity, the fact that it has
proved difficult to demonstrate the exlistence of such taxonomic
classes In psychopathology is illustrated by our need to resort to
hypothesized examples above. Because of this difficult state of af-
fairs, it is useful to remember that taxometric theory can only be
required to detect the existence of a taxonomy and not necessarily to
establish its essential! nature. |In the first stage of detecting
existence, the theory can produce erroneous results of two kinds.
First, the theory may not be powerfu! enough to detect a truly exist-
ant underlying taxonomy. Second, and probably more important, the
theory can produce spurious detections. The likelihood of this kind
of error can be decreased substantially by using well-tested con-
sistency tests (Meehl, 1965; 1973a; Golden and Meehl, 1973b) which

check the adequacy of the degree-of-fit of the theory. Several



consistency tests are developed In section X.
1. The Maximum Likelihood Solutlion

An outline of the calculations of the method is inen below;
the interested reader is referred to the original article by Hassel~
blad (1966) as further analytical development is provided there.
Suppose that there are n taxonomic classes denoted by the sub-
script j with distributions on an indicator x and the taxonomic class

) n
means, variances, and base-rates denoted by uj’ oJ and pj (z pj = 1),
J=1

Let x be divided Into N intervais denoted by the subscript i such that
the Interval width is small compared to oj. Then let Qij be the den-

sity of the jth taxon In the ith interval and let this be approximated

by

q,; =
N moj

exp{-(x, - u.)%/20.2};
p I UJ j

also, let Qi be the compound density for the ith interval or

The only values that are kndwn are the compound sample distri-
bution Interval frequencies fi’ i=1,2,3, ..., N. Hasselblad
shows that the maximum likelihood estimates of the unknown latent
parameters can be found by the steepest descent iterative procedure

which results in the following equations:

N N
u.,:Z )
ok (fI/Qi)quxi/( . (fi/Ql)qu),
=1 i=1
N N
2 = (f./0. - 4.2
OJ b I/Ql)(x uJ) /¢y (fi/Qi)qij), and

i=1 i=1



N
.= ¥ (f.q..P.70.)/C T £.).
pJ i=1 IqlJ J Ol i=1 i

=z

The Iterative procedure begins with Initial guesses of uj, oj

and pJ. I+ Is not shown how accurate the initial guesses must be
or if, Indeed, convergence to the true values will necessarily obtain.
Scarborough (1962) shows that the method converges whenever the fol-

lowing condition is met: Let the true value of a root x satisfy the

39

ol B 1 in a neighborhood of x

equation x = ¢(x,y,z,...); then if

which contalns the successive approximations of x, then the approxi-

mations converge to the frue value of x.
I1l. Artificial and Emplirical Data Trials

The calculation scheme was applied to a variety of artificial
and real data samples. First, three MMP! keys developed to dis-
criminate between the sexes were each analyzed by the method. The
results are given in Tatle 1. The method gave very accurate para-
meTer.esfimafes on the second and third keys after just 100 itera-
tions, at which point the estimates demonstrated strong convergence.
However, for the first key, the base-rate estimate is markedly in
error, especially after the process had been continued until con-
vergence was apparent. It is difficult to explain this singUlar error
as other methods have estimated the base-rate equally well for the
three keys. The exact significance of the larger number of iterations
required for apparent convergence is not known but the result is il-
lustrative of a general finding that if several hundred iterations are
required for convergence then the results should not be trusted and

will fail further consistency tests. The chi-square goodness-of-fit
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14.89
14.58
14.37
14.33

13.34
13.28
13.18

15.25
14.92
14.92
14.91

First Key (N = 1105) P1 My oF P2 Mo oy
initial guess .500 6.00 3.00 .500 13.00 3.00
No. of iterations .

50 417 9.45 2.50 .582 14.40 2.16
100 .449 9.66 2.58 .551 14.51 2.12
200 .483 9.88 2.67 .516 14.64 2.07
300 .499 9.98 2.71 .501 14.69 2.05
true sample value . 389 9.57 2.55 611 14.10 2.56
error 110 41 .16 -.110 .59 -.51
Second Key (N = 1105)
initial guess 432 7.36 2.37 .568 11.97 2.26
No. of iterations

10 .428 7.33 2.36 .572 11.95 2.27
50 A1 7.24 2.32 .589 11.89 2.29
100 . 368 6.98 2.23 .632 11.72 2.35
true sample value . 389 7.31 2.42 611 11.68 2.47
error -.021 -.33 -.19 .021 .04 -.12
Third Key (N = 1105)
initial guess .500 6.00 3.00 .500 13.00 3.00
No. of iterations
10 .418 8.64 2.54 .582 13.02 2.42
50 .418 8.59 2.48 .582 13.06 2.38
100 416 8.58 2.48 .584 13.06 2.38
200 .409 8.54 2.46 .591 13.03 2.40
true sample value . 389 8.60 2.57 .611 12.84 2.53
error .020 ~-.06 -. 11 ~-.020 .19 -.13
*y2 052630 . .

: Table 1. Examples of empirical data trials of the maximum~-!ikelihood single-indicator

method using MMPI keys to identify the sexes.



values (by comparing the estimated and the observed compound sample
frequency distributions) are similar in magnitude and do not approach
significance for the three keys. It is seen then that non-significant
x? values do not guarantee accurate parameter estimates. The initial
guesses were obtalned by a method which makes use of probability pa-
per and which will be discussed below (Harding, 1949).

Artificial data were generated by means of a normal random num-
ber generator (see p. 3ff of Golden and Meehl, 1973b for the method).
Intervals were formed simply by rounding each generated number to its
greatest Integer part; parameter values and sample sizes were such that
this method produced an acceptable interval coarseness. A perusal
of Table 2 shows that the method produced accurate parameter estimates
with 100 lterations when the mean separations are as small as one
within taxonomic class sigma-unit and base-rates as disproportionate
as .1 and .9. While none of the chi-square values approach signifi-
cance, the goodness-of-fit of the theory is evidence mainly by the
acceptable accuracy of the parameter estimates.

The results of the method when the initial estimates are poor is
illustrated by an example given in Table 3. It can be seen that ini-
tial guesses can be off quite a bit without apparently affecting the
accuracy after a large enough number of iterations. However, several
hundred Iterations were required for convergenge to be apparent even
though accuracy was sufficient after 100 iterations. Several extrapo-
lation methods have been tried to increase the speed of convergence
but without much success. At present 100 to 200 iterations aépear to
be sufficient for adequate estimation accuracy when initial guesses

are not grossly in error, even though a much larger number is required




Example 1

initial guess

estimate after 100 iterations
true value

error

Example 2 (N = 1000)

initial guess

estimate after 100 iterations
true value

error

Example 3 (N = 1000)

initial quess

estimate after 100 iterations
true value

error

Example 4 (N = 1500)

initial guess

estimate after 100 iterations
true value

error

Example 5 (N = 1000)

initial quess

estimate after 100 iterations
true value

error

Exampie 6 (N = 1000)

initial guess

estimate after 100 iterations
true value

error

Exampie 7 (N = 1000)

initial guess

estimate after 100 iterations
true value

error

%2 =
X° o5 26.30

Py
.500
.402
.429

-.027

.500
.344
.402
-.058

<350
.327
.310
017

.200
.256
.300
-.044

.500
.219
.208
0N

. 106
.110
. 100
.010

.500
.128
117
011

7.42
7.76
8.05
-.29

7.42
8.70
8.85
-.15

8.00
8.56
8.05

51

7.00
7.67
8.00
-.33

8.01
8.23
8.05

.18

10. 1
10.44
9.48

.96

7.42
8.54
8.05

.49

2.64
2.02
2.06
-.04

2.56
1.92
2.06
-.14

2.23
2.29
2.06

.23

1.73
2.06
2.00

.06

2.66
2.38
2.06

.32

1.89
2.01
1.86

.15

2.65
2.12
2.06

.06

P2
.500
.598
571
027

.500
.656
.598
.058

.650
.673
.690

-.017

.800
. 744
.700
.044

.500
.781
.792
-.0N

.894
.889
.900
-.011

.500
.872
.883
-.0n

ey
13.50
14.02

14.22
-.20

15.00
12.73
13.09

-.36

13.00
14.11
14.22

-.11

14.00
11.78
12.00

-.22

13.42
14.34
14,22

12

11.15
1.1
11.13

-.02

13.50
14.31
14.22

.09

1.91
2.39
2.18

.21

2.31
2.16
2.08

.08

2.26
2.29
2.18

.1

2.00
1.85
1.73

.12

1.73
2.13
2.18

.05

2.16
2.16
2.02

.14

1.91
2.17
2.18

.01

2%

16.9

9.64

18.68

18.8

15.74

9.2

12.22

Table 2. Examples of artificial data trials of the maximum-|ikelihood single-indicator method.



P My o P2 M2 °2 X
initial guess .450 4.575 1.17 .550 9.350 1.32
Number of iterations 4
50 .104 9.618 1.72 .896 11.205 2.14 8.93
100 .106 10.113 1.89 .894 11.150 2.16 9.08
150 .10 10.444 2.06 .890 11.114 2.16 9.21
200 115 10.871 2.12 .885 11.063 2.16 9.29
250 115 10.964 2.15 .885 11.051 2.16 9.29
300 .16 11.007 2.16 .884 11.045 2.16 9.29
350 . 116 11.027 2.16 .884 11.045 2.16 9.29
400 .116 11.027 2.16 .884 11.045 2.16 9.29
450 116 11.038 2.16 .884 11.041 2.16 9.29
500 116 11,039 2.16 .884 11.041 2.16 9.29
550 116 11.041 2.16 .884 11.041 2.16 9.29
600 116 11.041 2.16 .884 11.041 2.16 9.29
650 116 11.081  2.16 .884 11.041 2.16 9.29
true sample value . 100 9.020 1.90 .900 11.253 2.04
error .016 2.021 .26 -.016 -.212 .12

%2 -
X“ 05 26.30

Table 3. Example of artificial data trial of the maximum-likeiihood single Indicator method
when initial guesses were poor (N = 1000).
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for convergence to be easily discernible.

It iIs clear that intervals must be such that the frequencies
for each are large enough to avoid excessive sampling error. One
procedure is to combine pairs of contiguous intervals unti! (a) the
Interval frequencies are apparently large enough to avoid excessive
sampling error and (b) the compound frequency curve is always mono-
tonlcally Increasing or decreasing on each side of the local maxima
and minima, the number of each being less than or equal to the post-
ulated number of taxonomic classes. However, it has been found that
for compound samples of a few hundred in size, taxonomic class mean
separations of two within-taxonomic class sigma units and equal base-
rates which are about optimal conditions in psychopathology measure-
ment, the base-rate estimate can be in error by as much as .10, for
example. The required interval frequency size and a safe method of
interval construction should be determined more carefully by Monte
Carlo study.

The maximum likellhood method has several advantages over the
minimum chi-square method, mainly generalizability and much fewer,
although still numerous, calculations. Both methods apparently can
produce multiple solutions but the existence of several solutions is
more easlly discovered with the minimum chi-square method. Whether
thls Is an advantage or not depends on whether or not the different
solutions correspond to real but different taxonomies. Suffice it
to say that In the present work there is no evidence to indicate
that possible existence of several taxonomies underlyinag a properly
selected set of indicators is a matter of real concern although, of

course, this may not always be the case. In this connection, it
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should be noted that when the solution is unique then It has been
analytically shown that both maximum |ikelihood and minimum chi-
square methods produce the same result for large enough samples

(Cramér, 1946).
IV. Use of Probability Paper for Initial Guesses

The initial guesses of the parameters can be obtained by a
procedure described by Harding (1949). The method makes use of
probability paper and the assumption that the taxonomic class fre-
quency distributions are normal. Generally, when the compound fre-
quency dlistribution is polymodal and the sample size very large, the
method is sufficiently accurate by itself. Since the procedure is
based on the same assumption of normality within faxonomic classes
It lends itself well to the problem of making initial guesses for
the maximum |ikelihood method.

Two dozen cummulative density functions resulting from composites
of various numbers of artificial normal! frequency distributions, for
which the compound sample sizes were 1000, were analyzed without know-
ledge of the true component parameters by using the probability pa-
per method. The following general conclusions were formed:

a) when the separation between component means is about two
intra-component sigma units then the parameters can be
estimated with at least 90% accuracy,

b) two components are distinauishable from one component when
the separation in the means is above one intra-component
sigma Lnif,

c) when the estimates are such that the estimated mean
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separation is less than two Intra-component sigma units
the results are not to be frusted, and
d) apparently, the estimates are always accurate enough to
serve as Initial guesses for the maximum {ikelihood
method.
These conclusions are known to be true only when the yifhin component
population distributions are perfectly normal. |In practice, distri-
butions are not perfectly normal, of course; therefore, it remains
to be determined 1f the probability paper method is sufficient for
the unknown robustness of the maximum likelihood method with respect
to the normality assumption. Pending such a study it would appear
safe to use the method with the following stipulations:
a) the method is not more accurate than is indicated above
for ldeal conditfions and
b) +the method might be mainly useful in suggesting alternative
latent situations which can be subjected to testing by the

normal theory.
V. Multi-indicator Generalizations

When several Indicators are analyzed singly they can produce dis-
crepant estimates of the base-rates (some or all belng erroneous)
such as the three male-female keys did. Possibly the only way to
rectify such a situation when singly analyzing indicators is to
Increase the sample size. Since more than one indicator is usually
available, it follows that one Is behooved to consider a sumultaneous
multi-indicator approach as presumably this lessens the sample size
requirement. The maximum |ikelihood iterative scheme can casily be

adapted to the multi-indicator situation by simultaneously estimating
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the parameters of each Indicator just as Is done If analyzed singly
except changing the estimate of the common base-rate parameter to be
the average of the estimates produced by the previous iteration.

Analytical proof that such a method should correctly converge
is not provided but an empirical trial of the method is encouraging
in this respect. The three male-female keys used previously were
analyzed and the results are given in Table 4. The results of sin-
gle indicator analyses were used as initlal guesses and convergence
waé apparent after 50 iterations. The results are remarkable in
that all the parameter estimates are extremely accurate. Further
encouragement is gained from the fact that the intra-taxa correla-
tions between the indicators were each between .3 and .5; thus the
method might not require a strong within taxonomic class independence
condition to be met.

Also, the method was tried with an artificial data sample in
which the three Indicators were distributed multivariate normally
within taxonomic class, all within-taxonomic class correlations being
equal to .5. The resulting parameter estimates, given in Table 5,
were also quite accurate.

It is intuitively clear that a multi-indicator method should
be more accurate of the two approaches especially if all indicators
are of about equal validity and are weakly correlated within taxono-
mic class. Also, it is true that some (most?) taxonomies require
the use of more than one indicator for a complete specification.

For such a taxonomy, using fewer than a complete set of indicators
would lead to an incorrect result. On the other hand, it also is

true that sometimes only a single candidate indicator is available.



First Key
initial guess

estimate after 50 iterations
true value

error

Second Key

initial guess

estimate after 50 iterations
true value

error

Third Key

initial quess

estimate after 50 iterations
true value

error

*,2 =
X o5 26.30

.499
.431
.389

.042

.368
431
.389

.042

.410
.431
.389

.042

9.98

.03

8.66

8.60

.06

2.7
2.54
2.55

-.01

2.23
2.36
2.42

-.07

2.46

2.51

2.57

.06

.501

.569

.611

-.042

.632

.569

611

~-.042

.590

.569

611

-.042

14,

14

14.

68

.45

.35

11

i1

.72

.96

.68

.28

13

13.

12

.03

.84

.27

2.05

2.15

2.56

-.41

2.35

2.26

2.47

-.21

2.53

2%

14.7

13.4

14.9

Table 4. An empirical trial of the first multi-indicator generalization of the maximum-

Iikelihood solutions using the three MMPI keys to identify the sexes (N = 1105).

..vl..



First Key i b °1 "2 b2 °2 e
Initial guess .31 9.90 2.15 .69 15.00 2,07
estimate after 200 iterations .28 9.68 1.83 .72 14.89 2.03 6.3
true sample value .30 10.04 2.12 .70 14.93 2.05
error -.02 -.36 -.29 .02 -.04 -.02
Second Kei
inifial'guess .31 12.12 3.27 .69 17.97 3.08
estimate after 200 iteratlions .28 15.09 3.98 .72 17.30 3.39 17.9
true sample value .30 13.77 3.27 .70 17.94 3.08
error -.02 1.32 .71 .02 -.64 .31
Third Key
initial guess .31 11.55 1.52 .69 20.53 1.54
estimate after 200 iterations .28 12.54 1.60 .72 16.86 1.61 6.2
true sample value .30 12.60 1.53 .70 16.94 1.52
error -.02 -.06 .07 .02 -.08 .09
*x2 = 20.8; x? = 11.6
.01 .05

Table 5. An artificial trial of the first multi-indicator generalization of the maximum
likelihood solution using the three MMPI keys to identify the sexes (N = 1000).

_gl_
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Also, it Is possible that some taxonomies are optimally detected
when a certain single Indicator is used alone, that indicator
being the only one with the required taxon-speclfic variance.

In this situation, the use of further indicators, even though each
being adequately discriminative, may merely cause what Loevinger
(1957) called "psychometric drift". One way this could happen is
by violation of within taxa independence assumptions which are
used in the solution below. In summary then, the comparison of
the single and the muitiple indicator methods will not just be

a mathematical matter but also an empirical one.

The multi-indicator generalization of the maximum-Ilikelihood
development by Hasselbald can easily proceed under the assumption
of intra-taxonomic class indicator independence. Let X be the score
of the ith Individual on the kth indicator and ii be the vector of
the Ith individual scores on the p indicators (xil’ X

i2’ . . L) Xip
Also, let ¢(ii) denote the compound denslity and ¢J(ii) denote the

JTh taxonomic class density where j =1, 2, 3, . . ., m at the point
i'. Thus
m
$(%.) = J£1PJ¢J(xi)

where p‘j Is the base-rate of the jth taxonomic class. The likelihood

function is gliven by

and the maximum iikelihood estimates of the latent parameters P., U

Jk

and Ujk’ where_k denotes the kth indicator, are obtained by solving

the following set of 2mp + m - 1 simultaneous eauations:
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dlog L _ j=1,2,3 ..., m-=-1

% .
Pj

%&Q—E=o j=1,2,3 ...m (1)
Jk
3—5—9—5=0 k=1,2,3, «+u,p
Jk
The following two assumptions make it possible to easily obtain
solutions of (1):

(a) all-indicators are independent within each taxonomic

class; l.e.,
p
n

6.(%,) =
Ji k=1

¢jk(xik) and

(b) the interval density is equal to the normal curve or-

dinate at the interval midpoint; i.e.,

(x,, - u,)? )
1 ik jk
¢, (x, ) = ——— exp{-% ) .
T o ° jk
Jk
We now have
N
log L= % Iog{¢(2i)}
i=1 .
N m
= E log{.f pJ¢J(xi)}.

| Jj=1

and it follows that
’ m
| {¢j(x]) - ¢m(xi)i/;£1pj¢j(xi) =0,(G=1,2, «..,m1) (2)

m
'fl pJ¢J(ii) = 0, and (3)

o
) (e
L]
neozZ
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X, - u,)2 -y
dlog L ( i iz) I L ()} =0 (4)
- % R ’
| Zl pJ¢i(X‘) o i | pJ¢i i

= I ¢, (%) da.., = ¢,(%,) then (3) and (4) can be
Letting Q' ot pJ¢J X;) an qlJ ¢J i ‘

written as

quJ :b/bl

ujk = (5
JqlJ/6
2
i§1quij( ik “J'k’/Qi
Ujk = N . © (6)
L
: 1pJq,/oi

Writing (2) as

ERCIRRRC

and multiplyling by pj, we have
_' | (2a)
Q

NI
pjizl{ Qs} P
Summing (2a) over j, we get

1=t L9 i=1 L 9
and slnce the left side of (2b) is N, it follows from (2a) that '

q
—Lit,
pjit]{ } PN

p, = ' . (7)

IIMZ

™3

J

or
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Thus equations (5), (6) and (7) can then be solved in an iterative
fashion just as was done in the single Indicator method. It has
been found that the estimate of (5) must be substituted into (6)

within the lteration and |ikewise that of (6) (and (5)) into (7)

for the iterative process to converge correctly.

This completes the derivation of the multi-indicator generali-
zatlion of the maximum likelihood solution. Unfortunately a com-
puter program for the method has not been completed and there are

no trial results to report at this time.
Vi. The Independence Assumption

The most Important comparison of two multi-indicator generali-
zations would appear to be that of the relative robustness with re-
spect to indicator Independence within taxonomic classes. Even
though the flrst method is not derived from explicitly stated as-
sumptions as the second method is, and it is not known if the re-
quired assumptions for the first method do, in fact, include an
Independence assumption, a few Monte Carlo results indicate that
the parameter estimates lose accuracy as within taxonomic class
dependency is greatly increased. Indicator independence within
taxonomic class is an idealization that is not always easily approx-
imated In practice. In the area of psychopathology measurement, not
only do the most powerful taxometric Indicators frequentily correlate
within taxonomic class because of shared valid variance but also
because of shared error variance due to common sources of error of

measurement.
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While the (unknown) formal independence requirements of the

first generalization could be either stronger or weaker than those

of the second, most importantly, it 1s not known which method is
more robust with respect to either (a) indicator independence wifh;
In taxonomic class or (b) within taxonomic class normality. That
Is, it Is not so much the strength of the assumptions but more the
robustness with respect to the assumptions that is the matter of
ultimate concern. Apparently, only a Monte Carlo investigation

will allow for such comparison of the methods.
Vil. The Normality Assumption

The assumption of intra-taxonomic class normality has several
consequences which are important in such matters as construction
of Indicators from items and the Identification of a taxonomy.
Since the present taxonomic work uses unweighted sums of MMPI
items, the present analysis is in terms of indicators which'are
sums of Bernoulli variables. The reasonableness or unreasonable-
ness of the normality assumption can be more easily determined with
ald from the result that the sum of (many) independent Bernoulli
random variables is distributed asymptotically normal, the approx-
imatlon being better the larger the number of such variables (see
p. 24 of Golden and Meehl, 1974a). |t should be pointed out that
it Is not necessary that the Bernoulli variable parameters all be
the same; the demonstration referred to above shows that the vari-
ables can have any set of parameter values. Monte Carlo study
should show that in practice, for short enough keys, the approxima-

tion is dependent on the dispersion of the item means, being better
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when the dispersion is small. It should likewise be shown that
for reasonably long keys, say about 25 items or more, the distri-
butions are approximately normal 1f the correlations between each
palr of Items are close to zero. While pairwise item independence
is a sufficient condition it has not been shown that it is a neces-
sary one. |t would appear that for a long enough key It is only
necessary that the average of the absolute values of the correla-
tions be near zero. These matters are terribly complex to handle
analytically but a Monte Carlo study will be simple and straight-
forward and will provide a sufficiently precise and general result,
Since the method requires that Indicators be constructed from
items that are approximately independent within taxonomic class,
the indicators have nearly zero homogeneity within taxonomic class.
Thus, whatever degree of the homogeneity of the key does exist for
the compound group is causedmainly, If not solely, by the compound
group being a mixture of the taxonomic classes. Conversely, when
a compound frequency distribution is determined to be the resultant
of two or more overlapping normal frequency distributions then it
Is implied that the items of the key should be on the average in-
dependent within the corresponding taxonomic classes. This last
result leads naturally to consistency tests which are discussed
below. Most importantly here though, it follows that keys that
are considered to be even moderately homogeneous measures of a
single dimension within the taxonomic class are most likely not
sulted for use with the present method; the reason being, of course,
that homogeneity implies non-normality of the intra-taxonomic class

distributions.
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For the first multi-indicator method, in which,in view of some
Monte Carlo trials, strict independence between indicators is not
required, It Is interesting to note that while items within the key
must be on the average independent within taxonomic class, items
from the different keys presumably can be rather highly dependent
within taxonomic class. Thus, in constructing keys from a large set
of discriminative items what is necessary Is to somehow sort the items
into groups such that the average absolute correlation within each
group is near zero within taxonomic class; the keys are then formed
from these groups paying no attention to cross-key correlation. Ap-
parently two Items from two different groups can be correlated mod-
erately high on the average; possibly, the keys could even have the
properties of parallel tests. Curiously, the item independence re-
quirement for the maximum covariance method is diametrically opposite
of this. The major assumption of the maximum covarlance method is
roughly that the indicators be independent within taxonomic class.
The covariance of two keys is zero if all the items of one key are
independent of all those of the other key. This result follows
from the fact that the covariance of sums of items is a linear func-
tion of all the item cross-key covariances (McNemar, p. 206). Although
pairs of Items from different keys must be weakly correlated on the
average, Items within a key can be highly correlated; that is, keys
can be homogeneous within taxonomic class.

Thus, for example, if scales 7 and 8 of the MMP| are two of a
set of candidate indicators of a purported taxonomy, then the normal
theory is most likely more appropriate than the maximum covariance

theory since the keys are reoarded to te very heterogeneous and yet
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are highly correlated for most populations. On the other hand,

If keys are known to have high internal consistency for compound
samples, being developed by such methods as factor analysis, then
the maximum covariance method is more:appropriate. While such

a priorl considerations are sometimes useful they are not sufficient
for determining if one theory or another is adequate in a particu-
lar Instance. |t is the ultimate responsibility of the consistency
tests, which are discussed below, to determine this. Suffice it

to say here that if the assumptions of a theory are such that the
real situation deviates more from the ideal condition than can be
tolerated for accurate enough estimation of the parameters (the method
is not robust enough), then a good consistency test will detect this
disparity and indicate that the theory should be rejected.

The normality assumption implies that the compound distribution
must have certaln properties. The resultant of two sufficiently dis-
tinct but overlapping normal distributions differs from the normal
one in being either skewed or platykurtic or bimodal. Thus the com-
pound frequency distribution should be fnifially checked for the
presence of one or more of these characteristics as the disjunction
serves as a necessary requirement for the normal theory. Sampling
irregularities make this step sometimes appear difficult; suffice it
to say that when this happens it probably indicates that the sample
size is too small for the normal method although accurate Monte Carlo
guidance is yet to be obtained.

In view of the result mentioned above, the compound frequency dis-
tribution is non-normal because the compound item correlations or co-

variances are not zero. Analysis of the compound covariances leads to
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another taxonomic theory closely related to the normal theory.
Letting the subscripts | and r denote the left and right taxonomic
classes respectively, then the compound covariance between two
items x, y Is given by

= Po + Qo + POAp_&p

Xy XY XYy y
where
oxy is the covariance within the left taxonomic class,
|
oxy is the covariance within the right taxonomic class,

r

P is the base-rate of the right taxonomic class and

Apx and Apy are the differences In the item plus-rates for
the two taxonomic classes for items x and y (see p. 51
of Meeh!, 1965),

Assume as before, (&y =0 = 0. Thus for n items and two taxa,

there are 2n + 1 unknowns (the taxonomic class Item plus-rates and

the base-rate) and there are (;) = Di%:ll covartance mixture equa-

tions such as above. Thus if the system of equations

O T PP TPy e

Py = PPy = Py

i
has an unique solution (it is overdetermined when n 2 3) then it can
be concluded that the Items satisfy the latent conditions required by

the normal theory (it is interesting that this is so even though the

method does not make any reference to normal distributions) and analy-

sis of the key compound freauency distribution by the maximum |ikeli-
hood method should yield consistent results. Unfortunately, methods

for solving (8), such as one by Brown (1967), have been found to be

J1 /f for i,j =1, 2, 3, ., n;(i#]))

(8)
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highly sensitive to sampling error and severely lack robustness with

respect to assumption of zero within taxonomic class covariance
ViIl. Development of Indicators

When indicators are sums of items then consideration must be
given to selecting items that are independent within taxonomic class-
es; however, there are no estab!ished methods for doing this. One
possibility Is provided by consistency hurdles theory, an independent
taxonomic detection theory discussed in another report in this series
(Golden, et al., 1974c). Suffice it to say pere that the method se-
lects items which should be sufficiently independent within taxonomic
class as the method is based on the same requirement. |[f used in this
manner the two methods wQuld serve as checks on each other.

A method that has been found not to work well is to construct
keys by factor analysis of the compound sample, forming a key from
items that load highly on the same factor. A few such studies with
the MMP! items indicate that factors tend to result from items that
are not only dliscriminative of the taxonomic classes but are also
correlated within the taxonomic classes. This resuilt would evidently
be obtained If the factor structures within the taxonomic classes
were similar to that for the compound group.

One item selection theory that follows from the same assumption
of independence proceeds as follows. Suppose there exists a large
pool of items, some taxometrically discriminative, some not, and we
do not know which is which, and we wish to choose a subset of items,
each discriminative and each pair satisfying the independence reduire—

ment., Let I,j,k denote three items. Then if the three items are
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mutually independent within taxonomic classes it is easily shown
that for the compound group
oijolk (POApiApj)(PQApiApk)

Fi dgf po = = PQ(Apiz)
JK PQApJApk~

where Api is the dlfference in taxonomic class Item means; or a con-
stant for all j and k. For each i, all (j,k) pairs that gfve approx-
imately the same estimate of Fi are determined. Again for each i,
the largest subset, call it Si‘ of those (j,k) pairs is determined
such that every pair of items in Si gives approximately the same
value for Fi' Such a subset will be formed for every item i, and if
it is large enough it can be further considered as a set of items

for a key. |f there are sets of mutually quasi-independent-within-
taxonomic class items in the original pool then they should turn up

as S‘ subsets. T is clear however, that an S, subset does not neces-

i

sarily consist of Items which are auasi-independent within taxonomic

classes.

The sample value of Fi’ deﬁofed by ?i’ will contain error due
to sampling error In the three covariances; hence, it will not be
exactly equal to PQApiz. A second reason that F. will not exactly

equaly PQApi2 Is that the three items will not be perfectly pairwise
Independent within taxonomic classes. Thus these two sources of error
when taken into account give a range for acceptable values of Fi' In
order to obtain an estimate of this range, consider each triplet of
G's as likewise containing these two kinds of error; namely, sampling
error, aij and dependence error, Bij' Since

8, .6,
¢ ij ik
iljk 2N
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and letting & denote a small deviation of F from PQAp'2 we have

b ek, B. ) + %il e s B..) - E—iﬁ}ﬁ-(a +8.)
1 jk % “ij RECTS ik T Pik 5\ jk T Pjk

If we restrict the within taxonomic class sample covariance to be
less than &, then each B is equal to P§ + Q8 = 8. In order to assess
the a's we must know the sampling variance for the covariance of two
Bernoulli variables.

The derivation for sampling covariance proceeds as follows. Let
I and j be two subscripts which refer to two Bernoulli random variables.
The sample covariance between the two variables is given by

Tx,, =%, ) (X., -x.)
J

K ik i jk
S;;
J n-1
n
I X, X,
k=1 'K JK n_—-—
) T et %
n-1 J
the variance of le is given by
- 2 - 2y 2
E{Sij E(Sij)} E(sij ) {E(Sij)} .
The first term can be developed as follows:
2y ] - T
E(slj ) = Etn_l i xikxjk —_ xixjj
r —— 2
= £ ! (L x,, x. )2 = 2n XX, L X, X, +[2— (x,2x.2)
(n-1)2 K 1K JK (=132 Tk gk An-l I
= ———sz E(Ex,, x. ) = Zn E(X. X5 X, X. ) + —— E(x.2x.2)
(n=1) UKD T2 i7j. ik kT ne i

[f we let E(xi) =p., E{x,) = p. and E(x.x.,) = p,., we have
! J J bl HJ

2 ! i 1
E(si. ) = np.. + n(n-1)p. .|
/ (n-1% | Y ')
2n |1 n=1 5. n-l n-1 (n=1)(n=-2)
I -p,.+ —op,.“+—p. .p.+ —p,.p,+t —————0p.p.p..
(n-1) | n p:J n le n DIJOI n lepJ n plpJle
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L2
{n-1)(n-2)(n-3) 4n{n-1)(n-2)
+[nn] [n n n pizp.z +

-1 n® J n't iPiPij
n(n-1)(n-2) , 2n{n-1) 2 , 2n(n-1)
PUTTRE PR TR Ryt T PPy
n{n-1)(n-2) + 2nin- 1) n(n-1) 1
I et T Ry Ry T PR T Py

- f\ -
_ n _ 2 : 1 2 |_n__ 2 2
= Pij [<n-1)2 (-2 * n(n-1)2} * Py Lﬂ" n1 n(n—l)J

[_ n2 2 | 2 2 ]

A YOS U L L RS R T

* PP

.
2(n-2) 4(n=-2) : (n-2)(n=3)

- 2
* plp pIJ [ n-1 * ”(”']).1 Tk Py Dj

= T -1
-2 in l
2 2 a
P PP [n(n ) [ PiPiT L nth=T |~ ntnm1y PiPje

The second term is written in terms of the same parameters as follows:

{E(s, )}2 = (p,, - p,p.)2 = 2 - 2p. +p.%p.2.
i an P,PJ P ! ,DJP i P; PJ
After further simplicication we have
- 2 .1 _ =2 _2
Els;; = E(sy 035 = Ty - o0inPi° 5 PiPy;
2(3n-4) | n-2 )
FPIPPI L TatemTy | T ATy PP
n-2 2 . _2(.2. ) 2 2
Y am-D PPt RGSy PiPy T Thn Pi%P;
tti . .- . .. =0, P, i
Letting o'J le plpJ or le oIJ + p'pJ, we have for the sampling
variance of the covariance oij between two Bernoulli variables, with

parameters P, and pJ, for samples of size n, the expression

% (o,. + p,p.) -

2
ij i n(n-1) (o, * pip.) " n (oij * pipj)

rJ

' 2(3n-4)] ‘n-2 | |_n=2
+ 21
Pipylog ¥ plpj)[ Seeb LT ey R s 1)]

I 2(2n-3)
plpJ{n(n-])J Pi"PiTn(n- 1>f
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The Monte Carlo method was used to check the formula at a few values

of the parameters and the results agreed very well with those of the

formula. |In Table 6 the standard deviation of Sij is given in terms

of various values of n, Pis pj and oij’
Returning to the expression for A?i we are now able to estimate

upper and lower bounds. To obtain an upper bound we assume that BiJ

= Bik = § > 0, and since the probability that aij and &y deviate

positively and ajk deviates negatively by a sigma unit or more is

less than .05 and the sigmas of the a's are less than .01 for n > 500,

we have

8.8 8,18 * %1%k
pd

ij

+
ik

(.01 + §8) = Bi]jk

8Filik
nearly all the time.

In similar fashion, a lower bound can be shown to be the nega-
tive of the -upper bound. Thus for each i, pairs of items are selected
intervals intersect,

so that the pairs of Fi| Bil

jk 2P gk

The method was tried in an example using 10 items, 5 of which
discriminated strongly between the sexes ( Aoi > ,30) and 5 which did
not (-.10 < Api < .10). Two of the discriminative items were strongly
correlated within the sexes while all other eight pairs of discrimina-
tive items were not. The method suceessfully picked the four most
discriminative and weakly correlated items. After a computer orogram
is completed the method will be studied by more extensive empirical
and artificial data trials and in conjunction with the maximum |ikeli-
hood taxometric method. Aithough the method will not necessarily

produce independent item sets, (that is, if there are no such sets, the

method may produce a spurious set), it should detect such sets of items
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Pi

N oiJ p] 2 .4 6 .8
100 0.00 o2 0161

.4 0197  .0241

.6 ,0197 .024) 0241

.8 0161 .0197 ,0197 .0161
100 0.05 o2 .0204

.4 .0206 .0240

.6 0174 ,0232 .0240

.8 --%¥ ,0174 .0206 .0204
100 0.10 o2 .0228

4 0202 .0229

.6 - 0211 .0229

.8 - - .0202 .0228
100 0.15 2 .0240

.4 - .0205

.6 - L0170 .0205

.8 -- - -- .0240
500 0.00 2 .0072

.4 .0088 .0107

) .0088 .0107 0107

.8 .0072 .0088 .0088 .0072
500 0.05 2 .0091

.4 0092 .0107

.6 .0078 .0103 .0107

.8 - .0078 .0092 . 0091
500 0.10 W2 .0102

.4 .0090 .0102

.6 - .0094 .0102

.8 - - . .0090 .0102
500 0.15 2 .0107

.4 - .0091

.0 - - .0091

.8 ~- -- - .0107
1000 C.00 .2 .0051

.4 0062 .0076

.6 0062 .0076 .0076

.8 L0051  .0062 .0062 .0051
1000 0.05 W2 .0064

.4 0065 .,0076

.6 .0055 .0073 .0076

.8 - . 0055 .0065 .0064
1000 0.10 .2 L0072

.4 .0064 ,0072

.6 -- .0066 .0072

.8 - - . 0064 .0072
1000 0.15 W2 .0076

.4 - . 0064

.6 - .0054 .0064

.8 -~ - -- .0076

Table 6. Valges of the sampling standard deviation of the covariance of two Bernoul!i
variables as a function of sample size (N), covariance (o,.), and the two
variable parameters, P and pj. HJ

*Note: The formula Is evaluated only when the following conditions are met: (i) pii )
. - - - IR H - - - .
(i) Pij p,sp, (1 pi)pj(l pj), (iii) JECIIVIICINY (iv) 1 Pi2P 7Py and (v) 1 Pj>p.=p

] ij
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(for large enough samples) if, in fact, they do exist.

As the above method is cumbersome, although encouraging, it is of
Interest to describe a simple method that:failed as It leads to another
important fact. |In selecting items for keys it is necessary that an
item meet two conditions. First, items must discriminate sufficiently
between the taxonomic classes and second, an item must not be correla-
ted with the other selected items within the taxonomic class. Thus,
the total manifest covariance between items x and y for the compound
sample must be such that while the first two terms of the covariance
mixture equation are relatively small, the third is relatively large.

Oy = POyg ¥ Qo0 ¥ POLXAY .
If we sum the covariances of an item with each of the other items then
we would expect this sum to be large to the extent the item is discrim-
Inative if we assume that the within taxonomic class covariances to be
about the same size no matter the degree of discrimination. Unfortu-
nately, a trial of this procedure with the items of the male-female
example was not very encouraging. Some insight into why this happened
is gained Sy plugging typical numerical values into the covariance mix-
ture equation. The within sex covariances are observed to be between
.05 and .10 typically. While the contribution to the ftotal covariance
from the within sex covariance is .05 to .10, the contribution from the
third term is typically not more than (.5)(.5)(.3)(.3) = .025 which is
not only considerably less but only twice the éampling-sfandard devia-
tion of the covariance terms for large sample sizes. It is not difficult
to imagine that the rank order of the item covariance sums is mainly
influenced by the sampling fluctuation of the within taxonomic class

terms,
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The important fact, illustrated by this example, is that even
for a palr of very discriminative items, a major porffoh of the total
covariation comes from within the taxonomic classes and a minor por-
tion from the separation of taxonomic classes. That is, all pairs of §
Items In the male-female keys are of this nature, and there is no (
reason to believe MMP| items for other taxonomies should behave dif-

ferently in this regard.

IX. Classification of Individuals

The primary purpose of the present taxometric theories is for
taxonomy detection and description and not necessarily classification
of Individuals. Normally, however, it will be of interest to compare
the taxonomic classes on a number of other variables, not used as de-
fining indicators, for purposes such as taxoncmic class identification,
substantive theory testing and the |ike and, in order to do this, classi-
fication of individuals may be necessary. Since the normality assump=
tion has already been used and so justified by passage of the consis-
tency tests, yet to be discussed, it is natural to use the estimated
multinormal Indicator density functions for each taxonomic class for
the classification procedure also. It is noted that at this point it
is necessary to make the additional assumption that the intra-taxonomic
class indicator correlations are near zero. Using the estimated base-
rates, Bayes' Rule can be used to obtain the posterior probabilities
that an individual, with a given set of scores, telonas to each of the
taxonomic classes. Presumably, he would be assigned to the most likely
taxonomic class as this scheme can be shown to minimize the number of

misclassifications when the prior probabilities are equal.
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Classiflcation of individuals also gives rise to an iterative
bootstrapsing generalization of the method. Letting the two taxo-
nomic classes be denoted by subscripts | and r, the proportion of
those correctly classified in taxen r, Pr' and those for taxon
!, PI’ can be determined by a method given by Golden and Meeh! (p.31,
1973a). Writing the covariance mixture equation for each of the two

classification groups we have

= + XAV
oxy Ploxy + Of&y P|O’AxAy, and
cl ] r
_ (9)
o =P g + Qo + P_0Q _AxAy
XY o roxy| rexy, rr
(cl: classified as left)

(cr: classified as right)
where

oxy and oxy are the manifest covariances for individuals classi-
| r

fied in groups | and r and

Ax and A7 are the estimated differences in the taxonomic class means.

Thus (9) can be solved simultaneousiy for the two unknowns oxy and oxy'
| r

Now, with estimates of the intra-taxonomic class covariances, previously
assumed to be zero, we are presumably in a position to improve the
estimates of the multi-indicator density functions and, hence, improve
the classiflcation accuracy. The procedure can be applied repeatedly
in an iterative fashion, possibly producing estimates that converge to
approximately the frue values. Again, Monte Carlo study is indicated.
It should be noted that the method does produce underestimates of
the intra-taxonomic class covariances. This is because the taxonomic

classes are not the latent groups considered in (9); the tatent aroups
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which we referred to are the taxonomic class members which are classi-
fled correctly.

Another method of estimation of the covarliances results from the
fact that the conditional covariance between two output indicators
x and y (conditioned on the input variable w) is not a function of the
input variable value when the indicators are multivariate normal with-

in taxonomic classes. Anderson (1958) showed that

g 0
L _XW_ywW

o =g
xy |w XYy o

Permutation of the subscripts gives

X W
o =0 - and
xwly XW o
Y
oG
X XwW
o = o - .
ywlx YW o

Thus, we have three equations in three unknowns (¢_ , 0 , 0 ). The
xy’' Twy’ T xw
conditional covariances can be estimated by choosing a range of values
on the input variable that has nearly all- members from the same taxo-
nomic class. Possibly the system of equations can be solved numerically

by the method developed by Brown (1967) as existence of an explicit

solution is not evident.
X. Consistency Tests

It is very important to have adequate consistency tests for any
taxometric or psychometric theory. For a discussion of the consis-
tency tests and the development of certain examples see Meehl (1973a)
and Golden and Meehl (1973b). Briefly, the purpose of the consistency

test Is to ascertain if the assumptions of the theory are adequate
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approximations of the truth in that the taxon detection is not spuri-
ous and the parameter estimates are accurate enough for a given sub-
stantive problem.

A very significénf result occurred in the context of the pre-
liminary study In the detection of schizotypes which illustrates
the crucial role of consistency tests. Thirty items were selected
which discriminated by .30 or more in the difference in item plus-
rates between individuals already determined to be very likely schizo-
types versus those determined to be very likely non-schizotypes. How-
ever, when these items were made into a sinale key the normal method
estimates of the base-rate and the other Ia#enf parameters, was to-
tally off the mark from numerous other consistent results. The x?
goodness-of-fit value was near the expected value and the general
appearance of the fit of the theoretica! to the observed compound
frequency distribution was very good. The average correlation within
the taxonomic classes turned out to be .5 and subsequent Monte Carlo
trials showed that this is far too hiagh for the method to work adequate-
ly. Thus, what is needed among the final set of consistency tests is
one which determines if the average within ftaxonomic class item inter-
correlation is sufficiently small.

The most obvious consistency test might be thoughtto consist of
comparing the estimated compound distribution with the observed one.
While the chi-square guantity measures such a discrepency we do not
wish to determine if this value exceeds & critical value used for sta-
tistical significance but rather if it exceeds a value which is re-
quired for accurate parameter estimation ard non-spurious detection.

Ciearly it is not sufficient for the present purposes to determine if
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the chi-square value is significant or not at say, to .05 level. The
fallure of the method with the first male-female key illustrates the
need for consistency tests more sensitive than this. On the other
hand, other artificial and real data trials have shown that a highly
significant value can result even though parameter estimates are quite
accurate. More Importantly, though, a low value, say near the expect-
ed value, can easlily be obtained even though parameter estimates are
totally off the mark as was the case in the two cited examples above.
Experimentation with the method of calculatlion, such as variation of
the Interval frequency size, has not led to any improvement in the
usefulness of the chi-sauare value as a consistency test. A chi-
square goodness-of-fit value for the compound distribution near the
expected value or below can only be considered as faintly encouraging,
but certainly not by any means sufficient for confirming the existance
of a Taxonémy; on the other hand, while a highly significant value be-
hooves one to look for further discorroboration of the theory, it does
not necessarily refute either the existence of a taxonomy or the ac-
curacy of the estimates. |In short, the chi-square value appears to
help very little In determining if the assumptions are close enough 1o
the truth.

A number of consistency tests were developed by Meeh! (1965, 1968,
19733) a few of which have been studied and modified slightly by the
Monte Cario method and thereby shown to work surprisingly well for the
maximum covariance theory (Goliden and Meehl, 1973b). Some further
consistency tests are developed below.

A. The case of a sinqle indicator

When only a single indicater is available the possibilities for
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consistency testing are limited but there are a few simply derived

tests which Immediately suggest themselves. First, the base-rate .

welghted taxonomic class means uj should be approximately equal to

the compound mean u where ) f
u = § pjuj-

When u is determined by the above equation then estimation errors in

pJ and uJ, denoted by Apj and A”j’ cause an error Au. The exact dif-

ferential of u Is given by

du = Z(u.dp. + p.du.)
" | Mi%Py T P
from which It follows that

Ay = (3. Ap. t+ p.0u.).
U (1 pJ ﬁJ uJ
J
Maximum allowable values for estimation errors Apj and AUJ along with

the estimates ﬁj and ﬁj can then be used to estimate the maximum al-~
fowable discrepancy between the grand mean when calculated as a func-
tion of estimates of the latent taxa means and base-rates and when cal-
culated directly as a sample mean. Preliminary trials of this con-
sistency test indicate that when it is failed the estimates are grossiy
in error; however, when the test is passed there is little assurance
that the estimates are accurate enough. For example, taking the first

male-female key (Table 1) it would be reasonable to reaquire that

IAme < .1,
lap,] < .1,
lAuml =s £8 =2.71 and

[ou] = s, 26 = 2.05.
f f

Thus the maximum value of Au must be less than (.1)(9.98) + (.10)(14.69)

+ (.499)(2.71) + (.501)(2.05) = 4.84. The grand mean when calculated
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from the latent parameter estimates (pfuf + pmum) is (.501)(14,69)

+ (.499)(9.98) = 12,34 and this differs by only .01 from the compound
sample mean of 12.33; thus the consistency test In this instance Is
easlly passed even though the estimate of Py is In error by .110 which
according to the chosen error limits is not quite acceptable. The
test is passed In all the other examples as it should be. |t appears
that further Monte Carlo study will confirm that the test should be
used only as a preliminary one for early detection of gross errors.

An analogous test to the above one results from expressing the
compound varlance (rather than the mean) In terms of the taxonomic
class means, base-rates, and variances. The derivation of the formula
for any number of taxonomic classes consists simply of repeated ap-
plication of the variance mixture equation for two taxonomic classes.

There Is always allimif on the degree to which taxonomic class
distributions can overlap and still aliow for accurate taxonomic de-
tection. |t appears that for the present method the taxonomic class
means must be separated by at least one to one and one-half intra-
taxonomic class sigma units (Cohen (1966) suaggests that a two sigma
separation is necessary) and that the base-rates for a dichotomous
taxonomy must not be more disproportionate than .1 and .9. Parameter
estimates not meeting these conditions are quite possibly very erro-
neous and cannot be trusted without further corroboration.

I'f the Indicator is a key consisting of the sum of dichotomous
items then the possibility for consistency testing is greatly increased.
First, the condition derived in the item selection procedure above
in which triplets of covariances are considered should be satisfied by

all the items of the key or such a selected subset of the original
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items should produce a result consistent with the original key.
Second, each item can be used in the output role and the many re-
lations between output and input variables developed by Meeh!l (1965,
1968) can be checked to see if they are approximately satisfied.
Third, the method given above to estimate the Intra-taxonomic class
covariance by repeatedly solving a set of two simultaneous covariance
mixture equations can be applied to each item pair. Monte Carlo
study will show that the average and the variance of these covariance
estimates cannot exceed certain limits without causing intolerable
error; possibly such limits can be chosen so that the converse is also
true.

B. The case of multiple indicators

When there are several indicators, the possibilities for consis-
tency testing are greatly improved by the addition of several tests tfo
those above. A number of such tests are developed by Meehl (1968)
and a few more are given below.

For some taxonomies it should be true that when the method is
applied to the indicators taken singly, the separate base-rate esti-
mates should be in adequate agreement with each other and with the
single estimate of the multi-indicator method. Such a consistency
test does assume that the taxonomies detected for each indicator
taken singly are the same as one detected when they are taken jointly.
Presumably, this assumption is sometimes known to be true and some-
times known not to be at all true; of course, in the latter case the
test cannot be used.

A preliminéry trial in the detection of the schizotype taxon with

MMP| keys indicates that it will be possible to develop three hetero-
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geneous keys for use with the normal method, each having taxonomic
class mean differences of nearly two intra-taxonomic class sigma units.
For such a typical situation there exists a large portion of the three
dimenslional indicator hyperspace where nearly all of the individuals
belong to the ftaxon. To demonstrate this let x, y, and z be the

three indicators and assume that they are distributed trivariate nor-
mally wlfhin‘fhe taxon and within the non~taxon class just as the nor-

mal theory requires. The taxon density function, for example, is

glven by
1 2
¢ Oy,2) = EZPR o X_z-
(2m) |D| \
where
-1 L
[ 1 r ‘ X
Xy xz’
2 -
X (x,y,2z) ryx 1 ryzi y
r r 1 l 2
X 2y i L

and D is the determinant of the correlation matrix. Consider the
proportion of the members of the taxon with scores such that x > d,

y > d and z > d for some cut d. This octant proportion R can be cal-
culated from the following equation if the correlation matrix is
known and d is specified in intra-taxonomic class sigma units from

the taxon mean:

R = J J J ¢{x,y,z)dxdydz.
d ‘d“d

The friple integral can be evaluated numerically such as by the Gaussian
method. |f d is zero (each indicator is cut at the taxon mean) then R
varies from .125 when the within taxon correlations are zero to .266
when these correlations are each .90; generally R is roughly a monotonic

function of the average of the three correlations. Likewise, it can be
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shown that the same quantity for the non-taxon class Is less than .006.
Thus, for the posltive octant of the hyperspace formed by cuts at the
taxon means 1t Is expected that a proportion of the compound sample
not be less than .125P + ,006(1 - P) and not more than .266P + .006(1 - P)
where P is the taxon base-rate which has been estimated by the normal
method. By comparing these limits of the octant proportion with the
observed value we have a consistency test. [In the male-female three
key example the limits are .125(.61) 4+ ,006(.39) = ,077 + .002 = .079
and .266(.61) + .006(.39).= .162 4+ .002 = .164 and these surround the
observed value of .141., Suffice it to say that numerous other closely
related consistency tests using different hyperspace regions are sug-
gested by such an approach.

The three indicator system for a dichotomous taxonomy can be checked
by another procedure which begins by dichotomizing each of the indica-
tors at, say, the estimated hitmax cuts. Using the score 1 for scores
above hitmax cut and O for below or equal, we let Dt pyr and Pyr de-
note the right taxonomic class means and D pyI and Py the left taxo-
nomic class means. Then under the condition of independence within

the taxonomic class, we have the system of seven eguations

Px = prr * prl
Py = Ppyr + pr,
P, = szr ¥ szl
pxy N PDxrpyr * Opxlpyl
Pxz © prrpzr * prlozl
Pyz = ppyrpzr * opylpzl

= P +
pxyz Dxrpyrpzr ODxlpylpzl



.

where the left-side parameters are dlrectly observable and there are
seven unknowns on the right side. Evidently the equations are not
easlly solved for an explicit solution but a numerical iterative method
by Brown (1967) can be used. The method requires Initial estimates for
the unknowns and these can be obtained from the normal method parameter
estimates. The consistency tests consist of comparing these initial
estimates with the final estimates. Initial! guesses further off than .10
from the true value appear always to give incorrect results but such
results appear to be detectable since fhey haVe always been impossible
values (negative and greater than unity probabllities) in trials so far.
It remains to be determined if the method is robust enough with respect
to the Independence assumption and sampling errors in the compound pro-
portions but preliminary trials are not encouraging. Passage of the
tests would appear to provide strong corroboration of the normal theory.
However as the tests were not passed for the three male-female keys,

the method for solving the equations appears to lack sufficient robust-
ness.

Another consistency fest results from the fact that the sum of two
or more normally distributed variables is also normally distributed.
First, the base-rate estimates should be the same. |f there are three
~Indicators, then there are seven different sets that can be analyzed
singly. Second, the mean and variance of the sum within a taxonomic
class are given by

u = Zui

N
f

Zoi2+ 21 o,
i#j

where the W and the o; are the within taxonomic class means and sigmas

of the individual keys and the cij are the within taxonomic covariances
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for palrs of individual keys. When there are only two indicators
summed then the single within taxonomic class covariance tetween

the two keys can be calculated from the second equation. In view of
this interesting result, it is noted that the idea of summing keys
can be used elther primarily to estimate the within taxonomic class
covariance matrices or as a set of consistency tests, possibly both.

Another conslstency test evolves from the fact that in the typi-
cal taxonomic situation the separation between the latent means is one
to two within taxonomic class sigma units. With three such indicators
the probability of taxonomic class membership determined, say, by Bayes'
Rule is most often very high or very low. If the probabiiity of taxon
membership Is regarded as a random variable then the freaquency distri-
bution of this variable iIs strongly U-shaped. Preliminary Monte Carlo
results indicate that this function Is more nearly flat when the taxo-
nomic detection is a spurious one.

When items are randomly assigned to, say, three keys then we can
expect that the estimates of the latent means and variances should be
fairly close from one key to the next. I+ is difficult to derive ana-
lytically useful results concerning just how close the parameter esti-
mates should te. It is noted that items can be assiagned randomly to
keys any number of times.

When constructing keys by randomly assianing taxonomiczlily discrim-
inative items to the keys, there results an interestina relationship
between the average correlation between items of a sinole key x within
a taxonomic class, F;x, the average correlation between items of key

X with those of key y within the same taxonomic class, Fny and the

correlation between two keys within the same taxonomic class, rxy
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McNemar (1963) showed that the three average correlations are always

related by the formula

nmrbxy

XY Jatn(n-1 T, /mem(n-] )Fwy

where n and m are the number of items In keys x and y respectively.

If items are randomly assigned to the two keys it Is reasonable to

assume that r, £r 2F :7F., wWhenn =m, the formula then sim-
bxy WX Wy

plifies to

nr

1+ (n-Dr

This relationship between rxy and r shows what the maximum value
of F'may be in order that rxy is sufficiently small with respect to
the (unknown) robustness of the method with respect to dependence
between x and y within taxonomic classes. in Figure 1, rxy is plotted
as a function of the key length n for different values of r and peru-
sal of the graphs reveals several interesting results. Since rXy
cannot be greater than .5 for the maximum covariance theory (Golden
and Meehl, 1973b) it is seen that it is necessary that o< always
and it Is necessary that n < 20 for r = .05. Also, a few artificial
data trials have shown that the first multi-indicator normal method
will not allow r to be as high as .2, possibly not much over .t for
n = 20, an optimal length for discrimination with MMP| keys. Finally
it would appear keys should be about as short as possible which is
15 to 20 items usually as shorter keys begin to strongly violate the
normal ity assumption.

Monte Carlo study is required to obtain precise infcrmation on
the acceptable areas of (n,F5 values. With such results, a nice

consistency test wlll consist of estimating rxy by one of the proce-
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Figure 1. The Pearson correlation between two keys as a function of the common

keylength for different values of the common average interitem cor-

relation within key, r.
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dures given above, then determining F.from

xy
n-(n-1)r
Xy

’

and then cheéking to see if this value is low enough for the taxo-
metric method being used. However, as indicated above, such consis-
tency tests should be difficult to pass when using MMP| items as such
a method of key construction will be likely to yield r and F;y values
which are far too large.

The final consistency test to be given here consists of comparing
two ways of estimating the hitmax cut between two taxonomic classes.
Unlike the numerous other approximative hitmax-cut estimation methods
developed in previous reports (Meehl, 1965, 1968) the present method
requires the indicator within taxonomic class distributions fo be
quasi-normally distributed. Just as in the former methods, it is as-
sumed that the output indicator y and input indicator x are independent
within taxonomic class. There is no restriction on the within taxo-
nomic class distributions of the output indicator so an item or a key
not meeting the normality assumption could be used for example. |If
one considers the manifest outout mean as a function of the input in-
terval, denoted by ;kx), then it will be shown that ;kx) usually has
a point of inflection very near or at the hitmax-cut,

The number of right-taxonomic class memters in interval x is ap-

proximately
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likewise,
e 2
N| (x u|)/é; )
f|(x) = — e / (.
\ Y27 o

| .
At the hitmax-cut h, f|(h) = fr(h) or

- (h-y )7 -(h-u )%/
N i 2 N r 2
I 20, or o /207

| r

Taking the natural logarithm of each side and rearranging terms, we

have
- 2 - 2
(h ur) i (h ul) o Nro|
20 2 20 2 No '’
r [ I r
or

2 _ 2)h2 4+ 2_2 2 + 2. 2 _ 2. 2
(cl o Jh (Zulor MO, Jh w0, w o

Since the above ecauation is a auadratic function in h, it can be solved
by the quadratic formula to give h explicitiy in terms of the six other
latent parameters.

The derivation of the second method ‘or determining h consists of

oo d2y( :
writing ___125) in terms of the same latent parareters. Llet
dx< X = h

the manifest output mean for inout interval x te written as

Yo =P Yt G =mpdy, oy = ly = y)p

where Py is the proportion of the individuals in interval x who are

members of the right taxonomic class, and Y and y, are the two taxo-

nomic ciass means. It follows that
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dy,, . _ 9 a2y, N L
—= = (y_ - y|%~—- and ———= = (y_ - yl)-————
dx dx dx? dx?
frx
Since px = Y , we have
Ix rx
g flx dfrx fr dfI
px - dx dx
dx (f + 1t )2
Ix rx
and ) ) ( \ (
f
2 { e O ) :f| +f \ s 29 \ Lfl Sl i
U2 FPXTaxZ ) T U dx dx ax dx
2
dx (F. +f )3
I x rx

In order to simplify the above expression, we write

df e d f —y)2-g2
X <XZP) ¢ = Af and x _ x U>n 9t -5t .
dx o X X X o] X X X
dx
d2f
The numgrator for ——> can now be written as
dx2

+ A f YA f f - AFf f)
[ rr i r rr |

(B f f -8B f fXf, + f ) 4+2(A f
rlr r | r ] |

I
which simplifies fo
{(F,£ (B =3 )(f + f )+ 2(Af +Af YA - A}
b'r 7r | | r | rr | r
which can be rewritten as

ff (Cf, +Cf )
R S rr

where
C,=(B_-8B)Y+2A (A, -A)and C = (B -8B ) +2A (A - A
] r | [ r r r | ro| r
At hitmax h, f, = f = f , we hzve
| r h
25 3 N ~
E.ZZ. ) (;_ ) ; )fh (C1+Cr) _ (y' yr)(\,l + Cr)
dx? |x = h ! r 5t 3 8

h

).
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Since C, + C_ = 2(B_ - B,) + 2A, 2 - 2A_2 which simplifies To—‘zj-—"zy
| r r | i r o Or
we have
— 9 - v 2 _ 2
d?y byt ot e
dx?{x=h 4 orz ol2

which is precisely zero only when o, = 0. Generally, with estimates

of ar and 61 available one can use a numerical differentiation method

202

vi 7> and this
o

I r

(;} - ;}) o}
o

o=
to determine where 93§7 is closest to
4

shoul!d be adequately close to the previous hitmax-cut estimate.

The same method can be applied using just the first derivative
but it would appear that the second derivative can be more easily
evaluated near hitmax by a numerical method as it is close to zero
at hitmax when variances are nearly equal. In either method the ac-
curacy of the hitmax estimate will be Iimited by that of the numerical
differentiation method when applied to sample data and this is only

determinable by Monte Carlo study.
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